Interannual variability of Indian Ocean subtropical mode water subduction rate
NASA Astrophysics Data System (ADS)
Ma, Jie; Lan, Jian
2017-06-01
The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3-6 years for IOSTMW (25.8 < σ θ < 26.2 kg m-3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.
NASA Technical Reports Server (NTRS)
Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.
2005-01-01
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (
NASA Astrophysics Data System (ADS)
Chan, Duo; Zhang, Yang; Wu, Qigang
2013-04-01
East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.
NASA Astrophysics Data System (ADS)
Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman
2018-03-01
The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.
Variations in phenology and growth of European white birch (Betula pendula) clones.
Rousi, Matti; Pusenius, Jyrki
2005-02-01
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.
NASA Astrophysics Data System (ADS)
Kim, Young-Ha; Yoo, Changhyun
2017-04-01
We investigate activities of tropical waves represented in reanalysis products. The wave activities are quantified by the Eliassen-Palm (EP) flux at 100 hPa, after decomposed into the following four components: equatorially trapped Kelvin waves and mixed Rossby-gravity waves, gravity waves, and Rossby waves. Monthly EP fluxes of the four waves exhibit considerable temporal variations at intraseasonal and interannual, along with seasonal, time scales. These variations are discussed with the tropical large-scale variabilities, including the Madden-Julian Oscillation (MJO), the El Ninõ-Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). We find that during boreal winter, the interannual variation of Kelvin wave activity is in phase with that of the MJO amplitude, while such a simultaneous variation cannot be seen in other seasons. The gravity wave is dominated by a semi-annual cycle, while the departure from its semi-annual cycle is largely correlated with the QBO phase in the stratosphere. Potential impacts of the variations in the wave activity upon the QBO properties will be assessed using a simple one-dimensional QBO model.
NASA Astrophysics Data System (ADS)
Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin
2018-04-01
The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity
. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.
North-South precipitation patterns in western North America on interannual-to-decadal timescales
Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.
1998-01-01
The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25?? to 55 ??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both tim
NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
NASA Astrophysics Data System (ADS)
Fu, Y.; Liao, H.
2012-12-01
We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2-5% differences in simulated O3 and SOA in summer.
NASA Astrophysics Data System (ADS)
Fu, Yu; Liao, Hong
2012-11-01
We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2-5% differences in simulated O3 and SOA in summer.
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel
2016-09-15
Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
NASA Technical Reports Server (NTRS)
Zwally, J.
1988-01-01
The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.
Trophic status drives interannual variability in nesting numbers of marine turtles.
Broderick, A C; Godley, B J; Hays, G C
2001-07-22
Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.
Hays, G C
2000-09-21
Sea turtles nest on sandy beaches and tend to show high fidelity to specific nesting areas, but, despite this fidelity, the inter-annual variation in nesting numbers may be large. This variation may reflect the fact that turtles do not usually nest in consecutive years. Here, theoretical models are developed in which the interval between successive nesting years (the remigration interval) reflects conditions encountered on the feeding grounds, with good feeding years leading to a reduction in the remigration interval and vice versa. These simple models produce high levels of inter-annual variation in nesting numbers with, on occasion, almost no turtles nesting in some years even when the population is large and stable. The implications for assessing the size of sea turtle populations are considered. Copyright 2000 Academic Press.
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa
2003-01-01
Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and interhemispheric transport in the Indian Ocean.
Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific
NASA Astrophysics Data System (ADS)
Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang
2018-05-01
The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.
NASA Astrophysics Data System (ADS)
Willmes, S.; Haas, C.; Nicolaus, M.; Bareiss, J.
2009-04-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing causes the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset, based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze-thawing occurs at the surface are determined.
NASA Astrophysics Data System (ADS)
Willmes, Sascha; Haas, Christian; Nicolaus, Marcel; Bareiss, JöRg
2009-03-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in-situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing cause the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen, and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze thawing occurs at the surface are determined.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.
Origins of tropospheric ozone interannual variation over Réunion: A model investigation
NASA Astrophysics Data System (ADS)
Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Françoise
2016-01-01
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange. Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August-September.
Origins of Tropospheric Ozone Interannual Variation (IAV) over Reunion: A Model Investigation
NASA Technical Reports Server (NTRS)
Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Francoise
2016-01-01
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Reunion Island (21.1 degrees South Latitude, 55.5 degrees East Longitude) in June-August. Here we examine possible causes of the observed ozone variation at Reunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Reunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange. Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Reunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Reunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited tothe lower troposphere near the surface in August-September.
NASA Astrophysics Data System (ADS)
Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.
2015-05-01
The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are observed during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.; Au, Andrew Y.
2004-01-01
Recent Satellite Laser Ranging derived long wavelength gravity time series analysis has focused to a large extent on the effects of the recent large changes in the Earth s 52, and the potential causes. However, it is difficult to determine whether there are corresponding signals in the shorter wavelength zonals from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic coefficient series have significant interannual signal that appears to be related to mass transport. The non-zonal degree 2 terms show reasonable correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. While the formal uncertainty of these terms is significantly higher than that for J2, it is also clear that there is useful signal to be extracted. Consequently, the SLR time series is being reprocessed to improve the time variable gravity field recovery. We will present recent updates on the J2 evolution, as well as a look at other components of the interannual variations of the gravity field, complete through degree 4, and possible geophysical and climatic causes.
Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew
2017-12-20
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2001-01-01
The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
NASA Astrophysics Data System (ADS)
Li, Xin; Babovic, Vladan
2017-04-01
Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.
Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation.
Liu, Junhua; Rodriguez, Jose M; Thompson, Anne M; Logan, Jennifer A; Douglass, Anne R; Olsen, Mark A; Steenrod, Stephen D; Posny, Francoise
2016-01-16
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August - September.
Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation
Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Francoise
2018-01-01
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992–2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August – September. PMID:29657911
NASA Astrophysics Data System (ADS)
Stone, Hally B.; Banas, Neil S.; MacCready, Parker
2018-01-01
The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.
Modeling Modern Methane Emissions from Natural Wetlands. 2; Interannual Variations 1982-1993
NASA Technical Reports Server (NTRS)
Walter, Bernadette P.; Heimann, Martin; Mattews, Elaine; Hansen, James E. (Technical Monitor)
2001-01-01
A global run of a process-based methane model [Walter et al., this issue] is performed using high-frequency atmospheric forcing fields from ECMWF reanalyses of the period from 1982 to 1993. We calculate global annual methane emissions to be 260 Tg/ yr. 25% of methane emissions originate from wetlands north of 30 deg. N. Only 60% of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands, the seasonality of simulated and observed methane emissions agrees well. The effects of sub-grid scale variations in model parameters and input data are examined. Modeled methane emissions show high regional, seasonal and interannual variability. Seasonal cycles of methane emissions are dominated by temperature in high latitude wetlands, and by changes in the water table in tropical wetlands. Sensitivity tests show that +/- 1 C changes in temperature lead to +/- 20 % changes in methane emissions from wetlands. Uniform changes of +/- 20% in precipitation alter methane emissions by about +/- 18%. Limitations in the model are analyzed. Simulated interannual variations in methane emissions from wetlands are compared to observed atmospheric growth rate anomalies. Our model simulation results suggest that contributions from other sources than wetlands and/or the sinks are more important in the tropics than north-of 30 deg. N. In higher northern latitudes, it seems that a large part, of the observed interannual variations can be explained by variations in wetland emissions. Our results also suggest that reduced wetland emissions played an important role in the observed negative methane growth rate anomaly in 1992.
Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.
2003-01-01
Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, Vasubandhu; Moeller, Lauren; Stefanova, Lydia; Chan, Steven; O'Brien, James J.; Smith, Thomas J.; Plant, Nathaniel
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze.
Temporal patterns in adult salmon migration timing across southeast Alaska
Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David
2015-01-01
Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.
Ault, Toby R.; Schwartz, Mark D.; Zurita-Milla, Raul; Weltzin, Jake F.; Betancourt, Julio L.
2015-01-01
Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from 20.8 to 21.6 days decade21, while first bloom index trends are between20.4 and 21.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.
NASA Astrophysics Data System (ADS)
Ault, T.; Schwartz, M. D.; Zurita-Milla, R.; Weltzin, J. F.; Betancourt, J. L.
2015-12-01
Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous US. This dataset is derived from daily interpolated meteorological data, and results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from -0.8 to -1.6 days per decade, while first bloom index trends are between -0.4 and -1.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal timescales. Finally, there is some potential for successful sub-seasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Russell, Lynn M.; Xu, Li
The impacts of the El Niño–Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle ismore » found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western Pacific Ocean in El Niño (La Niña) events, increased (decreased) wet scavenging of natural aerosols dampens more than 4–6% of variations of cloud radiative effects averaged over the tropics. In contrast, increased surface winds cause feedbacks that increase sea spray emissions that enhance the variations by 3–4% averaged over the tropics.« less
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
Annual and inter-annual variations of 6.5-day-planetary-waves in MLT observed by TIMED/SABER
NASA Astrophysics Data System (ADS)
Huang, Yingying; Li, Huijun; Li, Chongyin; Zhang, Shaodong
2017-04-01
Annual and inter-annual variations of 6.5DWs in 20-110 km, 52°S-52°N, 2002-2016 are studied by using v2.0 TIMED/SABER kinetic temperature data. Firstly, global annual variations of 6.5DW's spectral power and amplitudes are obtained. Strong wave amplitudes emerge in 30°S/N-50°S/N, and peaks in altitude separate in stratosphere (40-50 km), mesosphere (80-90 km) and the lower thermosphere (100-110 km), respectively. Their annual variations are similar in both hemispheres, but different in altitude. In 40-50 km, the annual maximums emerge mostly in winters: Dec.-Jan. in the NH and Jul.-Aug. in the SH. In MLT, annual peaks arise twice in each half of year. In 80-90 km, they're mainly in equinoctial seasons and winters: May, Aug.-Sep. and Jan. in the NH and Feb., Nov. and May in the SH. In 100-110 km, they emerge mainly in equinoctial seasons: Apr.-May and Aug.-Sep. in the NH and Feb.-Mar. and Oct.-Nov. in the SH. Then, inter-annual variations of 6.5DW amplitudes during the 14-year period are studied. Frequency spectra of monthly-mean amplitudes show that, main dynamics in long-term variations of 6.5DWs are AO and SAO in both hemispheres. Besides, QBO are visible in both hemispheres and 4-month period signals are noticed in the NH in MLT. Amplitudes of SAO, AO and QBO are obtained by bandpass filter. Their amplitudes are comparable in stratosphere and mesosphere, and QBO signals are weaker than the others in the LT. Vertical variations both of SAO and AO amplitudes are very stable. AO structures have little inter-annual changes, while inter-annual variations of SAO are significant and are related with 6.5DW. It means that annual and inter-annual variations of 6.5DW are mainly controlled by AO and SAO, respectively. Although QBO signals are weaker and their variations are less regular than AO and SAO, their phases seems to relate with inter-annual variations of 6.5DW as well.
Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D
2014-10-01
Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.
Burchill, William; Li, Dejun; Lanigan, Gary J; Williams, Micheal; Humphreys, James
2014-10-01
Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2 O emissions. The objectives of this study were to (i) quantify annual N2 O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51'N, 08°21'W). The annual N2 O-N emissions (kg ha(-1); mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2 O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2 O emissions highlights the need for long-term studies of emissions from managed pastoral systems. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Elsawwaf, Mohamed; Willems, Patrick
2012-04-01
Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity.
Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.
2000-01-01
Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.
Process contributions of Australian ecosystems to interannual variations in the carbon cycle
NASA Astrophysics Data System (ADS)
Haverd, Vanessa; Smith, Benjamin; Trudinger, Cathy
2016-05-01
New evidence is emerging that semi-arid ecosystems dominate interannual variability (IAV) of the global carbon cycle, largely via fluctuating water availability associated with El Niño/Southern Oscillation. Recent evidence from global terrestrial biosphere modelling and satellite-based inversion of atmospheric CO2 point to a large role of Australian ecosystems in global carbon cycle variability, including a large contribution from Australia to the record land sink of 2011. However the specific mechanisms governing this variability, and their bioclimatic distribution within Australia, have not been identified. Here we provide a regional assessment, based on best available observational data, of IAV in the Australian terrestrial carbon cycle and the role of Australia in the record land sink anomaly of 2011. We find that IAV in Australian net carbon uptake is dominated by semi-arid ecosystems in the east of the continent, whereas the 2011 anomaly was more uniformly spread across most of the continent. Further, and in contrast to global modelling results suggesting that IAV in Australian net carbon uptake is amplified by lags between production and decomposition, we find that, at continental scale, annual variations in production are dampened by annual variations in decomposition, with both fluxes responding positively to precipitation anomalies.
Global modeling of land water and energy balances. Part III: Interannual variability
Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.
2002-01-01
The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.
Seasonal and interannual variations of atmospheric CO2 and climate
Dettinger, M.D.; Ghil, M.
1998-01-01
Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) issued here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7 days at Mauna Loa and 18 days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3 years)-1 and (4 years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6-8 months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and ??13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, V.; Moeller, L.; Stefanova, L.; Chan, S.; O'Brien, J. J.; Smith, T.J.; Plant, N.
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979-2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.
2009-12-01
Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.
NASA Astrophysics Data System (ADS)
Su, X.; Shum, C. K.; Guo, J.; Howat, I.; Jezek, K. C.; Luo, Z.; Zhou, Z.
2017-12-01
Satellite altimetry has been used to monitor elevation and volume change of polar ice sheets since the 1990s. In order to derive mass change from the measured volume change, different density assumptions are commonly used in the research community, which may cause discrepancies on accurately estimating ice sheets mass balance. In this study, we investigate the inter-annual anomalies of mass change from GRACE gravimetry and elevation change from Envisat altimetry during years 2003-2009, with the objective of determining inter-annual variations of snow/firn density over the Greenland ice sheet (GrIS). High positive correlations (0.6 or higher) between these two inter-annual anomalies at are found over 93% of the GrIS, which suggests that both techniques detect the same geophysical process at the inter-annual timescale. Interpreting the two anomalies in terms of near surface density variations, over 80% of the GrIS, the inter-annual variation in average density is between the densities of snow and pure ice. In particular, at the Summit of Central Greenland, we validate the satellite data estimated density with the in situ data available from 75 snow pits and 9 ice cores. This study provides constraints on the currently applied density assumptions for the GrIS.
Response of Marine Taxa to Climate Variability in the Southeast U.S.
NASA Astrophysics Data System (ADS)
Morley, J. W.; Pinsky, M. L.; Batt, R. D.
2016-02-01
Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.
Knowles, Noah
2002-01-01
Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.
NASA Astrophysics Data System (ADS)
Sperber, K. R.; Palmer, T. N.
1996-11-01
The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.
A Global-Scale Examination of Monsoon-Related Precipitation.
NASA Astrophysics Data System (ADS)
Janowiak, John E.; Xie, Pingping
2003-12-01
A pentad version of the Global Precipitation Climatology Project global precipitation dataset is used to document the annual and interannual variations in precipitation over monsoon regions around the globe. An algorithm is described that determines objectively wet season onset and withdrawal for individual years, and this tool is used to examine the behavior of various characteristics of the major monsoon systems. The definition of onset and withdrawal are determined by examining the ramp-up and diminution of rainfall within the context of the climatological rainfall at each location. Also examined are interannual variations in onset and withdrawal and their relationship to rainy season precipitation accumulations. Changes in the distribution of “heavy” and “light” precipitation events are examined for years in which “abundant” and “poor” wet seasons are observed, and associations with variations in large-scale atmospheric general circulation features are also examined. In particular, some regions of the world have strong associations between wet season rainfall and global-scale patterns of 200-hPa streamfunction anomalies.
Interannual variations of tropical convection impact atmospheric circulation and influence year-to-year variations of the transport of trace constituents in the troposphere. This study examines how two modes of convective variability-anomalous intensification and meridional disp...
Interannual Atmospheric Variability Simulated by a Mars GCM: Impacts on the Polar Regions
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, R. M.; Hollingsworth, J. L.
2003-01-01
It is often assumed that in the absence of year-to-year dust variations, Mars weather and climate are very repeatable, at least on decadal scales. Recent multi-annual simulations of a Mars GCM reveal however that significant interannual variations may occur with constant dust conditions. In particular, interannual variability (IAV) appears to be associated with the spectrum of atmospheric disturbances that arise due to baroclinic instability. One quantity that shows significant IAV is the poleward heat flux associated with these waves. These variations and their impacts on the polar heat balance will be examined here.
Seasonal and interannual variations of atmospheric CO2 and climate
NASA Astrophysics Data System (ADS)
Dettinger, Michael D.; Ghil, Michael
1998-02-01
Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) is used here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7days at Mauna Loa and 18days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3years)
1 and (4years)
1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6 8months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and δ13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.
NASA Astrophysics Data System (ADS)
Piper, S. C.; Keeling, R. F.; Patra, P. K.; Welp, L. R.
2011-12-01
We present an analysis of the trends and interannual variations in the phase and amplitude of the seasonal cycle of atmospheric CO2 at Northern Hemisphere stations of the Scripps network from 1958 to 2010. The seasonal cycle here primarily reflects biospheric activity over large land regions and provides a strong constraint on NEE. The analysis includes observational records at Pt. Barrow (71°N), La Jolla (33°N), and Kumukahi (20°N), in addition to Mauna Loa (20°N), Station Papa (50°N), and Alert, Canada (82°N). We compare observations with forward atmospheric transport simulations which employ interannually-varying reanalyzed winds with seasonally variable terrestrial biospheric, oceanic and fossil fuel sources to account for atmospheric transport. The observed increase in seasonal amplitude since 1958 has varied among stations and with time at each station. The temporal changes often have not been coherent among stations. The amplitude increased less than 10% at Mauna Loa and 45% at Barrow, Alaska from the 1960s. The record at Alert, which started in 1986, appears to match variations at Barrow, and recent measurements at Station Papa in the Alaskan Gyre suggest an increase intermediate between that of Mauna Loa and Point Barrow. The most striking increase has been at midlatitudes at La Jolla, about 60% since the late 1950s in part resulting from changes in local meteorological conditions. For Barrow and Mauna Loa, the amplitude increased rapidly from 1970 to 1990, after which it slowed significantly at Barrow, and decreased at Mauna Loa. The variations at Alert were similar to those at Barrow suggesting that both records are representative of large-scale Arctic air masses. Kumukahi and Mauna Loa are located at the same latitude but different altitudes. For common years of record in 1980-2000, the amplitude at both stations varied interannually but without a long term trend. After 2000, however, the amplitude at Mauna Loa increased dramatically to 2004 and decreased to 2009, while the amplitude at Kumukahi increased slowly. These differences reflect different influences of source regions and transport at the two stations. Climate variations are an important driver for both the long term trend and shorter term interannual variations in the seasonal amplitude. However, several studies for short periods suggest that atmospheric transport has an important influence. Model simulations with interannually-varying winds for the entire Mauna Loa record, from 1958 to 2010, indicate that the long-term advance in the observed phase at Mauna Loa, by about 8 days in 50 years, is produced by atmospheric transport up until 1990, but not afterward. Observed variations in the seasonal amplitude however are poorly simulated suggesting that variations in terrestrial sources, perhaps driven by temperature before 1990 and drought afterwards may be important as suggested in previous studies. Findings for the remaining stations will be presented. As a whole, temporal and spatial variations in amplitude and phase reflect a complex interplay of climate-driven changes in sources and atmospheric transport.
Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
Levin, Ingeborg; Rödenbeck, Christian
2008-03-01
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.
Hydroclimate variations in central and monsoonal Asia over the past 700 years.
Fang, Keyan; Chen, Fahu; Sen, Asok K; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki
2014-01-01
Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia.
Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years
Fang, Keyan; Chen, Fahu; Sen, Asok K.; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki
2014-01-01
Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia. PMID:25119567
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) and water use efficiency (WUE) in peach orchards has previously been observed in young (less than 5-8 years old), drip irrigated orchards using micrometeorological techniques such as Eddy Covariance or large-weighing lysimeters. However, no work has been reported on ET and W...
Tree growth response to ENSO in Durango, Mexico
NASA Astrophysics Data System (ADS)
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Tree growth response to ENSO in Durango, Mexico.
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning
2015-05-22
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Schwartz, Rachel E.; Gershunov, Alexander; Iacobellis, Sam F.; Cayan, Daniel R.
2014-05-01
Six decades of observations at 20 coastal airports, from Alaska to southern California, reveal coherent interannual to interdecadal variation of coastal low cloudiness (CLC) from summer to summer over this broad region. The leading mode of CLC variability represents coherent variation, accounting for nearly 40% of the total CLC variance spanning 1950-2012. This leading mode and the majority of individual airports exhibit decreased low cloudiness from the earlier to the later part of the record. Exploring climatic controls on CLC, we identify North Pacific Sea Surface Temperature anomalies, largely in the form of the Pacific Decadal Oscillation (PDO) as well correlated with, and evidently helping to organize, the coherent patterns of summer coastal cloud variability. Links from the PDO to summer CLC appear a few months in advance of the summer. These associations hold up consistently in interannual and interdecadal frequencies.
Importance of Geosat orbit and tidal errors in the estimation of large-scale Indian Ocean variations
NASA Technical Reports Server (NTRS)
Perigaud, Claire; Zlotnicki, Victor
1992-01-01
To improve the estimate accuracy of large-scale meridional sea-level variations, Geosat ERM data on the Indian Ocean for a 26-month period were processed using two different techniques of orbit error reduction. The first technique removes an along-track polynomial of degree 1 over about 5000 km and the second technique removes an along-track once-per-revolution sine wave about 40,000 km. Results obtained show that the polynomial technique produces stronger attenuation of both the tidal error and the large-scale oceanic signal. After filtering, the residual difference between the two methods represents 44 percent of the total variance and 23 percent of the annual variance. The sine-wave method yields a larger estimate of annual and interannual meridional variations.
NASA Astrophysics Data System (ADS)
Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong
2016-03-01
Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Chern, Jiun-Dar
2005-01-01
An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1999-01-01
A model combining the rate of carbon assimilation with water and energy balance equations has been run using satellite and ancillary data for a period of 60 months (January 1986 to December 1990). Calculations for the Gediz basin area give mean annual evaporation as 395 mm, which is composed of 45% transpiration, 42% soil evaporation and 13% interception. The coefficient of interannual variation of evaporation is found to be 6%, while that for precipitation and net radiation are, respectively, 16% and 2%, illustrating that net radiation has an important effect in modulating interannual variation of evaporation. The mean annual water use efficiency (i.e., the ratio of net carbon accumulation and total evaporation) is ca. 1 g/sq m/mm, and has a coefficient of interannual variation of 5%. A comparison of the mean water use efficiency with field observations suggests that evaporation over the area is utilized well for biomass production. The reference crop evaporation for irrigated areas has annual mean and coefficient of variation as, respectively, 1176 mm and 3%. The total evaporation during three summer months of peak evaporation (June-August) is estimated to be about 575 mm for irrigated crops like maize and cotton. Seasonal variations of the fluxes are presented.
Sensitivity of Precipitation in Coupled Land-Atmosphere Models
NASA Technical Reports Server (NTRS)
Neelin, David; Zeng, N.; Suarez, M.; Koster, R.
2004-01-01
The project objective was to understand mechanisms by which atmosphere-land-ocean processes impact precipitation in the mean climate and interannual variations, focusing on tropical and subtropical regions. A combination of modeling tools was used: an intermediate complexity land-atmosphere model developed at UCLA known as the QTCM and the NASA Seasonal-to-Interannual Prediction Program general circulation model (NSIPP GCM). The intermediate complexity model was used to develop hypotheses regarding the physical mechanisms and theory for the interplay of large-scale dynamics, convective heating, cloud radiative effects and land surface feedbacks. The theoretical developments were to be confronted with diagnostics from the more complex GCM to validate or modify the theory.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.
2016-02-01
The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.
M. Concilio; J. Chen; S. Ma; M. North
2009-01-01
Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R...
USDA-ARS?s Scientific Manuscript database
Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...
Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Stock, Larry
1997-01-01
The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.
How important is interannual variability in the climatic interpretation of moraine sequences?
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.
2017-12-01
Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.
The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.
NASA Astrophysics Data System (ADS)
Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.
2017-12-01
Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.
Using altimetry to help explain patchy changes in hydrographic carbon measurements
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro
2009-09-01
Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
NASA Astrophysics Data System (ADS)
Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel
2013-12-01
Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ18O.
Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel
2013-01-01
[1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ18O. PMID:26213660
Paleoclimatological perspective on the hydrometeorology of the Mekong Basin
NASA Astrophysics Data System (ADS)
Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.
2012-11-01
During recent decades the Mekong River has experienced substantial interannual variations between droughts and major floods. The causes of these variations have been sought in climate change and dam construction. However, so far little research has addressed whether these recent variations are significantly different to long-term variations in the past. Hence, the aim of our paper is to place the recent variations between droughts and floods into a historical and paleoclimatological context. To achieve this we analysed the Mekong's meteorological conditions over the period 1300-2005 with a basin scale approach by using the Monsoon Asia Drought Atlas (MADA), which is a Palmer Drought Severity Index (PDSI) dataset derived from tree-ring growth records. The correlation analyses, both in time and frequency domains, showed correlation between MADA and the Mekong's discharge over the period 1910-2005 which suggests that MADA can be used as proxy for the hydrometeorology of the Mekong Basin. We found that the meteorological conditions of the Mekong varied at multi-annual, decadal and centennial scales over the study period. We found two especially distinct features: firstly, multi-annual and decadal variation between prolonged wet and dry epochs; and secondly, epochs with higher or lower interannual variability between very dry and wet years. Furthermore we found two epochs with exceptionally large interannual variability, one at the beginning of 17th century and the other in the post 1950 epoch. Both epochs are characterized by distinct increases in variability between very wet and dry years. The variability in the post 1950 epoch is much higher compared to any of the other epochs included in this study. Thus, during recent decades the climate in the Mekong has exhibited features that have not been experienced for at least several centuries. These findings call for further climate research, particularly regarding increased climate variability, and resilient adaptation and development approaches in the basin.
NASA Astrophysics Data System (ADS)
Vinogradova, A. A.; Ivanova, Yu. A.
2017-12-01
Interannual variations in the level of anthropogenic contamination of the surface air in the northern areas of Russia are studied, which are related to a change in the direction of air mass transport. The transport of air and heavy metals to four sites located on territories of nature reserves on the coast of the Arctic Ocean (from the Kola Peninsula to a delta of the Lena River) in winter (January) and summer (July) is analyzed for 2000-2013. Indices of atmospheric circulation and data on the emission of pollutants into the atmosphere in cities and regions of Russia are involved in the analysis. Concentrations of seven heavy metals in the surface air are evaluated in the Arctic regions under study and their interannual, spatial, and seasonal variations are discussed. A strong interannual variability of atmospheric circulation differently influences the variations in the atmosphere contamination with different anthropogenic heavy metals in various areas of the north of Russia. The concentration ratios of heavy metals under study are different for each site in different years. The interannual and seasonal variations in the contamination level have maximum values for heavy metals arriving from most distant sources. Thus, the results of measuring the content of anthropogenic contaminants in the air of reference areas during one season or even one year should not serve a basis for longterm conclusions and forecasts. It would be also unjustified to make general conclusions on the contamination level of the environment from observation results for only one contaminant and/or only at a single site.
Finding a Needle in a Climate Haystack
NASA Astrophysics Data System (ADS)
Verosub, K. L.; Medrano, R.; Valentine, M.
2014-12-01
We are studying the regional impact of volcanic eruptions that might have caused global cooling using high-quality annual-resolution proxy records of natural phenomena, such as tree-ring widths, and cultural events, such as the dates of the beginning of grape and rye harvests. To do this we need to determine if the year following an eruption was significantly colder and wetter than preceding or subsequent years as measured by any given proxy and if that year is consistently cold and wet across different proxies. The problem is complicated by the fact that normal inter-annual variations in any given proxy can be quite large and can obscure any volcanological impact and by the fact that inter-annual variations for different proxies will have different means and standard deviations. We address the first problem by assuming that on a regional scale, the inter-annual variations of different proxies are at best only weakly correlated and that, in the absence of a volcanological signal, these variations will average out on a regional scale. We address the second problem by renormalizing each record so that it has the same mean and standard deviation over a given time interval. We then sum the re-normalized records on a year-by-year basis and look for years with significantly higher total scores. The method can also be used to assess the statistical significance of an anomalous value. Our initial analysis of records primarily from the Northern Hemisphere shows that the years 1601 and 1816 were significantly colder and wetter than any others in the past 500 years. These years followed the eruptions of Huayanaputina in Chile and Tambora in Indonesia, respectively, by one year. The years 1698 and 1837 also show up as being climatologically severe although they have not (yet) been associated with specific volcanic eruptions.
Variations in atmospheric CO2 growth rates coupled with tropical temperature
Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.
2013-01-01
Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654
NASA Astrophysics Data System (ADS)
Liang, G.; Wilcox, K.; Rudgers, J.; Litvak, M. E.; Newsome, S. D.; Collins, S. L.; Pockman, W.; Luo, Y.
2017-12-01
Altered amounts and increased interannual variation of precipitation are likely to occur on a regional to global scale in the late 21st Century, yet understanding the interactive effects of these changes on ecosystem processes is limited. Here, we modeled the responses of the carbon cycle in a desert grassland at the Sevilleta National Wildlife Refuge (SEV) to changes in precipitation amount and interannual variation using the Terrestrial Ecosystem model. After model calibration, we generated 100-year hourly weather data by randomly repeated sampling of observed hourly weather data at SEV from 2000 to 2012. We then modified this 100-year time series to create six climate scenarios: (1) ambient (AMB); (2) increased air temperature by 4.3 °C in summer and 3.3 °C in other seasons for each year (IT); (3) 20% decreased precipitation amount for every event (DP); (4) combined IT and DP (DPT); (5) 100% increased precipitation interannual variance without changing the mean (IV); (6) combined IT and IV (IVT). Our results showed IV significantly increased the sensitivity of NPP to continuous extreme drought. In addition, the increased number of extreme drought years caused by IV exacerbated the negative influence of individual extreme drought events on soil organic carbon (SOC). The IV climate scenario showed the highest interannual variance of carbon fluxes and SOC, but increased temperature reduced this variance. DP and IV decreased NPP by 10.7% and 18.3% compared with AMB, respectively, and the negative impact of IV on NPP was more severe than that of DP. Our results indicate that the increased interannual variation in precipitation could have more severe impacts on terrestrial ecosystems that exceed the decrease in predicted average annual precipitation.
Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang
2017-09-01
Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Wang, Kai; He, Jian
2017-09-01
Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in 2001, 2006, and 2011.
Fasullo, John T.; Nerem, Robert S.
2016-10-31
To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasullo, John T.; Nerem, Robert S.
To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Eaton, E. L.; Broadmeadow, M. S. J.; Morison, J. I. L.
2012-07-01
The carbon balance of an 80 yr old deciduous oak plantation in the temperate oceanic climate of the south-east of Britain was measured by eddy covariance over 12 yr (1999-2010). The mean annual net ecosystem productivity (NEP) was 486 g C m-2 y-1 (95% CI of ±73 g C m-2 y-1), and this was partitioned into a Gross Primary Productivity (GPP) of 2034 ± 145 g C m-2 y-1, over a 165 (±6) day growing season, and an annual loss of carbon through respiration and decomposition (ecosystem respiration, Reco) of 1548 ± 122 g C m-2 y-1. The interannual variation of NEP was large (coefficient of variation (CV) 23%), although the variation for GPP and Reco was smaller (12%) and the ratio of Reco/GPP was relatively constant (0.76 ± 0.02 CI). Some anomalies in the annual patterns of the carbon balance could be linked to particular combinations of anomalous weather events, such as high summer air temperature and low soil moisture content. The Europe-wide heat-wave and drought of 2003 had little effect on the C balance of this woodland on a surface water gley soil. Annual variation in precipitation (CV 18%) was not a main factor in the variation in NEP. The inter-annual variation in estimated intercepted radiation only accounted for ~ 47% of the variation in GPP, although a significant relationship (p<0.001) was found between peak leaf area index and annual GPP which in turn played an important role in modifying the efficiency with which incident radiation was used in net CO2 uptake. Whilst the spring start and late autumn end of the net CO2 uptake period varied substantially (range of 24 and 27 days, respectively), annual GPP was not related to growing season length. Severe outbreaks of defoliating moth caterpillars, mostly Tortrix viridana L. and Operophtera brumata L., caused considerable damage to the forest canopy in 2009 and 2010, resulting in reduced GPP in these years.
Methane from the Tropospheric Emission Spectrometer (TES)
NASA Technical Reports Server (NTRS)
Payne, Vivienne; Worden, John; Kulawik, Susan; Frankenberg, Christian; Bowman, Kevin; Wecht, Kevin
2012-01-01
TES V5 CH4 captures latitudinal gradients, regional variability and interannual variation in the free troposphere. V5 joint retrievals offer improved sensitivity to lower troposphere. Time series extends from 2004 to present. V5 reprocessing in progress. Upper tropospheric bias. Mitigated by N2O correction. Appears largely spatially uniform, so can be corrected. How to relate free-tropospheric values to surface emissions.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Nicholson, Sharon E.
1987-01-01
How much of the interannual variation in the satellite derived radiation balance can be purely attributed to changes taking place at the land surface, was examined. The role of surface latent heating was examined in relation to its control of the precipitation pattern from one year to the next.
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610
NASA Astrophysics Data System (ADS)
Du, Jiabi; Shen, Jian
2015-01-01
is instructive and essential to decouple the effects of biological and physical processes on the dissolved oxygen condition, in order to understand their contribution to the interannual variability of hypoxia in Chesapeake Bay since the 1980s. A conceptual bottom DO budget model is applied, using the vertical exchange time scale (VET) to quantify the physical condition and net oxygen consumption rate to quantify biological activities. By combining observed DO data and modeled VET values along the main stem of the Chesapeake Bay, the monthly net bottom DO consumption rate was estimated for 1985-2012. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay. The seasonal pattern of the averaged net bottom DO consumption rate (B'20) along the main stem coincides with that of the chlorophyll-a concentration. A significant correlation between nutrient loading and B'20 suggests that the biological processes in April-May are most sensitive to the nutrient loading.
Banas, Neil S.; MacCready, Parker
2018-01-01
Abstract The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin‐scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N–50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well‐explained (R 2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large‐scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large‐scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale. PMID:29938149
Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua
2015-03-01
Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal/inter-annual variation patterns, was influenced by inter-annual variations in oceanographic conditions.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Dye, D. G.
2004-12-01
Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April and July are the most reliable season to monitor the vegetation.
22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica
NASA Astrophysics Data System (ADS)
Morrow, Rosemary; Kestenare, Elodie
2017-11-01
Seasonal and interannual variations in sea surface salinity (SSS) are analyzed in the Sea Ice Zone south of 60°S, from a 22-year time series of observations near 140°E. In the northern sea-ice zone during the warming, melting cycle from October to March, waters warm by an average of 3.5 °C and become fresher by 0.1 to 0.25. In the southern sea-ice zone, the surface temperatures vary from - 1 to 1 °C over summer, and the maximal SSS range occurs in December, with a minimum SSS of 33.65 near the Southern Boundary of the ACC, reaching 34.4 in the shelf waters close to the coast. The main fronts, normally defined at subsurface, are shown to have more distinct seasonal characteristics in SSS than in SST. The interannual variations in SSS are more closely linked to variations in upstream sea-ice cover than surface forcing. SSS and sea-ice variations show distinct phases, with large biannual variations in the early 1990s, weaker variations in the 2000s and larger variations again from 2009 onwards. The calving of the Mertz Glacier Tongue in February 2010 leads to increased sea-ice cover and widespread freshening of the surface layers from 2011 onwards. Summer freshening in the northern sea-ice zone is 0.05-0.07 per decade, increasing to 0.08 per decade in the southern sea-ice zone, largely influenced by the Mertz Glacier calving event at the end of our time series. The summer time series of SSS on the shelf at 140°E is in phase but less variable than the SSS observed upstream in the Adélie Depression, and thus represents a spatially integrated index of the wider SSS variations.
The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F
NASA Technical Reports Server (NTRS)
Wong, Sun; Prather, Michael J.; Rind, David H.
1999-01-01
The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-05-01
Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than 1 % in most of climate regions although it could be as large as 10 %.
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
NASA Technical Reports Server (NTRS)
Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning;
2017-01-01
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S A; Huang, Yongmei
2016-01-11
Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.
Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei
2016-01-01
Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22–25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24–26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166
Effect of interannual climate variability on carbon storage in Amazonian ecosystems
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.
1998-01-01
The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.
Variability of Arctic Sea Ice as Determined from Satellite Observations
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1999-01-01
The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.
Recent projections of 21st-century climate change and watershed responses in the Sierra Nevada
Michael D. Dettinger; Daniel R. Cayan; Noah Knowles; Anthony Westerling; Mary K. Tyree
2004-01-01
In the near future, the Sierra Nevadaâs climate is projected to experience a new form of climate change due to increasing concentrations of greenhouse gases in the global atmosphere from the burning of fossil fuels and other human activities. If the changes occur, they presumably will be added to the large interannual and longer-term climate variations in the recent...
T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb
2009-01-01
Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...
The CH2O column as a possible constraint on methane oxidation
NASA Astrophysics Data System (ADS)
Valin, L. C.; Fiore, A. M.; Lin, M.
2013-12-01
We explore the potential for space-based measurements of the CH2O column to quantify variations of methane oxidation in the remote atmosphere due to changes in climate (e.g., T, H2O, stratospheric O3) and atmospheric composition (e.g., NOxO, O3, CO, CH4). We investigate the variability of methane oxidation and the formaldehyde column using available global simulations (MOZART-2 chemistry-transport model, GFDL AM3 climate-chemistry model). Over a large region (135° - 175° W; 0° - 16° S), the rate of methane oxidation simulated in the models varies intraseasonally (×10%), seasonally (×20%) and interannually (×5%), and is well correlated with the simulated variability of the CH2O column (R2 = 0.75; ~1x1015 molecules cm-2). The precision of a single space-based measurement is approximately 1×1016 molecules cm-2, an order of magnitude larger than the simulated variability of the CH2O column. However, in a large region such as the tropical Pacific, UV/Vis spectrometers are capable of making thousands of measurements daily, enough sampling to theoretically increase the precision by √N, such that variations on the order of 1×1015 molecules cm-2 should be observable on intraseasonal and interannual timescales.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Huang, Frank T.
2007-01-01
The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.
Future changes of interannual variation of the Asian summer monsoon precipitation using the CMIP5
NASA Astrophysics Data System (ADS)
Kamizawa, Nozomi; Takahashi, Hiroshi G.
2015-04-01
The Asian summer monsoon (ASM) region is one of the most populated areas in the world. Since the life of people who live in the region and the industry are strongly dependent on the ASM precipitation, it is interested that how it would change under the circumstance of global warming. Many studies have reported that the mean ASM precipitation would increase by comparing the CMIP models' climatology. Although the changes in mean climate are important, the long-term changes of interannual variability in precipitation are also significant. This study investigated the long-term trend of interannual precipitation variation over the ASM region by using 22 CMIP5 models. The RCP4.5 scenario was used. To investigate the long-term trend of the interannual variation of the ASM precipitation, each model data was recreated to 2.5 degree resolution and a running standard deviation for 21 years of June-July-August (JJA) precipitation were calculated. Next, we created the coefficient variation (CV) by dividing the running standard deviation by the mean JJA precipitation. Then we run a Mann-Kendall test for the CV at each grid. There were more areas which were indicated a statistically significant increasing trend than a decreasing trend in the ASM region. 40.6% of the region indicated an increasing trend in the future. On the other hand, 16.8% of the area was indicated to have a decreasing trend. It was also common in the global scale that the there were more areas that indicated an increasing trend than a decreasing trend. We also divided the area into three groups: land, shore and open ocean. In the ASM region, the shore areas particularly had an increasing CV trend. To investigate the long-term changes of the interannual variability of the precipitation and the atmospheric circulation over the ASM region, we conducted a composite analysis for the five wettest and driest years for two periods: the early 21st century (2007-2031) and the late 21st century (2076-2100). The special patterns of the interannual variation of the precipitation and the atmospheric circulation between the two periods had differed only slightly. A positive deviation precipitation band with a cyclonic circulation was recognized from across the Bay of Bengal to the equatorial Northwest Pacific. The none-big-difference of the patterns may suggest that interannual variation in the ASM region would increase not because the pattern changes, but because the pattern's strength gets stronger or its frequency gets higher.
NASA Astrophysics Data System (ADS)
Mei, W.; Kamae, Y.; Xie, S. P.
2017-12-01
Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.
Study of Tropospheric Ozone and UV Reflectivity Using TOMS Data
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2002-01-01
Perhaps the single most important result from the study of Chuang and Yung is that the interannual variability of the Earth's albedo (especially in Spring) on land is dominated by snow/ice, and not by clouds. This interannual variability could be the major driver of changes in the atmosphere and the biosphere. It is plausible that the interannual variability of snow/ice, through interactions with the atmosphere and biosphere, is responsible for the interannual variability of atmospheric CO2. By carefully studying the albedo variations off the Peru coast, we found evidence for indirect aerosol effect on clouds. Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (SCCP) in the years 1983-1991, we show that besides the reported 3 % variation in global cloudiness, the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectively measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO (El Nino Southern Oscillation) cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.
On the interannual oscillations in the northern temperate total ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyscin, J.W.
1994-07-01
The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less
Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.
Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien
2016-08-01
Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.
A 20-year simulated climatology of global dust aerosol deposition.
Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike
2016-07-01
Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal change at around 30.23%. The northern Indian Ocean had the greatest seasonal variation range of dry-to-wet deposition ratio, at around 74.57%, while Eurasia had the lowest, at around 12.14%. Copyright © 2016 Elsevier B.V. All rights reserved.
Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel
2013-12-01
[1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings ( δ 18 O tr ). Interannual variation in δ 18 O tr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13 C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18 O tr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18 O-depleted rain in the region and seem to have affected the δ 18 O tr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18 O tr of M . acantholoba can be used as a proxy for source water δ 18 O and that interannual variation in δ 18 O prec is caused by a regional amount effect. This contrasts with δ 18 O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ 18 O.
Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.
Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun
2017-09-01
Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.
Interannual variation in land-use intensity enhances grassland multidiversity
Allan, Eric; Bossdorf, Oliver; Dormann, Carsten F.; Prati, Daniel; Gossner, Martin M.; Tscharntke, Teja; Blüthgen, Nico; Bellach, Michaela; Birkhofer, Klaus; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Chatzinotas, Antonis; Christ, Sabina; Daniel, Rolf; Diekötter, Tim; Fischer, Christiane; Friedl, Thomas; Glaser, Karin; Hallmann, Christine; Hodac, Ladislav; Hölzel, Norbert; Jung, Kirsten; Klein, Alexandra Maria; Klaus, Valentin H.; Kleinebecker, Till; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Nacke, Heiko; Pašalić, Esther; Rillig, Matthias C.; Rothenwöhrer, Christoph; Schall, Peter; Scherber, Christoph; Schulze, Waltraud; Socher, Stephanie A.; Steckel, Juliane; Steffan-Dewenter, Ingolf; Türke, Manfred; Weiner, Christiane N.; Werner, Michael; Westphal, Catrin; Wolters, Volkmar; Wubet, Tesfaye; Gockel, Sonja; Gorke, Martin; Hemp, Andreas; Renner, Swen C.; Schöning, Ingo; Pfeiffer, Simone; König-Ries, Birgitta; Buscot, François; Linsenmair, Karl Eduard; Schulze, Ernst-Detlef; Weisser, Wolfgang W.; Fischer, Markus
2014-01-01
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. PMID:24368852
2013-09-30
Circulation (HC) in terms of the meridional streamfunction. The interannual variability of the Atlantic HC in boreal summer was examined using the EOF...large-scale circulations in the NAVGEM model and the source of predictability for the seasonal variation of the Atlantic TCs. We have been working...EOF analysis of Meridional Circulation (JAS). (a) The leading mode (M1); (b) variance explained by the first 10 modes. 9
NASA Astrophysics Data System (ADS)
Wen, Tzai-Hung; Chen, Tzu-Hsin
2017-04-01
Dengue fever is one of potentially life-threatening mosquito-borne diseases and IPCC Fifth Assessment Report (AR5) has confirmed that dengue incidence is sensitive to the critical weather conditions, such as effects of temperature. However, previous literature focused on the effects of monthly or weekly average temperature or accumulative precipitation on dengue incidence. The influence of intra- and inter-annual meteorological variability on dengue outbreak is under investigated. The purpose of the study focuses on measuring the effect of the intra- and inter-annual variations of temperature and precipitation on dengue outbreaks. We developed the indices of intra-annual temperature variability are maximum continuity, intermittent, and accumulation of most suitable temperature (MST) for dengue vectors; and also the indices of intra-annual precipitation variability, including the measure of continuity of wetness or dryness during a pre-epidemic period; and rainfall intensity during an epidemic period. We used multi-level modeling to investigate the intra- and inter-annual meteorological variations on dengue outbreaks in southern Taiwan from 1998-2015. Our results indicate that accumulation and maximum continuity of MST are more significant than average temperature on dengue outbreaks. The effect of continuity of wetness during the pre-epidemic period is significantly more positive on promoting dengue outbreaks than the rainfall effect during the epidemic period. Meanwhile, extremely high or low rainfall density during an epidemic period do not promote the spread of dengue epidemics. Our study differentiates the effects of intra- and inter-annual meteorological variations on dengue outbreaks and also provides policy implications for further dengue control under the threats of climate change. Keywords: dengue fever, meteorological variations, multi-level model
NASA Astrophysics Data System (ADS)
Guo, Liang; Klingaman, Nicholas P.; Demory, Marie-Estelle; Vidale, Pier Luigi; Turner, Andrew G.; Stephan, Claudia C.
2018-01-01
We investigate the contribution of the local and remote atmospheric moisture fluxes to East Asia (EA) precipitation and its interannual variability during 1979-2012. We use and expand the Brubaker et al. (J Clim 6:1077-1089,1993) method, which connects the area-mean precipitation to area-mean evaporation and the horizontal moisture flux into the region. Due to its large landmass and hydrological heterogeneity, EA is divided into five sub-regions: Southeast (SE), Tibetan Plateau (TP), Central East (CE), Northwest (NW) and Northeast (NE). For each region, we first separate the contributions to precipitation of local evaporation from those of the horizontal moisture flux by calculating the precipitation recycling ratio: the fraction of precipitation over a region that originates as evaporation from the same region. Then, we separate the horizontal moisture flux across the region's boundaries by direction. We estimate the contributions of the horizontal moisture fluxes from each direction, as well as the local evaporation, to the mean precipitation and its interannual variability. We find that the major contributors to the mean precipitation are not necessarily those that contribute most to the precipitation interannual variability. Over SE, the moisture flux via the southern boundary dominates the mean precipitation and its interannual variability. Over TP, in winter and spring, the moisture flux via the western boundary dominates the mean precipitation; however, variations in local evaporation dominate the precipitation interannual variability. The western moisture flux is the dominant contributor to the mean precipitation over CE, NW and NE. However, the southern or northern moisture flux or the local evaporation dominates the precipitation interannual variability over these regions, depending on the season. Potential mechanisms associated with interannual variability in the moisture flux are identified for each region. The methods and results presented in this study can be readily applied to model simulations, to identify simulation biases in precipitation that relate to the simulated moisture supplies and transport.
Recent Trends in the Arctic Navigable Ice Season and Links to Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Maslanik, J.; Drobot, S.
2002-12-01
One of the potential effects of Arctic climate warming is an increase in the navigable ice season, perhaps resulting in development of the Arctic as a major shipping route. The distance from western North American ports to Europe through the Northwest Passage (NWP) or the Northern Sea Route (NSR) is typically 20 to 60 percent shorter than travel through the Panama Canal, while travel between Europe and the Far East may be reduced by as much as three weeks compared to transport through the Suez Canal. An increase in the navigable ice season would also improve commercial opportunities within the Arctic region, such as mineral and oil exploration and tourism, which could potentially expand the economic base of Arctic residents and companies, but which would also have negative environmental impacts. Utilizing daily passive-microwave derived sea ice concentrations, trends and variability in the Arctic navigable ice season are examined from 1979 through 2001. Trend analyses suggest large increases in the length of the navigable ice season in the Kara and Barents seas, the Sea of Okhotsk, and the Beaufort Sea, with decreases in the length of the navigable ice season in the Bering Sea. Interannual variations in the navigable ice season largely are governed by fluctuations in low-frequency atmospheric circulation, although the specific annular modes affecting the length of the navigable ice season vary by region. In the Beaufort and East Siberian seas, variations in the North Atlantic Oscillation/Arctic Oscillation control the navigable ice season, while variations in the East Pacific anomaly play an important role in controlling the navigable ice season in the Kara and Barents seas. In Hudson Bay, the Canadian Arctic Archipelago, and Baffin Bay, interannual variations in the navigable ice season are strongly related to the Pacific Decadal Oscillation.
The impact of inter-annual rainfall variability on food production in the Ganges basin
NASA Astrophysics Data System (ADS)
Siderius, Christian; Biemans, Hester; van Walsum, Paul; hellegers, Petra; van Ierland, Ekko; Kabat, Pavel
2014-05-01
Rainfall variability is expected to increase in the coming decades as the world warms. Especially in regions already water stressed, a higher rainfall variability will jeopardize food security. Recently, the impact of inter-annual rainfall variability has received increasing attention in regional to global analysis on water availability and food security. But the description of the dynamics behind it is still incomplete in most models. Contemporary land surface and hydrological models used for such analyses describe variability in production primarily as a function of yield, a process driven by biophysical parameters, thereby neglecting yearly variations in cropped area, a process driven largely by management decisions. Agricultural statistics for northern India show that the latter process could explain up to 40% of the observed inter-annual variation in food production in various states. We added a simple dynamic land use decision module to a land surface model (LPJmL) and analyzed to what extent this improved the estimation of variability in food production. Using this improved modelling framework we then assessed if and at which scale rainfall variability affects meeting the food self-sufficiency threshold. Early results for the Ganges Basin indicate that, while on basin level variability in crop production is still relatively low, several districts and states are highly affected (RSTD > 50%). Such insight can contribute to better recommendations on the most effective measures, at the most appropriate scale, to buffer variability in food production.
Influence of net freshwater supply on salinity in Florida Bay
Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.
2000-01-01
An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central and West Regions.
Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.
2009-01-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
NASA Astrophysics Data System (ADS)
Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.
2015-01-01
The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.
Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region
NASA Astrophysics Data System (ADS)
Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.
2018-03-01
Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.
Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system
NASA Astrophysics Data System (ADS)
Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.
2016-02-01
This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.
Climatic driving forces in inter-annual variation of global FPAR
NASA Astrophysics Data System (ADS)
Peng, Dailiang; Liu, Liangyun; Yang, Xiaohua; Zhou, Bin
2012-09-01
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) characterizes vegetation canopy functioning and its energy absorption capacity. In this paper, we focus on climatic driving forces in inter-annual variation of global FPAR from 1982 to 2006 by Global Historical Climatology Network (GHCN-Monthly) data. Using FPAR-Simple Ratio Vegetation Index (SR) relationship, Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) was used to estimate FPAR at the global scale. The correlation between inter-annual variation of FPAR and temperature, precipitation derived from GHCN-Monthly was examined, during the periods of March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF) over from 1982 to 2006. The analysis of climatic influence on global FPAR revealed the significant correlation with temperature and precipitation in some meteorological stations area, and a more significant correlation with precipitation was found than which with temperature. Some stations in the regions between 30° N and 60° N and around 30° S in South America, where the annual FPAR variation showed a significant positive correlation with temperature (P < 0.01 or P < 0.05) during MAM, SON, and DJF, as well as in Europe during MAM and SON period. A negative correlation for more stations was observed during JJA. For precipitation, there were many stations showed a significant positive correlation with inter-annual variation of global FPAR (P < 0.01 or P < 0.05), especially for the tropical rainfall forest of Africa and Amazon during the dry season of JJA and SON.
Measuring the potential utility of seasonal climate predictions
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Kleeman, Richard; Tang, Youmin
2004-11-01
Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.
2013-12-01
Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).
Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.;
2001-01-01
It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.
Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.
2017-01-01
Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.
NASA Astrophysics Data System (ADS)
Zu, Tingting; Xue, Huijie; Wang, Dongxiao; Geng, Bingxu; Zeng, Lili; Liu, Qinyan; Chen, Ju; He, Yunkai
2018-05-01
Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.
Remote Sensing of Salinity and Overview of Results from Aquarius
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Dinnat, E. P.; Meissner, T.; Wentz, F.; Yueh, S. H.; Lagerloef, G. S. E.
2015-01-01
Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 psu
Raija Laiho; Jukka Laine; Carl C. Trettin; Leena Finér
2004-01-01
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the...
NASA Astrophysics Data System (ADS)
Reason, C. J. C.
2018-04-01
Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.
Interannual variation, decadal trend, and future change in ozone outflow from East Asia
NASA Astrophysics Data System (ADS)
Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui
2017-03-01
We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.
NASA Astrophysics Data System (ADS)
Lavigne, Thomas
In the early 1900's, J.W. Whipple began validating C.R. Wilson's Global Electric Circuit (GEC) hypothesis by correlating diurnal variations of global thunder days with diurnal variations of the fair weather electric field. This study applies 16+ years of Precipitation Feature (PF) data from the Tropical Rainfall Measuring Mission (TRMM), including lightning data from the Lightning Imaging Sensor (LIS), alongside 12-years of electric field measurements from Vostok, Antarctica to further examine this relationship. Joint diurnal-seasonal variations of the electric field are compared with PF parameters that are potentially related to the GEC. The flash rate and volume of 30 dBZ between -5°C and -35°C variables are shown to have the best direct relationship to the electric field, with r2 values of 0.67 and 0.62, respectively. However, the Coefficient of Variation (COV) of the flash rate (28%) and the electric field (12%), display relatively large differences in the spread of the variables. The volume of 30 dBZ between -5°C and -35°C shows a closer amplitude agreement to the variance of the electric field (COV=17%). Furthermore, these relationships are analyzed during two different phases of the El Nino Southern Oscillation (ENSO). Results show different seasonal-diurnal variations of the electric field during ENSO phases, with enhancements in the electric field between January through April at 16-24 UTC in La Nina years. In all, similar variations have been found in the fair weather electric field, and the variation of properties of global PFs with high potential of electrification at diurnal, seasonal, and interannual timescales. These confirm the dominant role of the global thunderclouds and electrified clouds in the global electric circuit.
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Lau, K.-M.
2004-01-01
Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend of springtime precipitation over southeastern China and downward trend of summertime precipitation over northern China are attributable to the warming trend of the ENSO-like mode. The recent frequent summertime floods over central eastern China are linked to the warming trend of SSTs over the warm pool and Indian Ocean.
NASA Astrophysics Data System (ADS)
Li, Jianying; Mao, Jiangyu
2018-04-01
The 30-60-day boreal summer intraseasonal oscillation (BSISO) is a dominant variability of the Asian summer monsoon (ASM), with its intensity being quantified by intraseasonal standard deviations based on OLR data. The spatial and interannual variations of the BSISO intensity are identified via empirical orthogonal function (EOF) analysis for the period 1981-2014. The first EOF mode (EOF1) shows a spatially coherent enhancement or suppression of BSISO activity over the entire ASM region, and the interannual variability of this mode is related to the sea surface temperature anomaly (SSTA) contrast between the central-eastern North Pacific (CNP) and tropical Indian Ocean. In contrast, the second mode (EOF2) exhibits a seesaw pattern between the southeastern equatorial Indian Ocean (EIO) and equatorial western Pacific (EWP), with the interannual fluctuation linked with developing ENSO events. During strong years of EOF1 mode, the enhanced low-level westerlies induced by the summer-mean SSTA contrast between the warmer CNP and cooler tropical Indian Ocean tend to form a wetter moisture background over the eastern EIO, which interacts with intraseasonal low-level convergent flows, leading to stronger equatorial eastward propagation. The intensified easterly shear favors stronger northward propagation over the South Asian and Eastern Asian/Western North Pacific sectors, respectively. Opposite situation is for weak years. For interannual variations of EOF2 mode, the seesaw patterns with enhanced BSISO activity over the southeastern EIO while weakened activity over the EWP mostly occur in the La Niña developing summers, but inverse patterns appear in the El Niño developing summers.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
NASA Astrophysics Data System (ADS)
Huang, Y. Y.; Zhang, S. D.; Li, C. Y.; Li, H. J.; Huang, K. M.; Huang, C. M.
2017-08-01
Using version 2.0 of the TIMED/SABER kinetic temperature data, we have conducted a study on the annual and interannual variations of 6.5DWs at 20-110 km, from 52°S to 52°N for 2002-2016. First, we obtained global annual variations in the spectral power and amplitudes of 6.5DWs. We found that strong wave amplitudes emerged from 25°S/N to 52°S/N and peaked in the altitudes of the stratosphere, mesosphere, and the lower thermosphere. The annual variations in the 6.5DWs are similar in both hemispheres but different at various altitudes. At 40-50 km, the annual maxima emerge mostly in winters. In the MLT, annual peaks occurred twice every half year. At 80-90 km, 6.5DWs appeared mainly in equinoctial seasons and winters. At 100-110 km, 6.5DWs emerged mainly in equinoctial seasons. Second, we continued the study of the interannual variations in 6.5DW amplitudes from 2002 to 2016. Frequency spectra of the monthly mean amplitudes showed that main dynamics in the long-term variations of 6.5DWs were AO and SAO in both hemispheres. In addition, 4 month period signals were noticed in the MLT of the NH. The amplitudes of SAO and AO were obtained using a band-pass filter and were found to increase with altitude, as do the 6.5DW amplitudes. In both hemispheres, the relative importance of SAO and AO changes with altitude. At 40-50 and 100-110 km, AO play a dominant role, while at 80-90 km, they are weaker than SAO. Our results show that both the annual and interannual variations in 6.5DWs are mainly caused by the combined action of SAO and AO.
Guérin, Marceau; Martin-Benito, Dario; von Arx, Georg; Andreu-Hayles, Laia; Griffin, Kevin L; Hamdan, Rayann; McDowell, Nate G; Muscarella, Robert; Pockman, William; Gentine, Pierre
2018-02-01
In the southwestern USA, recent large-scale die-offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. We hypothesized that piñon pines ( Pinus edulis ) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a 7-year experiment in central New Mexico with three watering treatments (irrigated, normal, and rain exclusion). We analyzed how variation in "evaporative structure" (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip ( d ), defining the yearly ratios SA:LA and SA:LA/ d . Needle length ( l ) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness, while stomatal diameter was reduced. As a result, anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/ d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/ d became highly nonlinear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. In new branch tissues, the response of annual functional ratios to water stress was immediate (same year) and does not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates.
NASA Technical Reports Server (NTRS)
Min, Wei; Schubert, Siegfried D.; Suarez, Max J. (Editor)
1997-01-01
The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential predictability is re-examined employing selected DAO reanalysis variables.
Multi-temporal clustering of continental floods and associated atmospheric circulations
NASA Astrophysics Data System (ADS)
Liu, Jianyu; Zhang, Yongqiang
2017-12-01
Investigating clustering of floods has important social, economic and ecological implications. This study examines the clustering of Australian floods at different temporal scales and its possible physical mechanisms. Flood series with different severities are obtained by peaks-over-threshold (POT) sampling in four flood thresholds. At intra-annual scale, Cox regression and monthly frequency methods are used to examine whether and when the flood clustering exists, respectively. At inter-annual scale, dispersion indices with four-time variation windows are applied to investigate the inter-annual flood clustering and its variation. Furthermore, the Kernel occurrence rate estimate and bootstrap resampling methods are used to identify flood-rich/flood-poor periods. Finally, seasonal variation of horizontal wind at 850 hPa and vertical wind velocity at 500 hPa are used to investigate the possible mechanisms causing the temporal flood clustering. Our results show that: (1) flood occurrences exhibit clustering at intra-annual scale, which are regulated by climate indices representing the impacts of the Pacific and Indian Oceans; (2) the flood-rich months occur from January to March over northern Australia, and from July to September over southwestern and southeastern Australia; (3) stronger inter-annual clustering takes place across southern Australia than northern Australia; and (4) Australian floods are characterised by regional flood-rich and flood-poor periods, with 1987-1992 identified as the flood-rich period across southern Australia, but the flood-poor period across northern Australia, and 2001-2006 being the flood-poor period across most regions of Australia. The intra-annual and inter-annual clustering and temporal variation of flood occurrences are in accordance with the variation of atmospheric circulation. These results provide relevant information for flood management under the influence of climate variability, and, therefore, are helpful for developing flood hazard mitigation schemes.
Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng
2015-01-01
Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other. PMID:26678931
The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula
NASA Technical Reports Server (NTRS)
King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.
NASA Astrophysics Data System (ADS)
Rodríguez-Valentino, Camilo; Landaeta, Mauricio F.; Castillo-Hidalgo, Gissella; Bustos, Claudia A.; Plaza, Guido; Ojeda, F. Patricio
2015-09-01
The interannual variation (2010-2013) of larval abundance, growth and hatching patterns of the Chilean sand stargazer Sindoscopus australis (Pisces: Dactyloscopidae) was investigated through otolith microstructure analysis from samples collected nearshore (<500 m from shore) during austral late winter-early spring off El Quisco bay, central Chile. In the studied period, the abundance of larval stages in the plankton samples varied from 2.2 to 259.3 ind. 1000 m-3; larval abundance was similar between 2010 and 2011, and between 2012 and 2013, but increased significantly from 2011 to 2012. The estimated growth rates increased twice, from 0.09 to 0.21 mm day-1, between 2011 and 2013. Additionally, otolith size (radius, perimeter and area), related to body length of larvae, significantly decreased from 2010 to 2012, but increases significantly in 2013. Although the mean values of microincrement widths of sagitta otoliths were similar between 2010 and 2011 (around 0.6-0.7 μm), the interindividual variability increases in 2011 and 2013, suggesting large environmental variability experienced by larvae during these years. Finally, the hatching pattern of S. australis changed significantly from semi-lunar to lunar cycle after 2012.
Terrestrial Waters and Sea Level Variations on Interannual Time Scale
NASA Technical Reports Server (NTRS)
Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.
2011-01-01
On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.
NASA Astrophysics Data System (ADS)
Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.
2015-12-01
Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.
NASA Astrophysics Data System (ADS)
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.
2018-03-01
The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.
Andersen, D.C.
2005-01-01
I analyzed annual height growth and survivorship of Fremont cottonwood (Populus fremontii S. Watson) saplings on three floodplains in Colorado and Utah to assess responses to interannual variation in flow regime and summer precipitation. Mammal exclosures, supplemented with an insecticide treatment at one site, were used to assess flow regime herbivore interactions. Multiple regression analyses on data collected over 711 years indicated that growth of continuously injury-free saplings was positively related to either peak discharge or the maximum 30-day discharge but was not related to interannual decline in the late-summer river stage (ΔWMIN) or precipitation. Growth was fastest where ΔWMIN was smallest and depth to the late-summer water table moderate (≤1.5 m). Survivorship increased with ΔWMIN where the water table was at shallow depths. Herbivory reduced long-term height growth and survivorship by up to 60% and 50%, respectively. The results support the concept that flow history and environmental context determine whether a particular flow will have a net positive or negative influence on growth and survivorship and suggest that the flow regime that best promotes sapling growth and survival along managed rivers features a short spring flood pulse and constant base flow, with no interannual variation in the hydrograph. Because environmental contexts vary, interannual variation may be necessary for best overall stand performance.
January and July global distributions of atmospheric heating for 1986, 1987, and 1988
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1994-01-01
Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,
2010-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.
Climatological Data for Clouds Over the Globe from Surface Observations (1988) (NDP-026)
Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO; Jenne, Ray L. [National Center for Atmospheric Research, Boulder, CO (United States); Chervin, Robert M. [National Center for Atmospheric Research, Boulder, CO (United States)
1988-01-01
With some data from as early as 1930, global long-term monthly and/or seasonal total cloud cover, cloud type amounts and frequencies of occurrence, low cloud base heights, harmonic analyses of annual and diurnal cycles, interannual variations and trends, and cloud type co-occurrences have been compiled and presented in two atlases (Warren et al. 1988, 1990). These data were derived from land and ship synoptic weather reports from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) and from Release 1 of the Comprehensive Ocean-Atmosphere Data Set (COADS) for the years 1930-1979. The data are in 12 files (one containing latitude, longitude, land-fraction, and number of land stations for grid boxes; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for land; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for oceans; one containing first cloud analyses for the first year of the GARP Global Experiment (FGGE); one containing cloud-type co-occurrences for land and oceans; and one containing a FORTRAN program to read and produce maps).
Interannual Variability of Snow and Ice and Impact on the Carbon Cycle
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2004-01-01
The goal of this research is to assess the impact of the interannual variability in snow/ice using global satellite data sets acquired in the last two decades. This variability will be used as input to simulate the CO2 interannual variability at high latitudes using a biospheric model. The progress in the past few years is summarized as follows: 1) Albedo decrease related to spring snow retreat; 2) Observed effects of interannual summertime sea ice variations on the polar reflectance; 3) The Northern Annular Mode response to Arctic sea ice loss and the sensitivity of troposphere-stratosphere interaction; 4) The effect of Arctic warming and sea ice loss on the growing season in northern terrestrial ecosystem.
NASA Astrophysics Data System (ADS)
Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2017-03-01
Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.
NASA Astrophysics Data System (ADS)
Girijakumari Keerthi, Madhavan; Lengaigne, Matthieu; Levy, Marina; Vialard, Jerome; Parvathi, Vallivattathillam; de Boyer Montégut, Clément; Ethé, Christian; Aumont, Olivier; Suresh, Iyyappan; Parambil Akhil, Valiya; Moolayil Muraleedharan, Pillathu
2017-08-01
The northern Arabian Sea hosts a winter chlorophyll bloom, triggered by convective overturning in response to cold and dry northeasterly monsoon winds. Previous studies of interannual variations of this bloom only relied on a couple of years of data and reached no consensus on the associated processes. The current study aims at identifying these processes using both ˜ 10 years of observations (including remotely sensed chlorophyll data and physical parameters derived from Argo data) and a 20-year-long coupled biophysical ocean model simulation. Despite discrepancies in the estimated bloom amplitude, the six different remotely sensed chlorophyll products analysed in this study display a good phase agreement at seasonal and interannual timescales. The model and observations both indicate that the interannual winter bloom fluctuations are strongly tied to interannual mixed layer depth anomalies ( ˜ 0.6 to 0.7 correlation), which are themselves controlled by the net heat flux at the air-sea interface. Our modelling results suggest that the mixed layer depth control of the bloom amplitude ensues from the modulation of nutrient entrainment into the euphotic layer. In contrast, the model and observations both display insignificant correlations between the bloom amplitude and thermocline depth, which precludes a control of the bloom amplitude by daily dilution down to the thermocline depth, as suggested in a previous study.
Decadal Trends and Variability of Tropospheric Ozone over Oil and Gas Regions over 2005 - 2015
NASA Astrophysics Data System (ADS)
Zhou, Y.; Mao, H.; Sive, B. C.
2017-12-01
Tropospheric ozone (O3), which is produced largely by photochemical oxidation of nitrogen oxides (NOx) and volatile organic compounds, is a serious and ubiquitous air pollutant with strong negative health effects. Recent technological innovations such as horizontal drilling and hydraulic fracturing have accelerated oil and natural gas production in the U.S. since 2005. The additional input of O3 precursors from expanding natural gas production might prolong the effort to comply the current O3 standard (70 ppbv). The objective of this study is to investigate the impact of oil and gas extractions on variability and long term trends of O3 in the intermountain west under varying meteorological conditions. We investigated long-term O3 trends at 13 rural sites, which were within 100 km of the shale play in the U.S. intermountain west. Significant decreasing trends (-0.35 - -3.38 ppbv yr-1) were found in seasonal O3 design values at six sites in spring, summer, or fall, while no trends were found in wintertime O3 at any sites. Wintertime O3 at each site showed strong and consistent interannual variation over 2006 - 2015, and was negatively correlated with the Arctic Oscillation (AO) Index. The negative correlation was a result of multiple factors, such as in situ O3 photochemical production, stratospheric intrusion, and transport from the Arctic and California. In summer, wildfire emissions were the dominate driver to the interannual variations of high percentiles O3 at each site, while meteorological conditions (i.e., temperature and relative humidity) determined the interannual variations of low percentiles O3. Box model simulations indicated that O3 production rates were 31.51 ppbv h-1 over winters of 2012 - 2014 and 32.12 ppbv h-1 in summer 2014 around shale gas extraction regions.
Future Interannual Variability of Arctic Sea Ice Area and its Implications for Marine Navigation
NASA Astrophysics Data System (ADS)
Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.
2016-12-01
As both a symbol and driver of ongoing climate change, the diminishing Arctic sea ice pack has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea ice, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea ice variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that ice variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the ice pack becomes seasonal by late century. These projected changes in sea ice variations will likely have significant consequences for marine navigation, which we assess with the empirical Ice Numeral (IN) metric. A function of ice concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea ice-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of ice cover poses a competing risk. In particular, future intervals featuring the most rapid declines in ice area that coincide with the highest interannual ice variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.
Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.
NASA Astrophysics Data System (ADS)
Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.
2017-12-01
The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.
NASA Astrophysics Data System (ADS)
Zheng, Dawei; Ding, Xiaoli; Zhou, Yonghong; Chen, Yongqi
2003-03-01
Time series of the length of day characterizing the rate of Earth rotation, the atmospheric angular momentum and the Southern Oscillation Index from 1962 to 2000 are used to reexamine the relationships between the ENSO events and the changes in the length of day, as well as the global atmospheric angular momentum. Particular attention is given to the different effects of the 1982-1983 and 1997-1998 ENSO events on the variations of Earth rotation. The combined effects of multiscale atmospheric oscillations (seasonal, quasi-biennial and ENSO time scales) on the anomalous variations of the interannual rates of Earth rotation are revealed in this paper by studying the wavelet spectra of the data series.
NASA Astrophysics Data System (ADS)
Gerhart, L. M.; Harris, J. M.; Ward, J. K.
2011-12-01
During the Last Glacial Maximum, atmospheric [CO2] was as low as 180 ppm and has currently risen to a modern value of 393 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced trees over the last 50,000 years, we analyzed carbon isotope ratios and width of individual tree rings from glacial Juniperus specimens preserved in the Rancho La Brea tar pits in southern California (aged 14-49 kyr BP). Modern trees were also analyzed to compare effects of changing precipitation, temperature and atmospheric [CO2] on physiology and growth. To assess physiological responses, we calculated ci/ca (intercellular [CO2]/atmospheric [CO2]) for each annual ring of each tree. This ratio incorporates numerous aspects of plant physiology, including stomatal conductance and photosynthetic capacity. In addition, we measured ring widths for each sample, and standardized these measurements into indices in order to compare across individuals. Mean ci/ca values remained constant throughout 50,000 years despite major environmental changes, indicating a long-term physiological set point for ci/ca in this group. Constant ci/ca ratios would be maintained through offsetting changes in stomatal conductance and photosynthetic capacity. Glacial Juniperus never experienced ci values below 90 ppm, suggesting a survival compensation point for Juniperus. In addition, glacial trees showed significantly reduced interannual variation in ci/ca, even though interannual climatic variability was as high during the LGM in this region as it is today. A lack of variability in ci/ca of glacial trees suggests that tree physiology was dominated by low [CO2], which shows low interannual variation. Modern trees showed high interannual variation in ci/ca, since water availability dominates current physiological responses and varies greatly from year to year. Interestingly, interannual variation in ring width index did not show significant differences between glacial and modern trees, suggesting these trees were adapted to maintain growth under low [CO2]. These adaptations may constrain the ability of modern trees to fully utilize increases in atmospheric [CO2]. These results have significant implications for our understanding of the adaptations of trees to changing [CO2] and indicate that the environmental factors that most strongly influence plant physiology may have changed over geologic time scales.
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
Li, Frank Yonghong; Newton, Paul C D; Lieffering, Mark
2014-01-01
Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement. © 2013 John Wiley & Sons Ltd.
Wu, Yan-feng; Bake, Batur; Li, Wei; Wei, Xiao-qin; Wozatihan, Jiayinaguli; Rasulov, Hamid
2015-02-01
Based on the daily meteorological data of seven stations in Altay region, China, this study investigated the temporal ( seasonal, inter-annual and decadal) and spatial variations of drought by using composite index of meteorological drought, as well as trend analysis, M-K abrupt analysis, wavelet analysis and interpolation tools in ArcGIS. The results indicated that the composite index of meteorological drought could reflect the drought condition in Altay region well. Although the frequency and the covered area of both inter-annual and seasonal droughts presented decreasing trends in the recent 52 a, the drought was still serious when considering the annual drought. The frequencies of inter-annual and spring droughts had no abrupt changes, whereas the frequencies of inter-summer, autumn and winter droughts had abrupt changes during the past 52 a. A significant periodic trend was also observed for the frequencies of inter-annual and seasonal droughts. The distribution of frequency and covered area suggested that the conditions of drought were heavily serious in Qinghe County, moderately serious in Altay City, Fuyun County, Buerjin County and Fuhai County, and slightly serious in Habahe County and Jimunai County.
NASA Astrophysics Data System (ADS)
Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus
2014-05-01
This contribution investigates the relationship between large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in central Europe. To this end occurrence frequencies of circulation types (CT) derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity (V), zonality (Z) and meridionality (M) have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over central Europe for the period 1950 to 2010. CTC based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one out cross-validation procedure applying several skill scores. Furthermore the relative importance of individual predictors has been estimated for each MRM. From these analyses it can be stated that i.) the consideration of vorticity characteristics within CTCs, ii.) a relatively small size of the spatial domain to which CTCs are applied and iii.) the inclusion of mean circulation indices appear to improve model skill. However model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the central European domain only unsatisfactorily skill is reached in the more continental regions and particularly during summer. Thus it can be concluded that the here presented approaches feature the potential for the downscaling of central European drought index variations from large-scale circulation at least for some regions. Further improvements of CTC based approaches may be expected from the optimization of CTCs for explaining the SPI e.g. via the inclusion of additional variables into the classification procedure.
NASA Astrophysics Data System (ADS)
Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus
2015-08-01
This contribution investigates the relationship between the large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in Central Europe. To this end, circulation types (CT) have been derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity ( V), zonality ( Z) and meridionality ( M) have been calculated. Occurrence frequencies of CTs and circulation indices have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over Central Europe, for the period 1950 to 2010. CTC-based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one-out cross-validation procedure applying several skill scores. Furthermore, the relative importance of individual predictors has been estimated for each MRM. From these analyses, it can be stated that model skill is improved by (i) the consideration of vorticity characteristics within CTCs, (ii) a relatively small size of the spatial domain to which CTCs are applied and (iii) the inclusion of mean circulation indices. However, model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the Central European domain, only unsatisfactory skill is reached in the more continental regions and particularly during summer. Thus, it can be concluded that the presented approaches feature the potential for the downscaling of Central European drought index variations from the large-scale circulation, at least for some regions. Further improvements of CTC-based approaches may be expected from the optimization of CTCs for explaining the SPI, e.g. via the inclusion of additional variables in the classification procedure.
Ecosystem variability in the offshore northeastern Chukchi Sea
NASA Astrophysics Data System (ADS)
Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.
2017-12-01
Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to predicting the future state of both the Chukchi and other arctic systems.
Long-Term ENSO Variation Over the Last 20,000 Years From the Peru Continental Margin
NASA Astrophysics Data System (ADS)
Skilbeck, G.; Fink, D.; Gagan, M.; Rein, B.
2006-12-01
Three ODP Leg 201 cores from the Peru continental margin comprise highly laminated diatomaceous ooze spanning Last Glacial Maximum to present. Geochemical proxy data, layer counting and spectral analysis of red color variation suggest the layers represent interannual accumulation under the influence tropical ENSO conditions, with darker layers representing El Niño events. AMS 14-C dating (Skilbeck &Fink, 2006) of bulk sediment from Sites 201-1228 and -1229 (~11°S) and comparison with Rein et al. (2005) Core SO147-106KL (~12°S) show that where the shelf is narrow south of ~10.5°S, regionally consistent rates of sediment accumulation have occurred over the late Deglaciation and Holocene, with high rates characterising the late (0-2.0 kyrBP, ~100 cm/ka) and the early (8.5-10 kyrBP, ~80 cm/ka) Holocene. Over these intervals laminae are of interannual resolution. Further north where the shelf is broader, Holocene-Late Deglaciation sediments are thin or absent, but the Early Deglaciation is well represented. In a core from ODP Site 201-1227 (~9°S, 427m water depth), the period 15.5-17.5 kyrBP is characterised by sediment accumulation rates in excess of 300 cm/ka, and interannual laminations are again present. Spectral analysis of the instrumental record of ENSO, the SOI, shows a relative stable mode of variation with an average frequency of about 5.5 yr for the past 130 years. Analysis of our ODP cores shows that the ENSO mode appears to be relatively stable for periods of 300-500 years throughout the Holocene with frequencies varying mostly between 5 and 8 years and relatively sudden mode switches, suggesting inter alia that the instrumental record is not long enough to test predictive models of ENSO variation. Throughout the Holocene, this pattern of variation transcends the sedimentation-rate zones identified above, with the inference that changes in the rate of sedimentation have not influenced the temporal pattern. The later part of the deglaciation period (10-14 kyrBP) appears to be a relatively long period of stable ENSO with a repeat frequency between 5 and 6 years. Layer variation over the interval between 14 to 15.5 yrBP loses interannual variability and is characterised by a dominant frequency of ~11-12 yr, but this may simply reflect the low sedimentation rate during this interval. During Early Deglaciation interannual- to decadal-scale layer variability is present, with over 600 discernable laminae recognisable across the ~1600 year interval represented in Core 210-1227B. ENSO during this time has multiple interannual frequency modes ranging between 4 and 10 yr, particularly over the interval 17.2- 16.2 kyrBP, with mode switches slightly more frequent than during the Holocene at between 200 and 300 years. In addition to the interannual laminations and the centennial-scale pattern of frequency mode variation described above, there is a regular oscillatory pattern in the contrast between dark and light laminations which can be traced to parasequence-like packets of laminations on a centimetre scale, and representing variability in the decadal to centennial range. References Rein, B., A. Luckge, et al. (2005). Paleoceanography 20(PA4003): 17p. Skilbeck, C.G. &D. Fink (2005). ODP Scientific Results 201.
Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis
2012-11-20
To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Worthy, D.
2004-05-01
Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.
Masting in ponderosa pine: comparisons of pollen and seed over space and time.
Mooney, Kailen A; Linhart, Yan B; Snyder, Marc A
2011-03-01
Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28 km and 1,350 m in elevation in Boulder County, Colorado, USA for periods of 4-31 years for a mean per site of 8.7 years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21 years of seed production for an eighth population (Manitou) 100 km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, L.; Paudel, R.; Hess, P. G. M.
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Meng, L.; Paudel, R.; Hess, P. G. M.; ...
2015-07-03
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
NASA Astrophysics Data System (ADS)
Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.
2015-12-01
An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.
Inter-annual variations of CO2 observed by commercial airliner in the CONTRAIL project
NASA Astrophysics Data System (ADS)
Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu; Niwa, Yosuke; Umezawa, Taku
2016-04-01
Since 2005, we have conducted an observation program for greenhouse gases using the passenger aircraft of the Japan Airlines named Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL). Over the past 10 years, successful operation of Continuous CO2 Measuring Equipment (CME) has delivered more than 6 million in-situ CO2 data from about 12000 flights between Japan and Europe, Australia, North America, or Asia. The large number of CME data enable us to well characterize spatial distributions and seasonal changes of CO2 in wide regions of the globe especially the Asia-Pacific regions. While the mean growth rates for the past 10 years were about 2 ppm/year, large growth rates of about 3 ppm/year were found in the wide latitudinal bands from 30S to 70N from the second half of 2012 to the first half of 2013. The multiyear data sets have the potential to help understand the global/regional CO2 budget. One good example is the significant inter-annual difference in CO2 vertical profiles observed over Singapore between October 2014 and October 2015, which is attributable to the massive biomass burnings in Indonesia in 2015.
Regional variability in sea ice melt in a changing Arctic
Perovich, Donald K.; Richter-Menge, Jacqueline A.
2015-01-01
In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
Raich, James W. [Iowa State University, Ames, IA (USA); Potter, Christopher S. [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bhagawat, Dwipen [Iowa State Univ., Ames, IA (United States); Olson, L. M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN
2003-08-01
The Principal Investigators used a climate-driven regression model to develop spatially resolved estimates of soil-CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO2 fluxes. The mean annual global soil-CO2 flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO2 emmissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY-1 per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.
Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander
2008-04-27
The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.
Aquarius Mission Technical Overview
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.
2007-01-01
Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.
NASA Technical Reports Server (NTRS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-01-01
Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%.
Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Eaton, E. L.; Broadmeadow, M. S. J.; Morison, J. I. L.
2012-12-01
The carbon balance of an 80-yr-old deciduous oak plantation in the temperate oceanic climate of the south-east of Great Britain was measured by eddy covariance over 12 yr (1999-2010). The mean annual net ecosystem productivity (NEP) was 486 g C m-2 yr-1 (95% CI of ±73 g C m-2 yr-1), and this was partitioned into a gross primary productivity (GPP) of 2034 ± 145 g C m-2 yr-1, over a 165 (±6) day growing season, and an annual loss of carbon through respiration and decomposition (ecosystem respiration, Reco) of 1548 ± 122 g C m-2 yr-1. Although the maximum variation of NEP between years was large (333 g C m-2 yr-1), the ratio of Reco/GPP remained relatively constant (0.76 ± 0.02 CI). Some anomalies in the annual patterns of the carbon balance could be linked to particular weather events, such as low summer solar radiation and low soil moisture content (values below 30% by volume). The European-wide heat wave and drought of 2003 did not reduce the NEP of this woodland because of good water supply from the surface-water gley soil. The inter-annual variation in estimated intercepted radiation only accounted for ~ 47% of the variation in GPP, although a significant relationship (p < 0.001) was found between peak leaf area index and annual GPP, which modified the efficiency with which incident radiation was used in net CO2 uptake. Whilst the spring start and late autumn end of the net CO2 uptake period varied substantially (range of 24 and 27 days respectively), annual GPP was not related to growing season length. Severe outbreaks of defoliating moth caterpillars, mostly Tortrix viridana L. and Operophtera brumata L., caused considerable damage to the forest canopy in 2009 and 2010, resulting in reduced GPP in these two years. Inter-annual variation in the sensitivity of Reco to temperature was found to be strongly related to summer soil moisture content. The eddy covariance estimates of NEP closely matched mensuration-based estimates, demonstrating that this forest was a substantial sink of carbon over the 12-yr measurement period.
Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret
2016-06-01
Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike
2015-04-01
In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris
2009-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-01-01
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. PMID:28003452
Bichet, Coraline; Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-12-28
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. © 2016 The Author(s).
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P. C. D.; Cazenave, A.; Gennero, C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P.C.D.; Cazenave, A.; Gennero, M.C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.
Long-term simulation of vertical transport process and its impact on bottom DO in Chesapeake Bay
NASA Astrophysics Data System (ADS)
Du, J.; Shen, J.
2016-02-01
Hypoxia in coastal waters is a widespread phenomenon that appears to have been growing globally for at least 60 years. The fact that physical transport processes and biological processes are equally important in determining the bottom DO in Chesapeake Bay is commonly agreed. However, the quantitative impact of physical transport processes is rarely documented. In this study, we use a timescale, vertical exchange time (VET), to quantify the impact of all physical processes that might have on the bottom DO. Simulation of VET from 1985 to 2012 is conducted and the monthly observed DO data along the deep channel in the Bay's main stem is collected. A conceptual bottom DO budget model is applied, using the VET to quantify the physical condition and net oxygen consumption rate to quantify biological activities. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.
2018-01-01
The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.
Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric
2016-04-01
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Wen, Zhaofei; Wu, Shengjun; Chen, Jilong; Lü, Mingquan
2017-01-01
Natural and social environmental changes in the China's Three Gorges Reservoir Region (TGRR) have received worldwide attention. Identifying interannual changes in vegetation activities in the TGRR is an important task for assessing the impact these changes have on the local ecosystem. We used long-term (1982-2011) satellite-derived Normalized Difference Vegetation Index (NDVI) datasets and climatic and anthropogenic factors to analyze the spatiotemporal patterns of vegetation activities in the TGRR, as well as their links to changes in temperature (TEM), precipitation (PRE), downward radiation (RAD), and anthropogenic activities. At the whole TGRR regional scale, a statistically significant overall uptrend in NDVI variations was observed in 1982-2011. More specifically, there were two distinct periods with different trends split by a breakpoint in 1991: NDVI first sharply increased prior to 1991, and then showed a relatively weak rate of increase after 1991. At the pixel scale, most parts of the TGRR experienced increasing NDVI before the 1990s but different trend change types after the 1990s: trends were positive in forests in the northeastern parts, but negative in farmland in southwest parts of the TGRR. The TEM warming trend was the main climate-related driver of uptrending NDVI variations pre-1990s, and decreasing PRE was the main climate factor (42%) influencing the mid-western farmland areas' NDVI variations post-1990s. We also found that anthropogenic factors such as population density, man-made ecological restoration, and urbanization have notable impacts on the TGRR's NDVI variations. For example, large overall trend slopes in NDVI were more likely to appear in TGRR regions with large fractions of ecological restoration within the last two decades. The findings of this study may help to build a better understanding of the mechanics of NDVI variations in the periods before and during TGDP construction for ongoing ecosystem monitoring and assessment in the post-TGDP period. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao
2014-02-01
Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.; ...
2014-10-13
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less
Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.
Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453
A century of hydrological variability and trends in the Fraser River Basin
NASA Astrophysics Data System (ADS)
Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.
2012-06-01
This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.
Multiyear predictability of tropical marine productivity
Séférian, Roland; Bopp, Laurent; Gehlen, Marion; Swingedouw, Didier; Mignot, Juliette; Guilyardi, Eric; Servonnat, Jérôme
2014-01-01
With the emergence of decadal predictability simulations, research toward forecasting variations of the climate system now covers a large range of timescales. However, assessment of the capacity to predict natural variations of relevant biogeochemical variables like carbon fluxes, pH, or marine primary productivity remains unexplored. Among these, the net primary productivity (NPP) is of particular relevance in a forecasting perspective. Indeed, in regions like the tropical Pacific (30°N–30°S), NPP exhibits natural fluctuations at interannual to decadal timescales that have large impacts on marine ecosystems and fisheries. Here, we investigate predictions of NPP variations over the last decades (i.e., from 1997 to 2011) with an Earth system model within the tropical Pacific. Results suggest a predictive skill for NPP of 3 y, which is higher than that of sea surface temperature (1 y). We attribute the higher predictability of NPP to the poleward advection of nutrient anomalies (nitrate and iron), which sustain fluctuations in phytoplankton productivity over several years. These results open previously unidentified perspectives to the development of science-based management approaches to marine resources relying on integrated physical-biogeochemical forecasting systems. PMID:25071174
Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle
NASA Technical Reports Server (NTRS)
Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander
2013-01-01
More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.
NASA Astrophysics Data System (ADS)
Jin, Jiaxin; Wang, Ying
2017-04-01
Climate change has significantly influenced the productivity of terrestrial ecosystems through water cycles. Understanding the phenological regulation mechanisms underlying coupled carbon-water cycles is important for improving ecological assessments and projecting terrestrial ecosystem responses and feedback to climate change. In this study, we present an analysis of the interannual relationships among flux-based spring phenological transitions (referred as photosynthetic onset) and water use efficiency (WUE) in North America and Europe using 166 site-years of data from 22 flux sites, including 10 deciduous broadleaf forest (DBF) and 12 evergreen needleleaf forest (ENF) ecosystems. We found that the WUE responses to variations in spring phenological transitions differed substantially across plant functional types (PFTs) and growth periods. During the early spring (defined as one month from spring onset) in the DBF ecosystem, photosynthetic onset dominated changes in WUE by dominating gross primary production (GPP), with one day of advanced onset increasing the WUE by 0.037 gC kg-1H2O in early spring. For the ENF sites, although advanced photosynthetic onset also significantly promoted GPP, earlier onset did not have a significant positive impact on WUE in early spring because it was not significantly correlated to evapotranspiration (ET), which is a more dominant factor for WUE than GPP across the ENF sites. Statistically significant correlations were not observed between interannual variability in photosynthetic onset and WUE for either the DBF or ENF ecosystems following a prolonged period after photosynthetic onset. For the DBF sites, the interannual variability of photosynthetic onset provided a better explanation of the variations in WUE (ca. 51.4%) compared with climatic factors, although this was only applicable to the early spring. For the ENF sites, photosynthetic onset variations did not provide a better explanation of the interannual WUE variations compared with climatic factors within any growth period. Notably, the negative correlation between the interannual variability of early spring WUE and photosynthetic onset gradually declined from boreal forests (r = -0.73) to subtropical Mediterranean forests (r = 0.35), indicating that the positive effect of earlier spring phenological transitions decreased or even reversed from cold climates to warm climates. This result suggests that the effect of the phenological regulatory mechanism on coupled carbon-water cycles is not only determined by the PFT but also by the habitat climate of an ecosystem. These observed differences between the ENF and DBF ecosystems will likely influence future phenological shifts related to competition for water and other resources in mixed species stands.
Groundwater storage variations in the North China Plain using multiple space geodetic observations
NASA Astrophysics Data System (ADS)
Feng, W.; Longuevergne, L.; Kusche, J.; Liang, S.; Zhang, Y.; Scanlon, B. R.; Shum, C. K.; Yeh, P. J. F.; Long, D.; Cao, G.; Zhong, M.; Xu, H.; Xia, J.
2017-12-01
Water storage and pressure variations in the subsurface generate measurable gravity changes and surface displacements. This study presents the joint interpretation of GRACE and GPS/InSAR observations to better understand shallow and deep groundwater storage (GWS) variations associated with unsustainable pumping and impact of climate variability in the North China Plain (NCP). On seasonal timescales, GRACE-derived GWS variations are well explained by the combined effect of groundwater abstraction due to anthropogenic irrigation activities and groundwater recharge from natural precipitation. Interannual GWS variations in the NCP detected by GRACE is consistent with precipitation anomalies. During the drought years (e.g., 2002 and 2014), significant GWS depletion is detected by GRACE satellites. The GRACE-derived GWS variation rate is -8.0 ± 1.5 km3/yr during 2002-2014, which is significantly larger than the estimate from phreatic monitoring well observations. The difference between them indicates the significant GWS depletion in the confined deep aquifers of the NCP, generating large subsidence rates, which has been largely underestimated up to now. The GWS variation rate in deep aquifers estimated from GPS/InSAR observations can explain the difference between the GWS depletion rate from GRACE and that from well observations. Both GRACE and surface displacement offer significant potential to better understand water redistribution in shallow and deep aquifer systems of the NCP.
Howard, Rebecca J.; Michot, Thomas C.; Allain, Larry
2011-01-01
Shifts in plant community composition and structure can affect the quality of habitat for wildlife species. Lacassine National Wildlife Refuge in southwestern Louisiana was established in 1937 with a primary goal of providing habitat for wintering waterfowl species. A large freshwater impoundment constructed on the refuge to improve waterfowl habitat value was completed in 1943. About 10 years after construction was completed, staff at the refuge became concerned that emergent vegetation cover was increasing in the impoundment over time while open water areas, which are critical as foraging and resting areas for waterfowl, were decreasing. To document vegetation change over time, we collected information on plant community species composition for comparison to similar data collected in 1973. A total of 84 sampling plots was established in 2006 within the impoundment to coincide as closely as possible to plots sampled in the earlier study. Plant species composition and cover were recorded at each plot in the summers of 2006 and 2007. Change between sampling events separated by more than three decades was determined by comparing the frequency of occurrence of 20 species identified in 1973 to their frequency in 2006 and 2007. Interannual variation was determined by comparing plot data between 2006 and 2007. In plots dominated by emergent vegetation, it was found that Bacopa caroliniana, Eleocharis equisetoides, Leersia hexandra, Panicum hemitomon, and Sagittaria lancifolia were significantly less frequent in 2006 and 2007 than in 1973. The frequency of Brasenia schreberi, Cabomba caroliniana, Nitella gracilis, and Nymphoides aquatica was significantly lower in 2006 and 2007 than in 1973 in plots dominated by floating-leaved plants, submersed plants, or open water. In 2007, Hydrocotyle sp. and Sacciolepis striata were more frequent than in 1973 in emergent vegetation plots, and Utricularia sp. was more frequent in submersed or open-water plots. We documented interannual variation by an increase in species richness, the Shannon diversity index, and evenness of species distribution within plots in 2007 compared to 2006. The total cover by species did not differ between years, but the frequency of seven species was greater in 2007 compared to 2006 while the frequency of unvegetated surface was lower. Results indicated that the occurrence of some species varied between both 2006 and 2007 and 1973, but the lack of complete data from the 1973 study limits confidence in this conclusion. The interannual variation documented between 2006 and 2007 may be due to several factors, including a response to weather conditions or to recovery from the impacts of Hurricane Rita, which impacted Lacassine National Wildlife Refuge in the fall of 2005 and likely raised salinity levels in the impoundment. More information is needed to determine if the interannual variation identified in the plant communities of Lacassine National Wildlife Refuge between 2006 and 2007 was unusual or represents normal variation.
Linking diurnal cycles of river flow to interannual variations in climate
Lundquist, Jessica D.; Dettinger, Michael D.
2003-01-01
Many rivers in the Western United States have diurnal variations exceeding 10% of their mean flow in the spring and summer months. The shape and timing of the diurnal cycle is influenced by an interplay of the snow, topography, vegetation, and meteorology in a basin, and the measured result differs between wet and dry years. The largest interannual differences occur during the latter half of the melt season, as the snowline retreats to the highest elevations and most shaded slopes in a basin. In most basins, during this period, the hour of peak discharge shifts to later in the day, and the relative amplitude of the diurnal cycle decreases. The magnitude and rate of these changes in the diurnal cycle vary between years and may provide clues about how long- term hydroclimatic variations affect short-term basin dynamics.
GPM and TRMM Radar Vertical Profiles and Impact on Large-scale Variations of Surface Rain
NASA Astrophysics Data System (ADS)
Wang, J. J.; Adler, R. F.
2017-12-01
Previous studies by the authors using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data have shown that TRMM Precipitation Radar (PR) and GPM Dual-Frequency Precipitation Radar (DPR) surface rain estimates do not have corresponding amplitudes of inter-annual variations over the tropical oceans as do passive microwave observations by TRMM Microwave Imager (TMI) and GPM Microwave Imager (GMI). This includes differences in surface temperature-rainfall variations. We re-investigate these relations with the new GPM Version 5 data with an emphasis on understanding these differences with respect to the DPR vertical profiles of reflectivity and rainfall and the associated convective and stratiform proportions. For the inter-annual variation of ocean rainfall from both passive microwave (TMI and GMI) and active microwave (PR and DPR) estimates, it is found that for stratiform rainfall both TMI-PR and GMI-DPR show very good correlation. However, the correlation of GMI-DPR is much higher than TMI-PR in convective rainfall. The analysis of vertical profile of PR and DPR rainfall during the TRMM and GPM overlap period (March-August, 2014) reveals that PR and DPR have about the same rainrate at 4km and above, but PR rainrate is more than 10% lower that of DPR at the surface. In other words, it seems that convective rainfall is better defined with DPR near surface. However, even though the DPR results agree better with the passive microwave results, there still is a significant difference, which may be a result of DPR retrieval error, or inherent passive/active retrieval differences. Monthly and instantaneous GMI and DPR data need to be analyzed in details to better understand the differences.
Annual and Spatial Variation of the Kelp Forest Fish Assemblage at San Nicolas Island, California
Cowen, R.J.; Bodkin, James L.
1993-01-01
The kelp forest fishes of San Nicolas Island, California were studied from 1981-1986 to examine the causes of among-site and among-year variation in the fish assemblages. Fish counts and seven physical and biological variables were recorded at six sites around the island every spring and fall. Over the study period, a total of 45 fish species from 18 families were recorded, though members of nive families dominated at all sites. Among-site variation was considereable with two sites on the south side of the island having two to four times as many non-schooling fishes as the other four sites. Three variables, based on stepwise multiple regression techniques, were important predictors of site-specific fish abundance: 1) vertical relief; 2) sand cover and 3) understory algal cover. The total number of fishes varied interannually by a factor of three. Due to recruitment occuring each spring, there was a strong seasonal component to the variation in fish abundance. The extent of seasonal and interannual variaton of fish abundance is an indication of the variable nature of recruitment to this area. Over the 6 yr period, there were three distinct groupings of fish assemblages correspondong to pre- (Fall 1981 - Fall 1982), during spring (Spring 1983 - Spring 1984) and post El Nino (Fall 1984 - Fall 1986) sampling dates. During El Nino sampling period, there was considerable recruitment of southern affinity fish species, increasing both the abundance and diversity of the fish assemblages. Large-scale oceanographic processes, coupled with site-specific features of the reef habitat, produce a moderately diverse, though relatively abundant fish fauna at San Nicolas Island.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Douglass, Anne R.; Chandra, Sushil; Stolarski, Richard S.; Rosenfield, Joan E.; Kaye, Jack A.
1991-01-01
Values of the monthly mean heating rates and the residual circulation characteristics were calculated using NMC data for temperature and the solar backscattered UV ozone for the period between 1979 and 1986. The results were used in a two-dimensional photochemical model in order to examine the effects of temperature and residual circulation on the interannual variability of ozone. It was found that the calculated total ozone was more sensitive to variations in interannual residual circulation than in the interannual temperature. The magnitude of the modeled ozone variability was found to be similar to the observed variability, but the observed and modeled year-to-year deviations were, for the most part, uncorrelated, due to the fact that the model did not account for most of the QBO forcing and for some of the observed tropospheric changes.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)
2002-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.
Global Terrestrial Water Storage Changes and Connections to ENSO Events
NASA Astrophysics Data System (ADS)
Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong
2018-01-01
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.
Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain).
Castell, Nuria; Mantilla, Enrique; Millan, Millan M
2008-01-01
Ozone dynamics in our study area (Castellon, Spain) is both strongly bound to the mesoscale circulations that develop under the effect of high insolation (especially in summer) and conditioned by the morphological characteristics of the Western Mediterranean Basin. In this work we present a preliminary analysis of ozone time series on five locations in Castellon for the period 1997-2003. We study their temporal and spatial variations at different scales: daily, weekly, seasonally and interannually. Because both the O3 concentration and its temporal variation depend on the topographic location of the observing station, they can show large differences within tens of kilometer. We also contrast the variation in the ozone concentration with the variations found for meteorological variables such as radiation, temperature, relative humidity and recirculation of the air mass. The link between elevated ozone concentrations and high values of the recirculation factor (r=0.7-0.9) shown the importance of recirculating flows on the local air pollution episodes.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, M. J.; Heiser, M.
1998-01-01
In an earlier GCM study, we showed that interactive land surface processes generally contribute more to continental precipitation variance than do variable sea surface temperatures (SSTs). A new study extends this result through an analysis of 16-member ensembles of multi-decade GCM simulations. We can now show that in many regions, although land processes determine the amplitude of the interannual precipitation anomalies, variable SSTs nevertheless control their timing. The GCM data can be processed into indices that describe geographical variations in (1) the potential for seasonal-to-interannual prediction, and (2) the extent to which the predictability relies on the proper representation of land-atmosphere feedback.
Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J
2015-06-01
Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.; Miller, Timothy L.
2005-01-01
Uncertainty remains as to what extent variability in mid to upper tropospheric moisture, especially over the tropics, behaves as constant relative humidity during interannual climate variations associated with ENSO. Systematic variations in HIRS 6.7 micron and MLS 205 GHz suggest that dry subtropical regions evolving during warm SST events depress relative humidity, but the interpretation of these events is still uncertain. Additional specific concerns have to do with regional signatures of convective processes: How does the origin of dry air in the eastern subtropical N. Pacific differ in ENSO warm versus cold years? The dynamics of Rossby wave forcing by convective heating, subtropical jet stream dynamics, and dynamics driven subsidence all come into play here. How variations in precipitating ice hydrometeors from tropical anvils relate to variations in UTH is also a subject of debate? Do variations in precipitating ice, cloud cover and water vapor behavior show any support for the Iris-hypothesis mechanism? Here we examine historical records of SSM/T-2 data to gain a better physical understanding of the effects of deep convective moisture sources and dynamically-induced vertical circulations on UTH. These high frequency microwave measurements (183.3 GHz) take advantage of far less sensitivity to cloud hydrometeors than the 6.7 micron data to yield a record of upper tropospheric relative humidity. Furthermore, signatures of precipitating ice from these channels facilitate comparisons to TRMM hydrometeors detected by radar. In analyzing these observations, we isolate water vapor and temperature change components that affect brightness temperatures and the inferred relative humidity. Trajectory modeling is also used to understand interannual humidity anomalies in terms of outflow fbm convective regions and history of diabatically-driven sinking which modifies relative humidity.
NASA Astrophysics Data System (ADS)
Fernández de Puelles, Maria Luz; Alemany, Francisco; Jansá, Javier
2007-08-01
Studies of plankton time-series from the Balearic islands waters are presented for the past decade, with main emphasis on the variability of zooplankton and how it relates to the environment. The seasonal and interannual patterns of temperature, salinity, nutrients, chlorophyll concentration and zooplankton abundance are described with data obtained between 1994 and 2003. Samples were collected every 10 days at a monitoring station in the Mallorca channel, an area with marked hydrographic variability in the Western Mediterranean. Mesoscale variability was also assessed using data from monthly sampling survey carried out between 1994 and 1999 in a three station transect located in the same study area. The copepods were the most abundant group with three higher peaks (March, May and September) distinguished during the annual cycle and a clear coastal-offshore decreasing gradient. Analysis of the zooplankton community revealed two distinct periods: the mixing period during winter and early spring, where copepods, siphonophores and ostracods were most abundant and, the stratified period characterised by an increase of cladocerans and meroplankton abundances. Remarkable interannual zooplankton variability was observed in relation to hydrographic regime with higher abundances of main groups during cool years, when northern Mediterranean waters prevailed in the area. The warmer years showed the lowest zooplankton abundances, associated with the inflow of less saline and nutrient-depleted Atlantic Waters. Moreover, the correlation found between copepod abundance and large scale climatic factors (e.g., NAO) suggested that they act as main driver of the zooplankton variability. Therefore, the seasonal but particularly the interannual variation observed in plankton abundance and structure patterns of the Balearic Sea seems to be highly modulated by large-scale forcing and can be considered an ideal place where to investigate potential consequences of global climate change.
The interannual variability of the Haines Index over North America
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Joseph J. Charney
2013-01-01
The Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The...
NASA Astrophysics Data System (ADS)
Zhang, Y.; Guo, S.; Zhao, M.; Du, L.; Li, R.; Jiang, J.; Wang, R.; Li, N.
2015-01-01
Temperature sensitivity of SOC mineralization (Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration, thus understanding the factors influencing the interannual variation in Q10 is important to accurately estimate the local soil carbon cycle. In situ SOC mineralization was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35° 12' N, 107° 40' E) in Changwu, Shaanxi, China form 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m-2 y-1 (mean =253 g C m-2 y-1; CV =13%), annual Q10 ranged from 1.48 to 1.94 (mean =1.70; CV =10%), and annual soil moisture content ranged from 38.6 to 50.7% WFPS (mean =43.8% WFPS; CV =11%), which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a negative quadratic correlation with soil moisture. In conclusion, understanding of the relationships between interannual variation in Q10 of SOC mineralization, soil moisture and precipitation is important to accurately estimate the local carbon cycle, especially under the changing climate.
Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing
NASA Astrophysics Data System (ADS)
Zhao, Jian
2017-12-01
An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.
2017-12-01
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.
Aquarius and Remote Sensing of Sea Surface Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.
2012-01-01
Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.
Li, Jinchang; Zhao, Yanfang; Han, Liuyan; Zhang, Guoming; Liu, Rentao
2017-11-15
We inferred moisture variations from the early 1930s to the early 2010s in the southwestern Mu Us Desert of China using Rb/Sr ratio, chemical index of alteration (CIA), and organic matter (OM) content in a nebkha profile. Our results showed that the variations in moisture may have been the main factor that controlled vegetation recovery or degradation, and we believe that gradual vegetation recovery was notable throughout the study area during the past 80years, despite two notable degradation stages during the mid-1950s and the mid-1980s. The Rb/Sr ratio, CIA, and OM content revealed that moisture levels increased during the study period, though with large interannual variations. During the early stage of nebkha formation, the moisture variations were controlled by unusually low precipitation. Thereafter, the precipitation, pan evaporation and temperature determined together moisture variations, but the key factor determining moisture variations was different during different periods. The moisture variations trend revealed in this study may not be restricted to this region as it was similar with the adjacent Mongolian Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.
Examination of snowmelt over Western Himalayas using remote sensing data
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2016-07-01
Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.
Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan
2014-01-01
The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481
Intraseasonal and Interannual Variability of Mars Present Climate
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1996-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.
Regional variability in sea ice melt in a changing Arctic.
Perovich, Donald K; Richter-Menge, Jacqueline A
2015-07-13
In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Zhu, Xian-Jin; Zhang, Han-Qi; Zhao, Tian-Hong; Li, Jian-Dong; Yin, Hong
2017-10-12
Spatial and temporal variations are important points of focus in ecological research. Analysing their differences improves our understanding on the variations of ecological phenomena. Using data from the Liaoning Statistical Yearbook, we investigated the spatial and temporal variations of cropland carbon transfer (CCT), an important ecological phenomenon in quantifying the regional carbon budget, in particular, the influencing factors and difference. The results showed that, from 1992 to 2014, the average CCT in Liaoning province was 18.56 TgC yr -1 and decreased from northwest to southeast. CCT spatial variation was primarily affected by the ratio of planting area to regional area (RPR) via its effect on the magnitude of carbon transfer (MCT), which depended mainly on fertilizer usage per area (FUA). From 1992 to 2014, CCT exhibited a significantly increasing trend with a rate of 0.48 TgC yr -1 . The inter-annual variation of CCT was dominated by carbon transfer per planting area (CTP) through its effect on MCT, which significantly correlated with FUA but showed no significant correlation with climatic factors. Therefore, the factors affecting the spatial variation of CCT differed from those that affected its inter-annual variation, indicating that the spatial and temporal variations of ecological phenomena were affected by divergent factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, C.H.; Douglass, A.R., Chandra, S.; Stolarski, R.S.
1991-03-20
Eight years of NMC (National Meteorological Center) temperature and SBUV (solar backscattered ultraviolet) ozone data were used to calculate the monthly mean heating rates and residual circulation for use in a two-dimensional photochemical model in order to examine the interannual variability of modeled ozone. Fairly good correlations were found in the interannual behavior of modeled and measured SBUV ozone in the upper stratosphere at middle to low latitudes, where temperature dependent photochemistry is thought to dominate ozone behavior. The calculated total ozone is found to be more sensitive to the interannual residual circulation changes than to the interannual temperature changes.more » The magnitude of the modeled ozone variability is similar to the observed variability, but the observed and modeled year to year deviations are mostly uncorrelated. The large component of the observed total ozone variability at low latitudes due to the quasi-biennial oscillation (QBO) is not seen in the modeled total ozone, as only a small QBO signal is present in the heating rates, temperatures, and monthly mean residual circulation. Large interanual changes in tropospheric dynamics are believed to influence the interannual variability in the total ozone, especially at middle and high latitudes. Since these tropospheric changes and most of the QBO forcing are not included in the model formulation, it is not surprising that the interannual variability in total ozione is not well represented in the model computations.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
NASA Astrophysics Data System (ADS)
Zhu, J.; Liao, H.; Li, J.; Feng, J.
2012-04-01
China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We apply a global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological data to quantify the impacts of East Asian winter monsoon (EAWM) on the aerosol concentrations over eastern China. We found that the simulated aerosol concentrations over eastern China have strong interannual variation and negative correlations with the strength of EAWM. Model results show that, accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the winter surface layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.97% (4.78 µg m-3) higher in the weak monsoon years than that in the strong monsoon years. Regionally, the weakening of EAWM is shown to be able to increase PM2.5 concentration in the middle and lower reach of the Yellow River by 12 µg m-3. This point indicates that climate change associated with variation of EAWM has an essential influence on worsening air quality over eastern China. The possible causes of higher aerosol concentrations in the weak monsoon years may be attributed to the changing in wind fields and planetary boundary layer height between the weak and strong monsoon years. Sensitivity studies are performed to identify the role of chemical reaction associated with temperature and humidity on the higher aerosol concentrations in the weak monsoon years over eastern China.
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Jones, D. B. A.; Dyer, E.; Nusbaumer, J. M.; Noone, D.
2017-12-01
Seasonal variation of precipitation in mainland southeast Asia (SEA) is dominated by the Indian summer monsoon system and the western Pacific winter monsoon system, while the interannual variability of precipitation in this region can be related to remote variability, such as variations in sea surface temperatures in the Pacific Ocean associated with El Niño Southern Oscillation (ENSO) events. Here we use a version of the Community Earth System Model (CESM1.2) with water tagging capability, to examine the impact of ENSO on precipitation in mainland Southeast Asia during the onset of the Indian summer monsoon. In the model, water is tagged as it is evaporated from geographically defined regions and tracked through phase changes in the atmosphere until it is precipitated. The model simulates well the seasonal variability in SEA precipitation as captured by multiple observational data sets, and the variations in precipitation during the monsoon onset is well correlated with the Oceanic Niño Index. We examine the changes in the large-scale atmospheric circulation associated with El Niño and La Niña conditions, and the implication of these changes for moisture transport to SEA. In particular, we quantify the relative ENSO-induced changes in the local and Pacific and Indian Ocean moisture sources for SEA precipitation. We also assess the changes in the moisture source regions over the seasonal cycle to obtain an understanding of the variability in the moisture sources for SEA precipitation from seasonal to interannual time scales.
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raich, J.W.
2003-09-15
We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreenmore » broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.« less
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Huizhi; Sun, Jihua; Shao, Yaping
2017-04-01
Eddy covariance measurements from 2012 to 2015 were used to investigate the interannual variation in carbon dioxide exchange and its control over an alpine meadow on the south-east margin of the Tibetan Plateau. The annual net ecosystem exchange (NEE) in the 4 years from 2012 to 2015 was -114.2, -158.5, -159.9 and -212.6 g C m-2 yr-1, and generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT. This was attributed to higher ecosystem respiration (RE) and similar gross primary production (GPP) in 2014 because the GPP increased with the MAT, but became saturated due to the limit in photosynthetic capacity. In the spring (March to May) of 2012, low air temperature (Ta) and drought events delayed grass germination and reduced GPP. In the late wet season (September to October) of 2012 and 2013, the low Ta in September and its negative effects on vegetation growth caused earlier grass senescence and significantly lower GPP. This indicates that the seasonal pattern of Ta has a substantial effect on the annual total GPP, which is consistent with results obtained using the homogeneity-of-slopes (HOS) model. The model results showed that the climatic seasonal variation explained 48.6 % of the GPP variability, while the percentages explained by climatic interannual variation and the ecosystem functional change were 9.7 and 10.6 %, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Guo, S. L.; Zhao, M.; Du, L. L.; Li, R. J.; Jiang, J. S.; Wang, R.; Li, N. N.
2015-06-01
Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration; thus, understanding the factors influencing the interannual variation in Q10 is important for accurately estimating local soil carbon cycle. In situ SOC mineralization rate was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China from 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m-2 yr-1, with a mean of 253 g C m-2 yr-1 and a coefficient of variation (CV) of 13%, annual Q10 ranged from 1.48 to 1.94, with a mean of 1.70 and a CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of 11%, which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a quadratic correlation with annual mean soil moisture content. In conclusion, understanding of the relationships between interannual variation in Q10, soil moisture, and precipitation are important to accurately estimate the local carbon cycle, especially under the changing climate.
Remotely-sensed phenologies of C3 and C4 grasses in Hawaii using MODIS Vegetation Indices
NASA Astrophysics Data System (ADS)
Pau, S.; Still, C. J.
2010-12-01
The C3 and C4 photosynthetic pathway is a fundamental physiological and ecological distinction in tropical and subtropical savannas and grasslands. Although C4 plants account for 20-25% of global terrestrial productivity, large uncertainties remain regarding their response to climate variability and future climate change. Recent work has shown that key differences in the ecology of C3 and C4 grasses may have been pre-adaptations to environments prior to the evolution of the C4 grasses and not attributable to photosynthetic pathway. The Hawaiian Islands are ideal for studying C3 and C4 grass plant functional types (PFTs) because of the combination of broad climatic gradients within a small geographic area. This study uses MODIS NDVI and EVI time-series data to examine the phenologies of C3 and C4 grasses in a phylogenetic context. Specifically we address 3 primary questions: (1) Do C3 and C4 sister taxa, and C4 subtypes exhibit distinct timing in phenological metrics (onset of greening, onset of senescence, maximum and minimum greenness, length of growing season)? (2) How does the interannual variation in these phenological metrics correlate with interannual variations in climate such as precipitation, air temperature, land surface temperature, and sea surface temperature? (3) How does the length of the growing season translate into differences in productivity?
Reed, Bradley C.; Budde, Michael E.; Spencer, Page; Miller, Amy E.
2009-01-01
Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions. Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3??months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Ni??o winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.
Internal and forced eddy variability in the Labrador Sea
NASA Astrophysics Data System (ADS)
Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.
2009-04-01
Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.
A two-fold increase of carbon cycle sensitivity to tropical temperature variations.
Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping
2014-02-13
Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.
Nan, Yang; Wang, Yuxuan
2018-03-26
During the springtime, mineral dust from the Taklimakan Desert (TD) is lifted up to high altitudes and transported long distances by the westerlies. The vertical distributions of Taklimakan dust are important for both long-range transport and climate effects. In this study, we use CALIOP Level 3 dust extinction to describe interannual variation of dust extinction in TD aggregated at each 1km interval (1-2km, 2-3km, 3-4km, 4-5km and 5-6km) above mean sea level during springtime from 2007 to 2016. 87% of dust extinction over TD is concentrated at 1-4km taking a major composition of dust aerosol optical depth (AOD) and only 8.1% dust AOD is at 4-6km. Interannual variation of seasonal and monthly dust extinction at 1-4km is almost as same as dust AOD (R>0.99) but different from that at 4-6km (R are around 0.42). Our analysis provides observational evidence from CALIOP that vertical dust extinction over TD has distinctively different variability below and above 4km altitude and this threshold divides dust transport in TD into two systems. Taklimakan dust aerosols are more related to dust transport at high altitudes (4-10km) than low altitudes (0-4km) over downwind regions. High dust extinction below 4km over TD is necessary but not sufficient conditions to ensure dust transport easterly, while high dust extinction levels at 4-6km over TD are both necessary and sufficient conditions; such contrast leads to the de-coupled interannual variability seen by CALIOP. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.
2008-01-01
Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.
NASA Technical Reports Server (NTRS)
Wood, Stephen E.; Paige, David A.
1992-01-01
The present diurnal and seasonal thermal model for Mars, in which surface CO2 frost condensation and sublimation are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers, in order to simulate seasonal exchanges of CO2 between the polar caps and atmosphere, successfully reproduces the measured pressured variations at the Viking Lander 1 site. In the second part of this work, the year-to-year differences between measured surface pressures at Viking sites as a function of season are used as upper limits on the potential magnitudes of interannual variations in the Martian atmosphere's mass. Simulations indicate that the dust layers deposited onto the condensing north seasonal polar cap during dust storms can darken seasonal frost deposits upon their springtime uncovering, while having little effect on seasonal pressure variations.
NASA Astrophysics Data System (ADS)
Riveros-Iregui, Diego A.; Lenters, John D.; Peake, Colin S.; Ong, John B.; Healey, Nathan C.; Zlotnik, Vitaly A.
2017-10-01
Despite potential evaporation rates in excess of the local precipitation, dry climates often support saline lakes through groundwater inputs of water and associated solutes. These groundwater-fed lakes are important indicators of environmental change, in part because their shallow water levels and salinity are very sensitive to weather and climatic variability. Some of this sensitivity arises from high rates of open-water evaporation, which is a dominant but poorly quantified process for saline lakes. This study used the Bowen ratio energy budget method to calculate open-water evaporation rates for Alkali Lake, a saline lake in the Nebraska Sandhills region (central United States), where numerous groundwater-fed lakes occupy the landscape. Evaporation rates were measured during the warm season (May - October) over three consecutive years (2007-2009) to gain insights into the climatic and limnological factors driving evaporation, as well as the partitioning of energy balance components at seasonal and interannual time scales. Results show a seasonal peak in evaporation rate in late June of 7.0 mm day-1 (on average), with a maximum daily rate of 10.5 mm day-1 and a 3-year mean July-September (JAS) rate of 5.1 mm day-1, which greatly exceeds the long-term JAS precipitation rate of 1.3 mm day-1. Seasonal variability in lake evaporation closely follows that of net radiation and lake surface temperature, with sensible heat flux and heat storage variations being relatively small, except in response to short-term, synoptic events. Interannual changes in the surface energy balance were weak, by comparison, although a 6-fold increase in mean lake level over the three years (0.05-0.30 m) led to greater heat storage within the lake, an enhanced JAS lake-air temperature gradient, and greater sensible heat loss. These large variations in water level were also associated with large changes in absolute salinity (from 28 to 118 g kg-1), with periods of high salinity characterized by reductions in mass transfer estimates of evaporation rate by up to 20%, depending on atmospheric conditions and absolute salinity. Energy balance estimates of evaporation, on the other hand, were found to be less sensitive to variations in salinity. These results provide regional insights for lakes in the Nebraska Sandhills region and implications for estimation of the energy and water balance of saline lakes in similar arid and semi-arid landscapes.
Ecology of Lake Superior: Linking Landscape to Nearshore Condition
High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...
Lake Superior: Nearshore Variability and a Landscape Driver Concept
High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...
Groundwater and Terrestrial Water Storage
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.
2011-01-01
Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of each month of the year) excluding Greenland and Antarctica. The two figures show that 2010 was the driest year since 2003. The drought in the Amazon was largely responsible, but an excess of water in 2009 seems to have buffered that drought to some extent. The drying trend in the 25-55 deg S zone is a combination of Patagonian glacier melt and drought in parts of Australia.
NASA Astrophysics Data System (ADS)
Cao, Xi; Li, Tim; Peng, Melinda; Chen, Wen; Chen, Guanghua
2014-06-01
The western North Pacific monsoon trough (MT) exhibits marked interannual variation (IAV) associated with El Niño-Southern Oscillation forcing. The role of MT IAV in tropical cyclone (TC) development was investigated using the Advanced Research Weather Research and Forecasting model placed on a beta plane. It was found that MT IAV has a great influence on vortex development. In strong years, the MT provides more favorable environmental conditions—primarily through enhanced low-level vorticity, convergence and midlevel moisture—for TC formation and vice versa in weak years. Sensitivity experiments that separated the dynamic and thermodynamic (moisture) factors from strong MT IAV showed that the thermodynamic impact associated with MT IAV is comparable to the dynamic impact.
Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters
NASA Astrophysics Data System (ADS)
Price, Colin; Melnikov, Alexander
2004-09-01
The Schumann resonances (SR) represent an electromagnetic phenomenon in the Earth's atmosphere related to global lightning activity. The spectral characteristics of the SR modes are defined by their resonant mode amplitude, center frequency and half-width (Q-factor). Long-term (4 years) diurnal and seasonal variations of these parameters are presented based on measurements at a field site in the Negev desert, Israel. Variations of the different modes (8, 14 and 20Hz) and the different electromagnetic components (Hns, Hew and Ez) are presented. The power variations of the various modes and components show three dominant maxima in the diurnal cycle related to lightning activity in south-east Asia (0800UT), Africa (1400UT) and South America (2000UT). The largest global lightning activity occurs during the northern hemisphere summer (JJA) with the southern hemisphere summer (DJF) having the least lightning around the globe. The frequency and half-width (Q-factor) variations of the different modes and SR components are fairly complicated in structure, and will need additional theoretical work to explain their variations. However, the frequency variations are in excellent agreement with previous studies, implying that the frequency variations are robust features of the SR. The inter-annual variability of global lightning activity is shown to vary differently for each of the three major source regions of global lightning.
NASA Technical Reports Server (NTRS)
Geller, M. A.; Wu, M.-F.; Gelman, M. E.
1984-01-01
Individual monthly mean general circulation statistics for the Northern Hemisphere winters of 1978-79, 1979-80, 1980-81, and 1981-82 are examined for the altitude region from the earth's surface to 55 km. Substantial interannual variability is found in the mean zonal geostrophic wind; planetary waves with zonal wavenumber one and two; the heat and momentum fluxes; and the divergence of the Eliassen-Palm flux. These results are compared with previous studies by other workers. This variability in the monthly means is examined further by looking at both time-latitude sections at constant pressure levels and time-height sections at constant latitudes. The implications of this interannual variability for verifying models and interpreting observations are discussed.
A methodology for probabilistic assessment of solar thermal power plants yield
NASA Astrophysics Data System (ADS)
Fernández-Peruchena, Carlos M.; Lara-Faneho, Vicente; Ramírez, Lourdes; Zarzalejo, Luis F.; Silva, Manuel; Bermejo, Diego; Gastón, Martín; Moreno, Sara; Pulgar, Jesús; Pavon, Manuel; Macías, Sergio; Valenzuela, Rita X.
2017-06-01
A detailed knowledge of the solar resource is a critical point to perform an economic feasibility analysis of Concentrating Solar Power (CSP) plants. This knowledge must include its magnitude (how much solar energy is available at an area of interest over a long time period), and its variability over time. In particular, DNI inter-annual variations may be large, increasing the return of investment risk in CSP plant projects. This risk is typically evaluated by means of the simulation of the energy delivered by the CSP plant during years with low solar irradiation, which are typically characterized by annual solar radiation datasets with high probability of exceedance of their annual DNI values. In this context, this paper proposes the use meteorological years representative of a given probability of exceedance of annual DNI in order to realistically assess the inter-annual variability of energy yields. The performance of this approach is evaluated in the location of Burns station (University of Oregon Solar Radiation Monitoring Laboratory), where a 34-year (from 1980 to 2013) measured data set of solar irradiance and temperature is available.
North-Australian tropical seas circulation study
NASA Technical Reports Server (NTRS)
Burrage, Derek; Coleman, R.; Bode, L.; Inoue, M.
1991-01-01
This investigation is intended to fully address the stated objective of the TOPEX/POSEIDON mission (National Aeronautics and Space Administration, 1986). Hence, we intend to use TOPEX/POSEIDON altimetry data to study the large-scale circulation of the Coral Sea Basin and the Arafura Sea and the mass exchange between these and adjoining basins. We will obtain data from two such cruises in 1993 and 1994 and combine them with TOPEX/POSEIDON radar altimetry data to identify interannual and seasonal changes in: (1) the location of the major ocean currents and the South Equatorial Current bifurcation in the Coral Sea; (2) the source region of the South Tropical Counter Current (STCC); and (3) the water exchange between the Coral Sea and the adjoining seas. We will also estimate seasonal and interannual variations in the horizontal transport of mass and heat associated with near-surface geostrophic and wind-driven currents. In addition, the tidal components of the Coral Sea will be studied to provide a correction for altimetry subtidal sea level changes and to develop a regional numerical model for tidal forcing in the Great Barrier Reef (GBR) and Papua New Guinea Reef regions.
Interannual variability in the gravity wave drag - vertical coupling and possible climate links
NASA Astrophysics Data System (ADS)
Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr
2018-05-01
Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.
Andrew D. Richardson; David Y. Hollinger; John D. Aber; Scott V. Ollinger; Bobby H. Braswell
2007-01-01
Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year-to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem...
NASA Astrophysics Data System (ADS)
Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.
2016-12-01
A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major cold biases is close to the warm side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, warm biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. Warm biases also exist over the tropical cold tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce ENSO events in proper years, it does reproduce the ENSO frequency well; they are skewed toward more warm events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.
NASA Astrophysics Data System (ADS)
Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina
2018-06-01
For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.
Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro
2014-01-01
Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Freshwater mussels (Bivalvia: Unionidae) are one of the most endangered animal taxa in North America, and continued research on unionids will improve management decisions regarding their conservation. One unexplored aspect of unionid ecology is the magnitude of interannual variat...
Lake Superior: Nearshore Variability and a Landscape Driver Concept (journal article)
Spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches also have been observed and found to be robust across seasonal time frames. Less is known about robustness of inter-annual variation wi...
USDA-ARS?s Scientific Manuscript database
Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (S). However, advances in our ability to esti...
NASA Astrophysics Data System (ADS)
Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao
2016-06-01
Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.
Here, water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO 2more » explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO 2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO 2, but this direct CO 2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO 2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO 2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
NASA Astrophysics Data System (ADS)
Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.
2015-07-01
The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.
NASA Astrophysics Data System (ADS)
Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin
2014-11-01
Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...
2017-11-17
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
NASA Astrophysics Data System (ADS)
Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.; Ciais, Philippe; Zhang, Yao; Fisher, Joshua B.; Michalak, Anna M.; Wang, Weile; Poulter, Benjamin; Huntzinger, Deborah N.; Niu, Shuli; Mao, Jiafu; Jain, Atul; Ricciuto, Daniel M.; Shi, Xiaoying; Ito, Akihiko; Wei, Yaxing; Huang, Yuefei; Wang, Guangqian
2017-11-01
Water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.
Projected Changes in Mean and Interannual Variability of Surface Water over Continental China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi
Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China,more » which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.« less
Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas
2015-01-01
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2) day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.
Using TRMM Data To Understand Interannual Variations In the Tropical Water Balance
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan; Arnold, James E. (Technical Monitor)
2002-01-01
A significant element of the science rationale for TRMM centered on assembling rainfall data needed to validate climate models-- climatological estimates of precipitation, its spatial and temporal variability, and vertical modes of latent heat release. Since the launch of TRMM, a great interest in the science community has emerged for quantifying interannual variability (IAV) of precipitation and its relationship to sea-surface temperature (SST) changes. The fact that TRMM has sampled one strong warm/ cold ENSO couplet, together with the prospect for a mission lifetime approaching ten years, has bolstered this interest in these longer time scales. Variability on a regional basis as well as for the tropics as a whole is of concern. Our analysis of TRMM results so far has shown surprising lack of concordance between various algorithms in quantifying IAV of precipitation. The first objective of this talk is to quantify the sensitivity of tropical precipitation to changes in SSTs. We analyze performance of the 3A11, 3A25, and 3B31 algorithms and investigate their relationship to scattering-- based algorithms constructed from SSM/I and TRMM 85 kHz data. The physical basis for the differences (and similarities) in depicting tropical oceanic and land rainfall will be discussed. We argue that scattering-based estimates of variability constitute a useful upper bound for precipitation variations. These results lead to the second question addressed in this talk-- How do TRMM precipitation / SST sensitivities compare to estimates of oceanic evaporation and what are the implications of these uncertainties in determining interannual changes in large-scale moisture transport? We summarize results of an analysis performed using COADS data supplemented by SSM/I estimates of near-surface variables to assess evaporation sensitivity to SST. The response of near 5 W sq m/K is compared to various TRMM precipitation sensitivities. Implied moisture convergence over the tropics and its sensitivity to errors of these algorithms is discussed.
NASA Technical Reports Server (NTRS)
Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)
2001-01-01
The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of the AVHRR AOT is increased during any particular month, along with its interannual correlation with the TOMS AI The latter easily exceeds the sampling threshold due to its greater ability to infer the aerosol load in the presence of clouds. Whether the TOMS AI should be regarded as a more reliable indicator of interannual variability depends upon the extent of contamination by sub-pixel clouds.
NASA Astrophysics Data System (ADS)
Williams, P.
2015-12-01
Ecological studies are increasingly recognizing the importance of atmospheric vapor-pressure deficit (VPD) as a driver of forest drought stress and disturbance processes such as wildfire. Because of the nonlinear Clausius-Clapeyron relationship between temperature and saturation vapor pressure, small variations in temperature can have large impacts on VPD, and therefore drought, particularly in warm, dry areas and particularly during the warm season. It is also clear that VPD and drought affect forest fire nonlinearly, as incremental drying leads to increasingly large burned areas. Forest fire is also affected by fuel amount and connectivity, which are promoted by vegetation growth in previous years, which is in turn promoted by lack of drought, highlighting the importance of nuances in the sequencing of natural interannual climate variations in modulating the impacts of drought on wildfire. The many factors affecting forest fire, and the nonlinearities embedded within the climate and wildfire systems, cause interannual variability in forest-fire area and frequency to be wildly variable and strongly affected by internal climate variability. In addition, warming over the past century has produced a background increase in forest fire frequency and area in many regions. In this talk I focus on the western United States and will explore whether the relationships between internal climate variability on forest fire area have been amplified by the effects of warming as a result of the compounding nonlinearities described above. I will then explore what this means for future burned area in the western United States and make the case that uncertainties in the future global greenhouse gas emissions trajectory, model projections of mean temperatures, model projections of precipitation, and model projections of natural climate variability translate to very large uncertainties in the effects of future climate variability on forest fire area in the United States and globally.
NASA Astrophysics Data System (ADS)
Estes, M. J.; Wang, Y.; Lei, R.; Wang, S. C.; Jia, B.
2017-12-01
Previous studies have established that the westward extent of the Bermuda High is strongly linked to the ozone concentrations in Houston. This study examines the linkages between the Bermuda High, the Great Plains low-level jet, background ozone in the eastern half of Texas, and local contributions to peak ozone in Texas urban areas. Analysis of North American Regional Reanalysis (NARR) wind and pressure fields will be used to establish the presence and strength of synoptic-scale weather features, and this information will be used with ozone data from air quality networks to determine the effects upon the seasonal and interannual variations of ozone. Quantification of the effects of large-scale meteorological factors will improve understanding of the causes of ozone variations, including decadal trends in Texas cities.
NASA Technical Reports Server (NTRS)
Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.
1995-01-01
A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong
2013-09-16
Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to producemore » unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.« less
ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.
Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick
2017-05-01
An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.
Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing
NASA Astrophysics Data System (ADS)
Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.
2015-12-01
Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.
Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation
NASA Astrophysics Data System (ADS)
Yamaura, T.; Tomita, T.
2011-12-01
This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which shifts the axis of monsoon southwesterlies southward. Thus, the negative precipitation anomalies and the positive ones appear in Kyushu and to the southeast of Japan. In the opposite TBO phase, an anomalous anticyclone is set to the southeast of Japan and suppresses tropical cyclones there. The contribution of tropical cyclones is small in this case. As such, local tropical cyclones contribute to the interannual variation of the Baiu precipitation with larger atmospheric circulations in the western North Pacific.
NASA Astrophysics Data System (ADS)
Nagano, A.; Hasegawa, T.; Matsumoto, H.; Ariyoshi, K.
2016-02-01
The Kuroshio, the western boundary current of the North Pacific subtropical gyre, takes a stable meandering path off the southern coast of Japan, called the large meander (LM), on interannual to decadal timescales. The LM of the Kuroshio formed in July 2004 associated with the intensified anticyclonic recirculation gyre south of the Kuroshio, and gradually decayed in the latter half of 2005. The variations of the Kuroshio and the southern recirculating currents may be related to deep currents, which are expected to be associated with bottom pressure (BP) variation. In order to examine the variation of BP associated with the variations of the sea surface currents, we analyzed data of eleven pressure sensors equipped to inverted echo sounders deployed from July 2004 to October 2006. An abrupt enhancement of BP is found on the continental slope off Shikoku, lagging a few months behind an elevation of sea surface height (SSH) due to the onshore shift of the recirculation gyre associated with the LM formation. Subsequently, BP beneath the recirculation gyre dwindles, leading the gradual depression of SSH due to the decay of the LM. The relationship between BP and SSH may suggest that the occurrence and decay of the LM depend on the extension of the recirculation gyre current down to the ocean bottom.
Parallel shifts in ecology and natural selection in an island lizard
Calsbeek, Ryan; Buermann, Wolfgang; Smith, Thomas B
2009-01-01
Background Natural selection is a potent evolutionary force that shapes phenotypic variation to match ecological conditions. However, we know little about the year-to-year consistency of selection, or how inter-annual variation in ecology shapes adaptive landscapes and ultimately adaptive radiations. Here we combine remote sensing data, field experiments, and a four-year study of natural selection to show that changes in vegetation structure associated with a severe drought altered both habitat use and natural selection in the brown anole, Anolis sagrei. Results In natural populations, lizards increased their use of vegetation in wet years and this was correlated with selection on limb length but not body size. By contrast, a die-back of vegetation caused by drought was followed by reduced arboreality, selection on body size, and relaxed selection on limb length. With the return of the rains and recovery of vegetation, selection reverted back to pre-drought pattern of selection acting on limb length but not body size. To test for the impact of vegetation loss on natural selection during the drought, we experimentally removed vegetation on a separate study island in a naturally wet year. The experiment revealed similar inter-annual changes in selection on body size but not limb length. Conclusion Our results illustrate the dynamic nature of ecology driving natural selection on Anolis morphology and emphasize the importance of inter-annual environmental variation in shaping adaptive variation. In addition, results illustrate the utility of using remote sensing data to examine ecology's role in driving natural selection. PMID:19126226
Seasonal and annual trends in forage fish mercury concentrations, San Francisco Bay.
Greenfield, Ben K; Melwani, Aroon R; Allen, Rachel M; Slotton, Darell G; Ayers, Shaun M; Harrold, Katherine H; Ridolfi, Katherine; Jahn, Andrew; Grenier, J Letitia; Sandheinrich, Mark B
2013-02-01
San Francisco Bay is contaminated by mercury (Hg) due to historic and ongoing sources, and has elevated Hg concentrations throughout the aquatic food web. We monitored Hg in forage fish to indicate seasonal and interannual variations and trends. Interannual variation and long-term trends were determined by monitoring Hg bioaccumulation during September-November, for topsmelt (Atherinops affinis) and Mississippi silverside (Menidia audens) at six sites, over six years (2005 to 2010). Seasonal variation was characterized for arrow goby (Clevelandia ios) at one site, topsmelt at six sites, and Mississippi silverside at nine sites. Arrow goby exhibited a consistent seasonal pattern from 2008 to 2010, with lowest concentrations observed in late spring, and highest concentrations in late summer or early fall. In contrast, topsmelt concentrations tended to peak in late winter or early spring and silverside seasonal fluctuations varied among sites. The seasonal patterns may relate to seasonal shifts in net MeHg production in the contrasting habitats of the species. Topsmelt exhibited an increase in Alviso Slough from 2005 to 2010, possibly related to recent hypoxia in that site. Otherwise, directional trends for Hg in forage fish were not observed. For topsmelt and silverside, the variability explained by year was relatively low compared to sampling station, suggesting that interannual variation is not a strong influence on Hg concentrations. Although fish Hg has shown long-term declines in some ecosystems around the world, San Francisco Bay forage fish did not decline over the six-year monitoring period examined. Copyright © 2012 Elsevier B.V. All rights reserved.
Interannual variations in surface urban heat island intensity and associated drivers in China.
Yao, Rui; Wang, Lunche; Huang, Xin; Zhang, Wenwen; Li, Junli; Niu, Zigeng
2018-09-15
The spatial, diurnal and seasonal variations of surface urban heat islands (SUHIs) have been investigated in many places, but we still have limited understanding of the interannual variations of SUHIs and associated drivers. In this study, the interannual variations in SUHI intensity (SUHII, derived from MODIS land surface temperature (LST) data (8-day composites of twice-daily observations), urban LST minus rural) and their relationships with climate variability and urbanization were analyzed in 31 cities in China for the period 2001-2015. Significant increasing trends of SUHII were observed in 71.0%, 58.1%, 25.8% and 54.8% the cities in summer days (SDs), summer nights (SNs), winter days (WDs) and winter nights (WNs), respectively. Pearson's correlation analyses were first performed from a temporal perspective, which were different from a spatial perspective as previous studies. The results showed that the SUHII in SDs and WDs was negatively correlated with the background LST and mean air temperature in most of the cities. The nighttime SUHII in most cities was negatively and positively correlated with total precipitation and total sunshine duration, respectively. Average wind speed has little effect on SUHII. Decreasing vegetation and increased population were the main factors that contributed to the increased SUHII in SDs and SNs, while albedo only influenced the SUHII in WDs. In addition, Pearson's correlation analyses across cities showed that cities with higher decreasing rates of vegetation exhibited higher increasing rates of the SUHII in SDs and WDs. Cities with larger population growth rates do not necessarily have higher increasing rates of SUHII. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng
2008-01-01
The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).
Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies
NASA Astrophysics Data System (ADS)
Bréon, F.-M.; Boucher, O.; Brender, P.
2017-07-01
It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.
Khrustaleva, A M; Zelenina, D A
2008-07-01
Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.
Interannual Variation of Sea Level in the South Atlantic Based on Satellite Altimetry
NASA Astrophysics Data System (ADS)
Grodsky, S. A.; Carton, J. A.
2006-07-01
13 years of altimeter month ly sea level ar e used to explore interannual variability of the South Atlantic. The strongest v ariability outside the eastern and western boundaries is conf ined to a relatively narrow zonally oriented band b etw een 35°S and 25°S, the Agulhas eddy corridor. On th eir way across th e South Atlantic th e Agulh as eddies g ain energy on the southern flank of the eddy corridor via baro tropic conversions by deceler ating the South Atlan tic Curren t. On interannual time scales the sea level in the corridor fluctu ates out of phase in the w est and east r evealing noticeab le v ariations of 10 cm amp litude at 4 to 5 year periods.
Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index
Taehee Hwang; Conghe Song; James Vose; Lawrence Band
2011-01-01
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology...
Amat, Juan A; Hortas, Francisco; Arroyo, Gonzalo M; Rendón, Miguel A; Ramírez, José M; Rendón-Martos, Manuel; Pérez-Hurtado, Alejandro; Garrido, Araceli
2007-06-01
Greater flamingos in southern Spain foraged in areas distant from a breeding site, spending 4-6 days in foraging areas between successive visits to the colony to feed their chicks. During four years, we took blood samples from chicks to ascertain whether there were interannual variations in several blood parameters, indicative of food quality and feeding frequencies. When the chicks were captured, 20-31% of them had their crops empty, indicating that not all chicks were fed daily. Additional evidence of variations in feeding frequencies was obtained from a principal component analysis (PCA) on plasma chemistry values, which also indicated that there were annual variations in the quality of food received by chicks. The association of cholesterol and glucose with some PC axes indicated that some chicks were experiencing fasting periods. Of all plasma metabolites considered, cholesterol was the best one to predict body condition. Greater flamingo chicks experiencing longer fasting intervals, as suggested by higher plasma levels of cholesterol, were in lower body condition.
Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Destouni, Georgia; Jawitz, James W.; Thompson, Sally E.; Loukinova, Natalia V.; Darracq, Amélie; Zanardo, Stefano; Yaeger, Mary; Sivapalan, Murugesu; Rinaldo, Andrea; Rao, P. Suresh C.
2010-12-01
Complexity of heterogeneous catchments poses challenges in predicting biogeochemical responses to human alterations and stochastic hydro-climatic drivers. Human interferences and climate change may have contributed to the demise of hydrologic stationarity, but our synthesis of a large body of observational data suggests that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long-term monitoring data from the Mississippi-Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter-annual variations in loads (LT) for total-N (TN) and total-P (TP), exported from a catchment are dominantly controlled by discharge (QT) leading inevitably to temporal invariance of the annual, flow-weighted concentration, $\\overline{Cf = (LT/QT). Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents that also exhibit a linear LT-QT relationship. These responses are characteristic of transport-limited systems. In contrast, in the absence of legacy sources in less-managed catchments, $\\overline{Cf values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that: (1) expected inter-annual variations in LT can be robustly predicted given discharge variations arising from hydro-climatic or anthropogenic forcing, and (2) water-quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The finding has notable implications on catchment management to mitigate adverse water-quality impacts, and on acceleration of global biogeochemical cycles.
Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange
NASA Astrophysics Data System (ADS)
van der Velde, I. R.; Miller, J. B.; Schaefer, K.; Masarie, K. A.; Denning, S.; White, J. W. C.; Tans, P. P.; Krol, M. C.; Peters, W.
2013-09-01
Previous studies suggest that a large part of the variability in the atmospheric ratio of 13CO2/12CO2originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here investigate the contribution of interannual variability (IAV) in biospheric exchange to the observed atmospheric 13C variations. We use the Simple Biosphere - Carnegie-Ames-Stanford Approach biogeochemical model, including a detailed isotopic fractionation scheme, separate 12C and 13C biogeochemical pools, and satellite-observed fire disturbances. This model of 12CO2 and 13CO2 thus also produces return fluxes of 13CO2from its differently aged pools, contributing to the so-called disequilibrium flux. Our simulated terrestrial 13C budget closely resembles previously published model results for plant discrimination and disequilibrium fluxes and similarly suggests that variations in C3 discrimination and year-to-year variations in C3and C4 productivity are the main drivers of their IAV. But the year-to-year variability in the isotopic disequilibrium flux is much lower (1σ=±1.5 PgC ‰ yr-1) than required (±12.5 PgC ‰ yr-1) to match atmospheric observations, under the common assumption of low variability in net ocean CO2 fluxes. This contrasts with earlier published results. It is currently unclear how to increase IAV in these drivers suggesting that SiBCASA still misses processes that enhance variability in plant discrimination and relative C3/C4productivity. Alternatively, 13C budget terms other than terrestrial disequilibrium fluxes, including possibly the atmospheric growth rate, must have significantly different IAV in order to close the atmospheric 13C budget on a year-to-year basis.
Effect of climate variability and change on winter haze over eastern China in recent decades
NASA Astrophysics Data System (ADS)
Liao, Hong; Yang, Yang
2017-04-01
In recent years, eastern China has frequently experienced persistent and severe winter haze pollution episodes with high aerosol concentrations, which have affected half of the 1.3 billion people in China. In this work, the increases in wintertime aerosol concentrations and severe haze events in eastern China over 1985-2015 were quantified by using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database, observed PM2.5 concentrations from the network of China National Environmental Monitoring Centre (CNEMC), and simulated PM2.5 concentrations from the Goddard Earth-Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days (defined as days with atmospheric visibility less than 10 km and relative humidity less than 80%) averaged over eastern China (105-122.5°E, 20-45°N) increased from 21 days in 1980 to 42 days in 2014. Observed severe haze days (defined as days with PM2.5 >150 μg m-3) occurred mainly over Northern China. Considering variations in both anthropogenic emissions and meteorological parameters, the GEOS-Chem model simulated an increasing trend in wintertime surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China in the past decades. Sensitivity studies showed that changes in anthropogenic emissions and in climate contributed 87% and 17% to this increasing trend, respectively. Wintertime severe haze events over eastern China showed large interannual variations, driven by climate variability. Process analyses were performed to identify the key meteorological parameters that determined the interannual variations of wintertime severe haze events.
NASA Astrophysics Data System (ADS)
Mercier, Franck; Cazenave, Anny; Maheu, Caroline
2002-04-01
Water level fluctuations of continental lakes are related to regional to global scale climate changes. Water level fluctuations reflect variations in evaporation and precipitation over the lake area and its catchment area. Over such inland water bodies, the satellite altimetry technique offers both a world-wide coverage and a satisfying accuracy. We present here results of lake level variations of 12 African lakes based on 7 years of Topex/Poseidon (T/P) altimetry data acquired between 1993 and 1999. Among the 12 African lakes presented in this study, three are reservoirs whose level fluctuations are mainly driven by anthropogenic usage of the water. Either closed or open, the nine remaining lakes are sensitive indicators of the climate evolution over Africa during the 1990s. Seasonal signals of each lake are clearly identified and filtered out to focus on the interannual fluctuations. Clear correlated regional variations are reported among the east African lakes: several lakes exhibit a regular level decrease between 1993 and 1997, probably due to intense droughts. However, the most spectacular feature is an abrupt water level rise occurring in late 1997-early 1998 and affecting most of the lakes located within the Rift Valley. This major anomalous pattern, explained by a large excess rainfall anomaly occurring in late 1997, is quantified in both space and time domains through an EOF analysis of the lake level height time series. The spatial distribution of the leading mode of lake level height correlates with the dominant mode of precipitation computed over the same time span. Nevertheless, similar rainfall anomaly, but with lesser intensity, occurred in late 1994 without any noticeable consequence on lake level. The precipitation anomaly appears related to the equatorial Indian Ocean warming reported during the 1997-1998 ENSO event.
Vegetation controls on the biophysical surface properties at global scale
NASA Astrophysics Data System (ADS)
Forzieri, Giovanni; Cescatti, Alessandro
2016-04-01
Leaf area index (LAI) plays an important role in determining resistances to heat, moisture and momentum exchanges between the land surface and atmosphere. Exploring how variations in LAI may induce changes in the surface energy balance is a key to understanding vegetation-climate interactions and for predicting biophysical climate impacts associated to changes in land cover. To this end, we analyzed remote sensing-observed dynamics in LAI, surface energy fluxes and climate drivers at global scale. We investigated the link between interannual variability of LAI and the components of the surface energy budget under diverse climate gradients. Results show that a 25% increase in annual LAI may induce up to 2% increase in available surface energy, as consequence of higher short wave absorption due to reduced albedos, up to 20% increase and 10% decrease in latent and sensible heat, respectively, leading to a decrease of the Bowen ratio in densely vegetated canopies. Opposite patterns are found for a reduction in LAI of similar magnitude. Such changes are strongly modulated by concurrent year-to-year variations and climatological means of air temperature, precipitation and snow cover as well as by land cover-specific physiological processes. Boreal and semi-arid regions appear to be mostly exposed to large changes in biophysical surface processes induced by interannual fluctuations in LAI. The combination of the emergent patters translates into variations in the long-wave outgoing radiation that reflect the surface warming/cooling associated to LAI changes. These findings provide a deeper understanding of the vegetation control on biophysical surface properties and define a set of observational-based diagnostics of LAI-dependent land surface-atmosphere interactions.
Mars: A Planet with a Dynamic Climate System
NASA Technical Reports Server (NTRS)
Haberle, Robert M.
2013-01-01
Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial features at almost all latitudes, strongly suggests the possibility of significant climate change associated with orbital variations. Some of the major questions these data raise concern how closed the seasonal cycles are and which reservoirs are gaining or loosing, the cause of the large interannual variability of the dust cycle and how it couples to the water and CO2 cycles, and the mechanisms for the origin of past glacial activity and the emplacement and removal of subsurface ice. While many of these questions can be addressed with continued research based on existing data, new observations focused on atmosphere surface-interactions would provide valuable constraints on how dust, water, and CO2 move between the surface and atmosphere.
Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar
NASA Astrophysics Data System (ADS)
Behrenfeld, Michael J.; Hu, Yongxiang; O'Malley, Robert T.; Boss, Emmanuel S.; Hostetler, Chris A.; Siegel, David A.; Sarmiento, Jorge L.; Schulien, Jennifer; Hair, Johnathan W.; Lu, Xiaomei; Rodier, Sharon; Scarino, Amy Jo
2017-02-01
Polar plankton communities are among the most productive, seasonally dynamic and rapidly changing ecosystems in the global ocean. However, persistent cloud cover, periods of constant night and prevailing low solar elevations in polar regions severely limit traditional passive satellite ocean colour measurements and leave vast areas unobserved for many consecutive months each year. Consequently, our understanding of the annual cycles of polar plankton and their interannual variations is incomplete. Here we use space-borne lidar observations to overcome the limitations of historical passive sensors and report a decade of uninterrupted polar phytoplankton biomass cycles. We find that polar phytoplankton dynamics are categorized by `boom-bust' cycles resulting from slight imbalances in plankton predator-prey equilibria. The observed seasonal-to-interannual variations in biomass are predicted by mathematically modelled rates of change in phytoplankton division. Furthermore, we find that changes in ice cover dominated variability in Antarctic phytoplankton stocks over the past decade, whereas ecological processes were the predominant drivers of change in the Arctic. We conclude that subtle and environmentally driven imbalances in polar food webs underlie annual phytoplankton boom-bust cycles, which vary interannually at each pole.
Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.
2003-01-01
Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.
NASA Astrophysics Data System (ADS)
Peralta-Ferriz, Cecilia; Morison, James; Zhang, Jinlun; Bonin, Jennifer
2014-05-01
The variability of ocean bottom pressure (OBP) in the Arctic is dominated by the variations in sea surface height (SSH) from daily to monthly timescales. Conversely, OBP variability is dominated by the changes in the steric pressure (StP) at inter-annual timescales, particularly off the continental shelves. The combination of GRACE-derived ocean bottom pressure and ICESat altimetry-derived sea surface height variations in the Arctic Ocean have provided new means of identifying inter-annual trends in StP (StP = OBP-SSH) and associated freshwater content (FWC) of the Arctic region (Morison et al., 2012). Morison et al. (2012) showed that from 2004 to 2008, the FWC increased in the Beaufort Gyre and decreased in the Siberian and Central Arctic, resulting in a relatively small net basin-averaged FWC change. In this work, we investigate the inter-annual trends from 2008 to 2012 in OBP from GRACE, SSH from the state-of-the-art pan-Arctic ocean model PIOMAS -validated with tide and pressure gauges in the Arctic-, and compute the trends in StP and FWC from 2008-2012. We compare these results with the previous trends from 2005-2008 described in Morison et al. (2012). Our initial findings suggest increased salinity in the entire Arctic basin (relative to the climatological seasonal variation) from 2008-2012, compared to the preceding four years (2005-2008). We also find that the trends in OBP, SSH and StP from 2008-2012 present a different behavior during the spring-summer and fall-winter, unlike 2005-2008, in which the trends were generally consistent through all months of the year. It seems since 2009, when the Beaufort Gyre relaxed and the export of freshwater from the Canada Basin into the Canadian Archipelago and Fram Strait, via the Lincoln Sea, was anomalously large (de Steur et al., 2013), the Arctic Ocean has entered a new circulation regime. The causes of such changes in the inter-annual trends of OBP, SSH and StP -hence FWC-, associated with the changes in the shape and strength of the Arctic Oscillation (AO) and the wind patterns, as well as with the changes in sea ice conditions will be explored. References: Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele, Changing Arctic Ocean Freshwater Pathways Measured With ICESat and GRACE, Nature, 481, 66-70, DOI: 10.1038/nature10705, 2012. de Steur, L., et al. (2013), Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010, J. Geophys. Res. Oceans, 118, 4699-4715, doi:10.1002/jgrc.20341.
Wetland inventory and variability over the last two decades at a global scale
NASA Astrophysics Data System (ADS)
Prigent, C.; Papa, F.; Aires, F.; Rossow, W. B.; Matthews, E.
2011-12-01
Remote sensing techniques employing visible, infrared, and microwave observations offer varying success in estimating wetlands and inundation extent and in monitoring their natural and anthropogenic variations. Low spatial resolution (e.g., 30 km) limits detection to large wetlands but has the advantage of frequent coverage. High spatial resolution (e.g., 100 m), while providing more environmental information, suffers from poor temporal resolution, with observations for just high/low water or warm/cold seasons. Most existing wetland data sets are limited to a few regions, for specific times in the year. The only global inventories of wetland dynamics over a long period of time is derived from a remote-sensing technique employing a suite of complementary satellite observations: it uses passive microwave land-surface microwave emissivities, scatterometer responses, and visible and near infrared reflectances. Combining observations from different instruments makes it possible to capitalize on their complementary strengths, and to extract maximum information about inundation characteristics. The technique is globally applicable without any tuning for particular environments. The satellite data are used to calculate monthly-mean inundated fractions of equal-area grid cells (0.25°x0.25° at the equator), taking into account the contribution of vegetation to the passive microwave signal (Prigent et al., 2001, 2007). Several adjustments to the initial technique have been applied to account for changes in satellite instruments (Papa et al., 2010). The resulting data set now covers 1993-2008 and has been carefully evaluated. We will present the inter-annual variability of the water surface extents under different environments, and relate these variations to other hydrological variables such as river height, precipitation, water runoff, or Grace data. Natural wetlands are the world's largest methane source and dominate the inter-annual variability of atmospheric methane concentrations, with up to 90% of the global methane flux anomalies related to variations in the wetland extent from some estimation. Our data set quantifying inundation dynamics throughout the world's natural wetlands provides a unique opportunity to reduce uncertainties in the role of natural wetlands in the inter-annual variability of the growth rate of atmospheric methane. Papa, F., C. Prigent, C. Jimenez, F. Aires, and W. B. Rossow, Interannual variability of surface water extent at global scale, 1993-2004, JGR, 115, D12111, doi:10.1029/2009JD012674, 2010. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, Global inundation dynamics inferred from multiple satellite observations, 1993-2000, JGR, 112, D12107, doi:10.1029/2006JD007847, 2007. Prigent, C., E. Matthews, F. Aires, and W. B. Rossow, Remote sensing of global wetland dynamics with multiple satellite data sets, GRL, 28 , 4631-4634, 2001.
The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability
NASA Astrophysics Data System (ADS)
Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.
2017-12-01
Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.
Farallon de Medinilla seabird and Tinian moorhen analyses
Camp, Richard J.; Leopold, Christina R.; Brinck, Kevin W.; Juola, Franz
2015-01-01
This report assesses the trends in brown booby (Sula leucogaster), masked booby (S. dactylatra), and red-footed booby (S. sula) counts collected on Farallon de Medinilla and Mariana common moorhen (Gallinula chloropus guami) counts on Tinian, Commonwealth of the Northern Mariana Islands to help elucidate patterns in bird numbers. During either monthly or quarterly surveys between 1997 and 2014 counts of all four bird species were recorded, generating a relatively noisy time series revealing inter-annual variation in index counts by as much as 1,000%. For the purposes of assessing long-term population trends across years we chose a single, species-specific month to assess trends. Doing so reduces the effect of intra-annual variation allowing the analysis to focus on inter-annual variation important to long-term trends assessment. There are clear fluctuations in the counts of all four species. Although the trends were non-significant, there is some evidence that masked and red-footed booby species have declined while brown booby and moorhen have increased.
Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-11-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA) , the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high - frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.
NASA Astrophysics Data System (ADS)
Chen, X.; Liu, Y.; Evans, J. P.; Parinussa, R.
2017-12-01
Carbon emissions from large-scale fire activity over the Australian tropical savannas have strong inter-annual variability, due mainly to variations in fuel accumulation in response to rainfall. We investigated the use of a recently developed satellite-based vegetation optical depth (VOD) dataset to estimate fire severity and carbon emission. VOD is sensitive to the dynamics of all aboveground vegetation and available nearly every two days. For areas burned during 2003 - 2010, we calculated the VOD change (ΔVOD) pre- and post-fire and the associated loss in above ground biomass carbon. Both results compare well with widely-accepted approaches: ΔVOD agreed well with the Normalized Burn Ratio change (ΔNBR) and carbon loss with modelled emissions from the Global Fire Emissions Database (GFED). We found that the ΔVOD and ΔNBR are generally linearly related. The Pearson correlation coefficients (R) between VOD- and GFED-based fire carbon emissions for monthly and annual total estimates are very high, 0.92 and 0.96 respectively. A key feature of fire carbon emissions is the strong inter-annual variation, ranging from 21.1 million tonnes in 2010 to 84.3 million tonnes in 2004. This study demonstrates that a reasonable estimate of fire carbon emissions can be achieved in a timely manner based on multiple satellite observations over the regions where the emissions are primarily from aboveground vegetation loss, which can be complementary to the currently used approaches.
Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-01-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf. PMID:26213673
NASA Astrophysics Data System (ADS)
Matano, Ricardo P.; Combes, Vincent; Piola, Alberto R.; Guerrero, Raul; Palma, Elbio D.; Ted Strub, P.; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-11-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Nicholson, Sharon
1987-01-01
The status of the data sets is discussed. Progress was made in both data analysis and modeling areas. The atmospheric and land surface contributions to the net radiation budget over the Sahara-Sahel region is being decoupled. The interannual variability of these two processes was investigated and this variability related to seasonal rainfall fluctuations. A modified Barnes objective analysis scheme was developed which uses an eliptic scan pattern and a 3-pass iteration of the difference fields.
Temporal and intraclonal variation of flowering and pseudovivipary in Poa bulbosa
Ofir, Micha; Kigel, Jaime
2014-01-01
Background and Aims Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles. Methods Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction. Key Results Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles. Conclusions Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs. PMID:24685715
Monthly mean forecast experiments with the GISS model
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R. M.; Kuo, E.
1976-01-01
The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.
Fewer clouds in the Mediterranean: consistency of observations and climate simulations
Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.
2017-01-01
Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960
NASA Astrophysics Data System (ADS)
Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert
2014-05-01
Interannual variations of the hypoxic area that develops every summer over the Texas-Louisiana Shelf are large. The 2008 Action Plan put forth by an alliance of multiple state and federal agencies and tribes calls for a decrease of the hypoxic area through nutrient management in the watershed. Realistic models help build mechanistic understanding of the processes underlying hypoxia formation and are thus indispensable for devising efficient nutrient reduction strategies. Here we present such a model, evaluate its hypoxia predictions against monitoring observations and assess the sensitivity of hypoxia predictions to model resolution, variations in sediment oxygen consumption and choice of physical horizontal boundary conditions. We find that hypoxia predictions on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We also show that the strength of vertical stratification is an important predictor of oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia predictions.
Recent climate variability and its impacts on soybean yields in Southern Brazil
NASA Astrophysics Data System (ADS)
Ferreira, Danielle Barros; Rao, V. Brahmananda
2011-08-01
Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.
Preceding winter La Niña reduces Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Chakraborty, Arindam
2018-05-01
Leaving out the strong El Niño Southern Oscillation (ENSO) years, our understanding in the interannual variation of the Indian summer monsoon rainfall (ISMR) stands poor for the rest. This study quantifies the role of ENSO in the preceding winter on ISMR with a particular emphasis on ENSO-neutral summer and La Niña winter. Results show that, unlike the simultaneous ENSO-ISMR relationship, La Niña of previous winter reduces mean rainfall over the country by about 4% even during ENSO neutral summer. Moreover, when ENSO changes phase from La Niña in winter to El Niño in summer, ISMR is anomalously lower than during persisting El Niño years (‑14.5% and ‑5.3%, respectively), increasing the probability of severe drought. This suppression effect of La Niña of the preceding winter on summer monsoon precipitation over India is mostly experienced in its western and southern parts. Principal component analysis of the zonal propagation of surface pressure anomalies from winter to summer along Northern Hemisphere subtropics decomposes interannual variations of seasonally persisting anomalies from zonal propagations. The dominant modes are associated with the seasonal transition of the ENSO phase, and are well correlated with date of onset and seasonal mean rainfall of monsoon over India. These results improve our understanding of the interannual variations of ISMR and could be used for diagnostics of general circulation models.
Bird-landscape relations in the Chihuahuan Desert: Coping with uncertainties about predictive models
Gutzwiller, K.J.; Barrow, W.C.
2001-01-01
During the springs of 1995-1997, we studied birds and landscapes in the Chihuahuan Desert along part of the Texas-Mexico border. Our objectives were to assess bird-landscape relations and their interannual consistency and to identify ways to cope with associated uncertainties that undermine confidence in using such relations in conservation decision processes. Bird distributions were often significantly associated with landscape features, and many bird-landscape models were valid and useful for predictive purposes. Differences in early spring rainfall appeared to influence bird abundance, but there was no evidence that annual differences in bird abundance affected model consistency. Model consistency for richness (42%) was higher than mean model consistency for 26 focal species (mean 30%, range 0-67%), suggesting that relations involving individual species are, on average, more subject to factors that cause variation than are richness-landscape relations. Consistency of bird-landscape relations may be influenced by such factors as plant succession, exotic species invasion, bird species' tolerances for environmental variation, habitat occupancy patterns, and variation in food density or weather. The low model consistency that we observed for most species indicates the high variation in bird-landscape relations that managers and other decision makers may encounter. The uncertainty of interannual variation in bird-landscape relations can be reduced by using projections of bird distributions from different annual models to determine the likely range of temporal and spatial variation in a species' distribution. Stochastic simulation models can be used to incorporate the uncertainty of random environmental variation into predictions of bird distributions based on bird-landscape relations and to provide probabilistic projections with which managers can weigh the costs and benefits of various decisions, Uncertainty about the true structure of bird-landscape relations (structural uncertainty) can be reduced by ensuring that models meet important statistical assumptions, designing studies with sufficient statistical power, validating the predictive ability of models, and improving model accuracy through continued field sampling and model fitting. Un certainty associated with sampling variation (partial observability) can be reduced by ensuring that sample sizes are large enough to provide precise estimates of both bird and landscape parameters. By decreasing the uncertainty due to partial observability, managers will improve their ability to reduce structural uncertainty.
NASA Astrophysics Data System (ADS)
Aguilos, M. M.; Burban, B.; Wagner, F. H.; Hérault, B.; Bonal, D.
2016-12-01
Amazon rainforest - a major contributor to the global carbon sink, is not on steady state and this affects terrestrial carbon pools. Yet, information on the effect of climatic extremes to long-term carbon fluxes is lacking. Thus, using an 11-year eddy covariance data, we examined the carbon fluxes and net carbon uptake in French Guiana's tropical rainforest to determine the interannual and seasonal variations in gross primary production (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE), so with climatic drivers influencing such changes from 2004 - 2014. GPP varies from 3394.9 g C m‒2 yr‒1 to 4054.5 g C m‒2 yr‒1. RE is more varied than GPP (3057.4 g C m‒2 yr‒1 - 3425.9 g C m‒2 yr‒1. NEE has large interannual variability from ‒68.2 g C m‒2 yr‒1 to ‒596.2 g C m‒2 yr‒1. NEE during wet seasons had higher sink strength than in dry periods. The sudden drop of RE during wet period in 2007 - 2009 may help explain this as it almost doubled the net uptake while GPP had slighter declines. The pattern of NEE appears to be driven by higher rate of increase in RE during dry season with less comparable rise in GPP. This suggests that over 11 years, the ecosystem did not suffer any extreme dry condition strong enough to induce severe decrease in RE. Annually, global radiation (Rg) explains 49% (P<0.0001) for GPP, 42% (P<0.0001) for RE, and 21% (P<0.0001) for NEE. During the wet season, Rg still controls GPP (r2 = 0.45; P <0.0001), RE (r2 = 0.30; P<0.0001;) and NEE (r2 = 0.31; P<0.0001). However, relative extractable water (REW) manifested more strongly during the dry period explaining mainly the variations of GPP (r2 = 0.20; P < 0.0001), RE (r2 = 0.33; P < 0.0001) and NEE (r2 = 0.25; P < 0.0001). Deep rooting system of trees may have caused GPP unsuppressed despite low soil moisture. Therefore, modeling studies must consider incorporating soil water measurements in deeper soils as most tropical trees are dependent on deep soil moisture to avoid water stress.
NASA Astrophysics Data System (ADS)
Cai, Z.; Tian, L.; Bowen, G. J.
2017-12-01
Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.
ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region
NASA Astrophysics Data System (ADS)
Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.
2017-10-01
Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.
Seasonal and interannual temperature variations in the tropical stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, G.C.
1994-09-20
Temperature variations in the tropical lower and middle stratosphere are influenced by at least five distinct driving forces. These are (1) the mechanism of the regular seasonal cycle, (2) the quasi-biennial oscillation (QBO) in zonal winds, (3) the semiannual zonal wind oscillation (SAO) at higher levels, (4) El Nino-Southern Oscillation (ENSO) effects driven by the underlying troposphere, and (5) radiative effects, including volcanic aerosol heating. Radiosonde measurements of temperatures from a number of tropical stations, mostly in the western Pacific region, are used in this paper to examine the characteristic annual and interannual temperature variability in the stratosphere below themore » 10-hPa pressure level ({approximately} 31 km) over a time period of 17 years, chosen to eliminate or at least minimize the effect of volcanic eruptions. Both annual and interannual variations are found to show a fairly distinct transition between the lower and the middle stratosphere at about the 35-hPa level ({approximately} 23 km). The lower stratosphere, below this transition level, is strongly influenced by the ENSO cycle as well as by the QBO. The overall result of the interaction is to modulate the amplitude of the normal stratospheric seasonal cycle and to impose a biennial component on it, so that alternate seasonal cycles are stronger or weaker than normal. Additional modulation by the ENSO cycle occurs at its quasi-period of 3-5 years, giving rise to a complex net behavior. In the middle stratosphere above the transition level, there is no discernible ENSO influence, and departures from the regular semiannual seasonal cycle are dominated by the QBO. Recent ideas on the underlying physical mechanisms governing these variations are discussed, as is the relationship of the radiosonde measurements to recent satellite remote-sensing observations. 37 refs., 8 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Fournier, S.; Vandemark, D. C.; Gaultier, L.; Lee, T.; Jonsson, B. F.; Gierach, M. M.
2017-12-01
Sea surface salinity (SSS) and sea surface temperature (SST) variations in the tropical Atlantic east of the Lesser Antilles, a region impacted by freshwater advection from the Amazon and Orinoco Rivers have potential implications to late-summer tropical cyclones (TCs). This study examines these variations during late summer and their forcing mechanisms using observations. During the period 2010-2014, the largest difference in plume-affected area, defined as the extent covered by SSS lower than 35.5 pss, is found between 2011 and 2014. Plume waters covered 92% (60%) of the study region in 2011 (2014) with the averaged SSS in the study region being 2-pss lower in 2011. Lagrangian particle tracking based on satellite-derived ocean currents is used to diagnose the impacts of the river plumes on SSS and SST during 2010-2014. Northward freshwater flux in the summer of 2014 is significantly weaker than those in 2010-2013. This is not due to interannual discharge variability, but significant changes in eddy-driven transport and cross-shore winds. In particular, the stronger cross-shore wind in May 2014 restricted offshore freshwater flow, leading to a smaller extent of the plume-affected area. Persistent SST gradients are often found near the plume edge, which may have implication to ocean-atmosphere coupling associated with TC-related convection. SST in the study region is 1°C higher in 2010 than in other years, and is related to basin-scale ocean-atmosphere processes. Interannual variation in Amazon advective pathways and the associated SSS changes are also influenced by changes in the ITCZ position between 2011 and 2014.
Interannual and Decadal Variability of Summer Rainfall over South America
NASA Technical Reports Server (NTRS)
Zhou, Jiayu; Lau, K.-M.
1999-01-01
Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific, the changes of the strength of the subtropical high and the associated surface wind are dynamically consistent with the distribution of local SST anomalies, suggesting the importance of the atmospheric forcing in the decadal time scale. The decadal mode also presents a weak summer monsoon in its positive phase, which reduces the moisture supply from the equatorial Atlantic and the Amazon Basin and results in negative rainfall anomalies over the central Andes and Gran Chaco. The long-term trend shows decrease of rainfall from the northwest coast to the southeast subtropical region and a southward shift of Atlantic ITCZ that leads to increased rainfall over northern and eastern Brazil. Our result shows a close link of this mode to the observed SST warming trend over the subtropical South Atlantic and a remote connection to the interdecadal SST variation over the extratropical North Atlantic found in previous studies.
Jiang, Chongya; Ryu, Youngryel; Fang, Hongliang; Myneni, Ranga; Claverie, Martin; Zhu, Zaichun
2017-10-01
Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R 2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Chaofan; Lin, Zhongda
2015-12-01
The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of upper-tropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models.
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
NASA Astrophysics Data System (ADS)
Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin
2013-04-01
The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and isotopic compositions at global reference stations were used to construct more robust indicators such as global and zonal means and interhemispheric differences. We also compared the model CH4 mixing ratio to satellite observations, for the period 2003 to 2004 with SCIAMACHY and from 2009 to 2010 with GOSAT. The interannual variability of the different OH fields imprinted an interannual variation of the atmospheric CH4 mixing ratio with a magnitude of ±10 ppb, which is comparable to the effect of all sources combined. Meanwhile its effect on the interannual variability of δ13C-CH4 was minor (< 10%). The interannual variability of the mixing ratio interhemispheric difference is dominated by the sources because the OH sink is concentrated in the tropics, thus its interannual variability affects both hemispheres. Meanwhile, although the OH plays an important role in the establishment of an interhemispheric gradient of δ13C-CH4, the interannual variation of this gradient is negligibly affected by the choice of OH field. Overall the study showed that the variability of the OH sink plays a significant role in the interannual variability of the atmospheric methane mixing ratio, and must be considered to improve our understanding of the recent trends in the global methane budget.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
2003-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30" NE) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Robertson et al., [2001 GRL] for example, showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al., [2002 J. Climate] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.
NASA Astrophysics Data System (ADS)
Chen, C.; Chang, W.; Kong, W.; Wang, J.; Kotamarthi, V. R.; Stein, M.; Moyer, E. J.
2017-12-01
Change in precipitation characteristics is an especially concerning potential impact of climate change, and both model and observational studies suggest that increases in precipitation intensity are likely. However, studies to date have focused on mean accumulated precipitation rather than on the characteristics of individual events. We report here on a study using a novel rainstorm identification tracking algorithm (Chang et al. 2016) that allows evaluating changes in spatio-temporal characteristics of events. We analyze high-resolution precipitation from dynamically downscaled regional climate simulations over the continental U.S. (WRF driven by CCSM4) of present and future climate conditions. We show that precipitation events show distinct characteristic changes for natural seasonal and interannual variations and for anthropogenic greenhouse-gas forcing. In all cases, wetter seasons/years/future climate states are associated with increased precipitation intensity, but other precipitation characteristics respond differently to the different drivers. For example, under anthropogenic forcing, future wetter climate states involve smaller individual event sizes (partially offsetting their increased intensity). Under natural variability, however, wetter years involve larger mean event sizes. Event identification and tracking algorithms thus allow distinguishing drivers of different types of precipitation changes, and in relating those changes to large-scale processes.
Zscheischler, Jakob; Fatichi, Simone; Wolf, Sebastian; ...
2016-08-08
Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and uncertainties remain as to their relative contributions. Recent results show that the annual count of hours where evapotranspiration (ET) is larger than its 95th percentile is strongly correlated with the annual variability of ET and gross primary production (GPP) in an ecosystem model. This suggests that the occurrence ofmore » favorable conditions has a strong influence on the annual carbon budget. Here we analyzed data from eight forest sites of the AmeriFlux network with at least 7 years of continuous measurements. We show that for ET and the carbon fluxes GPP, ecosystem respiration (RE), and net ecosystem production, counting the “most active hours/days” (i.e., hours/days when the flux exceeds a high percentile) correlates well with the respective annual sums, with correlation coefficients generally larger than 0.8. Phenological transitions have much weaker explanatory power. By exploiting the relationship between most active hours and interannual variability, we classify hours as most active or less active and largely explain interannual variability in ecosystem fluxes, particularly for GPP and RE. Our results suggest that a better understanding and modeling of the occurrence of large values in high-frequency ecosystem fluxes will result in a better understanding of interannual variability of these fluxes.« less
NASA Astrophysics Data System (ADS)
Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime
2017-04-01
Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.
Variations/Changes in Daily Precipitation Extremes Derived from Satellite-Based Products
NASA Astrophysics Data System (ADS)
Gu, G.; Adler, R. F.
2017-12-01
Interannual/decadal-scale variations/changes in daily precipitation extremes are investigated by means of satellite-based high-spatiotemporal resolution precipitation products, including TRMM-TMPA, PERSIANN-CDR-Daily, GPCP 1DD, etc. Extreme precipitation indices at grids are first defined, including the maximum daily precipitation amount (Rx1day), the simple precipitation intensity index (SDII), the conditional (Rcond) daily precipitation rate (Pr>0 mm day-1), and monthly frequencies of rainy (FOCc) and wet (FOCw) days. Other two precipitation intensity indices, i.e., mean daily precipitation rates for Pr ≥10 mm day-1 (Pr10II) and for Pr ≥ 20 mm day-1 (Pr20II), are also constructed. Consistency analyses of daily extreme indices among these data sets are then performed by comparing corresponding averages over large domains such as tropical (30oN-30oS) land, ocean, land+ocean, for their common period (post-1997). This can provide a preliminary uncertainty analysis of these data sets in describing daily extreme precipitation events. Discrepancies can readily be found among these products regarding the magnitudes of area-averaged extreme indices. However, generally consistent temporal variations can be found among the indices derived from different satellite products. Interannual variability in daily precipitation extremes are then examined and compared at grids by exploring their relations with the El Nino-Southern Oscillation (ENSO). Linear correlation and composite analyses are used to examine the impact of ENSO on these extreme indices at grids and over large domains during the post-1997 period. Decadal-scale variability/change in daily extreme events is further examined by using the PERSIANN-CDR-Daily that can cover the entire post-1983 period, based on its general consistency with other two products during the post-1979 period. We specifically focus on exploring and discriminating the effects of decadal-scale internal variability such as the Pacific Decadal Oscillation (PDO) and anthropogenic forcings including the greenhouse-gases (GHG) related warming. Comparisons are also made over global land with the results from two gridded daily rain-gauge products, GPCC Full-record daily (1988-2013) and NOAA/CPC Unified daily (1979-present).
Aquarius: An Instrument to Monitor Sea Surface Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.
2007-01-01
Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Hengyi
2000-01-01
Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.
NASA Technical Reports Server (NTRS)
Shiotani, Masato; Hasebe, Fumio
1994-01-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.
NASA Astrophysics Data System (ADS)
Liu, Guimei; Chai, Fei
2009-09-01
A Pacific basin-wide physical-biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carb on, Si(OH) 4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS-CoSiNE model is forced with the daily air-sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES. The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m - 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.
NASA Technical Reports Server (NTRS)
Thomas, A. C.; Strub, P. T.
1989-01-01
A 5-year time series of coastal zone color scanner imagery (1980-1983, 1986) is used to examine changes in the large-scale pattern of chlorophyll pigment concentration coincident with the spring transition in winds and currents along the west coast of North America. The data show strong interannual variability in the timing and spatial patterns of pigment concentration at the time of the transition event. Interannual variability in the response of pigment concentration to the spring transition appears to be a function of spatial and temporal variability in vertical nutrient flux induced by wind mixing and/or the upwelling initiated at the time of the transition. Interannual differences in the mixing regime are illustrated with a one-dimensional mixing model.
Hook, T.O.; Rutherford, E.S.; Croley, T.E.; Mason, D.M.; Madenjian, C.P.
2008-01-01
The identification of important spawning and nursery habitats for fish stocks can aid fisheries management, but is complicated by various factors, including annual variation in recruitment success. The alewife (Alosa pseudoharengus) is an ecologically important species in Lake Michigan that utilizes a variety of habitats for spawning and early life growth. While productive, warm tributary mouths (connected to Lake Michigan) may contribute disproportionately more recruits (relative to their habitat volume) to the adult alewife population than cooler, less productive nearshore habitats, the extent of interannual variation in the relative contributions of recruits from these two habitat types remains unknown. We used an individual-based bioenergetics simulation model and input data on daily temperatures to estimate alewife recruitment to the adult population by these different habitat types. Simulations suggest that nearshore lake habitats typically produce the vast majority of young alewife recruits. However, tributary habitats may contribute the majority of alewife recruits during years of low recruitment. We suggest that high interannual variation in the relative importance of habitats for recruitment is a common phenomenon, which should be considered when developing habitat management plans for fish populations. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Tian, Qing; Prange, Matthias; Merkel, Ute
2016-05-01
The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific Quasi-Decadal Oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, M.; Tomita, T.
Using the National Centers for Environmental Predictions (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, distributions of the heat source Q{sub 1} and moisture sink Q{sub 2} between 50{degree}N and 50{degree}S are determined for a 15-yr period from 1980 to 1994. Heating mechanisms operating in various parts of the world are examined by comparing the horizontal distributions of the vertically integrated heat source {l_angle}Q{sub 1}{r_angle} with those of the vertically integrated moisture sink {l_angle}Q{sub 2}{r_angle} and outgoing longwave radiation (OLR) flux and by comparing the vertical distributions of Q{sub 1} with those of Q{sub 2}. In northern winter, the major heatmore » sources are located (i) in a broad zone connecting the tropical Indian Ocean, Indonesia, and the South Pacific convergence zone (SPCZ); (ii) over the Congo and Amazon Basins; and (iii) off the east coasts of Asia and North America. In northern summer, the major heat sources are over (i) the Bay of Bengal coast, (ii) the western tropical Pacific, and (iii) Central America. Heat sources in various regions exhibit strong interannual variability. A long (4-5 yr) periodicity corresponding to the variations in OLR and sea surface temperature (SST) is dominant in the equatorial eastern and central Pacific Ocean, while a shorter-period oscillation is superimposed upon the long-period variation over the equatorial Indian Ocean. The interannual variations of {l_angle}Q{sub 1}{r_angle}, OLR, and SST are strongly coupled in the eastern and central equatorial Pacific. However, the coupling between the interannual variations of {l_angle}Q{sub 1}{r_angle} and OLR with those of SST is weak in the equatorial western Pacific and Indian Ocean, suggesting that factors other than the local SST are also at work in controlling the variations of atmospheric convection in these regions. 62 refs., 11 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Turner, D. P.; Ritts, W. D.; Kennedy, R. E.; Gray, A. N.; Yang, Z.
2015-12-01
Spatial variation in climate, soils, disturbance regime, and forest management - as well as temporal variation in weather - all influence terrestrial carbon sources and sinks. Spatially-distributed, process-based, carbon cycle simulation models provide a means to integrate information from these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the 4 state (OR, WA, ID, Western MT) Northwest U.S. region for the interval from 1986-2010. Landsat data was used to characterize disturbances and revealed that the overall disturbance rate on forest land across the region was 0.8 % yr-1, with 49 % as harvests, 28 % as fire, and 23 % as pest/pathogen. A large proportion of the harvested area was on private forestland (62 %) and a large proportion of total burned area was on public forestland (89 %). Net ecosystem production (NEP) for the 2006-2010 interval on forestland was predominantly positive (a carbon sink) throughout the region, with maximum values in the Coast Range, intermediate values in the Cascade Mountains, and relatively low values in the Inland Rocky Mountain ecoregions. Croplands throughout the region had consistently high NEP. Localized negative NEPs were mostly associated with recent disturbances. There was large interannual variation in regional NEP, with notably low values across the region in 2003. In all ecoregions there was a downward trend in NEP over the 25 year study period. The net ecosystem carbon balance was positive in OR, near neutral in ID and WA, and negative (a carbon source) MT. The Northwest region as a whole was a carbon sink in the 2006-2010 period.
Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L
2015-11-01
Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.
Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping
2014-09-01
This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.
Barnes, Christopher A.; Roy, David P.
2010-01-01
Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Sijia; Russell, Lynn M.; Yang, Yang
We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leadsmore » to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of large-scale precipitation induced by the feedback of EAWM-related changes in wind on dust emissions increase by 10-30% in winter because of the increase in surface air temperature and the anomalous circulation.« less
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Lall, Upmanu; Saltzman, Barry
1995-01-01
We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.
Climate-driven ichthyoplankton drift model predicts growth of top predator young.
Myksvoll, Mari S; Erikstad, Kjell E; Barrett, Robert T; Sandvik, Hanno; Vikebø, Frode
2013-01-01
Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.
Climate-Driven Ichthyoplankton Drift Model Predicts Growth of Top Predator Young
Myksvoll, Mari S.; Erikstad, Kjell E.; Barrett, Robert T.; Sandvik, Hanno; Vikebø, Frode
2013-01-01
Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator. PMID:24265761
[Relationships between horqin meadow NDVI and meteorological factors].
Qu, Cui-ping; Guan, De-xin; Wang, An-zhi; Jin, Chang-jie; Wu, Jia-bing; Wang, Ji-jun; Ni, Pan; Yuan, Feng-hui
2009-01-01
Based on the 2000-2006 MODIS 8-day composite NDVI and day-by-day meteorological data, the seasonal and inter-annual variations of Horqin meadow NDVI as well as the relationships between the NDVI and relevant meteorological factors were studied. The results showed that as for the seasonal variation, Horqin meadow NDVI was more related to water vapor pressure than to precipitation. Cumulated temperature and cumulated precipitation together affected the inter-annual turning-green period significantly, and the precipitation in growth season (June and July), compared with that in whole year, had more obvious effects on the annual maximal NDVI. The analysis of time lag effect indicated that water vapor pressure had a persistent (about 12 days) prominent effect on the NDVI. The time lag effect of mean air temperature was 11-15 days, and the cumulated dual effect of the temperature and precipitation was 36-52 days.
NASA Astrophysics Data System (ADS)
Lany, N.; Ayres, M. P.; Stange, E.; Sillett, S.; Rodenhouse, N.; Holmes, R. T.
2011-12-01
Climate patterns on planet Earth display conspicuous variation among years and the phenology of biological events, when measured by day of the year, shows correspondingly high interannual variation. For many species, survival and reproductive success is influenced by the timing of their annual rhythms relative to that of other species with which they interact. The historically high interannual variation in climate has selected for adaptive plasticity in the phenology of biological populations, but climate change challenges the ability of populations to maintain appropriate phenology. Understanding the physiological mechanisms by which organisms respond to existing variation will help predict situations where the phenological associations among interacting species may break down. We used a 22-year time series of phenological observations of two foundational deciduous tree species at the Hubbard Brook Experimental Forest in New Hampshire USA to develop and parameterize a mechanistic Bayesian model of spring leaf development . The interannual variation in timing of leafout has been high (range of 31 days since 1960, standard deviation = 6.7 days). For both tree species, thermal sum accounts for more than 80% of the variation in day of leafout for both species but a threshold based on photoperiod or early spring soil temperatures also plays a role after which development progresses as a simple linear function of degree days above 4 C. We also analyzed a corresponding time series of the timing of arrival and nesting of a common, migratory, insectivorous bird (Black-Throated Blue Warbler, Dendroica caerulescens) in the same forest. The arrival of these warblers on their breeding grounds was slightly responsive to interannual variation in leafout; the change in the median date of warbler arrival per change in date of leafout is 0.15 ± 0.08 d. Thus, the timing of warbler arrival has only varied by about one week relative to a range of about one month in the timing of leafout. Presumably, the birds rely quite heavily on photoperiod cues for the timing of their long distance movements from the Greater Antilles. However, the warblers displayed markedly higher phenotypic plasticity in the timing of their nesting; the change in median nest initiation date per change in date of leafout is 0.59 ± 0.13 d. Most of the plasticity in nesting phenology arose from behavioral adjustments of the interval between arrival and nesting depending on year-specific patterns in forest phenology. The community of insects on which the birds feed is the ecological link between the birds and the trees. The nature of physiological controls on insect phenology remains the least understood feature of this system, but many of the herbivorous insects (chiefly caterpillars) are more responsive than the birds to climatic variation. However, there is high diversity of species, and probably a diversity of physiological controls on the timing of larval feeding.
NASA Astrophysics Data System (ADS)
Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.
2014-04-01
In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.
Interannual variability of ring formations in the Gulf Stream region
NASA Astrophysics Data System (ADS)
Sasaki, Y. N.
2016-02-01
An oceanic ring in the Gulf Stream (GS) region plays important roles in across-jet transport of heat, salt, momentum, and nutrients. This study examines interannual variability of rings shed from the GS jet and their properties using satellite altimeter observations from 1993 to 2013. An objective method is used to capture a ring shedding from the GS jet and track its movement. A spatial distribution of the ring formations in the GS region showed that both cyclonic (cold-core) and anticyclonic (warm-core) rings were most frequently formed around the New England Seamount chain between 62°-65°W, suggesting the importance of the bottom topography on the pinch-off process. These rings moved westward, although about two-third of these rings was reabsorbed by the GS jet. The number of ring formations, especially cyclonic ring formations, indicated prominent fluctuations on interannual to decadal timescales. The annual maximum number of the pinched-off rings is four times larger than the annual minimum number of the rings. These fluctuations of the ring formations were negatively correlated with the strength of the GS. This situation is similar that in the Kuroshio Extension region. The interannual variability of the number of ring formations is also negatively correlated with the North Atlantic Oscillation (NAO) index with one-year lag (NAO leads). Interannual variations of the propagation tendency and shape of rings are also discussed.
Huang, Wan-Ru; Wang, Sheng-Hsiang; Yen, Ming-Cheng; Lin, Neng-Huei; Promchote, Parichart
2016-09-16
During March and April, widespread burning occurs across farmlands in Indochina in preparation for planting at the monsoon onset. The resultant aerosols impact the air quality downwind. In this study, we investigate the climatic aspect of the interannual variation of springtime biomass burning in Indochina and its correlation with air quality at Mt. Lulin in Taiwan using long-term (2005-2015) satellite and global reanalysis data. Based on empirical orthogonal function (EOF) analysis, we find that the biomass burning activities vary with two geographical regions: northern Indochina (the primary EOF mode) and southern Indochina (the secondary EOF mode). We determine that the variation of biomass burning over northern Indochina is significantly related with the change in aerosol concentrations at Mt. Lulin. This occurs following the change in the so-called India-Burma Trough in the lower and middle troposphere. When the India-Burma Trough is intensified, a stronger northwesterly wind (to the west of the trough) transports the dryer air from higher latitude into northern Indochina, and this promotes local biomass burning activities. The increase in upward motion to the east of the intensified India-Burma Trough lifts the aerosols, which are transported toward Taiwan by the increased low-level westerly jet. Further diagnoses revealed the connection between the India-Burma Trough and the South Asian jet's wave train pattern as well as the previous winter's El Niño - Southern Oscillation phase. This information highlights the role of the India-Burma Trough in modulating northern Indochina biomass burning and possibly predicting aerosol transport to East Asia on the interannual time scale.
Foster, Scott D.; Griffin, David A.; Dunstan, Piers K.
2014-01-01
The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface temperature (SST) time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network's data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id=51805), show clear trends that associate with oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West Australia and off eastern Tasmania, where the warming was around 0.6°C per decade for a twenty year study period, and insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual variability (long-term trend increases and decreases but does not increase on average). The results of the analyses can be directly incorporated into (biogeographic) models that explain variation in biological data where both biological and environmental data are on a fine scale. PMID:24988444
ENSO/PDO-Like Variability of Tropical Ocean Surface Energy Fluxes Over the Satellite Era
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Miller, Tim L.
2008-01-01
Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying the nature of climate feedback processes. A strong warm / cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late 1990's with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 % /decade. Associated with ENSO and PDO-like tropical SST changes are surface freshwater and radiative fluxes which have important implications for heat and energy transport variations. In this study we examine how surface fluxes attending interannual to decadal SST fluctuations, e.g. precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE/CERES, SRB) are coupled. Using these data we analyze vertically-integrated divergence of moist static energy, divMSE, and its dry static energy and latent energy components. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations. Strong signatures ofMSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these fluxes and transports are interpreted as a measure of efficiency in the overall process of tropical heat balance during episodes of warm or cold tropical SST.
Bao, Xueyan; Wen, Xuefa; Sun, Xiaomin; Zhao, Fenghua; Wang, Yuying
2014-01-01
Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP) and net biome production (NBP) as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003–2012 in Yucheng and during 2007–2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP) and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m−2 yr−1, respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat) was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands. PMID:25313713
Impact of regional ventilation changes on surface particulate matter concentrations in South Korea
NASA Astrophysics Data System (ADS)
Kim, H. C.; Stein, A. F.; Chai, T.; Ngan, F.; Kim, B. U.; Jin, C. S.; Hong, S. Y.; Park, R.; Son, S. W.; Bae, C.; Bae, M.; Song, C. K.; Kim, S.
2017-12-01
The recent increase in surface particulate matter (PM) concentrations in South Korea is intriguing due to its disagreement with current intensive emission reduction efforts. The long-term trend of surface PM concentrations in South Korea declined in the 2000s, but since 2012 its concentrations have tended to increase, resulting in frequent severe haze events in the region. This study demonstrates that the interannual variation of surface PM concentrations in South Korea is not only affected by changes in local or regional emission sources, but also closely linked with the interannual variations in regional ventilation. Using EPA Community Multiscale Air Quality modeling system, a 12-year (2004-2015) regional air quality simulation was conducted to assess the impact of the meteorological conditions under constant anthropogenic emissions. In addition, NOAA HYSPLIT dispersion model was utilized to estimate the strength of regional ventilation that dissipates local pollutions. Simulated PM concentrations show a strong negative correlation (i.e. R=-0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuations in regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012, with -1.45±0.12, -1.41±0.16, and -1.09±0.16 mg/m3 per year in Seoul, the Seoul Metropolitan Area, and South Korea, respectively.
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Cantor, B. A.; James, P. B.
2017-08-01
The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Jung, M.; Bodesheim, P.; Mahecha, M. D.; Gans, F.; Rodner, E.; Camps-Valls, G.; Papale, D.; Tramontana, G.; Denzler, J.; Baldocchi, D. D.
2016-12-01
Machine learning tools have been very successful in describing and predicting instantaneous climatic influences on the spatial and seasonal variability of biosphere-atmosphere exchange, while interannual variability is harder to model (e.g. Jung et al. 2011, JGR Biogeosciences). Here we hypothesize that innterannual variability is harder to describe for two reasons. 1) The signal-to-noise ratio in both, predictors (e.g. remote sensing) and target variables (e.g. net ecosystem exchange) is relatively weak, 2) The employed machine learning methods do not sufficiently account for dynamic lag and carry-over effects. In this presentation we can largely confirm both hypotheses: 1) We show that based on FLUXNET data and an ensemble of machine learning methods we can arrive at estimates of global NEE that correlate well with the residual land sink overall and CO2 flux inversions over latitudinal bands. Furthermore these results highlight the importance of variations in water availability for variations in carbon fluxes locally, while globally, as a scale-emergent property, tropical temperatures correlate well with the atmospheric CO2 growth rate, because of spatial anticorrelation and compensation of water availability. 2) We evidence with synthetic and real data that machine learning methods with embed dynamic memory effects of the system such as recurrent neural networks (RNNs) are able to better capture lag and carry-over effect which are caused by dynamic carbon pools in vegetation and soils. For these methods, long-term replicate observations are an essential asset.
On the Observed Changes in Upper Stratospheric and Mesospheric Temperatures from UARS HALOE
NASA Technical Reports Server (NTRS)
Remsberg, Ellis E.
2006-01-01
Temperature versus pressure or T(p) time series from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) have been extended and re-analyzed for the period of 1991-2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60S to 60N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p). Multiple linear regression (MLR) techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale), and linear trend terms. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude, and in almost all cases they are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (about -2 K/decade), at tropical latitudes of the middle mesosphere (about -1 K/decade), and at 2 hPa (or order -1 K/decade).
NASA Astrophysics Data System (ADS)
Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian
2016-04-01
To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility
Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific.
Ruhl, Henry A
2007-05-01
The importance of interannual variation in deep-sea abundances is now becoming recognized. There is, however, relatively little known about what processes dominate the observed fluctuations. The abundance and size distribution of the megabenthos have been examined here using a towed camera system at a deep-sea station in the northeast Pacific (Station M) from 1989 to 2004. This 16-year study included 52 roughly seasonal transects averaging 1.2 km in length with over 35600 photographic frames analyzed. Mobile epibenthic megafauna at 4100 m depth have exhibited interannual scale changes in abundance from one to three orders of magnitude. Increases in abundance have now been significantly linked to decreases in mean body size, suggesting that accruals in abundance probably result from the recruitment of young individuals. Examinations of size-frequency histograms indicate several possible recruitment events. Shifts in size-frequency distributions were also used to make basic estimations of individual growth rates from 1 to 6 mm/month, depending on the taxon. Regional intensification in reproduction followed by recruitment within the study area could explain the majority of observed accruals in abundance. Although some adult migration is certainly probable in accounting for local variation in abundances, the slow movements of benthic life stages restrict regional migrations for most taxa. Negative competitive interactions and survivorship may explain the precipitous declines of some taxa. This and other studies have shown that abundances from protozoans to large benthic invertebrates and fishes all have undergone significant fluctuations in abundance at Station M over periods of weeks to years.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.
Interannual to Decadal SST Variability in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Wang, G.; Newman, M.; Han, W.
2017-12-01
The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-12-01
Simulations of the spatial-temporal dynamics of wetlands is key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate global wetland dynamics. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl DGVM, and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. We found that calibrating TOPMODEL with a benchmark dataset can help to successfully predict the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetland among three DEM products. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlight the importance of an adequate understanding of topographic indices for simulating global wetlands and show the opportunity to converge wetland estimations in LSMs by identifying the uncertainty associated with existing wetland products.
Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.
2007-01-01
Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.
Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.
Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J
2018-05-01
Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C
2015-03-01
Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.
NASA Astrophysics Data System (ADS)
Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.
2014-12-01
The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.
DuFour, Mark R.; May, Cassandra J.; Roseman, Edward F.; Ludsin, Stuart A.; Vandergoot, Christopher S.; Pritt, Jeremy J.; Fraker, Michael E.; Davis, Jeremiah J.; Tyson, Jeffery T.; Miner, Jeffery G.; Marschall, Elizabeth A.; Mayer, Christine M.
2015-01-01
Habitat degradation and harvest have upset the natural buffering mechanism (i.e., portfolio effects) of many large-scale multi-stock fisheries by reducing spawning stock diversity that is vital for generating population stability and resilience. The application of portfolio theory offers a means to guide management activities by quantifying the importance of multi-stock dynamics and suggesting conservation and restoration strategies to improve naturally occurring portfolio effects. Our application of portfolio theory to Lake Erie Sander vitreus (walleye), a large population that is supported by riverine and open-lake reef spawning stocks, has shown that portfolio effects generated by annual inter-stock larval fish production are currently suboptimal when compared to potential buffering capacity. Reduced production from riverine stocks has resulted in a single open-lake reef stock dominating larval production, and in turn, high inter-annual recruitment variability during recent years. Our analyses have shown (1) a weak average correlation between annual river and reef larval production (ρ̄ = 0.24), suggesting that a natural buffering capacity exists in the population, and (2) expanded annual production of larvae (potential recruits) from riverine stocks could stabilize the fishery by dampening inter-annual recruitment variation. Ultimately, our results demonstrate how portfolio theory can be used to quantify the importance of spawning stock diversity and guide management on ecologically relevant scales (i.e., spawning stocks) leading to greater stability and resilience of multi-stock populations and fisheries.
Regional Relationship between CO and O3 in New England
NASA Astrophysics Data System (ADS)
Mao, H.; Talbot, R.
2003-12-01
The seasonality and interannual variability in the mixing ratios of ozone (O3) and carbon monoxide (CO) and their inter-relationship were investigated at the rural low elevation site Thompson Farm (TF) and the hill site Castle Springs (400 m above ground level) in southern New Hampshire using continuous observations (2001-2003) from the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program at University of New Hampshire (UNH). Our results show distinct site-dependent characteristics in temporal variations on various time scales in O3 and CO and particularly large interannual variability in fall and winter at both sites. The grouped O3 and CO data, based on wind speed and direction over different time periods of the day, showed largely varying probability distribution functions (PDF). It was found that only 10% of the seasonal observations formed a positive O3-CO linear correlation, leading to an estimate of 370 M moles d-1 for O3 export from the northeastern U.S. This estimate is three times smaller than previous studies. We used a ratio analysis (NO/NOy and NOy/CO) to show that the linear O3-CO relationships were a result of multiple processes rather than simply either photochemical or depositonal loss processes as proposed by previous work. One of the most important features of the O3-CO relationship is the lower CO boundary, for which we attempeted to provide physical and chemical interpretations.
NASA Astrophysics Data System (ADS)
Liu, Yonghe; Feng, Jinming; Liu, Xiu; Zhao, Yadi
2017-12-01
Statistical downscaling (SD) is a method that acquires the local information required for hydrological impact assessment from large-scale atmospheric variables. Very few statistical and deterministic downscaling models for daily precipitation have been conducted for local sites influenced by the East Asian monsoon. In this study, SD models were constructed by selecting the best predictors and using generalized linear models (GLMs) for Feixian, a site in the Yishu River Basin and Shandong Province. By calculating and mapping Spearman rank correlation coefficients between the gridded standardized values of five large-scale variables and daily observed precipitation, different cyclonic circulation patterns were found for monsoonal precipitation in summer (June-September) and winter (November-December and January-March); the values of the gridded boxes with the highest absolute correlations for observed precipitation were selected as predictors. Data for predictors and predictands covered the period 1979-2015, and different calibration and validation periods were divided when fitting and validating the models. Meanwhile, the bootstrap method was also used to fit the GLM. All the above thorough validations indicated that the models were robust and not sensitive to different samples or different periods. Pearson's correlations between downscaled and observed precipitation (logarithmically transformed) on a daily scale reached 0.54-0.57 in summer and 0.56-0.61 in winter, and the Nash-Sutcliffe efficiency between downscaled and observed precipitation reached 0.1 in summer and 0.41 in winter. The downscaled precipitation partially reflected exact variations in winter and main trends in summer for total interannual precipitation. For the number of wet days, both winter and summer models were able to reflect interannual variations. Other comparisons were also made in this study. These results demonstrated that when downscaling, it is appropriate to combine a correlation-based predictor selection across a spatial domain with GLM modeling.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.
2000-01-01
The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.
Milker, Yvonne; Horton, Benjamin; Vane, Christopher; Engelhart, Simon; Nelson, Alan R.; Witter, Robert C.; Khan, Nicole S.; Bridgeland, William
2014-01-01
We investigated the influence of inter-annual and seasonal differences on the distribution of live and dead foraminifera, and the inter-annual variability of stable carbon isotopes (d13C), total organic carbon (TOC) values and carbon to nitrogen (C/N) ratios in bulk sediments from intertidal environments of Bandon Marsh (Oregon, USA). Living and dead foraminiferal species from 10 stations were analyzed over two successive years in the summer (dry) and fall (wet) seasons. There were insignificant inter-annual and seasonal variations in the distribution of live and dead species. But there was a noticeable decrease in calcareous assemblages (Haynesina sp.) between live populations and dead assemblages, indicating that most of the calcareous tests were dissolved after burial; the agglutinated assemblages were comparable between constituents. The live populations and dead assemblages were dominated by Miliammina fusca in the tidal flat and low marsh, Jadammina macrescens, Trochammina inflata and M. fusca in the high marsh, and Trochamminita irregularis and Balticammina pseudomacrescens in the highest marsh to upland. Geochemical analyses (d13C, TOC and C/N of bulk sedimentary organic matter) show no significant influence of inter-annual variations but a significant correlation of d13C values (R = 20.820, p , 0.001), TOC values (R = 0.849, p , 0.001) and C/N ratios (R = 0.885, p , 0.001) to elevation with respect to the tidal frame. Our results suggest that foraminiferal assemblages and d13C and TOC values, as well as C/N ratios, in Bandon Marsh are useful in reconstructing paleosea-levels on the North American Pacific coast.
NASA Astrophysics Data System (ADS)
Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O.
2016-05-01
Simulating fish larval drift helps assess the sensitivity of recruitment variability to early life history. An individual-based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the meta-population scale (4 assessed stocks), from the southern North Sea to the Bay of Biscay (Western Europe) on a 26-yr time series, from 1982 to 2007. The IBM allowed each particle released to be transported by currents, to grow depending on temperature, to migrate vertically depending on development stage, to die along pelagic stages or to settle on a nursery, representing the life history from spawning to metamorphosis. The model outputs were analysed to explore interannual patterns in the amounts of settled sole larvae at the population scale; they suggested: (i) a low connectivity between populations at the larval stage, (ii) a moderate influence of interannual variation in the spawning biomass, (iii) dramatic consequences of life history on the abundance of settling larvae and (iv) the effects of climate variability on the interannual variability of the larvae settlement success.
NASA Astrophysics Data System (ADS)
Ramier, David; Boulain, Nicolas; Cappelaere, Bernard; Timouk, Franck; Rabanit, Manon; Lloyd, Colin R.; Boubkraoui, Stéphane; Métayer, Frédéric; Descroix, Luc; Wawrzyniak, Vincent
2009-08-01
SummaryThis paper presents an analysis of the coupled cycling of energy and water by semi-arid Sahelian surfaces, based on two years of continuous vertical flux measurements from two homogeneous recording stations in the Wankama catchment, in the West Niger meso-site of the AMMA project. The two stations, sited in a millet field and in a semi-natural fallow savanna plot, sample the two dominant land cover types in this area typical of the cultivated Sahel. The 2-year study period enables an analysis of seasonal variations over two full wet-dry seasons cycles, characterized by two contrasted rain seasons that allow capturing a part of the interannual variability. All components of the surface energy budget (four-component radiation budget, soil heat flux and temperature, eddy fluxes) are measured independently, allowing for a quality check through analysis of the energy balance closure. Water cycle monitoring includes rainfall, evapotranspiration (from vapour eddy flux), and soil moisture at six depths. The main modes of observed variability are described, for the various energy and hydrological variables investigated. Results point to the dominant role of water in the energy cycle variability, be it seasonal, interannual, or between land cover types. Rainfall is responsible for nearly as much seasonal variations of most energy-related variables as solar forcing. Depending on water availability and plant requirements, evapotranspiration pre-empts the energy available from surface forcing radiation, over the other dependent processes (sensible and ground heat, outgoing long wave radiation). In the water budget, pre-emption by evapotranspiration leads to very large variability in soil moisture and in deep percolation, seasonally, interannually, and between vegetation types. The wetter 2006 season produced more evapotranspiration than 2005 from the fallow but not from the millet site, reflecting differences in plant development. Rain-season evapotranspiration is nearly always lower at the millet site. Higher soil moisture at this site suggests that this difference arises from lower vegetation requirements rather than from lower infiltration/higher runoff. This difference is partly compensated for during the next dry season. Effects of water and vegetation on the energy budget appear to occur more through latent heat than through albedo. A large part of albedo variability comes from soil wetting and drying. Prior to the onset of monsoon rain, the change in air mass temperature and wind produces, through modulation of sensible heat, a marked chilling effect on the components of the surface energy budget.
Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R
2006-12-01
Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotani, M.; Hasebe, F.
1994-07-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masato Shiotani; Fumio Hasebe
1994-07-20
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.« less
NASA Technical Reports Server (NTRS)
Lee, T.; Fukumori, I.; Fu, L. L.
2002-01-01
In this study, we address issues using sea level measurements obtained by the TOPEX/Poseidon satellite altimter and circulation estimated by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO).
[Dynamics of soil water reservoir of wheat field in rain-fed area of the Loess Tableland, China].
Li, Peng Zhan; Wang, Li; Wang, Di
2017-11-01
Soil reservoir is the basis of stable grain production and sustainable development in dry farming area. Based on the long-term field experiment, this paper investigated the changes of soil moisture in wheat field located in the rain-fed Changwu Tableland, and analyzed the interannual and annual variation characteristics and dynamics trends of soil reservoir from 2012 to 2015. The results showed that the vertical distribution curves of average soil water content were double peaks and double valleys: first peak and valley occurred in the 10-20 and 50 cm soil layer, respectively, while for the second peak and valley, the corresponding soil layer was the 100 and 280 cm soil layer. Soil reservoir did not coincide with precipitation for all yearly precipitation patterns but lagged behind. Yearly precipitation patterns had a great influence on the interannual and annual dynamic changes of soil reservoir. Compared with rainy year, the depth of soil moisture consumption decreased and supplementary effect of precipitation on soil moisture became obvious under effects of drought year and normal year. In rainy year, soil reservoir had a large surplus (84.2 mm), water balance was compensated; in normal year, it had a slight surplus (9.5 mm), water balance was compensated; while in drought year, it was slightly deficient (1.5 mm), water balance was negatively compensated. The dynamics of soil water in winter wheat field in the rain-fed Changwu Tableland could be divided into four periods: seedling period, slow consumption period, large consumption period, and harvest period, the order of evapotranspiration was large consumption period> seedling period> harvest period> slow consumption period.
The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wang, H.
2004-01-01
The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.
NASA Astrophysics Data System (ADS)
Uitz, Julia; Claustre, Hervé; Gentili, Bernard; Stramski, Dariusz
2010-09-01
We apply an innovative approach to time series data of surface chlorophyll from satellite observations with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to estimate the primary production associated with three major phytoplankton classes (micro-, nano-, and picophytoplankton) within the world's oceans. Statistical relationships, determined from an extensive in situ database of phytoplankton pigments, are used to infer class-specific vertical profiles of chlorophyll a concentration from satellite-derived surface chlorophyll a. This information is combined with a primary production model and class-specific photophysiological parameters to compute global seasonal fields of class-specific primary production over a 10-year period from January 1998 through December 2007. Microphytoplankton (mostly diatoms) appear as a major contributor to total primary production in coastal upwelling systems (70%) and temperate and subpolar regions (50%) during the spring-summer season. The contribution of picophytoplankton (e.g., prokaryotes) reaches maximum values (45%) in subtropical oligotrophic gyres. Nanophytoplankton (e.g., prymnesiophytes) provide a ubiquitous, substantial contribution (30-60%). Annual global estimates of class-specific primary production amount to 15 Gt C yr-1 (32% of total), 20 Gt C yr-1 (44%) and 11 Gt C yr-1 (24%) for micro-, nano-, and picophytoplankton, respectively. The analysis of interannual variations revealed large anomalies in class-specific primary production as compared to the 10-year mean cycle in both the productive North Atlantic basin and the more stable equatorial Pacific upwelling. Microphytoplankton show the largest range of variability of the three phytoplankton classes on seasonal and interannual time scales. Our results contribute to an understanding and quantification of carbon cycle in the ocean.
Robust non-Gaussian statistics and long-range correlation of total ozone
NASA Astrophysics Data System (ADS)
Toumi, R.; Syroka, J.; Barnes, C.; Lewis, P.
2001-01-01
Three long-term total ozone time series at Camborne, Lerwick and Arosa are examined for their statistical properties. Non-Gaussian behaviour is seen for all locations. There are large interannual fluctuations in the higher moments of the probability distribution. However, only the mean for all stations and summer standard deviation at Lerwick show significant trends. This suggests that there has been no long-term change in the stratospheric circulation, but there are decadal variations. The time series can be also characterised as scale invariant with a Hurst exponent of about 0.8 for all three sites. The Arosa time series was found to be weakly intermittent, in agreement with the non-Gaussian characteristics of the data set
Interannual Variability of Tropical Rainfall as Seen From TRMM
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
2005-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Version 5 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and examine changes in new TRMM Version 6 retrievals. To place these results in a tropical water balance perspective we also examine interannual variations in evaporation over the tropical oceans made from TRMM and SSM/I (Special Sensor Microwave Imager) measurements of surface winds and humidity. Evaporation estimates from reanalysis and several global model experiments will also be compared to the TRMM findings and evaluated for consistency. The ability to detect regional shifts in freshwater flux over the oceans (equivalently, integrated moisture convergence) and moisture transport will be discussed.
Hines, Jes; Eisenhauer, Nico; Drake, Bert G
2015-12-01
Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. © 2015 John Wiley & Sons Ltd.
Upper Limits of Predictability in Long-Range Climate/Hydrologic Forecasts
NASA Technical Reports Server (NTRS)
Koster, R. D.; Suarez, M. J.; Heiser, M.
1998-01-01
The accurate forecasting of el nino or la nina conditions in the tropical Pacific can potentially lead to valuable predictions of hydrological anomalies over land at seasonal to interannual timescales. Even with highly accurate earth system models, though, our ability to generate these continental forecasts will always be limited by the chaotic nature of the atmospheric circulation. The nature of this fundamental limitation is explored through the use of 16-member ensembles of multi-decade GCM simulations. In each simulation of the first ensemble, sea surface temperatures (SSTs) are given the same realistic interannual variations over a 45-year period, and land surface state is allowed to evolve with that of the atmosphere. Analysis of the results shows that the SSTs control the temporal organization of continental precipitation anomalies to a significant extent in the tropics and to a much smaller extent in midlatitudes. In each simulation of the second ensemble, we prescribe SSTs as before, but we also prescribe interannual variations in the low frequency component of evaporation efficiency over land. Thus, in the second ensemble, we effectively make the extreme assumption that surface boundary conditions across the globe are perfectly predictable, and we quantify the consistency with which the atmosphere (particularly precipitation) responds to these boundary conditions. The resulting "absolute upper limit" on the predictability of precipitation is found to be quite high in the tropics yet only moderate in many midlatitude regions.
Benchmarking carbon fluxes of the ISIMIP2a biome models
Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; ...
2017-03-28
The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.« less
Benchmarking carbon fluxes of the ISIMIP2a biome models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui
The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.« less
NASA Astrophysics Data System (ADS)
Lohmann, Gerrit; Wiltshire, Karen
2015-04-01
Analysing long-term diatom data from the German Bight and observational climate data for the period 1962-2005, we found a close connection of the inter-annual variation of the timing of the spring bloom with the boreal winter atmospheric circulation. We examined the fact that high diatom counts of the spring bloom tended to occur later when the atmospheric circulation was characterized by winter blocking over Scandinavia. The associated pattern in the sea level pressure showed a pressure dipole with two centres located over the Azores and Norway and was tilted compared to the North Atlantic Oscillation. The bloom was earlier when the cyclonic circulation over Scandinavia allowed an increased inflow of Atlantic water into the North Sea which is associated with clearer, more marine water, and warmer conditions. The bloom was later when a more continental atmospheric flow from the east was detected. At Helgoland Roads, it seems that under turbid water conditions (= low light) zooplankton grazing can affect the timing of the phytoplankton bloom negatively. Warmer water temperatures will facilitate this. Under clear water conditions, light will be the main governing factor with regard to the timing of the spring bloom. These different water conditions are shown here to be mainly related to large-scale weather patterns. We found that the mean diatom bloom could be predicted from the sea level pressure one to three months in advance. Using historical pressure data, we derived a proxy for the timing of the spring bloom over the last centuries, showing an increased number of late (proxy-) blooms during the eighteenth century when the climate was considerably colder than today. We argue that these variations are important for the interpretation of inter-annual to centennial variations of biological processes. This is of particular interest when considering future scenarios, as well to considerations on past and future effects on the primary production and food webs.
The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis
NASA Astrophysics Data System (ADS)
Wang, W.; Koehl, A.; Stammer, D.
2012-04-01
The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contributes to evolution of IOD events.
Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain
NASA Astrophysics Data System (ADS)
Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin
2015-04-01
The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests that the simulation with Emanuel MIT convective scheme and BATs land surface scheme produces better collective performance compare to the rest of the simulations.
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems are characterized by substantial temporal variability in weather overlaid on spatial variability associated with topography and soils (Fuhlendorf et al. 2012). Semiarid rangelands in particular are characterized by more extreme intra- and inter-annual variation in precipitation ...
Source attribution of interannual variability of tropospheric ozone over the southern hemisphere
NASA Astrophysics Data System (ADS)
Liu, J.; Rodriguez, J. M.; Logan, J. A.; Steenrod, S. D.; Douglass, A. R.; Olsen, M. A.; Wargan, K.; Ziemke, J. R.
2015-12-01
Both model simulations and GMAO assimilated ozone product derived from OMI/MLS show a high tropospheric ozone column centered over the south Atlantic from the equator to 30S. This ozone maximum extends eastward to South America and the southeast Pacific; it extends southwestward to southern Africa, south Indian Ocean. In this study, we use hindcast simulations from the GMI model of tropospheric and stratospheric chemistry, driven by assimilated MERRA meteorological fields, to investigate the factors controlling the interannual variations (IAV) of this ozone maximum during the last two decades. We also use various GMI tracer diagnostics, including a stratospheric ozone tracer to tag the impact of stratospheric ozone, and a tagged CO tracer to track the emission sources, to ascertain the contribution of difference processes to IAV in ozone at different altitudes, as well as partial columns above different pressure level. Our initial model analysis suggests that the IAV of the stratospheric contribution plays a major role on in the IAV of the upper tropospheric ozone and explains a large portion of variance during its winter season. Over the south Atlantic region, the IAV of surface emissions from both South America and southern Africa also contribute significantly to the IAV of ozone, especially in the middle and lower troposphere
Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David
2004-01-01
The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.
Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; ...
2015-01-05
Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
An underestimated role of precipitation frequency in regulating summer soil moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka
2012-04-26
Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less
NASA Astrophysics Data System (ADS)
Lavergne, Aliénor; Daux, Valérie; Villalba, Ricardo; Pierre, Monique; Stievenard, Michel; Srur, Ana Marina
2017-02-01
Very few studies of stable isotopes exist across the Andes in South America. This study is the first presenting annually resolved chronologies of both δ18 O and δ13 C in Nothofagus pumilio and Fitzroya cupressoides trees from Northern Patagonia. Interannual variability in δ18 O and δ13 C was assessed over the period 1952-2011. Based on these chronologies, we determined the primary climatic controls on stable isotopes and tree physiological responses to changes in atmospheric CO2 concentrations (ca), temperature and humidity. Changes in specific intrinsic water use efficiency (iWUE) were inferred from variations in δ13 C whereas the effects of CO2 increase on stomatal conductance were explored using δ18 O. Over the 60-year period, iWUE increased significantly (by ca. 25%) in coincidence with the rise of ca. The two species appear to have different strategies of gas-exchange. Whereas iWUE variations were likely driven by both stomatal conductance and photosynthetic assimilation rates in F. cupressoides, they were largely related to stomatal conductance in N. pumilio. After removing the low-frequency trends related to increasing ca, significant relationships between δ13 C and summer temperatures were recorded for both species. However, δ13 C variations in F. cupressoides were more strongly influenced by summer temperatures than in N. pumilio. Our results advocate for an indirect effect of summer temperatures on stable isotope ratios, which is mostly influenced by sunlight radiation in F. cupressoides and relative humidity/soil moisture in N. pumilio. δ13 C variations in F. cupressoides were spatially correlated to a large area south of 35°S in southern South America. These promising results encourage the use of δ13 C variations in F. cupressoides for reconstructing past variations in temperature and large-scale circulation indexes such as the Southern Annular Mode (SAM) in the Southern Hemisphere.
Land-atmosphere-aerosol coupling in North China during 2000-2013
NASA Astrophysics Data System (ADS)
Wei, J.; Jin, Q.; Yang, Z. L.; Zhou, L.
2017-12-01
North China is one of the most densely populated regions in the world. To its west, north, and northwest, the world's largest afforestation project has been going on for decades. At the same time, North China has been suffering from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during the summer 2000-2013. Model experiments show that the interannual variation of aerosol concentration in North China is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation. Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.
Influence of climate variability on near-surface ozone depletion events in the Arctic spring
NASA Astrophysics Data System (ADS)
Koo, Ja-Ho; Wang, Yuhang; Jiang, Tianyu; Deng, Yi; Oltmans, Samuel J.; Solberg, Sverre
2014-04-01
Near-surface ozone depletion events (ODEs) generally occur in the Arctic spring, and the frequency shows large interannual variations. We use surface ozone measurements at Barrow, Alert, and Zeppelinfjellet to analyze if their variations are due to climate variability. In years with frequent ODEs at Barrow and Alert, the western Pacific (WP) teleconnection pattern is usually in its negative phase, during which the Pacific jet is strengthened but the storm track originated over the western Pacific is weakened. Both factors tend to reduce the transport of ozone-rich air mass from midlatitudes to the Arctic, creating a favorable environment for the ODEs. The correlation of ODE frequencies at Zeppelinfjellet with WP indices is higher in the 2000s, reflecting stronger influence of the WP pattern in recent decade to cover ODEs in broader Arctic regions. We find that the WP pattern can be used to diagnose ODE changes and subsequent environmental impacts in the Arctic spring.
NASA Astrophysics Data System (ADS)
Zhang, X.; Friedl, M. A.; Yu, Y.
2013-12-01
Land surface phenology metrics are widely retrieved from satellite observations at regional and global scales, and have been shown to be valuable for monitoring terrestrial ecosystem dynamics in response to extreme climate events and predicting biological responses to future climate scenarios. While the response of spring vegetation greenup to climate warming at mid-to-high latitudes is well-documented, understanding of diverse phenological responses to climate change over entire growing cycles and at broad geographic scales is incomplete. Many studies assume that the timing of individual phenological indicators in responses to climate forcing is independent of phenological events that occur at other times during the growing season. In this paper we use a different strategy. Specifically, we hypothesize that integrating sequences of key phenological indicators across growing seasons provides a more effective way to capture long-term variation in phenology in response to climate change. To explore this hypothesis we use global land surface phenology metrics derived from the Version 3 Long Term Vegetation Index Products from Multiple Satellite Data Records data set to examine interannual variations and trends in global land surface phenology from 1982-2010. Using daily enhanced vegetation index (EVI) data at a spatial resolution of 0.05 degrees, we model the phenological trajectory for each individual pixel using piecewise logistic models. The modeled trajectories were then used to detect phenological indicators including the onset of greenness increase, the onset of greenness maximum, the onset of greenness decrease, the onset of greenness minimum, and the growing season length, among others at global scale. The quality of land surface phenology detection for individual pixels was calculated based on metrics that characterize the EVI quality and model fits in annual time series at each pixel. Phenological indicators characterized as having good quality were then used to detect interannual variation and long-term trends using linear and nonlinear trend analysis techniques.
Sea level variability influencing coastal flooding in the Swan River region, Western Australia
NASA Astrophysics Data System (ADS)
Eliot, Matt
2012-02-01
Coastal flooding refers to the incidence of high water levels produced by water level fluctuations of marine origin, rather than riverine floods. An understanding of the amplitude and frequency of high water level events is essential to foreshore management and the design of many coastal and estuarine facilities. Coastal flooding events generally determine public perception of sea level phenomena, as they are commonly associated with erosion events. This investigation has explored the nature of coastal flooding events affecting the Swan River Region, Western Australia, considering water level records at four sites in the estuary and lower river, extending from the mouth of the Swan River to 40 km upstream. The analysis examined the significance of tides, storms and mean sea level fluctuations over both seasonal and inter-annual time scales. The relative timing of these processes is significant for the enhanced or reduced frequency of coastal flooding. These variations overlie net sea level rise previously reported from the coastal Fremantle record, which is further supported by changes to the distribution of high water level events at an estuarine tidal station. Seasonally, coastal flooding events observed in the Swan River region are largely restricted to the period from May to July due to the relative phases of the annual mean sea fluctuation and biannual tidal cycle. Although significant storm surge events occur outside this period, their impact is normally reduced, as they are superimposed on lower tidal and mean sea level conditions. Over inter-annual time scales tide, storminess and mean sea level produce cycles of enhanced and depressed frequency of coastal flooding. For the Swan River region, the inter-annual tidal variation is regular, dominated by the 18.6 year lunar nodal cycle. Storminess and mean sea level variations are independent and irregular, with cycles from 3 to 10 year duration. Since 1960, these fluctuations have not occurred in phase, suggesting that recent historic records may not provide a real indication of inundation risk, exclusive of factors linked to climate change. The burst-like nature of coastal flooding incidents, with respect to frequency, has implications for both public perception and coastal management effort. The result, when combined with sea level rise, produces step-like change, with short periods of frequent coastal flooding, followed by extended, slowly varying quiescent periods. This presents challenges for coastal managers to incorporate variability into projections of future management needs, and to ensure that public and political recognition of coastal flooding hazard is not downplayed during quiet periods.
NASA Astrophysics Data System (ADS)
Reddy, C. A.; Raghava Reddi, C.
1986-12-01
A quantitative assessment has been made of the longitude-dependent differences and the interannual variations of the zonal wind components in the equatorial stratosphere and troposphere, from the analysis of rocket and balloon data for 1979 and 1980 for three stations near ±8.5° latitude (Ascension Island at 14.4°W, Thumba at 76.9°E and Kwajalein at 67.7°E) and two stations near 21.5° latitude (Barking Sands at 159.6°W and Balasore at 86.9°E). The longitude-dependent differences are found to be about 10-20 m s -1 (amounting to 50-200% in some cases) for the semi-annual oscillation (SAO) and the annual oscillation (AO) amplitudes, depending upon the altitude and latitude. Inter-annual variations of about 10 m s -1 also exist in both oscillations. The phase of the SAO exhibits an almost 180° shift at Kwajalein compared to that at the other two stations near 8.5°, while the phase of the AO is independent of longitude, in the stratosphere. The amplitude and phase of the quasi-biennial oscillation (QBO) are found to be almost independent of longitude in the 18-38 km range, but above 40 km height the QBO amplitude and phase have different values in different longitude sectors for the three stations near ±8.5° latitude. The mean zonal wind shows no change from 1979 to 1980, but in the troposphere at 8.5° latitude strong easterlies prevail in the Indian zone, in contrast to the westerlies at the Atlantic and Pacific stations.
NASA Astrophysics Data System (ADS)
Lin, Che-Hung; Nozawa, Yoko
2017-12-01
Despite the global accumulation of coral spawning records over the past three decades, information on inter-annual variation in spawning time is still insufficient, resulting in difficulty in predicting coral spawning time. Here, we present new information on in situ spawning times of scleractinian corals at Lyudao, Taiwan, covering their inter-annual variations over a 7-yr period (2010-2016). Spawning of 42 species from 16 genera in eight families was recorded. The majority were hermaphroditic spawners (38 of 42 species), and their spawning occurred 2-4 h after sunset on 1-11 d after the full moon (AFM), mostly in April and May. There were two distinct patterns in the two dominant taxa, the genus Acropora (14 species) and the family Merulinidae (18 species in eight genera). The annual spawning of Acropora corals mostly occurred on a single night in May with high inter-annual variation of spawning (lunar) days between 1 and 11 d AFM. In contrast, the annual spawning of merulinid corals commonly occurred over 2-3 consecutive nights in two consecutive months, April and May, with the specific range of spawning days around the last quarter moon (between 5 and 8 d AFM). The distinct spawning patterns of these taxa were also documented at Okinawa and Kochi, Japan, where similar long-term monitoring of in situ coral spawning has been conducted. This variability in spawning days implies different regulatory mechanisms of synchronous spawning where Acropora corals might be more sensitive to exogenous environmental factors (hourglass mechanism), compared to merulinid corals, which may rely more on endogenous biological rhythms (oscillator mechanism).
Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E
2018-06-01
Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Chen, Chen; Li, Dan; Gao, Zhiqiu; Tang, Jianwu; Guo, Xiaofeng; Wang, Linlin; Wan, Bingcheng
2015-10-01
Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.
NASA Astrophysics Data System (ADS)
Fournier, S.; Vandemark, D.; Gaultier, L.; Lee, T.; Jonsson, B.; Gierach, M. M.
2017-11-01
This study investigates sea surface salinity (SSS) and sea surface temperature (SST) variations in the tropical Atlantic east of the Lesser Antilles, a region where freshwater advection from the Amazon and Orinoco Rivers, may potentially impact air-sea interaction. Observations are used to document later-summer variability and evaluate offshore riverine transport from 2010 to 2014. During this period, the largest difference in plume-affected areas, defined as the extent covered by SSS lower than 35.5 pss, is found between 2011 and 2014. Plume waters covered 92% of the study region in 2011 and 60% in 2014, with the average SSS in the study region being 2 pss lower in 2011. Lagrangian particle tracking based on satellite-derived ocean currents is used to diagnose the impact of the river plumes on SSS and SST from 2010 to 2014. Northward freshwater flux in summer 2014 was significantly weaker than fluxes in 2010-2013. This difference is not due to interannual discharge variability, but to significant changes in eddy-driven transport and cross-shore winds. In particular, the stronger cross-shore wind in May 2014 restricted offshore freshwater flow and lead to a smaller plume-affected area. Persistent SST gradients are often found near the plume edge, which may have implications for ocean-atmosphere coupling associated with atmospheric convection. SST in the study region was 1°C higher in 2010 compared to other years, and is related to basin-scale ocean-atmosphere processes. Interannual variation in Amazon advective pathways and the associated SSS changes are also influenced by changes in the ITCZ position between 2011 and 2014.
NASA Astrophysics Data System (ADS)
Geddes, J.
2017-12-01
Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.
Snowpack Variation and Hydrologic Impacts across the Middle East and North Africa
NASA Astrophysics Data System (ADS)
Robinson, D. A.; Ward, M. N.
2017-12-01
The Middle East is a region historically sensitive to climate variability and change, and contains snowpacks that have been shown to be important inputs to key regional water resources, including the Tigris-Euphrates river system. Focusing on the Middle East (and the smaller snowpacks of northwestern Africa), this presentation aims to (i) quantify each year's snowpack development and recession over recent decades, highlighting interannual to decadal variability, and (ii) advance understanding on the connection between the snowpack variations and aspects of regional hydrology. The presentation draws on satellite-based products, station data, and model reanalyses. Variation is summarized using space-time statistical techniques, as well as simpler regional indices: Northwestern Iran / Southern Caucasus (NWIC, includes Zagros Mountains); Eastern Turkey (ETKY, includes Taurus Mountains); and smaller scale indices for Lebanon and the Atlas Mountains. The Interactive Multisensor Snow and Ice Mapping System archives daily snow cover extent at 24 km resolution for 1999-present (primarily from visible satellite imagery). These data show that for both NWIC and ETKY, the mean snow extent peaks in late January with substantial coverage ( 300,000 km2 in each region), contracting to near zero by late June. A very large mid-winter interannual variance is also shown, implying substantial variation in hydrologic impacts during spring melt. Variability and decadal trends are compared with station snow depth reports (Global Historical Climatology Network - Daily). Strong agreement gives confidence in data quality, as well as, indicating high covariation of depth and extent. The connection with hydrologic impacts is investigated using reanalysis products, including the Global Land Data Assimilation System V2, which for the Middle East, shows broad agreement with observed maximum snow extent and spring retreat. The connections internal to the reanalysis between snow cover, melt and runoff are quantified, delivering insights into the mechanisms of variability and change in the regional water resources and their dependence on snowpack. Specific case study melt seasons highlight the ways in which snowpack and seasonal climate combine to produce changes in magnitude and timing of runoff during late winter and spring.
Seasonal to Interannual Surface Ocean Salinity Trends With Aquarius Data
NASA Astrophysics Data System (ADS)
Lagerloef, G. S. E.; Kao, H. Y.; Carey, D.
2017-12-01
An important scientific goal for satellite salinity observations is to document oceanic climate trends and their link to changes in the water cycle. This study is a re-examination of seasonal to interannual sea surface salinity (SSS) variations from more recent analyses of V5.0 reprocessing of the Aquarius satellite data, Sep 2011 to May 2015. Sensor calibration over these time scales has been a concern, and the V5.0 includes improved calibration reference data compared to previous versions, which will be explained. Orthogonal mode analyses show that the annual cycle dominates the variability, and is strongest in the tropics. Interannual trends indicate the principal salinity patterns during onset of the 2015-16 El Niño. Recognizing that the Aquarius data record is now finite (Sep 2011 through May 2015) due to the mission failure in early June 2015, we will conclude with a status summary of the disposition of the Aquarius data and the prospects for continuing satellite salinity measurements.
Interannual variations of light-absorbing particles in snow on Arctic sea ice
NASA Astrophysics Data System (ADS)
Doherty, Sarah J.; Steele, Michael; Rigor, Ignatius; Warren, Stephen G.
2015-11-01
Samples of snow on sea ice were collected in springtime of the 6 years 2008-2013 in the region between Greenland, Ellesmere Island, and the North Pole (82°N -89°N, 0°W-100°W). The meltwater was passed through filters, whose spectral absorption was then measured to determine the separate contributions by black carbon (BC) and other light-absorbing impurities. The median mixing ratio of BC across all years' samples was 4 ± 3 ng g-1, and the median fraction of absorption due to non-BC absorbers was 36 ± 11%. Variances represent both spatial and interannual variability; there was no interannual trend in either variable. The absorption Ångström exponent, however, decreased with latitude, suggesting a transition from dominance by biomass-burning sources in the south to an increased influence by fossil-fuel-burning sources in the north, consistent with earlier measurements of snow in Svalbard and at the North Pole.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.
2011-09-01
The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction of data uncertainty, will be of relevance to increase the accuracy of the seasonal assessment of the NPP-GPP ratio in forests.
Coastal Aerosol Distribution by Data Assimilation
2005-09-30
Emissions ( FLAMBE ; NASA and ONR funded) make these simulations possible. Similarly, Honrath et al. (2004) used NAAPS to attribute interannual variations...NAAPS/ FLAMBE smoke aerosol optical thickness (AOT) each summer. CO is plotted with red squares, ozone is plotted with blue circles, and smoke AOT is
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Heath, D. F.; Schlesinger, B. M.
1978-01-01
The first two years of Backscattered Ultraviolet (BUV) ozone data from the Nimbus-4 spacecraft were reprocessed. The seasonal variations of total ozone for the period April 1970 to April 1972 are described using daily zonal means to 10 deg latitude zones and a time-latitude cross section. In addition, the BUV data are compared with analyzed Dobson data and with IRIS data also obtained from the Nimbus-4 spacecraft. A harmonic analysis was performed on the daily zonal means. Amplitudes, days of peaks, and percentage of variance were computed for annual and semi-annual waves and for higher harmonics of an annual period for the two years. Asymmetries are found in the annual waves in the two hemispheres, with a subtle interannual difference which may be due to changes in the general circulation. A significant semi-annual component is detected in the tropics for the first year, which appears to result from influences of the annual waves in the two hemispheres.
Inter-annual variation in the density of anthropogenic debris in the Tasman Sea.
Rudduck, Osha-Ann; Lavers, Jennifer L; Fischer, Andrew M; Stuckenbrock, Silke; Sharp, Paul B; Banati, Richard B
2017-11-15
An increasing number of studies highlight the risk of plastic pollution in the marine environment. However, systematic longitudinal data on the distribution and abundance of plastic debris remain sparse. Here we present the results of a two-year study of plastic pollution within the Tasman Sea, contrasted with a further year of data from the same region, in order to document how the density of debris varies across years in this area. Surface net tows were collected between Hobart, Tasmania and Sydney, Australia during the spring of 2013 and 2014 and compared with a subset of data from autumn 2012 from the same region. Substantial inter-annual variation in mean plastic abundance was observed over the three year period, ranging from to 248.04-3711.64pieceskm -2 , confirming the need for multiple years of sampling to fully estimate the extent of, and trends in, plastic pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kidiyarova, V. G.; Fomina, N. N.
1989-01-01
The part of energy of the planetary waves which enters the stratosphere depends on conditions of planetary wave generation and propagation through the tropopause, and the part of planetary wave energy which enters the mesosphere depends on conditions of planetary wave propagation through the stratopause. An attempt is made to estimate connections between extratropical middle atmosphere temperature long term variations and portions of energy of planetary waves which enter the mesosphere and stratosphere during winter seasons in Northern and Southern Hemispheres. Interannual variations of temperatures at the 30 km and 70 km levels are investigated for the central winter months of the period 1970 to 1986. This period includes the descending branch of the 20th solar cycle and the whole 21st cycle. Calculations are made on the basis of measurements at Heiss Island and Molodezhnaya.
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Spinhirne, James D.; Duda, David P.; Eloranta, Edwin W.; Starr, David O'C (Technical Monitor)
2001-01-01
The altimetry bias in GLAS (Geoscience Laser Altimeter System) or other laser altimeters resulting from atmospheric multiple scattering is studied in relationship to current knowledge of cloud properties over the Antarctic Plateau. Estimates of seasonal and interannual changes in the bias are presented. Results show the bias in altitude from multiple scattering in clouds would be a significant error source without correction. The selective use of low optical depth clouds or cloudfree observations, as well as improved analysis of the return pulse such as by the Gaussian method used here, are necessary to minimize the surface altitude errors. The magnitude of the bias is affected by variations in cloud height, cloud effective particle size and optical depth. Interannual variations in these properties as well as in cloud cover fraction could lead to significant year-to-year variations in the altitude bias. Although cloud-free observations reduce biases in surface elevation measurements from space, over Antarctica these may often include near-surface blowing snow, also a source of scattering-induced delay. With careful selection and analysis of data, laser altimetry specifications can be met.
Interannual variation of the surface temperature of tropical forests from satellite observations
Gao, Huilin; Zhang, Shuai; Fu, Rong; ...
2016-01-01
Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less
Inter-annual variation of the surface temperature of tropical forests from SSM/I observations
NASA Astrophysics Data System (ADS)
Gao, H.; Fu, R.; Li, W.; Zhang, S.; Dickinson, R. E.
2014-12-01
Land surface temperatures (LST) within tropical rain forests contribute to climate variation, but observational data are very limited in these regions. In this study, all weather canopy sky temperatures were retrieved using the passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS) over the Amazon and Congo rainforests. The remote sensing data used were collected from 1996 to 2012 using two separate satellites—F13 (1996-2009) and F17 (2007-2012). An inter-sensor calibration between the brightness temperatures collected by the two satellites was conducted in order to ensure consistency amongst the instruments. The interannual changes of LST associated with the dry and wet anomalies were investigated in both regions. The dominant spatial and temporal patterns for inter-seasonal variations of the LST over the tropical rainforest were analyzed, and the impacts of droughts and El Niños (on LST) were also investigated. The remote sensing results suggest that the morning LST is mainly controlled by atmospheric humidity (which controls longwave radiation) whereas the late afternoon LST is controlled by solar radiation.
Inter-annual rainfall variations and suicide in New South Wales, Australia, 1964-2001
NASA Astrophysics Data System (ADS)
Nicholls, Neville; Butler, Colin D.; Hanigan, Ivan
2006-01-01
The suicide rate in New South Wales is shown to be related to annual precipitation, supporting a widespread and long-held assumption that drought in Australia increases the likelihood of suicide. The relationship, although statistically significant, is not especially strong and is confounded by strong, long-term variations in the suicide rate not related to precipitation variations. A decrease in precipitation of about 300 mm would lead to an increase in the suicide rate of approximately 8% of the long-term mean suicide rate.
Interannual rainfall variability and SOM-based circulation classification
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher
2018-01-01
Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
Investigating Effects of Monsoon Winds on Hydrodynamics in the South China Sea
NASA Astrophysics Data System (ADS)
Chua, V. P.
2013-12-01
The South China Sea is a large marginal sea surrounded by land masses and island chains, and characterized by complex bathymetry and irregular coastlines. The circulation in South China Sea is subjected to seasonal and inter-annual variations of tidal and meteorological conditions. The effects of monsoon winds on hydrodynamics is investigated by applying spectral and harmonic analysis on surface elevation and wind data at stations located in the South China Sea. The analysis indicates varying responses to the seasonal monsoon depending on the location of the station. At Kaohsiung (located in northern South China Sea off Taiwan coast), tides from the Pacific Ocean and the southwest monsoon winds are found to be dominant mechanisms. The Kota Kinabalu and Bintulu stations, located to the east of South China Sea off Borneo coast, are influenced by low energy complex winds, and the shallow bottom bathymetry at these locations leads to tidal energy damping compared to other stations. The tidal dynamics at Tioman, located in southern South China Sea off Malaysia coast, are most responsive to the effects of the northeast monsoon. The complexity of our problem together with the limited amount of available data in the region presents a challenging research topic. An unstructured-grid SUNTANS model is employed to perform three-dimensional simulations of the circulation in South China Sea. Skill assessment of the model is performed by comparing model predictions of the surface elevations and currents with observations. The results suggest that the quality of the model prediction is highly dependent on horizontal grid resolution and coastline accuracy. The model may be used in future applications to investigate seasonal and inter-annual variations in hydrodynamics.
Interannual variations in the lipids of the Antarctic pteropods Clione limacina and Clio pyramidata.
Phleger, C F; Nelson, M M; Mooney, B D; Nichols, P D
2001-03-01
Antarctic pteropods, Clione limacina (Order Gymnosomata) and Clio pyramidata (order Thecosomata), were collected near Elephant Island, South Shetland Islands, during 1997 and 1998. Total lipid was high in C. limacina (29--36 mg g(-1) wet mass) and included 46% of diacy1glyceryl ether (DAGE, as % of total lipid) for both 1997 and 1998. DAGE was not detected in C. pyramidata, which had mainly polar lipid and triacy1glycerol. 1-O-Alkyl glyceryl ethers (GE) derived from the DAGE consisted primarily of 15:0 and 16:0, with lower 17:0 and a17:0. The principal sterols of both pteropods included trans-dehydrocholesterol, brassicasterol, 24-methylenecholesterol, cholesterol and desmosterol. Levels of 24-methylenecholesterol and desmosterol were lower in both pteropods in 1997 compared to 1998. C. limacina had high levels of the odd-chain fatty acids 17:1(n--8)c and 15:0 in contrast to C. pyramidata. The previously proposed source of elevated odd-chain fatty acids in C. limacina is via propionate derived from phytoplankton DMPT; another possible source may be from thraustochytrids, which are common marine microheterotrophs. C. pyramidata had twice as much PUFA as C. limacina, largely due to higher 20:5(n--3). The PUFA 18:5(n--3) and very long chain fatty acids (C(24), C(26) and C(28) VLC-PUFA) were only detected in 1998 pteropods. In comparison, 1996 samples of C. limacina contained lower DAGE levels, which also may reflect differences in diet and oceanographic conditions. Interannual variations in specific lipid biomarkers are discussed with respect to possible different phytoplankton food sources available in the AMLR survey area.
Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping
2014-01-01
Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.
Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping
2014-01-01
Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models. PMID:25279567
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The impact of European teleconnections including the East AtlanticWest Russia (EA-WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter temperature variability was quantified and compared with the combined effect of the Arctic Oscillation (AO), the Western Pacific (WP), and the El-Nino Southern Oscillation (ENSO), which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three European teleconnections explained 22-25 percent of the total monthly upper-tropospheric height variance over Eurasia. Regression analysis revealed warming by EA-WR and EA and cooling by SCA over mid-latitude East Asia during their positive phase and vice versa. Temperature anomalies were largely explained by the advective temperature change process at the lower troposphere. The average spatial correlation over East Asia (90-180E, 10-80N) for the last 34 winters between observed and reconstructed temperature comprised of AO, WP and ENSO effect (AWE) was approximately 0.55, and adding the European teleconnection components (ESE) to the reconstructed temperature improved the correlation up to approximately 0.64. Lower level atmospheric structure demonstrated that approximately five of the last 34 winters were significantly better explained by ESE than AWE to determine East Asian seasonal winter temperatures. We also compared the impact between EA-WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian high. These three were strongly coupled, and their spatial features and interannual variation were somewhat better explained by EA-WR than AO. Results suggest that the EA-WR impact must be treated more importantly than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
Greenland Sea Odden sea ice feature: Intra-annual and interannual variability
Shuchman, R.A.; Josberger, E.G.; Russel, C.A.; Fischer, K.W.; Johannessen, O.M.; Johannessen, J.; Gloersen, P.
1998-01-01
The "Odden" is a large sea ice feature that forms in the east Greenland Sea that may protrude eastward to 5??E from the main sea ice pack (at about 8??W) between 73?? and 77??N. It generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter the outer edge of the Odden may advance and retreat by several hundred kilometers on timescales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. Aircraft synthetic aperture radar, satellite passive microwave, and ship observations in the Odden show that the Odden consists of new ice types, rather than older ice types advected eastward from the main pack. The 17-year record shows both strong interannual and intra-annual variations in Odden extent and temporal behavior. For example, in 1983 the Odden was weak, in 1984 the Odden did not occur, and in 1985 the Odden returned late in the season. An analysis of the ice area and extent time series derived from the satellite passive microwave observations along with meteorological data from the International Arctic Buoy Program (IABP) determined the meteorological forcing associated with Odden growth, maintenance, and decay. The key meteorological parameters that are related to the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Oceanographic parameters must play an important role in controlling Odden formation, but it is not yet possible to quantify this role because of a lack of long-term oceanographic observations. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zanella De Arruda, Paulo Henrique; Vourlitis, George Louis; Santanna, Franciele Bomfiglio; Pinto, Osvaldo Borges, Jr.; De Almeida Lobo, Francisco; De Souza Nogueira, José
2016-08-01
The savanna vegetation of Brazil (Cerrado) accounts for 20-25% of the land cover of Brazil and is the second largest ecosystem following Amazonian forest; however, Cerrado mass and energy exchange is still highly uncertain. We used eddy covariance to measure the net ecosystem CO2 exchange (NEE) of grass-dominated Cerrado (campo sujo) over 3 years. We hypothesized that soil water availability would be a key control over the seasonal and interannual variations in NEE. Multiple regression indicated that gross primary production (GPP) was positively correlated (Pearson's r = 0.69; p < 0.001) with soil water content, radiation, and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived enhanced vegetation index (EVI) but negatively correlated with the vapor pressure deficit (VPD), indicating that drier conditions increased water limitations on GPP. Similarly, ecosystem respiration (Reco) was positively correlated (Pearson's r = 0.78; p < 0.001) with the EVI, radiation, soil water content, and temperature but slightly negatively correlated with rainfall and the VPD. While the NEE responded rapidly to temporal variations in soil water availability, the grass-dominated Cerrado stand was a net source of CO2 to the atmosphere during the study period, which was drier compared to the long-term average rainfall. Cumulative NEE was approximately 842 gC m-2, varying from 357 gC m-2 in 2011 to 242 gC m-2 in 2012. Our results indicate that grass-dominated Cerrado may be an important regional CO2 source in response to the warming and drying that is expected to occur in the southern Amazon Basin under climate change.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-11-01
Simulations of the spatial-temporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl dynamic global vegetation model (DGVM), and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland dataset can help to successfully delineate the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ∼ 10.3 Mkm2 (106 km2), with a mean annual maximum of ∼ 5.17 Mkm2 for 1980-2010. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai
2010-05-01
Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.
AVHRR channel selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.
NASA Technical Reports Server (NTRS)
Perigaud, C.; Florenchie, P.
2000-01-01
In situ and satellite sea level data sets over 1980-1998 are used to estimate the interannual variations of the geostrophic zonal transport across the opening of the Northwestern Pacific boundary into the Celebes sea.
Influences of climate on fire regimes in montane forests of north-western Mexico
Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens
2008-01-01
Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...
NASA Astrophysics Data System (ADS)
Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio
2018-03-01
Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
Water exchange through the Kerama Gap estimated with a 25-year Pacific HYbrid Coordinate Ocean Model
NASA Astrophysics Data System (ADS)
Zhou, Wenzheng; Yu, Fei; Nan, Feng
2017-11-01
Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009-2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of ± 5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in autumn while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interannual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.
Drivers of surface moisture flux variations in northern terrestrial regions
NASA Astrophysics Data System (ADS)
Fischer, R.; Walsh, J. E.
2017-12-01
The wetness of the high-latitude land surface is strongly dependent on the difference between precipitation (P) and evapotranspiration (ET). Variations of ET over daily, seasonal and interannual timescales are poorly documented, as are their relationships to key drivers. A combination of regional climate model output and eddy covariance measurements from five flux tower sites in Alaska are used to test the hypothesis that temperature is the key driver of ET in tundra regions underlain by permafrost, while precipitation plays a greater role in boreal forest areas. At the tundra sites, both the flux tower data and the model simulations show that daily and warm-season totals of ET are largely temperature driven, although daily ET also shows a negative correlation with P. At the boreal forest sites, P is the main driver of year-to-year variations of the seasonally integrated net moisture flux, although ET does not correlate strongly with either P or T. A short period of negative P-ET typically occurs during the warm season in the flux tower data. The model depicts a stronger hydrologic cycle (larger P, larger ET) relative to the measurements at all the sites.
Connection between ENSO and Asian Summer Monsoon Precipitation Oxygen Isotope
NASA Astrophysics Data System (ADS)
Cai, Z.; Tian, L.
2016-12-01
In an effort to understand the connection between El Niño Southern Oscillation (ENSO) and Asian Summer Monsoon (ASM) precipitation oxygen isotope, this study investigates the spatial and interannual patterns in summer (JJAS) monsoon precipitation δ18O and satellite water vapor isotope retrievals, especially those patterns associated with convection and vapor transport. Both precipitation and vapor isotope values exhibit a "V" shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along vapor transport routes. In order to understand interannual variations, an ASM precipitation δ18O index (ASMOI) is introduced to measure the temporal variations in regional precipitation δ18O; and these variations are consistent with central Indo-Pacific convection and cloud-top height. The counter variations in the ASMOI in El Niño and La Niña years confirm the existence of a positive isotope- ENSO response (e.g., high values corresponding to warm phases) over the eastern Indian Ocean and southeastern Asia (80°E-120°E/10°S-30°N) as a response to changes in convection. However, JJAS vapor δD over the western Pacific (roughly east of 120oE) varies in opposition, due to the influence of water vapor transport. This opposite variation does not support the interpretation of precipitation isotope-ENSO relationship as changing proportion of vapor transported from different regions, but rather condensation processes associated with convection. These findings are important for studying past ASM and ENSO activity from various isotopic archives and have implications for the study of the atmospheric water cycle.
Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA With LOD,SOI, etc
NASA Astrophysics Data System (ADS)
Liao, D. C.; Zhou, Y. H.; Liao, X. H.
2007-01-01
Interannual and decadal components of the length of day (LOD), Southern Oscillation Index (SOI) and Sea Surface Temperature anomaly (SSTA) in Nino regions are extracted by band-pass filtering, and used for research of the modulation of the SSTA on the ENSO events. Results show that besides the interannual components, the decadal components in SSTA have strong impacts on monitoring and representing of the ENSO events. When the ENSO events are strong, the modulation of the decadal components of the SSTA tends to prolong the life-time of the events and enlarge the extreme anomalies of the SST, while the ENSO events, which are so weak that they can not be detected by the interannual components of the SSTA, can also be detected with the help of the modulation of the SSTA decadal components. The study further draws attention to the relationships of the SSTA interannual and decadal components with those of LOD, SOI, both of the sea level pressure anomalies (SLPA) and the trade wind anomalies (TWA) in tropic Pacific, and also with those of the axial components of the atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). Results of the squared coherence and coherent phases among them reveal close connections with the SSTA and almost all of the parameters mentioned above on the interannual time scales, while on the decadal time scale significant connections are among the SSTA and SOI, SLPA, TWA, ?3w and ?3w+v as well, and slight weaker connections between the SSTA and LOD, ?3pib and ?3bp
NASA Astrophysics Data System (ADS)
Nieto, R.; Gimeno, L.; de La Torre, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.; Gordillo, A.; Redaño, A.; Lorente, J.
2007-04-01
An earlier developed multidecadal database of Northern Hemisphere cut-off low systems (COLs), covering a 41 years period (from 1958 to 1998) is used to study COLs interannual variability in the European sector (25°-47.5° N, 50° W-40° E) and the major factors controlling it. The study focus on the influence on COLs interannual variability, of larger scale phenomena such as blocking events and other main circulation modes defined over the Euro-Atlantic region. It is shown that there is a very large interannual variability in the COLs occurrence at the annual and seasonal scales, although without significant trends. The influence of larger scale phenomena is seasonal dependent, with the positive phase of the NAO favoring autumn COL development, while winter COL occurrence is mostly related to blocking events. During summer, the season when more COLs occur, no significant influences were found.
Association of Kawasaki disease with tropospheric wind patterns.
Rodó, Xavier; Ballester, Joan; Cayan, Dan; Melish, Marian E; Nakamura, Yoshikazu; Uehara, Ritei; Burns, Jane C
2011-01-01
The causal agent of Kawasaki disease (KD) remains unknown after more than 40 years of intensive research. The number of cases continues to rise in many parts of the world and KD is the most common cause of acquired heart disease in childhood in developed countries. Analyses of the three major KD epidemics in Japan, major non-epidemic interannual fluctuations of KD cases in Japan and San Diego, and the seasonal variation of KD in Japan, Hawaii, and San Diego, reveals a consistent pattern wherein KD cases are often linked to large-scale wind currents originating in central Asia and traversing the north Pacific. Results suggest that the environmental trigger for KD could be wind-borne. Efforts to isolate the causative agent of KD should focus on the microbiology of aerosols.
Association of Kawasaki disease with tropospheric wind patterns
Rodó, Xavier; Ballester, Joan; Cayan, Dan; Melish, Marian E.; Nakamura, Yoshikazu; Uehara, Ritei; Burns, Jane C.
2011-01-01
The causal agent of Kawasaki disease (KD) remains unknown after more than 40 years of intensive research. The number of cases continues to rise in many parts of the world and KD is the most common cause of acquired heart disease in childhood in developed countries. Analyses of the three major KD epidemics in Japan, major non-epidemic interannual fluctuations of KD cases in Japan and San Diego, and the seasonal variation of KD in Japan, Hawaii, and San Diego, reveals a consistent pattern wherein KD cases are often linked to large-scale wind currents originating in central Asia and traversing the north Pacific. Results suggest that the environmental trigger for KD could be wind-borne. Efforts to isolate the causative agent of KD should focus on the microbiology of aerosols. PMID:22355668
Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R
2018-08-01
In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.
Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli
2016-01-01
Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements. PMID:27007388
NASA Astrophysics Data System (ADS)
Sun, Bo
2018-03-01
This study investigates the variations in the tropical ascending branches (TABs) of Hadley circulations (HCs) during past decades, using a variety of reanalysis datasets. The northern tropical ascending branch (NTAB) and the southern tropical ascending branch (STAB), which are defined as the ascending branches of the Northern Hemisphere HC and Southern Hemisphere HC, respectively, are identified and analyzed regarding their trends and variability. The reanalysis datasets consistently show a persistent increase in STAB during past decades, whereas they show less consistency in NTAB regarding its decadalto multidecadal variability, which generally features a decreasing trend. These asymmetric trends in STAB and NTAB are attributed to asymmetric trends in the tropical SSTs. The relationship between STAB/NTAB and tropical SSTs is further examined regarding their interannual and decadal- to multidecadal variability. On the interannual time scale, the STAB and NTAB are essentially modulated by the eastern-Pacific type of ENSO, with a strengthened (weakened) STAB (NTAB) under an El Niño condition. On the decadal- to multidecadal time scale, the variability of STAB and NTAB is closely related to the southern tropical SSTs and the meridional asymmetry of global tropical SSTs, respectively. The tropical eastern Pacific SSTs (southern tropical SSTs) dominate the tropical SST-NTAB/STAB relationship on the interannual (decadal- to multidecadal) scale, whereas the NTAB is a passive factor in this relationship. Moreover, a cross-hemispheric relationship between the NTAB/STAB and the HC upper-level meridional winds is revealed.
NASA Astrophysics Data System (ADS)
Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.
2015-12-01
Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.
NASA Astrophysics Data System (ADS)
Jebri, Fatma; Zakardjian, Bruno; Birol, Florence; Bouffard, Jérôme; Jullion, Loïc.; Sammari, Cherif
2017-11-01
A 20 year coastal altimetry data set (X-TRACK) is used, for the first time, to gain insight into the long-term interannual variations of the surface circulation in the Sicily Channel. First, a spectral along with a time/space diagram analysis are applied to the monthly means. They reveal a regionally coherent current patterns from track to track with a marked interannual variability that is unequally shared between the Atlantic Tunisian Current and Atlantic Ionian Stream inflows in the Sicily Channel and the Bifurcation Tyrrhenian Current outflow northeast of Sicily. Second, an empirical altimetry-based transport-like technique is proposed to quantify volume budgets inside the closed boxes formed by the crossing of the altimetry tracks and coastlines over the study area. A set of hydrographic measurements is used to validate the method. The inferred altimetry transports give a well-balanced mean eastward Atlantic Waters baroclinic flow of 0.4 Sv and standard deviations of 0.2 Sv on a yearly basis throughout the Sicily Channel and toward the Ionian Sea, which is fairly coherent with those found in the literature. Furthermore, the analysis allows to quantify the intrusions of Atlantic Waters over the Tunisian Shelf (0.12 ± 0.1 Sv) and highlights two main modes of variability of the main surface waters path over the Sicily Channel through the Bifurcation Atlantic Tunisian Current and Atlantic Ionian Stream systems. Some physical mechanisms are finally discussed with regards to changes in the observed currents and transports.
NASA Astrophysics Data System (ADS)
Xiao, Ziniu; Li, Delin
2016-06-01
The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.
East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River
NASA Technical Reports Server (NTRS)
Weng, H.-Y.; Lau, K.-M.
1999-01-01
One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.
The Contribution of Reservoirs to Global Land Surface Water Storage Variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Nijssen, Bart; Gao, Huilin
Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variationsmore » is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.« less
The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010
NASA Astrophysics Data System (ADS)
Dong, Bo; Dai, Aiguo
2017-07-01
Recent studies have shown considerable changes in terrestrial evapotranspiration (ET) since the early 1980s, but the causes of these changes remain unclear. In this study, the relative contributions of external climate forcing and internal climate variability to the recent ET changes are examined. Three datasets of global terrestrial ET and the CMIP5 multi-model ensemble mean ET are analyzed, respectively, to quantify the apparent and externally-forced ET changes, while the unforced ET variations are estimated as the apparent ET minus the forced component. Large discrepancies of the ET estimates, in terms of their trend, variability, and temperature- and precipitation-dependence, are found among the three datasets. Results show that the forced global-mean ET exhibits an upward trend of 0.08 mm day-1 century-1 from 1982 to 2010. The forced ET also contains considerable multi-year to decadal variations during the latter half of the 20th century that are caused by volcanic aerosols. The spatial patterns and interannual variations of the forced ET are more closely linked to precipitation than temperature. After removing the forced component, the global-mean ET shows a trend ranging from -0.07 to 0.06 mm day-1 century-1 during 1982-2010 with varying spatial patterns among the three datasets. Furthermore, linkages between the unforced ET and internal climate modes are examined. Variations in Pacific sea surface temperatures (SSTs) are found to be consistently correlated with ET over many land areas among the ET datasets. The results suggest that there are large uncertainties in our current estimates of global terrestrial ET for the recent decades, and the greenhouse gas (GHG) and aerosol external forcings account for a large part of the apparent trend in global-mean terrestrial ET since 1982, but Pacific SST and other internal climate variability dominate recent ET variations and changes over most regions.
This manuscript addresses the difficult issue of identifying the origin of particulate organic matter (POM) in estuaries . . . The objectives of this study were to quantify spatial and temporal variability of the C and N stable isotope composition of suspended POM, and to identif...
USDA-ARS?s Scientific Manuscript database
a) Background/Questions/Methods Grassland ecosystems are water-limited and show the highest interannual ANPP variability across biomes. Changes in annual amounts or seasonality of rainfall may interact with soil texture to impact grassland ecosystem functions including net primary productivity (NPP...
Climate sensitivity of thinleaf alder growth on an interior Alaska floodplain
Dana R. Nossov; Roger W. Ruess; Teresa N. Hollingsworth
2010-01-01
This study examined the climate sensitivity of the growth of riparian Alnus incana ssp. tenuifolia (thinleaf alder), a keystone nitrogen-fixer, on the Tanana River floodplain of interior Alaska. We investigated correlations between alder radial growth and inter-annual variation in monthly meteorology and hydrology, spatial...
Assessing the influence of abatement efforts and other human activities on ozone levels is complicated by the atmosphere's changeable nature. Two statistical methods, the dynamic linear model(DLM) and the generalized additive model (GAM), are used to estimate ozone trends in the...
NASA Astrophysics Data System (ADS)
Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.
2017-12-01
A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale integrated study aims to improve ecophysiological understanding of tropical forest response to interannual climate variability, highlighting the importance to combine state-of-the-art technology and theories to improve future projections of carbon dynamics in the tropics.
20 Years of ClO Measurements in the Antarctic Lower Stratosphere
NASA Technical Reports Server (NTRS)
Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie;
2016-01-01
We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOEl) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column C1O on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cl(sub y) = HCl + ClONO2 + HOCl + 2 x Cl2 + 2 x Cl2+ ClO + Cl). The resultant trends in Cl(sub y), which determine the long-term trend in ClO, are estimated to be -0.5 +/-0.2, -1.40.9, and -0.60.4% per year, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1sigma of trends in stratospheric Cl(sub y) previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.
20 years of ClO measurements in the Antarctic lower stratosphere
NASA Astrophysics Data System (ADS)
Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie; Deshler, Terry; Newman, Paul; Santee, Michelle L.
2016-08-01
We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOE1) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column ClO on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl). The resultant trends in Cly, which determine the long-term trend in ClO, are estimated to be -0.5 ± 0.2, -1.4 ± 0.9, and -0.6 ± 0.4 % year-1, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1σ of trends in stratospheric Cly previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.
Biederman, Joel A; Scott, Russell L; Goulden, Michael L; Vargas, Rodrigo; Litvak, Marcy E; Kolb, Thomas E; Yepez, Enrico A; Oechel, Walter C; Blanken, Peter D; Bell, Tom W; Garatuza-Payan, Jaime; Maurer, Gregory E; Dore, Sabina; Burns, Sean P
2016-05-01
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mischna, M.; Shirley, J. H.; Newman, C. E.
2016-12-01
To first order, the occurrence and interannual variability of global dust storms (GDS) on Mars is attributable to two factors: the annual cycle of solar insolation (which delineates a specific `dust storm season'), and the changing spatial distribution and availability of dust at the surface. Recent work has now found a remarkable correspondence between the occurrence of GDS on Mars and years in which the orbital angular momentum of Mars is increasing during the dust storm season. A previously undefined acceleration term `couples' this orbital motion to the rotational motion of the planet and atmosphere, and small but persistent atmospheric accelerations (so-called `coupling term accelerations,' or CTA) change the atmospheric circulation in such a way as to seemingly be favorable to storm development. This becomes a third factor, then, that may regulate the occurrence and variability of GDS. Our prior work with the MarsWRF general circulation model (GCM) was performed either with no atmospheric dust, or with simplified, prescribed dust distributions, and illustrated the dual roles of both insolation and CTA on GDS variability. Recent advances in the MarsWRF GCM dust prescription can now tackle the remaining unaddressed factor: the role of dust availability in controlling the initiation of GDS. Simulations with both infinite and finite global sources of dust have been performed. For a prescribed dust lifting threshold, surface dust is removed from the surface, preferentially from locations with larger surface stress values, transported in the atmosphere and deposited at a later time. Compared to simulations without CTA, those with CTA show more realism in the variability of timing and magnitude of atmospheric dustiness during the dust storm season. For infinite surface dust, the primary dust lifting (peak wind stress) regions are spatially restricted, and year-to-year changes are largely due to variations in the CTA at these few locations. By contrast, in simulations with finite surface dust, the peak stress regions are rapidly exhausted, leading to a far greater distribution of primary dust lifting regions; hence, variations in the CTA over a wider area contribute to the interannual variability of GDS. Results from our suite of simulations will be shown, vis-à-vis the historical record of GDS on Mars.
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
NASA Astrophysics Data System (ADS)
Núñez-Riboni, Ismael; Akimova, Anna
2017-05-01
New 67-year long (1948-2014) gridded time series of salinity in the North Sea at all depths allowed to quantify, spatially resolved, the amount of inter-annual salinity variability explained by each of its driving mechanisms: sea level pressure (SLP), precipitation, river run-off, zonal and meridional winds and currents over the eastern North Atlantic. For the current data, not only annual averages but also their deviations, as measure of turbulence, were considered. Our results summarize and expand the knowledge gathered in the last 50 years about the mechanisms driving inter-annual variability of salinity in the North Sea. Three mechanisms, uncorrelated with each other and acting over separate regions of the North Sea, arise as most important: (1) River run-off from continental Europe explains 50-80% of inter-annual salinity variations at lag 0 in the Southern and German Bights and the Norwegian Trench up to the connection with the North Atlantic, down to the seabed near the coasts and to the deep Norwegian Trench (100 m); (2) Remote variations of salinity in the Rockall Trough explain 70% of salinity variations of the tongue of high salinity in the northwestern North Sea with a lag of one year and down the water column; (3) The Neva discharge explains 60% of salinity changes in Skagerrak and southern Norwegian trench at lag 0. An explanation for this correlation might be the Baltic freshwater outflow being modulated by the Neva discharge through intensification of the estuarine gravitational circulation. We confirmed known relations between river run-off, precipitation over continental Europe, SLP over northern Europe and zonal wind over western Europe. Linked to these changes, we found also changes of meridional wind north of Scotland favoring eastward Ekman transport of salty North Atlantic waters into the North Sea off the Norwegian coast. Excluding this only case, we found no significant correlation between wind-driven currents and North Sea salinity changes. This result supports the notion that the Atlantic inflow into the North Sea is mainly density-driven. Salinity in the region east of Scotland and northern England was alienated from all driving mechanisms tested. An explanation was found in concomitant canceling changes of the intensity of the North Sea circulation and the discharge of the river Tay.
NASA Astrophysics Data System (ADS)
Hess, P.; Kinnison, D.; Tang, Q.
2015-03-01
Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
Climatic and biotic controls on annual carbon storage in Amazonian ecosystems
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.
2000-01-01
1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate variability and increasing atmospheric CO2 over the study period. This amount is large enough to have compensated for most of the carbon losses associated with tropical deforestation in the Amazon during the same period. 5 Comparisons with empirical data indicate that climate variability and CO2 fertilization explain most of the variation in net carbon storage for the undisturbed ecosystems. Our analyses suggest that assessment of the regional carbon budget in the tropics should be made over at least one cycle of El Nino-Southern Oscillation because of inter-annual climate variability. Our analyses also suggest that proper scaling of the site-specific and sub-annual measurements of carbon fluxes to produce Basin-wide flux estimates must take into account seasonal and spatial variations in net carbon storage.
The clear-sky greenhouse effect sensitivity to a sea surface temperature change
NASA Technical Reports Server (NTRS)
Duvel, J. PH.; Breon, F. M.
1991-01-01
The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.
NASA Technical Reports Server (NTRS)
Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portney, B.; Hansen, James (Technical Monitor)
2000-01-01
In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning, and present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over the time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink.
NASA Astrophysics Data System (ADS)
Fischer, M. L.; Billesbach, D. P.; Riley, W. J.; Berry, J. A.; Torn, M. S.
2004-12-01
Accurate prediction of the regional responses of carbon and water fluxes to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal and inter-annual time scales. In particular, modelers predicting fluxes for un-irrigated agriculture are posed with the additional challenge of characterizing the onset and severity of water stress. We report results from three years of an ongoing series of measurement campaigns that quantify the spatial heterogeneity of land surface-atmosphere exchanges of carbon dioxide, water, and energy. Eddy covariance flux measurements were made in pastures and dominant crop types surrounding the US-DOE Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma (36.605 N, 97.485 W). Ancillary measurements included radiation budget, meteorology, soil moisture and temperature, leaf area index, plant biomass, and plant and soil carbon and nitrogen content. Within a given year, the dominant spatial variation in fluxes of carbon, water, and energy are caused by variations of land cover due to the distinct phenology of winter-spring (winter wheat) versus summer crops (e.g., pasture, sorghum, soybeans). Within crop and yearly variations were smaller. In 2002, variations in net ecosystem carbon exchange (NEE), for three closely spaced winter wheat fields was 10-20%. Variations between years for the same crop types were also large. Net primary production (NPP) of winter wheat in the spring of 2003 versus 2002 increased by a factor of two, while NEE increased by 35%. The large increase in production and NEE are positively correlated with precipitation, integrated over the previous summer-fall periods. We discuss the implications of these results by extracting and comparing factors relevant for parameterization of land surface models and by comparing crop yield with historic variations in yield at the landscape scale.
Shi, Yusheng; Matsunaga, Tsuneo
2017-07-01
Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2 > 0.8) and continental levels (R 2 > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2 < 0.6). The lower estimation in savanna CO 2 emissions and higher calculation in cropland CO 2 emissions by FINN1.0 from 2002 to 2011 was the primary reason for the temporal differences of the four inventories. Besides, the contributions of the three land covers (forest, savanna, and cropland) on CO 2 emissions in each region varied greatly within the year (>80%) but showed small variations through the years (<40%).
Time-Frequency Variability of Kuroshio Meanders in Tokara Strait
NASA Astrophysics Data System (ADS)
Nakamura, H.; Yamashiro, T.; Nishina, A.; Ichikawa, H.
2006-12-01
The Kuroshio path in the northern Okinawa Trough, Japan, located between the continental slope and Tokara Strait, exhibits meandering motions with largest displacements in the East China Sea; these motions have dominant periods in the broad range of 30-90 days. Understanding the dynamic nature of such meanders is crucial to predicting small and large meanders of the Kuroshio path off the south coast of Japan. Previous numerical simulations suggest that the Kuroshio path meanders in the northern Okinawa Trough become nonstationary in variance because of changes in background states of the Kuroshio in the northern Okinawa Trough, but a detailed analysis based on observed data has yet to be performed. The purpose of the present study is to provide a detailed description of the time-frequency variability of Kuroshio path meanders observed in Tokara Strait. Three Kuroshio indicators were subjected to wavelet analysis for the period 1984-2004: the Kuroshio Position Index (KPI) in Tokara Strait, Kuroshio Volume Transport (KVT) in Tokara Strait, and the basal current velocity of the Kuroshio on the continental slope in the northern Okinawa Trough. The 30-90 day variance of the KPI shows a season-fixed nature, with larger amplitudes in the period December-July. The amplitude of the variance in this phenomenon is also modulated by interannual variations, with small variance recorded during 1989-1992, large variance during 1993-1998, and a return to small variance from 1999-2003. This interannual variation is positively correlated with that of the KVT. The largest variance of the KPI during February-April precedes the largest volume transport in April-May by about 1 month, suggesting that eddy vorticity flux strengthens the mean current field. Previous numerical simulations reproduce the recirculation gyre as a cyclonic eddy in the area between the continental slope and Tokara Strait; this gyre is analogous to the northern recirculation gyre associated with the eastward jet. On the basis of data from a moored current-meter situated on the continental slope, the genesis of the 30-90 day meanders within Tokara Strait is ascribed to nonlinear energy transfer from 8-25 day meanders on the continental slope.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zimmermann, Niklaus E.; Kaplan, Jed O.; Poulter, Benjamin
2016-03-01
Simulations of the spatiotemporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate. Hydrologic inundation models, such as the TOPography-based hydrological model (TOPMODEL), are based on a fundamental parameter known as the compound topographic index (CTI) and offer a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains a large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl (Lund-Potsdam-Jena Wald Schnee und Landschaft version) Dynamic Global Vegetation Model (DGVM) and quantifies uncertainties by comparing three digital elevation model (DEM) products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland data set can help to successfully delineate the seasonal and interannual variation of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows the best accuracy for capturing the spatiotemporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ˜ 10.3 Mkm2 (106 km2), with a mean annual maximum of ˜ 5.17 Mkm2 for 1980-2010. When integrated with wetland methane emission submodule, the uncertainty of global annual CH4 emissions from topography inputs is estimated to be 29.0 Tg yr-1. This study demonstrates the feasibility of TOPMODEL to capture spatial heterogeneity of inundation at a large scale and highlights the significance of correcting maximum wetland extent to improve modeling of interannual variations in wetland area. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Wick, Gary; Bosilovich, Michael G.
2005-01-01
Remote sensing methodologies for turbulent heat fluxes over oceans depend on driving bulk formulations of fluxes with measured surface winds and estimated near surface thermodynamics from microwave sensors of the Special Sensor Microwave Imager (SSM/I) heritage. We will review recent work with a number of SSM/I-based algorithms and investigate the ability of current data sets to document global, tropical ocean-averaged evaporation changes in association with El Nino and La Nina SST changes. We show that in addition to interannual signals, latent heat flux increases over the period since late 1987 range from approx. .1 to .6 mm/ day are present; these represent trends 2 to 3 times larger than the NCEP Reanalysis. Since atmospheric storage cannot account for the difference, and since compensating evapotranspiration changes over land are highly unlikely to be this large, these evaporation estimates cannot be reconciled with ocean precipitation records such as those produced by the Global Precipitation Climatology Project, GPCP. The reasons for the disagreement include less than adequate intercalibration between SSM/I sensors providing winds and water vapor for driving the algorithms, biases due to the assumption that column integrated water vapor mirrors near surface water vapor variations, and other factors as well. The reanalyses have their own problems with spin-up during assimilation, lack of constraining input data at the ocean surface, and amplitude of synoptic transients.
Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.
Interannual and spatial variability of maple syrup yield as related to climatic factors
Houle, Daniel
2014-01-01
Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244
NASA Astrophysics Data System (ADS)
Maher, Nicola; Marotzke, Jochem
2017-04-01
Natural climate variability is found in observations, paleo-proxies, and climate models. Such climate variability can be intrinsic internal variability or externally forced, for example by changes in greenhouse gases or large volcanic eruptions. There are still questions concerning how external forcing, both natural (e.g., volcanic eruptions and solar variability) and anthropogenic (e.g., greenhouse gases and ozone) may excite both interannual modes of variability in the climate system. This project aims to address some of these problems, utilising the large ensemble of the MPI-ESM-LR climate model. In this study we investigate the statistics of four modes of interannual variability, namely the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the El Niño Southern Oscillation (ENSO). Using the 100-member ensemble of MPI-ESM-LR the statistical properties of these modes (amplitude and standard deviation) can be assessed over time. Here we compare the properties in the pre-industrial control run, historical run and future scenarios (RCP4.5, RCP2.6) and present preliminary results.
NASA Astrophysics Data System (ADS)
Hsu, C. W.; Velicogna, I.
2017-12-01
The mid-ocean geostrophic transport accounts for more than half of the seasonal and inter-annual variabilities in Atlantic meridional overturning circulation (AMOC) based on the in-situ measurement from RAPID MOC/MOCHA array since 2004. Here, we demonstrate that the mid-ocean geostrophic transport estimates derived from ocean bottom pressure (OBP) are affected by the sea level fingerprint (SLF), which is a variation of the equi-geopotential height (relative sea level) due to rapid mass unloading of the entire Earth system and in particular from glaciers and ice sheets. This potential height change, although it alters the OBP, should not be included in the derivation of the mid-ocean geostrophic transport. This "pseudo" geostrophic-transport due to the SLF is in-phase with the seasonal and interannual signal in the upper mid-ocean geostrophic transport. The east-west SLF gradient across the Atlantic basin could be mistaken as a north-south geostrophic transport that increases by 54% of its seasonal variability and by 20% of its inter-annual variability. This study demonstrates for the first time the importance of this pseudo transport in both the annual and interannual signals by comparing the SLF with in-situ observation from RAPID MOC/MOCHA array. The pseudo transport needs to be taken into account if OBP measurements and remote sensing are used to derive mid-ocean geostrophic transport.
1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Molotch, N. P.; Rittger, K. E.
2009-12-01
Snowmelt is a primary water source for ecosystems within, and urban/agricultural centers near, mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we are applying a snow reconstruction model to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lakes Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). Preliminary model results for 2002 were tested against measured snow water equivalent (SWE) and hydrograph data for the two watersheds. The computed maximum SWE averaged over TOK and GLV were 94 cm (~+17% error) and 50.2 cm (~+1% error), respectively. We present an analysis of interannual variability in these errors, in addition to reconstructed snowmelt maps over different land cover types under changing climate conditions between 1996-2007, focusing on the variability with interannual variation in climate.
Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño
NASA Astrophysics Data System (ADS)
Ma, Jinfeng; Zhan, Haigang; Du, Yan
2011-04-01
Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.
Preface and brief synthesis for the FOODBANCS volume
NASA Astrophysics Data System (ADS)
Smith, Craig R.; DeMaster, David J.
2008-11-01
In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.
NASA Astrophysics Data System (ADS)
Zhu, Xudong; Zhuang, Qianlai; Qin, Zhangcai; Glagolev, Mikhail; Song, Lulu
2013-04-01
Methane (CH4) emissions from wetland ecosystems in nothern high latitudes provide a potentially positive feedback to global climate warming. Large uncertainties still remain in estimating wetland CH4 emisions at regional scales. Here we develop a statistical model of CH4 emissions using an artificial neural network (ANN) approach and field observations of CH4 fluxes. Six explanatory variables (air temperature, precipitation, water table depth, soil organic carbon, soil total porosity, and soil pH) are included in the development of ANN models, which are then extrapolated to the northern high latitudes to estimate monthly CH4 emissions from 1990 to 2009. We estimate that the annual wetland CH4 source from the northern high latitudes (north of 45°N) is 48.7 Tg CH4 yr-1 (1 Tg = 1012 g) with an uncertainty range of 44.0 53.7 Tg CH4 yr-1. The estimated wetland CH4 emissions show a large spatial variability over the northern high latitudes, due to variations in hydrology, climate, and soil conditions. Significant interannual and seasonal variations of wetland CH4 emissions exist in the past 2 decades, and the emissions in this period are most sensitive to variations in water table position. To improve future assessment of wetland CH4 dynamics in this region, research priorities should be directed to better characterizing hydrological processes of wetlands, including temporal dynamics of water table position and spatial dynamics of wetland areas.
Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki
2015-04-01
The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Honsey, Andrew E.; Bunnell, David B.; Troy, Cary D.; Fielder, David G.; Thomas, Michael V.; Knight, Carey T.; Chong, Stephen; Hook, Tomas O.
2016-01-01
Population-level reproductive success (recruitment) of many fish populations is characterized by high inter-annual variation and related to annual variation in key environmental factors (e.g., climate). When such environmental factors are annually correlated across broad spatial scales, spatially separated populations may display recruitment synchrony (i.e., the Moran effect). We investigated inter-annual (1966–2008) variation in yellow perch (Perca flavescens, Percidae) recruitment using 16 datasets describing populations located in four of the five Laurentian Great Lakes (Erie, Huron, Michigan, and Ontario) and Lake St. Clair. We indexed relative year class strength using catch-curve residuals for each year-class across 2–4 years and compared relative year-class strength among sampling locations. Results indicate that perch recruitment is positively synchronized across the region. In addition, the spatial scale of this synchrony appears to be broader than previous estimates for both yellow perch and freshwater fish in general. To investigate potential factors influencing relative year-class strength, we related year-class strength to regional indices of annual climatic conditions (spring-summer air temperature, winter air temperature, and spring precipitation) using data from 14 weather stations across the Great Lakes region. We found that mean spring-summer temperature is significantly positively related to recruitment success among Great Lakes yellow perch populations.
Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Jiang, Xingwen; Li, Yueqing; Yang, Song; Shu, Jianchuan; He, Guangbi
2015-12-01
Heavy rainfall (HR) often hits the eastern edge of the Tibetan Plateau (EETP) and causes severe flood and landslide in summer, especially in July. In this study, the authors investigate the interannual variation of July HR events and its possible causes. The maximum number of days with HR in July is located at the EETP in China. It is significantly and negatively correlated with the rainfall in southeastern China. More HR events are accompanied by an anomalous lower-tropospheric anticyclone over southeastern China, a westward movement of the western North Pacific subtropical high, and enhanced rainfall in the Maritime Continent (MC). The MC convection exerts a significant impact on the variation of HR events over EETP. Results from analyses of observations and numerical simulations indicate that the convective heating over the MC induces an anomalous anticyclone over southeastern China and the Ekman pumping effect and circulation-convection feedback play vital roles in the process. The high correlation between the HR events over EETP and the equatorial central Pacific SST depends on the relationship between the MC convection and the equatorial central Pacific SST. The relationship is asymmetric, and only the warm SST anomaly in the equatorial central Pacific is accompanied by fewer HR events over the EETP.
The interannual variation in monthly temperature over Northeast China during summer
NASA Astrophysics Data System (ADS)
Chen, Wei; Lu, Riyu
2014-05-01
The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.
Tropical rainforests dominate multi-decadal variability of the global carbon cycle
NASA Astrophysics Data System (ADS)
Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.
2017-12-01
Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.
Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...
USDA-ARS?s Scientific Manuscript database
African savannas are complex socio-ecological systems with diverse wild and domestic herbivore assemblages, which utilize functional heterogeneity of habitats to adapt to intra- and inter-annual variation in forage quantity and quality, predation and disease risks. As African savannas become increas...
Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth
Mark E. Kubiske; Vanessa A. Quinn; Warren E. Heilman; Evan P. McDonald; Paula E. Marquardt; Ron M. Teclaw; Alexander L. Friend; David F. Karnosky
2006-01-01
We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518?LL-1) and ozone concentrations ([O3]; 1.5 x background of 30-40 nL L-1 during daylight hours) for 7 years using...
Interannual consistency of gross energy in red oak acorns
A.G. Leach; R.M. Kaminski; J.N. Straub; A.W. Ezell; T.S. Hawkins; T.D. Leininger
2013-01-01
Red oak Quercus spp., Subgenus Erythrobalanus acorns are forage for mallards Anas platyrhyncos, wood ducks Aix sponsa, and other wildlife that use bottomland hardwood forests in the southeastern United States. However, annual variation in true metabolizable energy from acorns would affect carrying-capacity estimates of bottomland hardwood forests for wintering ducks....
NASA Astrophysics Data System (ADS)
Chen, Chen; Chang, Won; Kong, Wenwen; Wang, Jiali; Rao Kotamarthi, V.; Stein, Michael L.; Moyer, Elisabeth J.
2017-04-01
Individual precipitation events induce different levels of hydrological impacts given their diverse characteristics, not only in precipitation amount but also in precipitation rate, duration, and size. It thus calls for an understanding of the diversity in precipitation characteristics and its influence on the total precipitation in contiguous United States. The framework we use to look into the precipitation diversity includes three steps: 1. we analyze the precipitation in observations (StageIV, 4kmx4km, 1h) and regional climate models (CCSM4-WRF downscaling,12kmx12km, 3h), in which the high spatio-temporal resolution enables us to "see" individual precipitation events. 2. switching from the Eulerian to Lagrangian perspective, we track individual rainstorms using Chang et al. (2016), in which algorithm both small and big events are identified to ensure the full spectrum diversity. 3. we use a set of metrics to characterize varying aspects of diversity and decompose their contributions to the total precipitation in CONUS. We also measure the variation and change in event frequency. The overall understandings are the following: 1. as to the climatology, though certain rainstorms with longer duration or larger size have better abilities to produce precipitation, the scarcity limits their overall contributions to the seasonal precipitation in CONUS. 2. as to the interannual variation, for a wetter year when the total precipitation is larger than normal and events are more frequent, the averaged rainstorm size is larger though the intensified precipitation rate shortens the rainstorm duration. 3. as to the change in a warming climate (as in Chang et al. 2016), CCSM4-WRF projection under RCP8.5 scenario suggests that, along with the increasing precipitation amount and intensity, the averaged rainstorm duration become longer but the size becomes overall smaller. The total number of events does not change much. 4. different relations governing the interannual variation and mean state change suggest that the physics across varying time scales could be orthogonal and thus require individual investigation and comparison to reach an overall understanding.
NASA Technical Reports Server (NTRS)
Keeling, Ralph F.; Campbell, J. A. (Technical Monitor)
2002-01-01
We successfully initiated a program to obtain continuous time series of atmospheric O2 concentrations at a semi-remote coastal site, in Trinidad, California. The installation, which was completed in September 1999, consists of a commercially-available O2 and CO2 analyzers interfaced to a custom gas handling system and housed in a dedicated building at the Trinidad site. Ultimately, the data from this site are expected to provide constraints, complementing satellite data, on variations in ocean productivity and carbon exchange on annual and interannual time scales, in the context of human-induced changes in global climate and other perturbations. The existing time-series, of limited duration, have been used in support of studies of the O2/CO2 exchange from a wild fire (which fortuitously occurred nearby in October 1999) and to quantify air-sea N2O and O2 exchanges related to coastal upwelling events. More generally, the project demonstrates the feasibility of obtaining semi-continuous O2 time series at moderate cost from strategic locations globally.
Interannual and Diurnal Variability in Water Ice Clouds Observed from MSL Over Two Martian Years
NASA Astrophysics Data System (ADS)
Kloos, J. L.; Moores, J. E.; Whiteway, J. A.; Aggarwal, M.
2018-01-01
We update the results of cloud imaging sequences from the Mars Science Laboratory (MSL) rover Curiosity to complete two Mars years of observations (LS=160° of Mars year (MY) 31 to LS=160° of MY 33). Relatively good seasonal coverage is achieved within the study period, with just over 500 observations obtained, averaging one observation every 2-3 sols. Cloud opacity measurements are made using differential photometry and a simplified radiative transfer method. These opacity measurements are used to assess the interannual variability of the aphelion cloud belt (ACB) for MY 32 and 33. Upon accounting for a statistical bias in the data set, the variation is found to be <30% within uncertainty. Diurnal variation of the ACB is also able to be examined in MY 33 owing to an increased number of early morning observations in this year. Although a gap in data around local noon prevents a complete assessment, we find that cloud opacity is moderately increased in the morning hours (07:00-09:00) compared to the late afternoon (15:00-17:00).
Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795
Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.
2014-01-01
Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736
Ricotta, C.; Reed, B.C.; Tieszen, L.T.
2003-01-01
Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.
NASA Astrophysics Data System (ADS)
Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.
2018-01-01
The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.