Sample records for large intestinal fermentation

  1. The microbial fermentation characteristics depend on both carbohydrate source and heat processing: a model experiment with ileo-cannulated pigs.

    PubMed

    Nielsen, Tina Skau; Jørgensen, Henry; Knudsen, Knud Erik Bach; Lærke, Helle Nygaard

    2017-11-01

    The effects of carbohydrate (CHO) source and processing (extrusion cooking) on large intestinal fermentation products were studied in ileo-cannulated pigs as a model for humans. Pigs were fed diets containing barley, pea or a mixture of potato starch:wheat bran (PSWB) either raw or extrusion cooked. Extrusion cooking reduced the amount of starch fermented in the large intestine by 52-96% depending on the CHO source and the total pool of butyrate in the distal small intestine + large intestine by on average 60% across diets. Overall, extrusion cooking caused a shift in the composition of short-chain fatty acids (SCFA) produced towards more acetate and less propionate and butyrate. The CHO source and processing highly affected the fermentation characteristics and extrusion cooking generally reduced large intestinal fermentation and resulted in a less desirable composition of the fermentation products. The latter outcome is non-conducive to a healthy large intestinal environment and its resulting metabolic health.

  2. Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meat-containing diet.

    PubMed

    Williams, Barbara A; Zhang, Dagong; Lisle, Allan T; Mikkelsen, Deirdre; McSweeney, Christopher S; Kang, Seungha; Bryden, Wayne L; Gidley, Michael J

    2016-04-01

    The aim of this study was to investigate how moderately increased dietary red meat combined with a soluble fiber (wheat arabinoxylan [AX]) alters the large intestinal microbiota in terms of fermentative end products and microbial community profiles in pigs. Four groups of 10 pigs were fed Western-type diets containing two amounts of red meat, with or without a solubilized wheat AX-rich fraction for 4 wk. After euthanasia, fermentative end products (short-chain fatty acids, ammonia) of digesta from four sections of large intestine were measured. Di-amino-pimelic acid was a measure of total microbial biomass, and bacterial profiles were determined using a phylogenetic microarray. A factorial model determined effects of AX and meat content. Arabinoxylan was highly fermentable in the cecum, as indicated by increased concentrations of short-chain fatty acids (particularly propionate). Protein fermentation end products were decreased, as indicated by the reduced ammonia and branched-chain ratio although this effect was less prominent distally. Microbial profiles in the distal large intestine differed in the presence of AX (including promotion of Faecalibacterium prausnitzii), consistent with an increase in carbohydrate versus protein fermentation. Increased di-amino-pimelic acid (P < 0.0001) suggested increased microbial biomass for animals fed AX. Solubilized wheat AX has the potential to counteract the effects of dietary red meat by reducing protein fermentation and its resultant toxic end products such as ammonia, as well as leading to a positive shift in fermentation end products and microbial profiles in the large intestine. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. Animal Productivity and Health Responses to Hind-Gut Acidosis

    USDA-ARS?s Scientific Manuscript database

    Microbial fermentation of carbohydrates in the large intestine of dairy cattle is responsible for 5 to 10% of total tract carbohydrate digestion. When dietary, animal, and/or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates to the large intestine, hind-gut ac...

  4. Broad diversity and newly cultured bacterial isolates from enrichment of pig feces on complex polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Microbial fermentation of plant cell wall components to short chain fatty acids in the large intestine provides energy to both humans and pigs. To better understand plant cell wall fermentation in the pig and human intestine, we isolated cellulose, xylan, and pectin fermenting bacteria from pig and ...

  5. Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation.

    PubMed

    Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal

    2006-11-01

    Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.

  6. Influence of dietary fiber on luminal environment and morphology in the small and large intestine of sows.

    PubMed

    Serena, A; Hedemann, M S; Bach Knudsen, K E

    2008-09-01

    In this study, the effect of feeding different types and amounts of dietary fiber (DF) on luminal environment and morphology in the small and large intestine of sows was studied. Three diets, a low-fiber diet (LF) and 2 high-fiber diets (high fiber 1, HF1, and high fiber 2, HF2) were used. Diet LF (DF, 17%; soluble DF 4.6%) was based on wheat and barley, whereas the 2 high-fiber diets (HF1: DF, 43%; soluble DF, 11.0%; and HF2: DF, 45%; soluble DF, 7.6%) were based on wheat and barley supplemented with different coproducts from the vegetable food and agroindustry (HF1 and HF2: sugar beet pulp, potato pulp, and pectin residue; HF2: brewers spent grain, seed residue, and pea hull). The diets were fed for a 4-wk period to 12 sows (4 receiving each diet). Thereafter, the sows were killed 4 h postfeeding, and digesta and tissue samples were collected from various parts of the small and large intestine. The carbohydrates in the LF diet were well digested in the small intestine, resulting in less digesta in all segments of the intestinal tract. The fermentation of nonstarch polysaccharides in the large intestine was affected by the chemical composition and physicochemical properties. The digesta from pigs fed the LF diet provided low levels of fermentable carbohydrates that were depleted in proximal colon, whereas for pigs fed the 2 high-DF diets, the digesta was depleted of fermentable carbohydrates at more distal locations of the colon. The consequence was an increased retention time, greater DM percentage, decreased amount of material, and a decreased tissue weight after feeding the LF diet compared with the HF diets. The concentration of short-chain fatty acids was consistent with the fermentability of carbohydrates in the large intestine, but there was no effect of the dietary composition on the molar short-chain fatty acid proportions. It was further shown that feeding the diet providing the greatest amount of fermentable carbohydrates (diet HF1, which was high in soluble DF) resulted in significant morphological changes in the colon compared with the LF diet.

  7. Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats.

    PubMed

    Rochus, Kristel; Janssens, Geert P J; Van de Velde, Hannelore; Verbrugghe, Adronie; Wuyts, Birgitte; Vanhaecke, Lynn; Hesta, Myriam

    2013-03-28

    The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0.07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0.05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0.02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.

  8. Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system.

    PubMed Central

    Miller, T L; Wolin, M J

    1981-01-01

    A semicontinuous culture of the microbial community of the human large intestine that was maintained over 81 days is described. The initial inoculum was feces, and about 200 ml of nutrient suspension was fed to 500 ml of fermentor contents once or twice daily. The nutrient suspension contained comminuted fibrous food, sodium deoxycholate, urea, acid-hydrolyzed casein, vitamins, and salts. The fermentation was monitored, and the major products were acetate, propionate, butyrate, methane, hydrogen, and carbon dioxide. The concentration of anaerobic bacteria was 2 X 10(9) per ml of culture contents and was 100 times that of fecal coliforms. When the nutrient suspension contained lettuce, celery, carrots, and unsweetened applesauce, the predominant nonsporeforming anaerobes isolated were Bacteroides species. When carrots and applesauce were omitted, the predominant nonsporeforming isolates were Fusobacterium species. On both diets, clostridia were isolated that resembled Clostridium clostridiiforme. The fermentation and bacteriological analyses indicated that the in vitro ecosystem appears to be a reasonable facsimile of the large intestine ecosystem. Images PMID:7027952

  9. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets.

    PubMed

    Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen

    2014-01-01

    Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal tract of the pig.

  10. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.

    PubMed

    Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G

    2012-12-01

    Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.

  11. Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions

    PubMed Central

    Ziarno, Małgorzata

    2015-01-01

    Background In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. Objective The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. Design The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Results Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Conclusions Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food. PMID:26546945

  12. Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions.

    PubMed

    Ziarno, Małgorzata; Zaręba, Dorota

    2015-01-01

    In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food.

  13. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health

    PubMed Central

    Williams, Barbara A.; Grant, Lucas J.; Gidley, Michael J.; Mikkelsen, Deirdre

    2017-01-01

    The majority of dietary fibre (DF) originates from plant cell walls. Chemically, DF mostly comprise carbohydrate polymers, which resist hydrolysis by digestive enzymes in the mammalian small intestine, but can be fermented by large intestinal bacteria. One of the main benefits of DF relate to its fermentability, which affects microbial diversity and function within the gastro-intestinal tract (GIT), as well as the by-products of the fermentation process. Much work examining DF tends to focus on various purified ingredients, which have been extracted from plants. Increasingly, the validity of this is being questioned in terms of human nutrition, as there is evidence to suggest that it is the actual complexity of DF which affects the complexity of the GIT microbiota. Here, we review the literature comparing results of fermentation of purified DF substrates, with whole plant foods. There are strong indications that the more complex and varied the diet (and its ingredients), the more complex and varied the GIT microbiota is likely to be. Therefore, it is proposed that as the DF fermentability resulting from this complex microbial population has such profound effects on human health in relation to diet, it would be appropriate to include DF fermentability in its characterization—a functional approach of immediate relevance to nutrition. PMID:29053599

  14. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health.

    PubMed

    Williams, Barbara A; Grant, Lucas J; Gidley, Michael J; Mikkelsen, Deirdre

    2017-10-20

    The majority of dietary fibre (DF) originates from plant cell walls. Chemically, DF mostly comprise carbohydrate polymers, which resist hydrolysis by digestive enzymes in the mammalian small intestine, but can be fermented by large intestinal bacteria. One of the main benefits of DF relate to its fermentability, which affects microbial diversity and function within the gastro-intestinal tract (GIT), as well as the by-products of the fermentation process. Much work examining DF tends to focus on various purified ingredients, which have been extracted from plants. Increasingly, the validity of this is being questioned in terms of human nutrition, as there is evidence to suggest that it is the actual complexity of DF which affects the complexity of the GIT microbiota. Here, we review the literature comparing results of fermentation of purified DF substrates, with whole plant foods. There are strong indications that the more complex and varied the diet (and its ingredients), the more complex and varied the GIT microbiota is likely to be. Therefore, it is proposed that as the DF fermentability resulting from this complex microbial population has such profound effects on human health in relation to diet, it would be appropriate to include DF fermentability in its characterization-a functional approach of immediate relevance to nutrition.

  15. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    PubMed

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    USDA-ARS?s Scientific Manuscript database

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  17. Carbohydrates and the human gut microbiota.

    PubMed

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  18. Fermentation of animal components in strict carnivores: a comparative study with cheetah fecal inoculum.

    PubMed

    Depauw, S; Bosch, G; Hesta, M; Whitehouse-Tedd, K; Hendriks, W H; Kaandorp, J; Janssens, G P J

    2012-08-01

    The natural diet of felids contains highly digestible animal tissues but also fractions resistant to small intestinal digestion, which enter the large intestine where they may be fermented by the resident microbial population. Little information exists on the microbial degradability of animal tissues in the large intestine of felids consuming a natural diet. This study aimed to rank animal substrates in their microbial degradability by means of an in vitro study using captive cheetahs fed a strict carnivorous diet as fecal donors. Fresh cheetah fecal samples were collected, pooled, and incubated with various raw animal substrates (chicken cartilage, collagen, glucosamine-chondroitin, glucosamine, rabbit bone, rabbit hair, and rabbit skin; 4 replicates per substrate) for cumulative gas production measurement in a batch culture technique. Negative (cellulose) and positive (casein and fructo-oligosaccharides; FOS) controls were incorporated in the study. Additionally, after 72 h of incubation, short-chain fatty acids (SCFA), including branched-chain fatty acids (BCFA), and ammonia concentrations were determined for each substrate. Glucosamine and glucosamine-chondroitin yielded the greatest organic matter cumulative gas volume (OMCV) among animal substrates (P < 0.05), whereas total SCFA production was greatest for collagen (P < 0.05). Collagen induced an acetate production comparable with FOS and a markedly high acetate-to-propionate ratio (8.41:1) compared with all other substrates (1.67:1 to 2.97:1). Chicken cartilage was rapidly fermentable, indicated by a greater maximal rate of gas production (R(max)) compared with all other substrates (P < 0.05). In general, animal substrates showed an earlier occurrence for maximal gas production rate compared with FOS. Rabbit hair, skin, and bone were poorly fermentable substrates, indicated by the least amount of OMCV and total SCFA among animal substrates (P < 0.05). The greatest amount of ammonia production among animal substrates was measured after incubation of collagen and rabbit bone (P < 0.05). This study provides the first insight into the potential of animal tissues to influence large intestinal fermentation in a strict carnivore, and indicates that animal tissues have potentially similar functions as soluble or insoluble plant fibers in vitro. Further research is warranted to assess the impact of fermentation of each type of animal tissue on gastro-intestinal function and health in the cheetah and other felid species.

  19. The Role of Viscosity and Fermentability of Dietary Fibers on Satiety- and Adiposity-Related Hormones in Rats

    PubMed Central

    Schroeder, Natalia; Marquart, Len F.; Gallaher, Daniel D.

    2013-01-01

    Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination. PMID:23749206

  20. The role of viscosity and fermentability of dietary fibers on satiety- and adiposity-related hormones in rats.

    PubMed

    Schroeder, Natalia; Marquart, Len F; Gallaher, Daniel D

    2013-06-07

    Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination.

  1. Effect of In Vitro Human Digestion on Biogenic Amine (Tyramine) Formation in Various Fermented Sausages.

    PubMed

    Kim, Hyeong Sang; Hur, Sun Jin

    2018-03-01

    Biogenic amines are formed in various fermented foods by microbial amino acid decarboxylation activities, and ingestion of these amines may cause human illness. However, the effect of digestion on the biogenic amines in fermented sausages has not been studied. This study was conducted to determine the effect of in vitro human digestion with the enterobacteria Escherichia coli and Lactobacillus casei on concentrations of the biogenic amine tyramine in six types of fermented sausages. Tyramine concentration was not significantly changed until simulated digestion in the small intestine. However, tyramine concentration for all sausage samples was increased after simulated digestion in the large intestine. Addition of E. coli and L. casei dramatically increased the tyramine concentrations ( P < 0.05). This result indicates that enterobacteria increase biogenic amine concentrations during human digestion.

  2. In vitro fermentation pattern of D-tagatose is affected by adaptation of the microbiota from the gastrointestinal tract of pigs.

    PubMed

    Laerke, H N; Jensen, B B; Højsgaard, S

    2000-07-01

    Knowledge of the fermentation pattern of D-tagatose is important for the assessment of energy value and compliance of D-tagatose. In vitro fermentation experiments with pig intestinal contents and bacteria harvested from the gastrointestinal tract of pigs were used to investigate the degradation of D-tagatose and the formation of fermentation products. Two groups of eight pigs were fed either a control diet containing 150 g/kg sucrose or a diet which had 100 g/kg of the sucrose replaced by D-tagatose. After 18 d the pigs were killed and the gastrointestinal contents collected for in vitro studies. No microbial fermentation of D-tagatose occurred in the stomach or in the small intestine, whereas the sugar was fermented in the cecum and colon. Formate, acetate, propionate, butyrate, valerate, caproate and some heptanoate were produced by the microbial fermentation of D-tagatose by gut microbiota. Hydrogen and methane were also produced. The population of D-tagatose-degrading bacteria in fecal samples and the capacity of bacteria from the hindgut to degrade D-tagatose were higher in the pigs adapted to D-tagatose compared with unadapted pigs. In unadapted pigs, the major fermentation product from D-tagatose was acetic acid. Much more butyric and valeric acids were produced from D-tagatose by bacterial slurries of tagatose-adapted pigs compared with unadapted pigs; this was especially the case for samples from the colon. We conclude that D-tagatose is not fermented in the upper gastrointestinal tract, and the ability of the large intestinal microbiota to ferment D-tagatose is dependent on adaptation.

  3. In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota.

    PubMed

    Guergoletto, Karla Bigetti; Costabile, Adele; Flores, Gema; Garcia, Sandra; Gibson, Glenn R

    2016-04-01

    This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of oligosaccharides in a soybean meal-based diet on fermentative and immune responses in broiler chicks challenged with Eimeria acervulina

    USDA-ARS?s Scientific Manuscript database

    Fermentable oligosaccharides, particularly those found in soybean meal (SBM), may modulate fermentation in the ceca, thus affecting intestinal immune responses to intestinal pathogens. We hypothesized that fermentable oligosaccharides found in SBM would positively impact cecal fermentation and inte...

  5. Proliferative effects of 'fibre' on the intestinal epithelium: relationship to gastrin, enteroglucagon and PYY.

    PubMed Central

    Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A

    1987-01-01

    Refeeding starved rats with a fibre free 'elemental' diet increased crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was seen when inert bulk (kaolin) was added to the 'elemental' diet. Addition of a poorly fermentable dietary 'fibre' (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable 'fibre' (purified wheat bran) caused a large proliferative response in the proximal, mid and distal colon and in the distal small intestine. A gel forming 'fibre' also stimulated proliferation in the distal colon. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus, whilst inert bulk cannot stimulate colonic epithelial cell proliferation, fermentable 'fibre' is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. PMID:2826311

  6. In vitro fermentative capacity of swine large intestine: comparison between native Lantang and commercial Duroc breeds.

    PubMed

    Cheng, Peng Hui; Liang, Juan Boo; Wu, Yin Bao; Wang, Yan; Tufarelli, Vincenzo; Laudadio, Vito; Liao, Xin Di

    2017-08-01

    Native Lantang and commercial Duroc pigs were used as animal models to evaluate the differences existing in dietary fiber utilization ability between breeds. Animals were fed the same diet from weaning (4 weeks) to 4 months of age. Neutral detergent fiber (NDF) from wheat bran (as substrate) and fecal samples from the two breeds (as inoculum) were used in an in vitro gas production trial. Results showed that cumulative and maximum gas productions were higher in inocula from Lantang than those from the Duroc breed (P < 0.05). The degradation capacity of NDF for microbiome from Lantang fecal samples were significantly higher compared to Duroc (P < 0.01). The total quantity of short-chain fatty acids and its constituents from the fermentation liquors were different between breeds, suggesting that the dynamic characteristics of fermentation differed between the two breeds. The PCR denaturing gradient gel electrophoresis fingerprint and cluster analysis demonstrated that microbial communities of the two breeds were separated into two clusters and the bacterial community structure of large intestine among the two breed of pigs was different. Our results concluded that Lantang had higher dietary fiber degradation capacity than Duroc pigs, and the higher degradation capacity for the former breed was due to differences in the inherent microbial community in their respective large intestines. © 2016 Japanese Society of Animal Science.

  7. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    PubMed

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Different concentrations of grape seed extract affect in vitro starch fermentation by porcine small and large intestinal inocula.

    PubMed

    Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R

    2013-01-01

    Grape seed extract (GSE) phenolics have potential health-promoting properties, either from compounds present within the extract, or metabolites resulting from gastrointestinal tract (GIT) fermentation of these compounds. This study describes how GSE affected the kinetics and end-products of starch fermentation in vitro using pig intestinal and fecal inocula. Six GSE concentrations (0, 60, 125, 250, 500, and 750 µg ml⁻¹ were fermented in vitro by porcine ileal and fecal microbiota using starch as the energy source. Cumulative gas production, and end-point short chain fatty acids and ammonia were measured. GSE phenolics altered the pattern (gas kinetics, and end-products such as SCFA and NH₄⁺) of starch fermentation by both inocula, at concentrations above 250 µg ml⁻¹ . Below this level, neither inoculum showed any significant (P > 0.05) effect of the GSE. The results show that GSE phenolics at a concentration over 250 µg ml⁻¹ can have measurable effects on microbial activity in an in vitro fermentation system, as evidenced by the changes in kinetics and end-products from starch fermentation. This suggests that fermentation patterns could be conceivably shifted in the actual GIT, though further evidence will be required from in vivo studies. Copyright © 2012 Society of Chemical Industry.

  9. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa.

    PubMed

    Peixoto, M C; Ribeiro, É M; Maria, A P J; Loureiro, B A; di Santo, L G; Putarov, T C; Yoshitoshi, F N; Pereira, G T; Sá, L R M; Carciofi, A C

    2018-02-01

    The effects of resistant starch (RS) intake on nutrient digestibility, microbial fermentation products, faecal IgA, faecal pH, and histological features of the intestinal mucosa of old dogs were evaluated. The same formulation was extruded in two different conditions: one to obtain elevated starch cooking degree with low RS content (0.21%) and the other lower starch cooking with high RS content (1.46%). Eight geriatric Beagles (11.5 ± 0.38 years old) were fed each diet for 61 days in a crossover design. Food intake, nutrient digestibility, fermentation products, faecal pH, and faecal IgA were examined via variance analysis. Histological results of intestinal biopsies were assessed via Wilcoxon test for paired data. The morphometric characteristics of large intestine crypts were evaluated via paired t tests (p < .05). Protein, fat, and energy digestibilities were higher for the low-RS diet (p < .05). Dogs receiving the high-RS diet had lower faecal pH and higher values for propionate, butyrate, total volatile fatty acids, and lactate (p < .05). No differences between diets were found in the histological parameters of the gut mucosa, and only a tendency for deeper crypts in the descending colon was observed for dogs fed the high-RS diet (p = .083). The intake of a corn-based kibble diet manufactured with coarse ground raw material and low starch gelatinization to obtain 1.4% of RS affected microbial fermentation products and faecal pH and tended to increase crypt depth in the descending colon of old dogs. © 2017 Blackwell Verlag GmbH.

  10. [Metabolic pattern of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method].

    PubMed

    Ma, Meilei; He, Xiangyu; Zhu, Weiyun

    2016-11-04

    This experiment was conducted to study different metabolic patterns of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method. Ileum, cecum and colon chyme in Duroc, Landrace and Yorkshire goods hybridization pigs were taken as inoculum. The single aromatic amino acid concentration was kept 10 mmol/L in fermentation flask. Then the fermentation flask was incubated at 37℃ for 24 h. Gas production was measured at 4, 8, 12, 16 and 24 h, and samples of fermentation collected at 0 h and 24 h were used to measure ammonia nitrogen NH3-N and microbial crude protein (MCP). Denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor and quantify the development of bacteria community in zymotic fluid.[ The concentrations of NH3-N and MCP were significantly affected by aromatic amino acids and intestinal segments (P<0.01). Intestinal segments also affected gas production (GP) significantly (P0.01). NH3-N, MCP and GP were affected by interaction of aromatic amino acids and intestinal segments. DGGE analysis showed bacteria of aromatic amino acids shared amount of bands together, especially similarity analysis of DGGE profile of Phe and Tyr in ileum, Tyr and Trp in colon were 87.9% and 80.5% separately. Shannon diversity indices analysis revealed that aromatic amino acids in cecum and colon varied significantly (P<0.05). Real-time PCR results showed that the quantity of total bacteria were affected by aromatic amino acids and intestinal segments significantly (P<0.05). The potential as proportion of different aromatic amino acids are different. Compared with Trp and Phe, the diversity of bacteria utilizing Tyr in cecum or colon is low; compared with Tyr and Trp, a large number of Phe participated in synthesizing bacteria.The fermentation pattern of specific aromatic amino acids in different intestinal segment was unique. Compared with ileum and cecum, much more aromatic amino acids participated in the synthesis of bacteria in colon.

  11. Effects of an elemental diet, inert bulk and different types of dietary fibre on the response of the intestinal epithelium to refeeding in the rat and relationship to plasma gastrin, enteroglucagon, and PYY concentrations.

    PubMed Central

    Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A

    1987-01-01

    Refeeding starved rats with an elemental diet resulted in a marked increase in crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was noted when inert bulk (kaolin) was added to the elemental diet. Addition of a poorly fermentable dietary fibre (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable fibre (purified wheat bran) caused a large proliferative response in the proximal, mid, and distal colon and in the distal small intestine. A gel forming fibre only significantly stimulated proliferation in the distal colon; the rats in this group, however, did not eat all the food given. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus while inert bulk cannot stimulate colonic epithelial cell proliferation fermentable fibre is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. Images Fig. 1 PMID:3030902

  12. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-10-04

    Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56%  reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.

  13. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    PubMed

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates with a benchmark slow fermenting fiber that we fabricated in an in vitro simulation of the human digestive system. Results show a variety of fermentation profiles only some of which have slow and extended rate of fermentation. © 2011 Institute of Food Technologists®

  14. Effect of a combination of inulin and polyphenol-containing adzuki bean extract on intestinal fermentation in vitro and in vivo.

    PubMed

    Nagata, Ryuji; Echizen, Mao; Yamaguchi, Yukari; Han, Kyu-Ho; Shimada, Kenichiro; Ohba, Kiyoshi; Kitano-Okada, Tomoko; Nagura, Taizo; Uchino, Hirokatsu; Fukushima, Michihiro

    2018-03-01

    The effect of a combination of inulin (INU) and polyphenol-containing adzuki bean extract (AE) on intestinal fermentation was examined in vitro using fermenters for 48 h and in vivo using rats for 28 d. The total short-chain fatty acid concentrations in the fermenters were decreased by a combination of INU and AE, but the concentration in the INU + AE group was higher than the cellulose (CEL) and CEL + AE groups. The cecal propionate concentration was increased by a combination of INU and AE compared with their single supplement. The ammonia-nitrogen concentration in the fermenters and rat cecum was decreased by INU and AE. Cecal mucin levels were increased by INU and AE respectively. Therefore, our observations suggested that the combination of INU and AE might be a material of functional food that includes several healthy effects through intestinal fermentation.

  15. Purification and fermentation characteristics of exopolysaccharide from Fomitopsis castaneus Imaz.

    PubMed

    Guo, Wenkui; Chi, Yujie

    2017-12-01

    Short-chain fatty acids (SCFAs), which are the end products of carbohydrate fermentation in the gut, mainly contribute to energy metabolism in mammals. The amount of SCFAs produced during fermentation is an important parameter that characterizes the fermentation capacity of a system. This paper reports on the fermentation characteristics of exopolysaccharides (EPS) isolated from Fomitopsis castaneus Imaz, a wood-rot fungal species. We isolated and purified the main EPS fraction by freeze drying and DEAE-Sepharose fast flow chromatography. We then analyzed the monosaccharide composition of EPS. The isolated EPS was mainly composed of glucose, galactose, rhamnose, mannose, and arabinose. The characteristic absorption peaks of sugar esters were also detected. Fresh fecal extracts from healthy adults and children were used as fermentation substrate to simulate the human intestinal environment (anaerobic conditions at 37°C) and study the fermentation characteristics of the purified EPS. Adding the isolated EPS to the fermentation system of the simulated intestinal environment increased the SCFAs content in the fecal extract of adults and children. However, the yield of SCFAs, particularly butyric acid, in the fermentation system of fecal extract in children was higher than that in adults. Furthermore, adding exogenous lactic acid bacteria, such as Enterococcus fecalis and Enterococcus fecium, to the fermentation system effectively increased the SCFAs concentration in the model intestinal system of the children. By contrast, adding E. fecalis, Lactobacillus rhamnosus, and E. fecium increased the content of the produced SCFAs in the system of adults. Those results indicate that EPS isolated from F. castaneus Imaz was effectively fermented in the simulated intestinal environments, and the fermentation capability was enhanced by adding microbial flora. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota.

    PubMed

    Mandalari, Giuseppina; Chessa, Simona; Bisignano, Carlo; Chan, Luisa; Carughi, Arianna

    2016-09-14

    Modulation of the human gut microbiota has proven to have beneficial effects on host health. The aim of this work was to evaluate the effect of sun-dried raisins (SR) on the composition of the human gut microbiota. A full model of the gastrointestinal tract, which includes simulated mastication, a dynamic gastric model, a duodenal model and a colonic model of the human large intestine, was used. An increase in the numbers of bifidobacteria and lactobacilli was observed by plate-counting in response to the addition of either SR or FOS after 8 and 24 h fermentation. A significant decrease in Firmicutes and Bacteroidetes was observed in SR samples after 8 and 24 h fermentation. FOS resulted in the greatest production of short chain fatty acids. Sun-dried raisins demonstrated considerable potential to promote the colonization and proliferation of beneficial bacteria in the human large intestine and to stimulate the production of organic acids.

  17. Enzymatically Modified Starch Favorably Modulated Intestinal Transit Time and Hindgut Fermentation in Growing Pigs

    PubMed Central

    Newman, M. A.; Zebeli, Q.; Velde, K.; Grüll, D.; Molnar, T.; Kandler, W.; Metzler-Zebeli, B. U.

    2016-01-01

    Aside from being used as stabilizing agents in many processed foods, chemically modified starches may act as functional dietary ingredients. Therefore, development of chemically modified starches that are less digestible in the upper intestinal segments and promote fermentation in the hindgut receives considerable attention. This study aimed to investigate the impact of an enzymatically modified starch (EMS) on nutrient flow, passage rate, and bacterial activity at ileal and post-ileal level. Eight ileal-cannulated growing pigs were fed 2 diets containing 72% purified starch (EMS or waxy cornstarch as control) in a cross-over design for 10 d, followed by a 4-d collection of feces and 2-d collection of ileal digesta. On d 17, solid and liquid phase markers were added to the diet to determine ileal digesta flow for 8 h after feeding. Reduced small intestinal digestion after the consumption of the EMS diet was indicated by a 10%-increase in ileal flow and fecal excretion of dry matter and energy compared to the control diet (P<0.05). Moreover, EMS feeding reduced ileal transit time of both liquid and solid fractions compared to the control diet (P<0.05). The greater substrate flow to the large intestine with the EMS diet increased the concentrations of total and individual short-chain fatty acids (SCFA) in feces (P<0.05). Total bacterial 16S rRNA gene abundance was not affected by diet, whereas the relative abundance of the Lactobacillus group decreased (P<0.01) by 50% and of Enterobacteriaceae tended (P<0.1) to increase by 20% in ileal digesta with the EMS diet compared to the control diet. In conclusion, EMS appears to resemble a slowly digestible starch by reducing intestinal transit and increasing SCFA in the distal large intestine. PMID:27936165

  18. Digestion, absorption, and fermentation of carbohydrates in the newborn.

    PubMed

    Kien, C L

    1996-06-01

    In the newborn, sugars present in human milk and formulas are assimilated by both small intestinal digestion and, especially in the case of lactose, colonic bacterial fermentation. Colonic fermentation of carbohydrate serves three major functions: (1) conservation of a fraction of the metabolizable energy of dietary carbohydrate that is not absorbed in the small intestine; (2) prevention of osmotic diarrhea; and (3) production of short-chain fatty acids that stimulate sodium and water absorption, serve as fuel for colonocytes, and stimulate cell replication in colon and small intestine. Diarrhea produced in association with small bowel malabsorption of sugar may be caused by three, potentially overlapping mechanisms: (1) osmotic effects of unfermented sugar, which may cause secondary disruption of fermentation by purging the bacteria or diluting the bacteria mass; (2) damage to the colon mucosa from excessive fermentation leading to SCFA malabsorption and osmotic diarrhea on this basis; and (3) excessive fermentation leading to lowering of luminal pH and inhibition of bacterial enzymes. Therapy aimed at reducing diarrhea associated with sugar malabsorption might involve either slowing of motility to facilitate fermentation or stimulation of fermentative activity, but such interventions would depend on greater understanding of the mechanisms for colonic dysfunction in this condition.

  19. Review of the association between meat consumption and risk of colorectal cancer.

    PubMed

    Kim, Eunjung; Coelho, Desire; Blachier, François

    2013-12-01

    The incidence of colorectal cancer (CRC) is rapidly increasing in developing countries, especially among populations that are adopting Western-style diets. Several, but not all, epidemiological and experimental studies suggest that a high intake of meat, especially red and processed meat, is associated with increased CRC risk. Potential reasons for the association between high red and processed meat intake and CRC risk include the content of the meat (e.g. protein, heme) and compounds generated by the cooking process (e.g. N-nitroso compounds, heterocyclic amines). These factors can affect the large intestine mucosa with genotoxicity and metabolic disturbances. Increased bacterial fermentation (putrefaction) of undigested protein and production of bacterial metabolites derived from amino acids may affect colon epithelial homeostasis and renewal. This correlates with the fact that most colonic cancers are detected in the distal colon and rectum where protein fermentation actively occurs. However, there are still large controversies on the relationship between red meat consumption and CRC risk. Therefore, the purpose of this review is to enhance the current understanding on the association between high red and processed meat intakes with CRC risk. A principal focus of this review will be to discuss the meat-related components, such as proteins in the meat, heme, N-nitroso compounds, and heterocyclic amines, and the effects they have upon the large intestine mucosa and the intestinal gut microbiota. © 2013 Elsevier Inc. All rights reserved.

  20. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    PubMed

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  1. Dietary Carbohydrates and Childhood Functional Abdominal Pain.

    PubMed

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-01-01

    Childhood functional gastrointestinal disorders (FGIDs) affect a large number of children throughout the world. Carbohydrates (which provide the majority of calories consumed in the Western diet) have been implicated both as culprits for the etiology of symptoms and as potential therapeutic agents (e.g., fiber) in childhood FGIDs. In this review, we detail how carbohydrate malabsorption may cause gastrointestinal symptoms (e.g., bloating) via the physiologic effects of both increased osmotic activity and increased gas production from bacterial fermentation. Several factors may play a role, including: (1) the amount of carbohydrate ingested; (2) whether ingestion is accompanied by a meal or other food; (3) the rate of gastric emptying (how quickly the meal enters the small intestine); (4) small intestinal transit time (the time it takes for a meal to enter the large intestine after first entering the small intestine); (5) whether the meal contains bacteria with enzymes capable of breaking down the carbohydrate; (6) colonic bacterial adaptation to one's diet, and (7) host factors such as the presence or absence of visceral hypersensitivity. By detailing controlled and uncontrolled trials, we describe how there is a general lack of strong evidence supporting restriction of individual carbohydrates (e.g., lactose, fructose) for childhood FGIDs. We review emerging evidence suggesting that a more comprehensive restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) may be effective. Finally, we review how soluble fiber (a complex carbohydrate) supplementation via randomized controlled intervention trials in childhood functional gastrointestinal disorders has demonstrated efficacy. © 2016 S. Karger AG, Basel.

  2. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants.

    PubMed

    Gressley, T F; Hall, M B; Armentano, L E

    2011-04-01

    Microbial fermentation of carbohydrates in the hindgut of dairy cattle is responsible for 5 to 10% of total-tract carbohydrate digestion. When dietary, animal, or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates from the small intestine, hindgut acidosis can occur. Hindgut acidosis is characterized by increased rates of production of short-chain fatty acids including lactic acid, decreased digesta pH, and damage to gut epithelium as evidenced by the appearance of mucin casts in feces. Hindgut acidosis is more likely to occur in high-producing animals fed diets with relatively greater proportions of grains and lesser proportions of forage. In these animals, ruminal acidosis and poor selective retention of fermentable carbohydrates by the rumen will increase carbohydrate flow to the hindgut. In more severe situations, hindgut acidosis is characterized by an inflammatory response; the resulting breach of the barrier between animal and digesta may contribute to laminitis and other disorders. In a research setting, effects of increased hindgut fermentation have been evaluated using pulse-dose or continuous abomasal infusions of varying amounts of fermentable carbohydrates. Continuous small-dose abomasal infusions of 1 kg/d of pectin or fructans into lactating cows resulted in decreased diet digestibility and decreased milk fat percentage without affecting fecal pH or VFA concentrations. The decreased diet digestibility likely resulted from increased bulk in the digestive tract or from increased digesta passage rate, reducing exposure of the digesta to intestinal enzymes and epithelial absorptive surfaces. The same mechanism is proposed to explain the decreased milk fat percentage because only milk concentrations of long-chain fatty acids were decreased. Pulse-dose abomasal fructan infusions (1 g/kg of BW) into steers resulted in watery feces, decreased fecal pH, and increased fecal VFA concentrations, without causing an inflammatory response. Daily 12-h abomasal infusions of a large dose of starch (~4 kg/d) have also induced hindgut acidosis as indicated by decreased fecal pH and watery feces. On the farm, watery or foamy feces or presence of mucin casts in feces may indicate hindgut acidosis. In summary, hindgut acidosis occurs because of relatively high rates of large intestinal fermentation, likely due to digestive dysfunction in other parts of the gut. A better understanding of the relationship of this disorder to other animal health disorders is needed.

  3. Influence of the Fruit Juice Carriers on the Ability of Lactobacillus plantarum DSM20205 to Improve in Vitro Intestinal Barrier Integrity and Its Probiotic Properties.

    PubMed

    Valero-Cases, Estefanía; Roy, Nicole C; Frutos, María José; Anderson, Rachel C

    2017-07-19

    This study investigates the influence of tomato and feijoa juices as fermentable carriers of Lactobacillus plantarum (LP DSM20205) on the ability of the bacterium to improve intestinal barrier function using the trans-epithelial electrical resistance (TEER) assay in an apical anaerobic model. The survival of LP DSM20205 in different fruit juices during in vitro digestion, its adhesion capacity, and potential cytotoxic effect on Caco-2 cells were also studied. The results showed that carrier fruit juices have a significant influence on LP DSM20205 growth, survival during in vitro digestion, adhesion capacity, and TEER. All fermented samples were not cytotoxic to Caco-2 cells. The fermented tomato juice showed the largest improvement to intestinal barrier integrity. The digested fermented juices did not increase TEER, although the LP DSM20205 in these samples adhered well. Therefore, LP DSM20205 has the potential to be used as a probiotic in the production of fermented tomato and feijoa juices.

  4. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota.

    PubMed

    Zhu, Xiuling; Zhang, Xin; Sun, Yongkang; Su, Di; Sun, Yi; Hu, Bing; Zeng, Xiaoxiong

    2013-02-27

    Sesaminol triglucoside (STG), the most abundant lignan glycoside existing in sesame cake/meal, has exhibited various biological activities. However, little information about its in vitro fermentation with intestinal microbiota is available. Therefore, the effect of STG from sesame cake on the fermentation of human fecal microbiota was evaluated. First, high-purity STG was successfully prepared from defatted sesame cake by extraction with 80% ethanol and simple purification procedures of polyamide column chromatography and Toyopearl HW-40S column chromatography. Then the influence of STG on intestinal microbiota was conducted by monitoring bacterial populations and analyzing the concentrations of short-chain fatty acids (SCFA). We found that STG could significantly induce an increase in numbers of Lactobacillus - Enterococcus group and Bifidobacterium in fermentation in vitro with human fecal microbiota, while it did not stimulate the bacterial growth of Eubacterium rectale - Clostridium coccoides group, Clostridium histolyticum group, and Bacteroides - Prevotella group. Furthermore, it was found that concentrations of formic, acetic, propionic, and butyric acids in STG culture increased significantly during the fermentation, and its total SCFA concentration was relatively higher than those of the control and glucose cultures at 6 and 12 h fermentation. Our findings provided further evidence for the importance of human intestinal bacteria in the bioactivity of STG and its metabolites in the maintenance of human health.

  5. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity.

    PubMed

    Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal

    2006-12-01

    The probiotic effects ascribed to lactic acid bacteria (LAB) and their fermented dairy products arise not only from whole microorganisms and cell wall components but also from peptides and extracellular polysaccharides (exopolysaccharides) produced during the fermentation of milk. There is a lack of knowledge concerning the immune mechanisms induced by exopolysaccharides produced by lactic acid bacteria, which would allow a better understanding of the functional effects described to them. The aim of this study was to investigate the in vivo immunomodulating capacity of the exopolysaccharide produced by Lactobacillus kefiranofaciens by analyzing the profile of cytokines and immunoglobulins induced at the intestinal mucosa level, in the intestinal fluid and blood serum. BALB/c mice received the exopolysaccharide produced by L. kefiranofaciens for 2, 5 or 7 consecutive days. At the end of each period of administration, control and treated mice were sacrificed and the numbers of IgA+ and IgG+ cells were determined on histological slices of the small and large intestine by immunofluorescence. Cytokines (IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha) were also determined in the gut lamina propria as well as in the intestinal fluid and blood serum. There was an increase of IgA+ cells in the small and large intestine lamina propria, without change in the number of IgG+ cells in the small intestine. This study reports the effects of the oral administration of the exopolysaccharide produced by L. kefiranofaciens in the number of IgA+ cells in the small and large intestine, comparing simultaneously the production of cytokines by cells of the lamina propria and in the intestinal fluid and blood serum. The increase in the number of IgA+ cells was not simultaneously accompanied by an enhance of the number of IL-4+ cells in the small intestine. This finding would be in accordance with the fact that, in general, polysaccharide antigens elicit a T-independent immune response. For IL-10+, IL-6+ and IL-12+ cells, the values found were slightly increased compared to control values, while IFNgamma+ and TNFalpha+ cells did not change compared to control values. The effects observed on immunoglobulins and in all the cytokines assayed in the large intestine after kefiran administration were of greater magnitude than the ones observed in the small intestine lamina propria, which may be due to the saccharolytic action of the colonic microflora. In the intestinal fluid, only IL-4 and IL-12 increased compared to control values. In blood serum, all the cytokines assayed followed a pattern of production quite similar to the one found for them in the small intestine lamina propria. We observed that the exopolysaccharide induced a gut mucosal response and it was able to up and down regulate it for protective immunity, maintaining intestinal homeostasis, enhancing the IgA production at both the small and large intestine level and influencing the systemic immunity through the cytokines released to the circulating blood.

  6. Improvement of the human intestinal flora by ingestion of the probiotic strain Lactobacillus johnsonii La1.

    PubMed

    Yamano, Toshihiko; Iino, Hisakazu; Takada, Mamiko; Blum, Stephanie; Rochat, Florence; Fukushima, Yoichi

    2006-02-01

    To exert beneficial effects for the host, for example, improving the intestinal microflora, a probiotic must reach the intestine as a viable strain. These properties must be demonstrated by in vitro as well as in vivo methods. However, only a few well-designed human clinical studies have shown these properties. Lactobacillus johnsonii La1 has been shown to give many beneficial effects for the host, but it is unclear whether a viable strain of L. johnsonii La1 has the effect of improving host intestinal microflora. In the present study, a randomised double-blind placebo-controlled cross-over trial was conducted to elucidate the effect of L. johnsonii La1 on human intestinal microflora. Twenty-two young healthy Japanese women were randomly divided into two groups, and either received fermented milk with L. johnsonii La1 or a fermented milk without L. johnsonii La1 (placebo) daily for 21 d. Consumption of the fermented milk: (a) increased total Bifidobacterium and Lactobacillus, and decreased lecithinase-positive Clostridium in the faeces; (b) increased the faecal lactic acid concentrations; (c) decreased the faecal pH; (d) increased the defecation frequency. These changes were stronger than those observed with the placebo. L. johnsonii La1 was identified in all subjects only after the consumption of the fermented milk. These results suggest that L. johnsonii La1 can contribute to improve intestinal microflora with probiotic properties.

  7. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  8. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants

    PubMed Central

    Thum, Caroline; Roy, Nicole C; McNabb, Warren C; Otter, Don E; Cookson, Adrian L

    2015-01-01

    This study was conducted to investigate the catabolism and fermentation of caprine milk oligosaccharides (CMO) by selected bifidobacteria isolated from 4 breast-fed infants. Seventeen bifidobacterial isolates consisting of 3 different species (Bifidobacterium breve, Bifidobacterium longum subsp. longum and Bifidobacterium bifidum) were investigated. A CMO-enriched fraction (CMOF) (50% oligosaccharides, 10% galacto-oligosaccharides (GOS), 20% lactose, 10% glucose and 10% galactose) from caprine cheese whey was added to a growth medium as a sole source of fermentable carbohydrate. The inclusion of the CMOF was associated with increased bifidobacterial growth for all strains compared to glucose, lactose, GOS, inulin, oligofructose, 3'-sialyl-lactose and 6'-sialyl-lactose. Only one B. bifidum strain (AGR2166) was able to utilize the sialyl-CMO, 3'-sialyl-lactose and 6'-sialyl-lactose, as carbohydrate sources. The inclusion of CMOF increased the production of acetic and lactic acid (P < 0.001) after 36 h of anaerobic fermentation at 37°C, when compared to other fermentable substrates. Two B. bifidum strains (AGR2166 and AGR2168) utilised CMO, contained in the CMOF, to a greater extent than B. breve or B. longum subsp longum isolates, and this increased CMO utilization was associated with enhanced sialidase activity. CMOF stimulated bifidobacterial growth when compared to other tested fermentable carbohydrates and also increased the consumption of mono- and disaccharides, such as galactose and lactose present in the CMOF. These findings indicate that the dietary consumption of CMO may stimulate the growth and metabolism of intestinal Bifidobacteria spp. including B. bifidum typically found in the large intestine of breast-fed infants. PMID:26587678

  9. Digestive sensitivity varies according to size of dogs: a review.

    PubMed

    Weber, M P; Biourge, V C; Nguyen, P G

    2017-02-01

    Field observations on food tolerance have repeatedly shown that when fed an identical diet, large breed (>25 kg) dogs present softer and moister faeces than small breed ones (<15 kg). The purpose of this review is to highlight the findings of four PhD theses, carried out between 1998 and 2013, whose objectives were to investigate the anatomical and physiological peculiarities that would explain, at least in part, this observation, as well as their nutritional implication. This work showed that large breed dogs, in contrast with smaller breeds, present a highly developed caecum and colon, which could explain the relatively longer colonic transit time. A prolonged colonic transit time could explain higher colonic fermentative activity, as supported by higher faecal concentrations of fermentative by-products. This effect would be reinforced by increased intestinal permeability and reduced sodium net-absorption. Taken together, these elements could be a possible cause of higher digestive sensitivity in large breed dogs. When prescribing a diet to a small or large breed dog, several aspects of the formulation must be taken into account. For a large breed dog, the general goal is to limit any ingredient that could increase the level of fermentable undigested residues and, in fine, exacerbate colonic fermentation. Highly digestible sources of proteins and starches are therefore strongly recommended to maintain an optimal digestive tolerance. Fermentable fibre sources (i.e. beet pulp and FOS) must also be used in limited quantity in their diet. Conversely, the incorporation of non-fermentable fibre (i.e. cellulose) appears useful to increase their stool quality. For a small breed dog, the general objective is to minimize any ingredient that could excessively limit colonic fermentation and induce in fine constipation. Purified starches and cellulose are therefore not really suitable for them. In contrast, cereals flours as well as non-fermentable fibre provided by cereals are recommended. © 2016 Royal Canin SAS. Journal of Animal Physiology and Animal Nutrition published by Blackwell Verlag GmbH.

  10. Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion.

    PubMed

    Kim, Hyeong Sang; Hur, Sun Jin

    2018-01-15

    The objective of this study was to determine the effect of six different starter cultures of enterobacteria on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Before digestion, the concentration of residual nitrite was dependent on starter culture in fermented sausage and ranged from 25.2 to 33.2mg/kg. Among the six starter cultures of enterobacteria, Pediococcus acidilactici, Pediococcus pentosaceus, and Staphylococcus carnosus showed higher nitrite depletion ability than the other three strains in fermented sausages. The concentration of residual nitrite in fermented sausages was significantly (p<0.05) decreased after stomach digestion and ranged from 17.4 to 21.6mg/kg. Enterobacteria Escherichia coli (E. coli) and/or Lactobacillus casei (L. casei) effectively increased the degree of depletion of residual nitrite in large intestine digestion. In conclusion, starter cultures could influence the concentration of residual nitrite during in vitro human digestion. They could deplete residual nitrite in fermented sausages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Contribution of acetate to butyrate formation by human faecal bacteria.

    PubMed

    Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J

    2004-06-01

    Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

  12. Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats?

    PubMed Central

    Goodlad, R A; Ratcliffe, B; Fordham, J P; Wright, N A

    1989-01-01

    The aim of the present experiment was to investigate the role of hind gut fermentation in the proliferative response of the intestinal epithelium to dietary fibre. We have previously shown that refeeding starved rats with an elemental diet supplemented with fermentable dietary fibre (but not inert bulk) is capable of stimulating intestinal epithelial cell proliferation throughout the gastrointestinal tract. Three groups of 10 germ free (GF) rats and three groups of 10 conventional (CV) rats, were used. All groups were starved for three days and then refed for two days with either an elemental diet (Flexical); Flexical plus 30% kaolin; or Flexical plus 30% of a fibre mixture. Cell production was determined by the accumulation of vincristine arrested metaphases in microdissected crypts. There was no significant difference between refeeding the rats with an elemental diet alone or with kaolin supplementation, however, the addition of fibre in CV rats was associated with a significant increase in intestinal crypt cell production rate in both the small intestine (p less than 0.01) and the colon (p less than 0.001). This marked proliferative effects of fibre was abolished in the GF rats. It can be concluded that it is the products of hind gut fermentation, not fibre per se that stimulate intestinal epithelial cell proliferation in the colon and small intestine. PMID:2546871

  13. Passage of Salmonella through the crop and gizzard of broiler chickens fed with fermented liquid feed.

    PubMed

    Heres, Lourens; Wagenaar, Jaap A; van Knapen, Frans; Urlings, Bert A P

    2003-04-01

    In vivo experiments were conducted in order to investigate the passage and bacterial reduction of Salmonella in the crop and gizzard of chickens when fed two different feeds. The chickens were fed dry conventional feed and fermented liquid feed. The fermented feed contains a relatively high concentration of lactic and acetic acid and lactobacilli. One and three week old broiler chickens were necropsied at short intervals after inoculation with Salmonella Enteritidis. Counts of Salmonella from the crop, gizzard, duodenum, caecum and colon/rectum were obtained. This revealed a sharper decrease of Salmonella in the anterior parts of the gastro-intestinal tract in chickens fed with fermented feed than in chickens fed dry feed. It is therefore concluded that fermented feed improves the barrier formed by the crop and gizzard. The reduction of Salmonella is fully realised in the crop and gizzard. The lower intestinal compartment did not show a substantial effect on the reduction of Salmonella. The performed in vivo method appeared to be an appropriate way to study intervention strategies that aim to control Salmonella by improving the barrier function of the upper gastro-intestinal tract.

  14. Influence of fermentable carbohydrates or protein on large intestinal and urinary metabolomic profiles in piglets.

    PubMed

    Pieper, R; Neumann, K; Kröger, S; Richter, J F; Wang, J; Martin, L; Bindelle, J; Htoo, J K; Vahjen, V; Van Kessel, A G; Zentek, J

    2012-12-01

    It was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation.

  15. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.

    PubMed

    Woyengo, T A; Jha, R; Beltranena, E; Zijlstra, R T

    2016-06-01

    Canola co-products are sources of amino acid and energy in pig feeds, but their fermentation characteristics in the pig intestine are unknown. Thus, we determined the in vitro fermentation characteristics of the canola co-products Brassica juncea solvent-extracted canola meal (JSECM), Brassica napus solvent-extracted canola meal (NSECM), B. napus expeller-pressed canola meal (NEPCM) and B. napus cold-pressed canola cake (NCPCC) in comparison with soybean meal (SBM). Samples were hydrolysed in two steps using pepsin and pancreatin. Subsequently, residues were incubated in a buffer solution with fresh pig faeces as inocula for 72 h to measure gas production. Concentration of volatile fatty acids (VFA) per gram of dry matter (DM) of feedstuff was measured in fermented solutions. Apparent ileal digestibility (AID) and apparent hindgut fermentation (AHF) of gross energy (GE) for feedstuffs were obtained from pigs fed the same feedstuffs. On DM basis, SBM, JSECM, NSECM, NEPCM and NCPCC contained 15, 19, 22, 117 and 231 g/kg ether extract; and 85, 223, 306, 208 and 176 g/kg NDF, respectively. In vitro digestibility of DM (IVDDM) of SBM (82.3%) was greater (P<0.05) than that of JSECM (68.5%), NSECM (63.4%), NEPCM (67.5%) or NCPCC (69.8%). The JSECM had greater (P<0.05) IVDDM than NSECM. The IVDDM for NSECM was lower (P<0.05) than that for NEPCM, which was lower (P<0.05) than that for NCPCC. Similarly, AID of GE was greatest for SBM followed by NCPCC, JSECM, NEPCM and then NSECM. Total VFA production for SBM (0.73 mmol/g) was lower (P<0.05) than that of JSECM (1.38 mmol/g) or NSECM (1.05 mmol/g), but not different from that of NEPCM (0.80 mmol/g) and NCPCC (0.62 mmol/g). Total VFA production of JSECM was greater (P<0.05) than that of NSECM. Total VFA production of NSECM was greater (P<0.05) than that of NEPCM or NCPCC, which differed (P<0.05). The ranking of feedstuffs for total VFA production was similar to AHF of GE. In conclusion, in vitro fermentation characteristics of canola co-products and SBM simulated their fermentation in the small and large intestine of pigs, respectively. The 30% greater VFA production for JSECM than NSECM due to lower lignified fibre of JSECM indicates that fermentation characteristics differ between canola species. The NSECM had the highest fermentability followed by NEPCM and then NCPCC, indicating that fat in canola co-products can limit their fermentability in the hindgut.

  16. Enhancement of Antioxidative and Intestinal Anti-inflammatory Activities of Glycated Milk Casein after Fermentation with Lactobacillus rhamnosus 4B15.

    PubMed

    Oh, Nam Su; Joung, Jae Yeon; Lee, Ji Young; Kim, Younghoon; Kim, Sae Hun

    2017-06-14

    In this study, we investigated the glycoproteomics of glycated milk casein (GMC) and GMC fermented by Lactobacillus rhamnosus 4B15 (FGMC) and determined their biological implications. There was a significant increase in the antioxidative and anti-inflammatory activities of GMC with galactose, which were higher than those of GMC with glucose (GMC-glc). Furthermore, the fermentation of GMC by L. rhamnosus 4B15 synergistically enhanced the above activities compared to those of unfermented GMC. Especially, fermented GMC-glc (FGMC-glc) possessed remarkably improved reducing power and radical scavenging activities. Moreover, FGMC-glc ameliorated the inflammatory response and tight junction-related intestinal epithelial dysfunction. Additionally, hexose-derived glycation and modification sites in protein sequences of GMC were identified. In particular, glycosylation and sulfation of serine and threonine residues were observed, and distinct modification sites were detected after fermentation. Therefore, these results indicated that glycation-induced modification of casein and fermentation correlated strongly with the enhanced functional properties.

  17. Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-03-01

    Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs.

    PubMed

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Tuśnio, Anna; Bachanek, Ilona

    2017-06-01

    The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.

  19. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-12-01

    Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.

  20. [Influence of proton pump inhibitors on intestinal fermentative profile: a case-control study].

    PubMed

    Senderovky, Melisa; Lasa, Juan; Dima, Guillermo; Peralta, Daniel; Argüello, Mariano; Soifer, Luis

    2014-01-01

    Proton pump inhibitors could have an impact on the results of breath tests performed in patients with irritable bowel syndrome. This impact could be due to the development of small intestine bacterial overgrowth. To compare the prevalence of fermentative profile alterations of irritable bowel syndrome patients exposed and not-exposed to proton pump inhibitor therapy. Subjects with irritable bowel syndrome were enrolled. A validated questionnaire assessing symptom severity as well as proton pump inhibitor treatment was delivered. A lactulose breath test was undertaken by each enrolled subject. Fermentative profile (area under the curve of hydrogen excretion/time) was compared between proton pump inhibitors consumers and non-consumers. Furthermore, small intestine bacterial overgrowth prevalence was compared. Two hundred and twenty five patients were enrolled. No significant differences were found on the fermentative profile between groups [AUC mediana 3,776 (rango 2,124-5,571) vs 4,347 (rango 2,038-5,481), P = 0.3]. Small intestine bacterial overgrowth prevalence was similar as well [33% vs 27.5%]. These differences remained non-significant after adjusting for proton pump inhibitor dose and treatment time. Surprisingly, symptom score was significantly higher in those patients under proton pump inhibitor therapy [28.5 (23-26) vs 23 (15-29), P = 0.01]. Proton pump inhibitors have no significant influence on lactulose breath tests, regardless of the dosage and time of administration.

  1. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 reduces bacterial translocation in rats treated with carbon tetrachloride

    PubMed Central

    Sánchez, Elisabet; Nieto, Juan C.; Vidal, Silvia; Santiago, Alba; Martinez, Xavier; Sancho, Francesc J.; Sancho-Bru, Pau; Mirelis, Beatriz; Corominola, Helena; Juárez, Candido; Manichanh, Chaysavanh; Guarner, Carlos; Soriano, German

    2017-01-01

    Probiotics can prevent pathological bacterial translocation by modulating intestinal microbiota and improving the gut barrier. The aim was to evaluate the effect of a fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 on bacterial translocation in rats with carbon tetrachloride (CCl4)-induced cirrhosis. Sprague-Dawley rats treated with CCl4 were randomized into a probiotic group that received fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 in drinking water or a water group that received water only. Laparotomy was performed one week after ascites development. We evaluated bacterial translocation, intestinal microbiota, the intestinal barrier and cytokines in mesenteric lymph nodes and serum. Bacterial translocation decreased and gut dysbiosis improved in the probiotic group compared to the water group. The ileal β-defensin-1 concentration was higher and ileal malondialdehyde levels were lower in the probiotic group than in water group. There were no differences between groups in serum cytokines but TNF-α levels in mesenteric lymph nodes were lower in the probiotic group than in the water group. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 decreases bacterial translocation, gut dysbiosis and ileal oxidative damage and increases ileal β-defensin-1 expression in rats treated with CCl4, suggesting an improvement in the intestinal barrier integrity. PMID:28368023

  2. A COMPARATIVE STUDY OF DYSENTERY AND DYSENTERY-LIKE ORGANISMS

    PubMed Central

    Torrey, John C.

    1905-01-01

    The group of dysentery organisms is a large and. varied one. It may be divided, as is well known, into two main sub-groups, the "Shiga-Kruse" and the "mannit-fermenters," which are of equal importance and entirely distinct. If we take decided differences in agglutination, as determined by absorptions, as a criterion of specificity, the latter group includes at least four distinct species with a number of sub-varieties and transition forms. Two of the above species are found among organisms which split either dextrose, mannit, and saccharose or in addition maltose. The other two species are represented by the bacillus "Y" of Hiss and Russell and the "Flexner-Manila" bacillus. If we adopt Ford's proposal, that a new species should be made for each culture showing a constant cultural or agglutinative difference, the number would increase considerably. At the best, however, classification of bacteria is at present very artificial. Although so many types appear among the " mannit-fermenters," there is no reason why they should not all be included in the dysentery group of bacilli, provided the reaction in litmus milk be typical. This cultural test, as Duval has emphasized, is the most constant one which we have at present, but it should extend over several weeks in order to exclude lactose fermenters. In contradistinction to the heterogeneity of the "mannit-fermenters," the homogeneity of the "Shiga-Kruse" type stands in marked contrast. Every culture of the latter which. was tested (about twenty in all) reacted in all media and agglutinated with all the various sera exactly alike. One is tempted to explain this diversity of the "mannit-fermenters" by accepting the suggestion of Flexner, that they may be occasional, if not constant, inhabitants of the normal intestine. Certainly Duval has isolated the "mannit-fermenters" from the mildest cases of diarrhœa, to say nothing of the two apparently normal infants from which he also obtained them. Furthermore, the agglutinins for the mannit group in normal blood might be accounted for on this hypothesis, as well as the many differences in fermentation and agglutination. For, as has been well said by Smith and Reagh, one " should keep in mind the various adaptations in the intestine—it may be to the food remains in the large intestine, to the mucus on the surface of the epithelium, to the contents of the tubules and the larger flask-shaped glands, and further, with this progressive adaptation are associated modifications of biological characters which most likely involve agglutinative capacities as well." The fact that dysentery bacilli have not been isolated frequently from the normal intestine might be explained by their habitat being possibly within the mucus tubules and their number few under normal condition, for it is well known that they are most frequently found in association with mucus. When abnormal conditions, however, arise and the production of mucus increases, these organisms would possibly multiply in number pari passu and find themselves in a favorable position to attack any slight injury which might occur in the wall of the intestine. The "Shiga-Kruse," or Group I, type, on the other hand, seems to present the characters of a true parasite. Only an insignificant amount of agglutinin is present for it in normal human blood and that of laboratory animals, according to most authorities; it agglutinates alike in various immune sera; it has a very marked toxicity for laboratory animals; it has never been isolated from the normal human intestine, although an organism in some respects like it has been described by Ford as being an inhabitant of the normal intestine; it produces no indol; it splits only the monosaccharids, through which it falls in line with the conclusion of Smith and Reagh, that the less a bacillus acts on sugars the more pronounced is its parasitic character. Whether or not it ever invades the blood in numbers is a question yet to be decided. PMID:19867005

  3. Lactulose breath test gas production in childhood IBS is associated with intestinal transit and bowel movement frequency

    USDA-ARS?s Scientific Manuscript database

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-1...

  4. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition

    NASA Astrophysics Data System (ADS)

    Buckley, Nicole D.; Champagne, Claude P.; Masotti, Adriana I.; Wagar, Lisa E.; Tompkins, Thomas A.; Green-Johnson, Julia M.

    2011-04-01

    Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk ( Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.

  5. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    PubMed

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  6. Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine.

    PubMed

    Bering, Stine; Sjøltov, Laila; Wrisberg, Seema S; Berggren, Anna; Alenfall, Jan; Jensen, Mikael; Højgaard, Liselotte; Tetens, Inge; Bukhave, Klaus

    2007-11-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, production of organic acids, or by the viable lactic acid bacteria. In this study the effect of a heat-inactivated lactic acid-fermented oat gruel with and without added viable, lyophilized Lactobacillus plantarum 299v on non-haem Fe absorption was investigated. Furthermore, Fe absorption in the distal intestine was determined. In a randomized, double-blinded crossover trial eighteen healthy young women aged 22 (SD 3) years with low Fe status (serum ferritin < 30 microg/l) were served the two test gruels, extrinsically labelled with 59Fe and served with two enterocoated capsules (containing 55Fe(II) and 55Fe(III), respectively) designed to disintegrate in the ileum. The meals were consumed on two consecutive days, e.g. in the order AA followed by BB in a second period. Non-haem Fe absorption was determined from 59Fe whole-body retention and isotope activities in blood samples. The concentrations of Fe, lactate, phytate, and polyphenols, and the pH were similar in the heat-inactivated lactic acid-fermented oat gruels with and without added L. plantarum 299v, and no difference in Fe absorption was observed between the test gruels (1.4 and 1.3%, respectively). Furthermore, no absorption of Fe in the distal intestine was observed. In conclusion, addition of viable, lyophilized lactobacillus to a heat-inactivated lactic acid-fermented oat gruel does not affect Fe absorption, and no absorption seems to occur in the distal part of the intestine from low Fe bioavailability meals in these women.

  7. Survival of Lactobacillus delbrueckii UFV H2b20 in fermented milk under simulated gastric and intestinal conditions.

    PubMed

    da Conceição, L L; Leandro, E S; Freitas, F S; de Oliveira, M N V; Ferreira-Machado, A B; Borges, A C; de Moraes, C A

    2013-09-01

    The survival of Lactobacillus delbrueckii UFV H2b20 was assessed in fermented milk, both during the storage period and after exposure to simulated gastric and intestinal juices, as well the detection of the gene fbpA involved in adherence to human gastrointestinal tract. L. delbrueckii UFV H2b20 remained stable and viable for 28 days under refrigerated storage conditions. After one day of storage, that strain exhibited a one-log population reduction following exposure in tandem to simulated gastric and intestinal juices. After 14 days of storage, a two-log reduction was observed following 90 min of exposure to the simulated gastric conditions. However, the strain did not survive following exposure to the simulated intestinal juice. The observed tolerance to storage conditions and resistance to the simulated gastric and intestinal conditions confirm the potential use of L. delbrueckii UFV H2b20 as a probiotic, which is further reinforced by the detection of fbpA in this strain.

  8. Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response.

    PubMed

    Samal, Lipismita; Chaturvedi, Vishwa Bandhu; Saikumar, Guttula; Somvanshi, Ramesh; Pattanaik, Ashok Kumar

    2015-06-01

    Many studies have been conducted using purified prebiotics such as inulin or fructooligosaccharides (FOS) as nutraceuticals, but there is very little information available on the prebiotic potential of raw products rich in inulin and FOS, such as Jerusalem artichoke (JA; Helianthus tuberosus L.). The present experiment aimed to evaluate the prebiotic effects of JA tubers in rats. Seventy-two Wistar weanling rats divided into four groups were fed for 12 weeks on a basal diet fortified with pulverized JA tubers at 0 (control), 20, 40 and 60 g kg(-1) levels. Enhanced cell-mediated immunity in terms of skin indurations (P = 0.082) and CD4+ T-lymphocyte population (P = 0.002) was observed in the JA-supplemented groups compared with the control group. Blood haemoglobin (P = 0.017), glucose (P = 0.001), urea (P = 0.004) and calcium (P = 0.048) varied favourably upon inclusion of JA. An increasing trend (P = 0.059) in the length of large intestine was apparent in the JA-fed groups. The tissue mass of caecum (P = 0.069) and colon (P = 0.003) was increased in the JA-supplemented groups, accompanied by higher (P = 0.007) caecal crypt depth. The pH and ammonia concentrations of intestinal digesta decreased and those of lactate and total volatile fatty acids increased in the JA-fed groups. The results suggest that JA had beneficial effects on immunity, blood metabolites, intestinal morphometry and hindgut fermentation of rats. © 2014 Society of Chemical Industry.

  9. Starch Structure Influences Its Digestibility: A Review.

    PubMed

    Magallanes-Cruz, Perla A; Flores-Silva, Pamela C; Bello-Perez, Luis A

    2017-09-01

    Twenty-five years ago, it was found that a significant fraction of the starch present in foods is not digested in the small intestine and continues to the large intestine, where it is fermented by the microbiota; this fraction was named resistant starch (RS). It was also reported that there is a fraction of starch that is slowly digested, sustaining a release of glucose in the small intestine. Later, health benefits were found to be associated with the consumption of this fraction, called slowly digestible starch (SDS). The authors declare both fractions to be "nutraceutical starch." An overview of the structure of both fractions (RS and SDS), as well as their nutraceutical characteristics, is presented with the objective of suggesting methods and processes that will increase both fractions in starchy foods and prevent diseases that are associated with the consumption of glycemic carbohydrates. © 2017 Institute of Food Technologists®.

  10. Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy.

    PubMed

    Lambeau, Kellen V; McRorie, Johnson W

    2017-04-01

    Only 5% of adults consume the recommended level of dietary fiber. Fiber supplements appear to be a convenient and concentrated source of fiber, but most do not provide the health benefits associated with dietary fiber. This review will summarize the physical effects of isolated fibers in small and large intestines, which drive clinically meaningful health benefits. A comprehensive literature review was conducted (Scopus and PubMed) without limits to year of publication (latest date included: October 31, 2016). The physical effects of fiber in the small intestine drive metabolic health effects (e.g., cholesterol lowering, improved glycemic control), and efficacy is a function of the viscosity of gel-forming fibers (e.g., psyllium, β-glucan). In the large intestine, fiber can provide a laxative effect if (a) it resists fermentation to remain intact throughout the large intestine, and (b) it increases percentage of water content to soften/bulk stool (e.g., wheat bran and psyllium). It is important for nurse practitioners to understand the underlying mechanisms that drive specific fiber-related health benefits, and which fiber supplements have rigorous clinical data to support a recommendation. For most fiber-related beneficial effects, "Fiber needs to gel to keep your patients well." ©2017 The Authors. Journal of the American Association of Nurse Practitioners published by Wiley Periodicals, Inc. on behalf of American Association of Nurse Practitioners.

  11. Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy

    PubMed Central

    Lambeau, Kellen V.

    2017-01-01

    Abstract Background Only 5% of adults consume the recommended level of dietary fiber. Fiber supplements appear to be a convenient and concentrated source of fiber, but most do not provide the health benefits associated with dietary fiber. Purpose This review will summarize the physical effects of isolated fibers in small and large intestines, which drive clinically meaningful health benefits. Data sources A comprehensive literature review was conducted (Scopus and PubMed) without limits to year of publication (latest date included: October 31, 2016). Conclusions The physical effects of fiber in the small intestine drive metabolic health effects (e.g., cholesterol lowering, improved glycemic control), and efficacy is a function of the viscosity of gel‐forming fibers (e.g., psyllium, β‐glucan). In the large intestine, fiber can provide a laxative effect if (a) it resists fermentation to remain intact throughout the large intestine, and (b) it increases percentage of water content to soften/bulk stool (e.g., wheat bran and psyllium). Implications for practice It is important for nurse practitioners to understand the underlying mechanisms that drive specific fiber‐related health benefits, and which fiber supplements have rigorous clinical data to support a recommendation. Clinical pearl For most fiber‐related beneficial effects, “Fiber needs to gel to keep your patients well.” PMID:28252255

  12. Bacteriotherapy of acute radiation sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal'tsev, V.N.; Korshunov, V.M.; Strel'nikov, V.A.

    1979-04-01

    Acute sickness is associated with intestinal dysbacteriosis; there is a radical decrease in number of microorganisms of lactic fermentation (bifidobacterium, lactobacillus) and an increase in E. coli proteus, enterococcus, and clostridium. Extensive use is made of live microorganisms in the treatment of various diseases associated with intestinal dysbacteriosis; in the case of acute radiation sickness, yeast, colibacterin, and E. coli have been used. In a number of cases, such therapy increased survival and life expectancy of irradiated animals. In this study, microorganisms of lactic fermentation (lactobacillus, bifidobacterium) and colibacterin were used for treatment of acute radiation sickness.

  13. Acetate Utilization and Butyryl Coenzyme A (CoA):Acetate-CoA Transferase in Butyrate-Producing Bacteria from the Human Large Intestine

    PubMed Central

    Duncan, Sylvia H.; Barcenilla, Adela; Stewart, Colin S.; Pryde, Susan E.; Flint, Harry J.

    2002-01-01

    Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine. PMID:12324374

  14. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model.

    PubMed

    Chen, Tingting; Kim, Choon Young; Kaur, Amandeep; Lamothe, Lisa; Shaikh, Maliha; Keshavarzian, Ali; Hamaker, Bruce R

    2017-03-22

    Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.

  15. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  16. In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria

    PubMed Central

    Tieking, Markus; Korakli, Maher; Ehrmann, Matthias A.; Gänzle, Michael G.; Vogel, Rudi F.

    2003-01-01

    EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter−1 as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives. PMID:12571016

  17. The effects of the proportions of dietary macronutrients on the digestibility, post-prandial endocrine responses and large intestinal fermentation of carbohydrate in working dogs.

    PubMed

    Hill, S R; Rutherfurd-Markwick, K J; Ravindran, G; Ugarte, C E; Thomas, D G

    2009-12-01

    To compare the effects of feeding diets varying in the proportions of macronutrients on the digestibility, post-prandial endocrine responses and large intestinal fermentation of carbohydrate in working dogs. The apparent digestibility of two test diets, one comprising low-carbohydrate, high-protein dry biscuits (Diet 1), and one comprising high-carbohydrate, low-protein dry biscuits (Diet 2), fed to 12 adult Harrier Hounds (n=5 female), was determined using the indigestible-marker and total-collection methods. Serial breath samples were collected from each dog before and after feeding, and analysed for concentrations of hydrogen. Concentrations of glucose and insulin in plasma were established from serial blood samples obtained after feeding. The apparent dry matter, protein, fat and energy digestibility of Diet 1 were higher, but the carbohydrate digestibility was lower (p<0.05), than those of Diet 2. The apparent digestibility values determined using the total-collection method were lower (p<0.05) for carbohydrates, and tended to be lower for dry matter and energy (p<0.10) than those determined using the indigestible-marker method, but the values for protein and fat digestibility were similar using the two methods of determination. The maximum concentration (Cmax) of hydrogen detected in the breath of the dogs occurred earlier for Diet 1 than Diet 2 (p<0.01). However, the Cmax and area under the curve (AUC) for breath hydrogen were higher in the dogs fed Diet 2 than Diet 1 (p<0.01). The Cmax for glucose and insulin in plasma occurred earlier in dogs fed Diet 2 compared with those fed Diet 1 (p<0.05). However, the Cmax for glucose, and AUC for glucose and for insulin were not different between the two diets. The Cmax for insulin was greater for Diet 2 compared with Diet 1 (p<0.05). The low-carbohydrate, high-protein diet (Diet 1) appeared to offer certain advantages to working dogs, including higher apparent nutrient digestibility, slower release of glucose into the bloodstream, and reduced large intestinal fermentation of carbohydrate. A low-carbohydrate, high-protein diet may be beneficial for specific groups of dogs, including working dogs subjected to prolonged bouts of exercise requiring a sustained energy source, or those with diabetes mellitus requiring better glycaemic control.

  18. The digestive morphophysiology of wild, free-living, giraffes.

    PubMed

    Mitchell, G; Roberts, D G; van Sittert, S J

    2015-09-01

    We have measured rumen-complex (rumen, reticulum, omasum, abomasum) and intestine (small and large combined) mass in 32 wild giraffes of both sexes with body masses ranging from 289 to 1441 kg, and parotid gland mass, tongue length and mass, masseter and mandible mass in 9 other giraffes ranging in body mass from 181 to 1396 kg. We have estimated metabolic and energy production rates, feed intake and home range size. Interspecific analysis of mature ruminants show that components of the digestive system increase linearly (Mb(1)) or positively allometric (Mb(>1)) with body mass while variables associated with feed intake scale with metabolic rate (Mb(.75)). Conversely, in giraffes ontogenetic increases in rumen-complex mass were negatively allometric (Mb(<1)), and increases in intestine mass, parotid gland mass, masseter mass, and mandible mass were isometric (Mb(1)). The relative masseter muscle mass (0.14% of Mb) and the relative parotid mass (0.03% of Mb) are smaller than in other ruminants. Increases in tongue length scale with head length(0.72) and Mb(.32) and tongue mass with Mb(.69). Absolute mass of the gastrointestinal tract increased throughout growth but its relative mass declined from 20% to 15% of Mb. Rumen-complex fermentation provides ca 43% of daily energy needs, large intestine fermentation 24% and 33% by digestion of soluble carbohydrates, proteins, and lipids. Dry matter intake (kg) was 2.4% of body mass in juveniles and 1.6% in adults. Energy requirements increased from 35 Mj/day to 190 Mj/day. Browse production rate sustains a core home range of 2.2-11.8 km(2). Copyright © 2015. Published by Elsevier Inc.

  19. Effects of silage additives on ruminal and intestinal microbiology

    USDA-ARS?s Scientific Manuscript database

    Ensiling is the preservation of forage for livestock through microbial fermentation. Although ensiling of plant material by its associated surface microbial community alone is possible, the cost of an uncontrolled fermentation can include dry matter loss, decreased quality, and spoilage. While prope...

  20. Fermented Soybean Meal Increases Lactic Acid Bacteria in Gut Microbiota of Atlantic Salmon (Salmo salar).

    PubMed

    Catalán, Natalia; Villasante, Alejandro; Wacyk, Jurij; Ramírez, Carolina; Romero, Jaime

    2017-12-22

    The main goal of the present study was to address the effect of feeding fermented soybean meal-based diet to Atlantic salmon on gut microbiota. Further, expression of genes of interest, including cathelicidin antimicrobial peptide (cath), mucin 2 (muc2), aquaporin (aqp8ab), and proliferating cell nuclear antigen (pcna), in proximal intestine of fish fed either experimental diet was analyzed. Three experimental diets, including a control fishmeal (30% FM), soybean meal (30% SBM), or fermented soybean meal diet (30% FSBM) were randomly assigned to triplicate tanks during a 50-day trial. The PCR-TTGE showed microbiota composition was influenced by experimental diets. Bands corresponding to genus Lactobacillus and Pediococcus were characteristic in fish fed the FSBM-based diet. On the other hand, bands corresponding to Isoptericola, Cellulomonas, and Clostridium sensu stricto were only observed in fish FM-based diet, while Acinetobacter and Altererythrobacter were detected in fish fed SBM-based diet. The expression of muc2 and aqp8ab were significantly greater in fish fed the FSBM-based diet compared with the control group. Our results suggest feeding FSBM to Atlantic salmon may (1) boost health and growth physiology in fish by promoting intestinal lactic acid bacteria growth, having a prebiotic-like effect, (2) promote proximal intestine health by increasing mucin production, and (3) boost intestinal trans-cellular uptake of water. Further research to better understands the effects of bioactive compounds derived from the fermentation process of plant feedstuff on gut microbiota and the effects on health and growth in fish is required.

  1. Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?

    PubMed Central

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-01-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS. PMID:25623659

  2. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena?

    PubMed

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-02-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS.

  3. Effects of supplemental fat source on nutrient digestion and ruminal fermentation in steers.

    PubMed

    Montgomery, S P; Drouillard, J S; Nagaraja, T G; Titgemeyer, E C; Sindt, J J

    2008-03-01

    Five Holstein steers (235 kg of BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square design experiment to determine the effects of supplemental fat source on site and extent of nutrient digestion and ruminal fermentation. Treatments were diets based on steam-flaked corn containing no supplemental fat (control) or 4% (DM basis) supplemental fat as tallow, dried full-fat corn germ (corn germ), corn oil, or flax oil. Fat supplementation decreased (P < 0.08) ruminal starch digestion but increased (P < 0.03) small intestinal starch digestion as a percentage of intake. Feeding corn germ decreased (P < 0.09) ruminal starch digestion and increased (P < 0.03) large intestinal starch digestion compared with steers fed corn oil. Large intestinal starch digestion was less (P < 0.04), and ruminal NDF digestion was greater (P < 0.09) for steers fed tallow compared with steers fed other fat sources. Small intestinal (P < 0.08) and total tract NDF digestibilities were greater (P < 0.02) for steers fed corn germ than for those fed corn oil. Feeding tallow increased total ruminal VFA (P < 0.03) and NH(3) (P < 0.07) concentrations compared with steers fed the other fat sources. Feeding corn germ led to a greater (P < 0.02) rate of ruminal liquid outflow compared with corn oil. A diet x hour interaction (P < 0.04) occurred for ruminal pH, with steers fed corn oil having the greatest ruminal pH 18 h after feeding, without differences at other time points. Fat supplementation increased (P < 0.09) ruminal concentrations of Fusobacterium necrophorum. Duodenal flow of C18:3n-3 was greater (P < 0.01) for steers fed flax oil compared with those fed corn oil. Feeding corn germ led to less (P < 0.01) ruminal biohydrogenation of fatty acids compared with corn oil. Steers fed tallow had greater small intestinal digestibility of C14:0 (P < 0.02) and C16:1 (P < 0.04) than steers fed the other fat sources. Fat supplementation decreased (P < 0.06) small intestinal digestibility of C18:0. Feeding corn germ decreased (P < 0.10) small intestinal digestibility of C18:1 compared with corn oil. It appears that source of supplemental fat can affect the site and extent of fatty acid and nutrient digestion in steers fed diets based on steam-flaked corn.

  4. Influence of diets to Wistar rats supplemented with soya, flaxseed and lupine products treated by lactofermentation to improve their gut health.

    PubMed

    Bartkiene, E; Juodeikiene, G; Vidmantiene, D; Zdunczyk, Z; Zdunczyk, P; Juskiewicz, J; Cizeikiene, D; Matusevicius, P

    2013-09-01

    The present study proposes the contribution of lactic acid bacteria and plants rich in bioactive substances and high-quality proteins as alternative products for human diets in improving the gut environment as potential against pathogenic bacteria. The effect of diets supplemented with soya, flaxseed and lupine flours fermented with a Pediococcus acidilactici KTU05-7 probiotic strain in the gastrointestinal tract (GIT) of Wistar rats were analyzed. In vivo experiments showed a positive effect of long time lactofermentation of plant material on the body weight of rats. Diets with fermented yellow lupine resulted in enhanced activities of α-glucosidase, β-galactosidases, as well as high levels of lactic acid bacteria, bifidobacteria and enterococci in the GIT were determined. Lactofermentation of analyzed plant products had a significantly lowering effect on Escherichia coli compared with the control group. The dominant flora of large intestines like Bifidobacterium and anaerobic cocci were found in high levels after diets with fermented lupine.

  5. Human tolerance to a single, high dose of D-tagatose.

    PubMed

    Buemann, B; Toubro, S; Raben, A; Astrup, A

    1999-04-01

    The addition of 29 g D-tagatose added as a sweetener to a continental breakfast was tested for the appearance of gastrointestinal side effects in a double-blind randomized cross-over study with 29 g sucrose as a control treatment. The subjects reported the side effects during 72 h following the test meal on a questionnaire grading the symptoms on a five-level scale ranging from "none" to "very strong." Although "rumbling in the stomach," "distention," "nausea," "rumbling in the gut," "flatulence, " and "diarrhea" scored significantly higher with D-tagatose, the sugar otherwise was well tolerated in most of the subjects. Two cases of vomiting after D-tagatose were recorded but in one of the cases its relation to the D-tagatose intake was questionable. Only the "distention" score remained higher with D-tagatose for more than 24 h. Nausea, vomiting, and perceived distension may be due to an osmotic effect in the small intestine of unabsorbed D-tagatose. The increased flatus is caused by D-tagatose being fermented in the large intestine. Diarrhea may be explained by osmotic effects in the colon from nondegraded D-tagatose or nonabsorbed short-chain fatty acids produced by the increased fermentation. Copyright 1999 Academic Press.

  6. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants.

    PubMed

    Ben, Xiao-ming; Zhou, Xiao-yu; Zhao, Wei-hua; Yu, Wen-liang; Pan, Wei; Zhang, Wei-li; Wu, Sheng-mei; Van Beusekom, Christien M; Schaafsma, Anne

    2004-06-01

    Oligosaccharides in human milk may protect infants by improving the intestinal micro-flora and fermentation. This study was to investigate effects of infant formula milk consisting of galacto-oligosaccharide (GOS) on intestinal microbial populations and the fermentation characteristics in term infants in comparison with that of human milk. The test formula (Frisolac H, Friesland, Netherland) was supplemented with GOS at a concentration of 0.24 g/dl. Human milk and another formula without oligosaccharides (Frisolac H, Friesland, Netherland) were used as positive and negative control respectively. Growth, stool characteristics, and side effects of the recruited infants were recorded after 3 and 6 months' follow-up, and the fecal species were collected for the analysis of intestinal micro-flora, short chain fatty acid (SCFA) and pH. At the end of 3- and 6-month feeding period, intestinal Bifidobacteria and Lactobacilli were significantly increased in infants fed with GOS supplemented formula and human milk when compared with infants fed with negative control formula; however, there was no statistically significant difference between GOS supplemented formula and human milk groups. Stool characteristics were influenced by the supplement and main fecal SCFA (acetic), and stool frequency were significantly increased in infants fed with GOS supplemented formula and human milk, while the fecal pH was significantly decreased as compared with that of negative control (P < 0.05). Supplementation had no influence on incidence of side effects (including crying, regurgitation and vomiting). Supplementing infant formula with GOS at a concentration of 0.24 g/dl stimulates the growth of Bifidobacteria and Lactobacilli in the intestine and stool characteristics are similar to in term infants fed with human milk.

  7. Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut.

    PubMed

    Hugenholtz, Floor; Davids, Mark; Schwarz, Jessica; Müller, Michael; Tomé, Daniel; Schaap, Peter; Hooiveld, Guido J E J; Smidt, Hauke; Kleerebezem, Michiel

    2018-01-01

    Undigestible food ingredients are converted by the microbiota into a large range of metabolites, predominated by short chain fatty acids (SCFA). These microbial metabolites are subsequently available for absorption by the host mucosa and can serve as an energy source. Amino acids fermentation by the microbiota expands the spectrum of fermentation end-products beyond acetate, propionate and butyrate, to include in particular branched-SCFA. Here the long-term effects of high protein-diets on microbial community composition and functionality in mice were analyzed. Determinations of the microbiota composition using phylogenetic microarray (MITChip) technology were complemented with metatranscriptome and SCFA analyses to obtain insight in in situ expression of protein fermentation pathways and the phylogenetic groups involved. High protein diets led to increased luminal concentrations of branched-SCFA, in accordance with protein fermentation in the gut. Bacteria dominantly participating in protein catabolism belonged to the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae families in both normal- and high- protein diet regimes. This study identifies the microbial groups involved in protein catabolism in the intestine and underpins the value of in situ metatranscriptome analyses as an approach to decipher locally active metabolic networks and pathways as a function of the dietary regime, as well as the phylogeny of the microorganisms executing them.

  8. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets.

    PubMed

    Pié, S; Awati, A; Vida, S; Falluel, I; Williams, B A; Oswald, I P

    2007-03-01

    There is increasing evidence showing that dietary supplementation with prebiotics can be effective in the treatment of intestinal inflammation. Because weaning time is characterized by rapid intestinal inflammation, this study investigated the effect of a diet supplemented with a combination of 4 fermentable carbohydrates (lactulose, inulin, sugarbeet pulp, and wheat starch) on the mRNA content of proinflammatory cytokines in newly weaned piglets. Cytokines (IL-1beta, IL-6, IL-8, IL-12p40, IL-18, and tumor necrosis factor-alpha) were analyzed using a semiquantitative reverse-transcription PCR technique on d 1, 4, and 10 in the ileum and colon of piglets fed either a test diet (CHO) or a control diet. In addition to the diet, the effect of enforced fasting on cytokine mRNA content was also evaluated. No effect of fasting was observed on the pro-inflammatory cytokine mRNA content. Our results showed that the CHO diet induced an up-regulation of IL-6 mRNA content in the colon of piglets 4 d postweaning. This up-regulation was specific for the animals fed the CHO diet and was not observed in animals fed the control diet. An increase in IL-1beta mRNA content was also observed on d 4 postweaning in all of the piglets. Correlations between proinflammatory cytokines and the end-products of fermentation indicated that the regulation of cytokines may be linked with some of the fermentation end-products such as branched-chain fatty acids, which are in turn end-products of protein fermentation.

  9. Reducing agent can be omitted in the incubation medium of the batch in vitro fermentation model of the pig intestines.

    PubMed

    Poelaert, C; Nollevaux, G; Boudry, C; Taminiau, B; Nezer, C; Daube, G; Schneider, Y-J; Portetelle, D; Théwis, A; Bindelle, J

    2018-06-01

    Over the past decade, in vitro methods have been developed to study intestinal fermentation in pigs and its influence on the digestive physiology and health. In these methods, ingredients are fermented by a bacterial inoculum diluted in a mineral buffer solution. Generally, a reducing agent such as Na2S or cysteine-HCl generates the required anaerobic environment by releasing metabolites similar to those produced when protein is fermented, possibly inducing a dysbiosis. An experiment was conducted to study the impact of two reducing agents on results yielded by such in vitro fermentation models. Protein (soybean proteins, casein) and carbohydrate (potato starch, cellulose) ingredients were fermented in vitro by bacteria isolated from fresh feces obtained from three sows in three carbonate-based incubation media differing in reducing agent: (i) Na2S, (ii) cysteine-HCl and (iii) control with a mere saturation with CO2 and devoid of reducing agent. The gas production during fermentation was recorded over 72 h. Short-chain fatty acids (SCFA) production after 24 and 72 h and microbial composition of the fermentation broth after 24 h were compared between ingredients and between reducing agents. The fermentation residues after 24 h were also evaluated in terms of cytotoxicity using Caco-2 cell monolayers. Results showed that the effect of the ingredient induced higher differences than the reducing agent. Among the latter, cysteine-HCl induced the strongest differences compared with the control, whereas Na2S was similar to the control for most parameters. For all ingredients, final gas produced per g of substrate was similar (P>0.10) for the three reducing agents whereas the maximum rate of gas production (R max) was reduced (P0.10) after 24 h of fermentation with Na2S and in the control without reducing agent. Molar ratios of branched chain-fatty acids were higher (P<0.05) for protein (36.5% and 9.7% for casein and soybean proteins, respectively) than for carbohydrate (<4%) ingredients. Only fermentation residues of casein showed a possible cytotoxic effect regardless of the reducing agent (P<0.05). Concerning the microbial composition of the fermentation broth, most significant differences in phyla and in genera ascribable to the reducing agent were found with potato starch and casein. In conclusion, saturating the incubation media with CO2 seems sufficient to generate a suitable anaerobic environment for intestinal microbes and the use of a reducing agent can be omitted.

  10. Diversity of halophilic archaea in fermented foods and human intestines and their application.

    PubMed

    Lee, Han-Seung

    2013-12-01

    Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

  11. Ability of Lactobacillus fermentum to overcome host α-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya α-galacto-oligosaccharides

    PubMed Central

    LeBlanc, Jean Guy; Ledue-Clier, Florence; Bensaada, Martine; de Giori, Graciela Savoy; Guerekobaya, Theodora; Sesma, Fernando; Juillard, Vincent; Rabot, Sylvie; Piard, Jean-Christophe

    2008-01-01

    Background Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of α-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular α-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of α-galactosidase-producing lactobacilli to improve the digestibility of α-galacto-oligosaccharides in situ. Results Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2)-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of α-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the α-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019) in H2 emission was observed, showing that α-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004). Conclusion These results strongly suggest that L. fermentum α-galactosidase is able to partially alleviate α-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for delivery of digestive enzymes in man and animals. PMID:18230145

  12. Comparative analysis of the gene expression profile of probiotic Lactobacillus casei Zhang with and without fermented milk as a vehicle during transit in a simulated gastrointestinal tract.

    PubMed

    Wang, Jicheng; Zhong, Zhi; Zhang, Wenyi; Bao, Qiuhua; Wei, Aibin; Meng, He; Zhang, Heping

    2012-06-01

    Studies have found that the survival of probiotics could be strongly enhanced with dairy products as delivery vehicles, but the molecular mechanism by which this might occur has seldom been mentioned. In this study, microarray technology was used to detect the gene expression profile of Lactobacillus casei Zhang with and without fermented milk used as a delivery vehicle during transit in simulated gastrointestinal juice. Numerous genes of L. casei Zhang in strain suspension were upregulated compared to those from L. casei Zhang in fermented milk. These data might indicate that L. casei Zhang is stimulated directly without the protection of fermented milk, and the high-level gene expression observed here may be a stress response at the transcriptional level. A large proportion of genes involved in translation and cell division were downregulated in the bacteria that were in strain suspension during transit in simulated intestinal juice. This may impede protein biosynthesis and cell division and partially explain the lower viability of L. casei Zhang during transit in the gastrointestinal tract without the delivery vehicle. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.

    PubMed

    Gullón, Patricia; Gullón, Beatriz; Tavaria, Freni; Vasconcelos, Marta; Gomes, Ana Maria

    2015-10-01

    Broad beans (Vicia faba) and lupin seeds (Lupinus albus) are legumes rich in a wide range of compounds, which may represent a useful dietary approach for modulating the human gut microbiome. In this work, after in vitro digestion, legume samples were used as carbon sources in anaerobic batch cultures to evaluate their impact on the intestinal microbiota composition and on their metabolic products. The fermentations were monitored by a decrease in pH, generation of short chain fatty acids (SCFA) and lactate and the changes in the dynamic bacterial populations by fluorescence in situ hybridization (FISH). The total SCFA at the end of fermentation was 81.52 mM for lupin seeds and 78.41 mM for broad beans accompanied by a decrease of the pH for both legumes. The microbial groups that increased significantly (P < 0.05) were Bifidobacterium spp., Lactobacillus-Enterococcus, Atopobium, Bacteroides-Pretovella, Clostridium coccoides-Eubacterium rectale, Faecalibacterium prausnitzii and Roseburia intestinalis. This impact on the intestinal microbiota suggests that lupin seeds and broad beans may be used in the development of novel functional foods, which can be included in dietary strategies for human health promotion.

  14. Effect of abomasal carbohydrates and live yeast on measures of postruminal fermentation.

    PubMed

    Gressley, T F; Davison, K A; Macies, J; Leonardi, C; McCarthy, M M; Nemec, L M; Rice, C A

    2016-01-01

    Two studies were conducted to evaluate the effects of abomasal carbohydrate infusion on nutrient digestibility and fecal measures. In Exp. 1, 5 Holstein steers were assigned to a Latin square with 1-wk periods and were abomasally infused on a single day at the end of each period with water alone, a single pulse dose of water with 1 g/kg BW oligofructose or cornstarch, or 4 pulse doses of water with 0.25 g/kg BW oligofructose or cornstarch administered every 6 h. Total tract nutrient digestibility was not affected by treatment except for a tendency for a decrease in starch digestibility in response to the 1 g/kg BW dose of cornstarch ( < 0.10). Compared with the control, both oligofructose and starch infusions caused similar decreases in fecal pH ( < 0.05) and increases in fecal short-chain fatty acids ( ≤ 0.01) measured 12 h after the first infusion, with the single 1 g/kg BW infusions causing a greater magnitude of pH change compared with the four 0.25-g/kg BW infusions ( < 0.01). All treatments increased concentration of fecal lipopolysaccharide compared with the control for at least 1 time point following the infusion ( < 0.05), with a greater increase observed for the 0.25 g/kg BW infusions of oligofructose compared with the other treatments ( < 0.05). Results of Exp. 1 indicate that both oligofructose and cornstarch infusions increased carbohydrate fermentation in the intestines and can be used as a method to evaluate the impact of excessive intestinal fermentation on intestinal health. In Exp. 2, 6 Holstein steers received abomasal pulse doses of 0 (control) or 10 g/d live var. (SB) according to a crossover design with 18-d periods. Abomasal infusions of 4 pulse doses of 0.25 g/kg BW oligofructose administered every 6 h were conducted on d 16 of each period. During the baseline period prior to the oligofructose challenge, there were no effects of SB on fecal measures except for an increase in apparent total tract NDF digestibility ( < 0.05), suggesting that SB increased intestinal fiber fermentation. During the oligofructose challenge, SB increased fecal score ( = 0.03) and tended to reduce fecal short-chain fatty acids ( = 0.10). Results of Exp. 2 suggest that abomasal SB modestly stabilized the intestinal environment during increased carbohydrate fermentation.

  15. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    PubMed Central

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions. PMID:27867770

  16. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    PubMed

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions.

  17. Accumulative effect of food residues on intestinal gas production.

    PubMed

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  18. Tapir (Tapirus) enteroliths

    USGS Publications Warehouse

    Murphy, M.R.; Masters, J.M.; Moore, D.M.; Glass, H.D.; Hughes, R.E.; Crissey, S.D.

    1997-01-01

    Enterolith fragments from two tapir species and horses were subjected to x-ray diffraction analysis. Tapir enteroliths were formed as layers of mineral deposited around a foreign nidus. The structure was similar to that of equine enteroliths except that tapir enteroliths lacked a central region of radially symmetrical coarse crystals. The enteroliths from tapirs were composed primarily of vivianite [Fe3(PO4)2 ?? 8H2O] and newberyite [MgH(PO4) ?? 3H2O], instead of the struvite [Mg(NH4)(PO4) ?? 6H2O] of enteroliths from horses. The reason for this difference is not known. Based on the chemistry of these mineral precipitates and information from other species, it was concluded that dietary manipulation to maximize carbohydrate fermentation and minimize protein fermentation in the large intestine may help prevent enterolithiasis in tapirs. ?? 1997 Wiley-Liss, Inc.

  19. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    PubMed

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. [Dietary fiber: concept, classification and current indications].

    PubMed

    García Peris, P; Camblor Alvarez, M

    1999-05-01

    Fiber is a concept that refers to or encompasses several carbohydrates and lignine that resist hydrolysis by human digestive enzymes and that are fermented by the microflora of the colon. From a practical point of view, fibers can be divided into soluble and insoluble. There is general acceptance of the concepts soluble fiber, fermentable, viscous and insoluble fiber, and non-viscous and barely fermentable fiber. The physiological effects and therefore the clinical applications of both fibers are different. In general, the insoluble fiber is barely fermentable and has a marked laxative and intestinal regulatory effect. Soluble fiber is fermented to a high degree, showing a powerful trophic effect at the colon level. Soluble fiber is also attributed a positive role in the carbohydrate and lipid metabolism due to the effects that this has at the intestinal and the systemic level on the glucose and the cholesterol metabolism. The goal of this article is to review the current concept of fiber based on the existing bibliography (it is thought that perhaps the current classification should be changed and that fiber should be talked about depending on its degree of polymerization), its physiologic effects and the possible indications that this may have from a clinical point of view, be this at the level of oral or enteral nutrition.

  1. Screening of Lactobacillus strains for their ability to produce conjugated linoleic acid in milk and to adhere to the intestinal tract.

    PubMed

    Sosa-Castañeda, J; Hernández-Mendoza, A; Astiazarán-García, H; Garcia, H S; Estrada-Montoya, M C; González-Córdova, A F; Vallejo-Cordoba, B

    2015-10-01

    Conjugated linoleic acid (CLA) has been shown to provide beneficial effects on health; however, the amount consumed in food is far from that required for the desired effects. Thus, increasing the CLA content in dairy foods through milk fermentation with specific lactic acid bacteria (LAB) offers an interesting alternative. Moreover, some LAB may be able to adhere to the intestinal mucosa and produce CLA through endogenous synthesis. Therefore, the objective of this study was to screen LAB isolates for their ability to produce CLA in skim milk and in simulated gastrointestinal conditions. Additionally, the ability of selected CLA-producing LAB to adhere to the intestinal mucosa in a murine model was assessed. Results showed that of 13 strains of Lactobacillus tested, only 4 were able to produce CLA in skim milk supplemented with linoleic acid (13.44 ± 0.78 to 50.9 ± 0.26 µg/mL). Furthermore, these 4 Lactobacillus strains were able to survive and produce CLA in simulated gastrointestinal conditions and to adhere to the intestinal mucosa of Wistar rats after 7 d of oral inoculation with fluorescently labeled bacteria. Accordingly, these 4 Lactobacillus strains may be used to manufacture fermented dairy foods to increase CLA content, and consumption of these fermented milks may result in CLA produced endogenously by these LAB. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Probiotic research in Australia, New Zealand and the Asia-Pacific region.

    PubMed

    Crittenden, R; Bird, A R; Gopal, P; Henriksson, A; Lee, Y K; Playne, M J

    2005-01-01

    Although the epicentres of probiotic research in the past decade have been Japan and Europe, researchers in the Asia-Pacific region have actively contributed to the growing understanding of the intestinal microbial ecosystem, and interactions between gut bacteria, diet and health of the human host. A number of new probiotic strains have been developed in the region that have been demonstrated to have beneficial impacts on health in animal and human trials, including improved protection against intestinal pathogens and modulation of the immune system. Probiotics targeted to animals, including aquaculture, feature heavily in many Asian countries. Developments in probiotic technologies have included microencapsulation techniques, antimicrobial production in fermented meats, and synbiotic combinations. In particular, the impact of resistant starch on the intestinal environment and fermentation by intestinal bacteria has been intensively studied and new probiotic strains selected specifically for synbiotic combinations with resistant starch. This paper provides an overview of probiotic research within Australia, New Zealand and a number of Asian countries, and lists scientists in the Asia-Pacific region involved in various aspects of probiotic research and development.

  3. Dietary roles of non-starch polysaccharides in human nutrition: a review.

    PubMed

    Kumar, Vikas; Sinha, Amit K; Makkar, Harinder P S; de Boeck, Gudrun; Becker, Klaus

    2012-01-01

    Nonstarch polysaccharides (NSPs) occur naturally in many foods. The physiochemical and biological properties of these compounds correspond to dietary fiber. Nonstarch polysaccharides show various physiological effects in the small and large intestine and therefore have important health implications for humans. The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.

  4. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing.

    PubMed

    Kovatcheva-Datchary, Petia; Egert, Markus; Maathuis, Annet; Rajilić-Stojanović, Mirjana; de Graaf, Albert A; Smidt, Hauke; de Vos, Willem M; Venema, Koen

    2009-04-01

    Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP), we identified starch-fermenting bacteria under human colon-like conditions. To the microbiota of the TIM-2 in vitro model of the human colon 7.4 g l(-1) of [U-(13)C]-starch was added. RNA extracted from lumen samples after 0 (control), 2, 4 and 8 h was subjected to density-gradient ultracentrifugation. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting and phylogenetic analyses of the labelled and unlabelled 16S rRNA suggested populations related to Ruminococcus bromii, Prevotella spp. and Eubacterium rectale to be involved in starch metabolism. Additionally, 16S rRNA related to that of Bifidobacterium adolescentis was abundant in all analysed fractions. While this might be due to the enrichment of high-GC RNA in high-density fractions, it could also indicate an active role in starch fermentation. Comparison of the T-RFLP fingerprints of experiments performed with labelled and unlabelled starch revealed Ruminococcus bromii as the primary degrader in starch fermentation in the studied model, as it was found to solely predominate in the labelled fractions. LC-MS analyses of the lumen and dialysate samples showed that, for both experiments, starch fermentation primarily yielded acetate, butyrate and propionate. Integration of molecular and metabolite data suggests metabolic cross-feeding in the system, where populations related to Ruminococcus bromii are the primary starch degrader, while those related to Prevotella spp., Bifidobacterium adolescentis and Eubacterium rectale might be further involved in the trophic chain.

  5. Technological characterization and survival of the exopolysaccharide-producing strain Lactobacillus delbrueckii subsp. lactis 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices.

    PubMed

    Burns, Patricia; Vinderola, Gabriel; Reinheimer, Jorge; Cuesta, Isabel; de Los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2011-08-01

    The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms a ropy phenotype could be an interesting feature from a technological point of view. Progressive adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but could also modify functional properties of the strain, including the production of EPS. In this work some technological properties and the survival ability in simulated gastrointestinal conditions of Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains were able to grow and acidify milk similarly; however the production of ethanol increased at the expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the higher production yield of EPS by the bile-resistant strain 193+, it displayed a lower ability to increase viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the acquisition of a stable resistance phenotype did not improve survival in simulated gastric and intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy products; the acquisition of a stable bile-resistant phenotype modified some properties of the microorganism. This suggests that the possible use of bile-resistant derivative strains should be carefully evaluated in each specific application considering the influence that the acquisition of a stable bile-resistant phenotype could have in survival ability in gastric and intestinal conditions and in technological properties.

  6. Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets.

    PubMed

    Tang, Xiang-Shan; Shao, Hua; Li, Tie-Jun; Tang, Zhi-Ru; Huang, Rui-Ling; Wang, Sheng-Ping; Kong, Xiang-Feng; Wu, Xin; Yin, Yu-Long

    2012-10-01

    This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.

  7. Relievable effect of dietary Allium hookeri on LPS-induced intestinal inflammation response in young broiler chickens

    USDA-ARS?s Scientific Manuscript database

    A study using 150 one-day- old broilers was conducted to assess the effects of Allium hookeri (AH) root and fermented root on inflammatory responses and intestinal barrier integrity of LPS challenged broiler chickens. Birds were randomly assigned to six groups (n = 25 birds/treatment) and fed standa...

  8. Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junctions proteins in LPS-induced young broiler chickens

    USDA-ARS?s Scientific Manuscript database

    We undertook a study to assess the effects of Allium hookeri (AH) root and fermented root on inflammation and intestinal integrity of lipopolysaccharide (LPS)-challenged chickens. Birds were assigned to six groups (n = 25 birds/treatment) and fed with basal diets or basal diets supplemented with AH ...

  9. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    PubMed

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  10. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    PubMed

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  11. Microbial degradation of complex carbohydrates in the gut.

    PubMed

    Flint, Harry J; Scott, Karen P; Duncan, Sylvia H; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.

  12. Organic acid blend with pure botanical product treatment reduces Escherichia coli and Salmonella populations in pure culture and in in vitro mixed ruminal microorganism fermentations

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogenic bacteria can live in the intestinal tract of food animals and can be transmitted to humans via food or indirectly through animal or fecal contact. Organic acid blend products have been used as non-antibiotic modifiers of the gastrointestinal fermentation of food animals to impr...

  13. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine.

    PubMed

    Jha, R; Berrocoso, J D

    2015-09-01

    Although dietary fiber (DF) negatively affects energy and nutrient digestibility, there is growing interest for the inclusion of its fermentable fraction in pig diets due to their functional properties and potential health benefits beyond supplying energy to the animals. This paper reviews some of the relevant information available on the role of different types of DF on digestion of nutrients in different sections of the gut, the fermentation process and its influence on gut environment, especially production and utilization of metabolites, microbial community and gut health of swine. Focus has been given on DF from feed ingredients (grains and coproducts) commonly used in pig diets. Some information on the role DF in purified form in comparison with DF in whole matrix of feed ingredients is also presented. First, composition and fractions of DF in different feed ingredients are briefly reviewed. Then, roles of different fractions of DF on digestion characteristics and physiological functions in the gastrointestinal tract (GIT) are presented. Specific roles of different fractions of DF on fermentation characteristics and their effects on production and utilization of metabolites in the GIT have been discussed. In addition, roles of DF fermentation on metabolic activity and microbial community in the intestine and their effects on intestinal health are reviewed and discussed. Evidence presented in this review indicates that there is wide variation in the composition and content of DF among feed ingredients, thereby their physico-chemical properties in the GIT of swine. These variations, in turn, affect the digestion and fermentation characteristics in the GIT of swine. Digestibility of DF from different feed ingredients is more variable and lower than that of other nutrients like starch, sugars, fat and CP. Soluble fractions of DF are fermented faster, produce higher amounts of volatile fatty acid than insoluble fractions, and favors growth of beneficial microbiota. Thus, selective inclusion of DF in diets can be used as a nutritional strategy to optimize the intestinal health of pigs, despite its lower digestibility and consequential negative effect on digestibility of other nutrients.

  14. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose.

    PubMed

    Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Middelbos, Ingmar S; Murphy, Michael R; Swanson, Kelly S; Fahey, George C

    2009-02-25

    It is of interest to benefit from the positive intestinal health outcomes of prebiotic consumption but with minimal gas production. This study examined gas production potential, fermentation profile, and microbial modulation properties of several types of oligosaccharides. Substrates studied included short-chain, medium-chain, and long-chain fructooligosaccharides, oligofructose-enriched inulin, galactooligosaccharide, and polydextrose. Each substrate was fermented in vitro using human fecal inoculum, and fermentation characteristics were quantified at 0, 4, 8, and 12 h. Gas and short-chain fatty acid (SCFA) production data showed that short-chain oligosaccharides were more rapidly fermented and produced more SCFA and gas than substrates with greater degrees of polymerization. Lactobacilli increased similarly among substrates. Short-chain oligosaccharides fermentation resulted in the greatest increase in bifidobacteria concentrations. Mixing short- and long-chain oligosaccharides attenuated short-chain oligosaccharide fermentation rate and extent. This study provides new information on the fermentation characteristics of some oligosaccharides used in human nutrition.

  15. Effect of fermented moist feed on performance, gut bacteria and gut histo-morphology in broilers.

    PubMed

    Missotten, J A; Michiels, J; Dierick, N; Ovyn, A; Akbarian, A; De Smet, S

    2013-01-01

    1. Fermented feed has been shown to be beneficial in pig nutrition as a tool to reduce gut microbial disorders. Experiments with fermented feed in poultry are scarce, probably because of the belief that wet feed is less suitable for this species and causes wet litter. 2. A total of 280 one-d-old Ross 308 chickens were used in a completely randomised design with two dietary treatments (7 replicates of 20 birds/treatment); air-dry feed versus the same feed in moist form (water:feed ratio of 1.3:1, on a weight basis), inoculated with Lactobacillus plantarum NCIMB 40087 (9 log10 CFU/kg feed) and batch-fermented for 48 h at 26°C. The birds were given starter (d 0-13), grower (d 4-26) and finisher (d 27-39) diets ad libitum. At the end of the grower and finisher period, two birds per pen were removed to sample intestinal contents for cultivating bacteria and intestinal tissue to determine villus height and crypt depth. 3. Fermented moist feed (FMF) batches showed good characteristics, with a pH between 3.9 and 4.4 and DL-lactic acid between 137 and 286 mmol/l. Daily feed intake and gain were reduced considerably in the FMF group in the starter (-40 and -44%, respectively) and grower (-23 and -16%) period, though in the finisher period these birds performed better, with an improved feed utilisation. Concomitant with the latter, villus height at the mid-jejunum and mid-ileum on d 39 was higher (+22.6% and +16.0%). Significantly more Lactobacilli and less coliforms were found in the foregut and less Streptococci in ileum and caeca of birds given FMF. 4. This trial showed that FMF was detrimental for early bird growth but affected beneficially feed efficiency, the composition of the gut bacteria and villus height in the small intestine in the finisher period in broilers.

  16. Diet in irritable bowel syndrome.

    PubMed

    El-Salhy, Magdy; Gundersen, Doris

    2015-04-14

    Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder that is characterized by intermittent abdominal pain/discomfort, altered bowel habits and abdominal bloating/distension. This review aimed at presenting the recent developments concerning the role of diet in the pathophysiology and management of IBS. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, and there is no evidence that gluten causes the debated new diagnosis of non-coeliac gluten sensitivity (NCGS). The component in wheat that triggers symptoms in NCGS appears to be the carbohydrates. Patients with NCGS appear to be IBS patients who are self-diagnosed and self-treated with a gluten-free diet. IBS symptoms are triggered by the consumption of the poorly absorbed fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) and insoluble fibre. On reaching the distal small intestine and colon, FODMAPS and insoluble fibre increase the osmotic pressure in the large-intestine lumen and provide a substrate for bacterial fermentation, with consequent gas production, abdominal distension and abdominal pain or discomfort. Poor FODMAPS and insoluble fibres diet reduces the symptom and improve the quality of life in IBS patients. Moreover, it changes favourably the intestinal microbiota and restores the abnormalities in the gastrointestinal endocrine cells. Five gastrointestinal endocrine cell types that produce hormones regulating appetite and food intake are abnormal in IBS patients. Based on these hormonal abnormalities, one would expect that IBS patients to have increased food intake and body weight gain. However, the link between obesity and IBS is not fully studied. Individual dietary guidance for intake of poor FODMAPs and insoluble fibres diet in combination with probiotics intake and regular exercise is to be recommended for IBS patients.

  17. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    PubMed

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P < 0.05). Moreover, during the fermentation, the PSPAs were partially fragmented to phenolic acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health.

  18. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    PubMed Central

    Vinderola, Gabriel; Matar, Chantal; Perdigón, Gabriela

    2007-01-01

    Background Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6) to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. Results We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance at sites of infection. Conclusion The oral administration of the supernatant of milk fermented by L. helveticus R389 enhanced the gut mucosal immunity by improving the mechanisms that reinforce the epithelial and non-specific barriers and the gut functioning at sites of infection, with an improvement in the expression of the enzyme calcineurin, an important signal in the network that activates the gut immune system. The results of this work contribute to revealing the mechanisms underlying the immunomodulation of the gut immune function by fermented milks with probiotic bacteria. PMID:17825099

  19. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity.

    PubMed

    Vinderola, Gabriel; Matar, Chantal; Perdigón, Gabriela

    2007-09-07

    Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6) to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance at sites of infection. The oral administration of the supernatant of milk fermented by L. helveticus R389 enhanced the gut mucosal immunity by improving the mechanisms that reinforce the epithelial and non-specific barriers and the gut functioning at sites of infection, with an improvement in the expression of the enzyme calcineurin, an important signal in the network that activates the gut immune system. The results of this work contribute to revealing the mechanisms underlying the immunomodulation of the gut immune function by fermented milks with probiotic bacteria.

  20. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens.

    PubMed

    Jazi, V; Boldaji, F; Dastar, B; Hashemi, S R; Ashayerizadeh, A

    2017-08-01

    1. This experiment was conducted to evaluate the effects of replacing dietary cottonseed meal (CSM) or fermented cottonseed meal (FCSM) for soya bean meal (SBM) on growth performance, carcass characteristics, gastrointestinal microbial populations, and intestinal morphology of broiler chickens. 2. CSM was fermented with Bacillus subtilis, Aspergillus niger and A. oryzae for 7 d. A total of 300 one-d-old male Ross 308 broiler chickens were used in a 42-d experiment in which the birds were randomly allotted to one of 5 dietary treatments (containing 0%, 10% and 20% CSM or FCSM) in a completely randomised design. Birds were reared on litter floor and had free access to feed and water during the experiment. 3. Results indicated that the fermentation process significantly reduced crude fibre and free gossypol, while it increased crude protein content and lactic acid bacteria (LAB) count in CSM. 4. The use of FCSM instead of CSM significantly improved growth performance of broilers. The abdominal fat yield in treatments containing FCSM was significantly lower than in the other treatments. The increase in the population of LAB in the crop and decrease in the population of coliforms in the ileum of birds fed on diets containing FCSM were more significant than in other birds. Villi in the duodenum and jejunum of the birds fed on diets containing FCSM were significantly higher than for the other experimental groups. 5. The positive effects of diets containing FCSM on growth performance and intestinal health of broiler chickens showed that this processed source of protein can serve as an appropriate alternative for SBM in diets for broiler chickens.

  1. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.

    PubMed

    Alqurashi, Randah M; Alarifi, Sehad N; Walton, Gemma E; Costabile, Adele F; Rowland, Ian R; Commane, Daniel M

    2017-11-01

    A considerable proportion of dietary plant-polyphenols reach the colon intact; determining the effects of these compounds on colon-health is of interest. We hypothesise that both fibre and plant polyphenols present in açai (Euterpe oleracea) provide prebiotic and anti-genotoxic benefits in the colon. We investigated this hypothesis using a simulated in vitro gastrointestinal digestion of açai pulp, and a subsequent pH-controlled, anaerobic, batch-culture fermentation model reflective of the distal region of the human large intestine. Following in vitro digestion, 49.8% of the total initial polyphenols were available. In mixed-culture fermentations with faecal inoculate, the digested açai pulp precipitated reductions in the numbers of both the Bacteroides-Prevotella spp. and the Clostridium-histolyticum groups, and increased the short-chain fatty acids produced compared to the negative control. The samples retained significant anti-oxidant and anti-genotoxic potential through digestion and fermentation. Dietary intervention studies are needed to prove that consuming açai is beneficial to gut health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Immunomodulatory properties of fermented soy and dairy milks prepared with lactic acid bacteria.

    PubMed

    Wagar, L E; Champagne, C P; Buckley, N D; Raymond, Y; Green-Johnson, J M

    2009-10-01

    Fermented soy and dairy milk preparations provide a means for delivering lactic acid bacteria and their fermentation products into the diet. Our aims were to test immunomodulatory bioactivity of fermented soy beverage (SB) and dairy milk blend (MB) preparations on human intestinal epithelial cells (IEC) and to determine the impact of freezing medium on culture survival prior to bioactivity analyses. Fermented SB and MB were prepared using pure or mixed cultures of Streptococcus thermophilus ST5, Bifidobacterium longum R0175, and Lactobacillus helveticus R0052. Immunomodulatory bioactivity was assessed by testing selected SB and MB ferments on tumor necrosis factor alpha (TNFalpha)-treated IEC and measuring effects on Interleukin-8 (IL-8) production. Impact of timing of ferment administration relative to this pro-inflammatory challenge was investigated. The most pronounced reductions in IEC IL-8 production were observed when IEC were treated with either SB or MB ferment preparations prior to TNFalpha challenge. These results indicate that freezing-stable MB and SB ferments prepared with selected strains can modulate IEC IL-8 production in vitro, and suggest that yogurt-like fermented soy formulations could provide a functional food alternative to milk-based fermented products.

  3. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization.

    PubMed

    Collado, M Carmen; Surono, Ingrid S; Meriluoto, Jussi; Salminen, Seppo

    2007-03-01

    Traditional fermented buffalo milk in Indonesia (dadih) has been believed to have a beneficial impact on human health, which could be related to the properties of the lactic acid bacteria (LAB) involved in its fermentation process. In previous studies, it was discovered that strains of dadih lactic isolates possessed some beneficial properties in vitro. In the present study, the adhesion capacity of specific LAB isolates from dadih to intestinal mucus was analyzed. Further, the ability to inhibit model human pathogens and displace them from mucus was assessed. The adhesion of tested LAB strains was strain-dependent and varied from 1.4 to 9.8%. The most adhesive Lactobacillus plantarum strain was IS-10506, with 9.8% adhesion. The competition assay between dadih LAB isolates and pathogens showed that a 2-h preincubation with L. plantarum at 37 degrees C significantly reduced pathogen adhesion to mucus. All tested LAB strains displaced and inhibited pathogen adhesion, but the results were strain-specific and dependent on time and pathogen strains. In general, L. plantarum IS-10506 showed the best ability against pathogen adhesion.

  4. Effect of a simethicone-containing tablet on colonic gas elimination in breath.

    PubMed

    Lifschitz, C H; Irving, C S; Smith, E O

    1985-05-01

    The effect of a tablet containing the antiflatulent, simethicone, on intestinal hydrogen (H2) elimination in breath was studied. In three trials, normal subjects (age 12-52 years) received, on subsequent days, lactulose or lactulose with two tablets of either simethicone or placebo in randomized order. Breath samples were collected over 210 min and analyzed by gas chromatography for H2. The time course of H2 expiration above baseline levels was calculated and compared for the three tests. No significant differences in transit time were found. Cumulative H2 expiration was significantly lower after simethicone compared to placebo. H2 production from stool incubated with simethicone or placebo indicated that the drug had no effect in reducing the fermentative production of H2 in vitro. Interestingly, the vehicle present in the tablets could be fermented by intestinal bacteria. Simethicone reduced the amount of H2 eliminated in breath, but this effect was offset partially by H2 production from the fermentation of unabsorbable substances used in the formulation of the tablets.

  5. Oral treatment of Fischer 344 rats with weathered crude oil and a dispersant influences intestinal metabolism and microbiota.

    PubMed

    George, S E; Nelson, G M; Kohan, M J; Warren, S H; Eischen, B T; Brooks, L R

    2001-06-22

    When oil is spilled into aquatic systems, chemical dispersants frequently are applied to enhance emulsification and biological availability. In this study, a mammalian model system was used to determine the effect of Bonnie Light Nigerian crude oil, weathered for 2 d with continuous spraying and recirculation, and a widely used dispersant, Corexit (Cx) 9527, on intestinal microbial metabolism and associated populations. To determine the subchronic dose, concentrated or diluted (1:2, 1:5, 1:10, 1:20) Cx9527 or oil was administered by gavage to Fischer 344 rats and the effect on body weight was determined. Next, rats were treated for 5 wk with oil, dispersant, or dispersant + oil. Body and tissue weights, urine mutagenicity, and the impact on the intestinal microflora and three microbial intestinal enzymes linked to bioactivation were determined in the small and large intestines and cecum. Two tested dispersants, Cx9527 and Cx9500, were toxic in vitro (1:1,000 dilution), and oil was not mutagenic in strains TA98 and TA100(+/-S9). None of the treated rats produced urine mutagens detected by TA98 or TA100. Undiluted dispersant was lethal to rats, and weight changes were observed depending on the dilution, whereas oil generally was not toxic. In the 5-wk study, body and tissue weights were unaffected at the doses administered. Small-intestinal levels of azoreductase (AR), beta-glucuronidase (BG), and nitroreductase (NR) were considerably lower than cecal and large-intestinal activities at the same time point. A temporal increase in AR activity was observed in control animals in the 3 tissues examined, and large-intestinal BG activity was elevated in 3-wk controls. No significant changes in cecal BG activity were observed. Oil- or dispersant-treated rats had mixed results with reduced activity at 3 wk and elevated activity at 5 wk compared to controls. However, when the dispersant was combined with oil at 3 wk, a reduction in activity was observed that was similar to that of dispersant alone. One-week nitroreductase activity in the small intestine and cecum was unaffected in the three treatment groups, but elevated activity was observed in the large intestines of animals treated with oil or dispersant. The effect of the combination dose was not significantly different from the control value. Due to experimental error, no 3- or 5-wk NR data were available. By 5 wk of treatment, enterobacteria and enterococci were eliminated from ceca of oil-treated rats. When oil was administered in combination with dispersant, an apparent protective effect was observed on the enterococci and lactose-fermenting and nonfermenting enterobacteria. A more detailed analysis at the species level revealed qualitative differences dependent on the treatment. This study suggests that prolonged exposure of mammals to oil, dispersant, or in combination impacts intestinal metabolism, which ultimately could lead to altered detoxification of oil constituents and coexposed toxicants.

  6. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  7. Protease inhibitors in various flours and breads: Effect of fermentation, baking and in vitro digestion on trypsin and chymotrypsin inhibitory activities.

    PubMed

    Kostekli, Mine; Karakaya, Sibel

    2017-06-01

    In this study trypsin (TIA) and chymotrypsin inhibitory (CIA) activities were determined in the extracts of wheat, rye mix, mixed cereals and, whole wheat flours and, breads made with these flours. In addition, effects of fermentation, baking and in vitro digestion on TIA and CIA were studied. Whole wheat flour, dough, and bread did not show any TIA. Other flours displayed TIA. Contrary to, all flours, doughs, and breads exhibited CIA. Although TIA was not detected in the protein extracts obtained from wheat and rye mix breads, protein extract of rye mix flour exhibited TIA. Following in vitro digestion process, TIA of wheat bread was found as 5.91units/mL gastric dialysate and 9.17units/mL intestine dialysate. CIA was determined in dialysates obtained from wheat (2.12CI/mL and 3.78CI/mL for gastric and intestinal dialysate respectively) and rye breads (4.16CI/mL and 2.46CI/mL for gastric and intestinal dialysate respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota.

    PubMed

    Hoyles, Lesley; Jiménez-Pranteda, Maria L; Chilloux, Julien; Brial, Francois; Myridakis, Antonis; Aranias, Thomas; Magnan, Christophe; Gibson, Glenn R; Sanderson, Jeremy D; Nicholson, Jeremy K; Gauguier, Dominique; McCartney, Anne L; Dumas, Marc-Emmanuel

    2018-04-20

    The dietary methylamines choline, carnitine, and phosphatidylcholine are used by the gut microbiota to produce a range of metabolites, including trimethylamine (TMA). However, little is known about the use of trimethylamine N-oxide (TMAO) by this consortium of microbes. A feeding study using deuterated TMAO in C57BL6/J mice demonstrated microbial conversion of TMAO to TMA, with uptake of TMA into the bloodstream and its conversion to TMAO. Microbial activity necessary to convert TMAO to TMA was suppressed in antibiotic-treated mice, with deuterated TMAO being taken up directly into the bloodstream. In batch-culture fermentation systems inoculated with human faeces, growth of Enterobacteriaceae was stimulated in the presence of TMAO. Human-derived faecal and caecal bacteria (n = 66 isolates) were screened on solid and liquid media for their ability to use TMAO, with metabolites in spent media analysed by 1 H-NMR. As with the in vitro fermentation experiments, TMAO stimulated the growth of Enterobacteriaceae; these bacteria produced most TMA from TMAO. Caecal/small intestinal isolates of Escherichia coli produced more TMA from TMAO than their faecal counterparts. Lactic acid bacteria produced increased amounts of lactate when grown in the presence of TMAO but did not produce large amounts of TMA. Clostridia (sensu stricto), bifidobacteria, and coriobacteria were significantly correlated with TMA production in the mixed fermentation system but did not produce notable quantities of TMA from TMAO in pure culture. Reduction of TMAO by the gut microbiota (predominantly Enterobacteriaceae) to TMA followed by host uptake of TMA into the bloodstream from the intestine and its conversion back to TMAO by host hepatic enzymes is an example of metabolic retroconversion. TMAO influences microbial metabolism depending on isolation source and taxon of gut bacterium. Correlation of metabolomic and abundance data from mixed microbiota fermentation systems did not give a true picture of which members of the gut microbiota were responsible for converting TMAO to TMA; only by supplementing the study with pure culture work and additional metabolomics was it possible to increase our understanding of TMAO bioconversions by the human gut microbiota.

  9. Probiotics as an alternative strategy for prevention and treatment of human diseases: a review.

    PubMed

    Khani, Soghra; Hosseini, Hamideh M; Taheri, Mohammad; Nourani, Mohammad R; Imani Fooladi, Abbas A

    2012-04-01

    Probiotics are live microbial food supplements or their components, which have been shown to have beneficial effects on human health. Probiotics can be bacteria, molds, or yeasts, but most of them fall into the group known as lactic acid bacteria and are normally consumed in the form of yogurt, fermented milk, or other fermented foods. Data from clinical trials have shown contrasting effects and should be interpreted with caution. A large variety of potential beneficial effects have been reported including improvement of intestinal tract health, enhancing the immune system, reducing symptoms of lactose intolerance, decreasing the prevalence of allergy in susceptible individuals, reducing risk of certain cancers, treating colitis, lowering serum cholesterol concentrations, reducing blood pressure in hypertensives, and improving female urogenital infections and Helicobacter pylori infections. The aim of this article is to present a review of the current expanding knowledge of applications of utilizing probiotic microorganisms in the prevention and treatment of several diseases.

  10. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose.

    PubMed

    Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa

    2011-01-01

    Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits. © 2011 International Life Sciences Institute.

  11. Dietary fibre and the importance of the gut microbiota in feline nutrition: a review.

    PubMed

    Rochus, Kristel; Janssens, Geert P J; Hesta, Myriam

    2014-12-01

    Domestic cats are obligate carnivores and in this light hindgut fermentation has been considered unimportant in this species. However, a diverse microbiota has been found in the small and large intestines of domestic cats. Additionally, in vitro and in vivo studies support the hypothesis that microbial fermentation is significant in felines with potential benefits to the host. Results on microbiota composition and microbial counts in different regions of the feline gastrointestinal tract are compiled, including a description of modulating host and technical factors. Additionally, the effects of dietary fibre supplementation on the microbiota composition are described. In a second section, in vitro studies, using inocula from fresh feline faeces and focusing on the fermentation characteristics of diverse plant substrates, are described. In vivo studies have investigated the effects of dietary fibre on a broad range of physiological outcomes. Results of this research, together with studies on effects of plant fibre on colonic morphology and function, protein and carbohydrate metabolism, and the effects of plant fibre on disease conditions that require a decrease in dietary protein intake, are shown in a third section of the present review. Conclusively, for fructans and beet pulp, for example, diverse beneficial effects have been demonstrated in the domestic cat. Both dietary fibre sources are regularly used in the pet food industry. More research is warranted to reveal the potential benefits of other fibre sources that can be used on a large scale in feline diets for healthy and diseased cats.

  12. A high dietary concentration of inulin is necessary to reduce the incidence of swine dysentery in pigs experimentally challenged with Brachyspira hyodysenteriae.

    PubMed

    Hansen, Christian F; Hernández, Aracely; Mansfield, Josie; Hidalgo, Álvaro; La, Tom; Phillips, Nyree D; Hampson, David J; Pluske, John R

    2011-11-01

    A total of sixty surgically castrated male pigs (Large White × Landrace) weighing 31·2 (sd 4·3) kg were used in a randomised block experiment to examine the effect of added dietary inulin (0, 20, 40 and 80 g/kg) on the occurrence of swine dysentery (SD) and on fermentation characteristics in the large intestine after experimental challenge with the causative spirochaete Brachyspira hyodysenteriae. The pigs were allowed to adapt to the diets for 2 weeks before each pig was challenged orally four times with a broth culture containing B. hyodysenteriae on consecutive days. Increasing dietary levels of inulin linearly (P = 0·001) reduced the risk of pigs developing SD; however, eight out of fifteen pigs fed the diet with 80 g/kg inulin still developed the disease. The pH values in the caecum (P = 0·072) tended to decrease, and in the upper colon, the pH values did decrease (P = 0·047) linearly with increasing inulin levels in the diets, most probably due to a linear increase in the concentration of total volatile fatty acids in the caecum (P = 0·018), upper colon (P = 0·001) and lower colon (P = 0·013). In addition, there was a linear reduction in the proportion of the branched-chain fatty acids isobutyric acid and isovaleric acid in the caecum (P = 0·015 and 0·026) and upper colon (P = 0·011 and 0·013) with increasing levels of dietary inulin. In conclusion, the present study showed that a diet supplemented with a high level of inulin (80 g/kg) but not lower levels reduced the risk of pigs developing SD, possibly acting through a modification of the microbial fermentation patterns in the large intestine.

  13. Enzymes in Fermented Fish.

    PubMed

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  14. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

    PubMed Central

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O.

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics. PMID:26960543

  15. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches.

    PubMed

    Chassard, Christophe; Scott, Karen P; Marquet, Perrine; Martin, Jennifer C; Del'homme, Christophe; Dapoigny, Michel; Flint, Harry J; Bernalier-Donadille, Annick

    2008-12-01

    The human gut harbours a wide range of bacterial communities that play key roles in supplying nutrients and energy to the host through anaerobic fermentation of dietary components and host secretions. This fermentative process involves different functional groups of microorganisms linked in a trophic chain. Although the diversity of the intestinal microbiota has been studied extensively using molecular techniques, the functional aspects of this biodiversity remain mostly unexplored. The aim of the present work was to enumerate the principal metabolic groups of microorganisms involved in the fermentative process in the gut of healthy humans. These functional groups of microorganisms were quantified by a cultural approach, while the taxonomic composition of the microbiota was assessed by in situ hybridization on the same faecal samples. The functional groups of microorganisms that predominated in the gut were the polysaccharide-degrading populations involved in the breakdown of the most readily available exogenous and endogenous substrates and the predominant butyrate-producing species. Most of the functional groups of microorganisms studied appeared to be present at rather similar levels in all healthy volunteers, suggesting that optimal numbers of these various bacterial groups are crucial for efficient gut fermentation, as well as for host nutrition and health. Significant interindividual differences were, however, confirmed with respect to the numbers of methanogenic archaea, filter paper-degrading and acetogenic bacteria and the products formed by lactate-utilizing bacteria.

  16. Gut microbiota and energy balance: role in obesity.

    PubMed

    Blaut, Michael

    2015-08-01

    The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.

  17. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique.

    PubMed

    Lia, Yangling; He, Maolong; Li, Chun; Forster, Robert; Beauchemin, Karen Anne; Yang, Wenzhu

    2012-04-01

    This study was conducted to evaluate the effect of wheat dried distillers' grains with solubles (DDGS) and cinnamaldehyde (CIN) on in vitro fermentation and microbial profiles using the rumen simulation technique. The control substrate (10% barley silage, 85% barley grain and 5% supplement, on dry matter basis) and the wheat DDGS substrate (30% wheat DDGS replaced an equal portion of barley grain) were combined with 0 and 300 mg CIN/l of culture fluid. The inclusion of DDGS increased (p < 0.05) the concentration of volatile fatty acids (VFA) and the molar proportion of acetate and propionate. Dry matter disappearance (p = 0.03) and production of bacterial protein (p < 0.01) were greater, whereas the disappearances of crude protein (CP) and neutral detergent fibre were less (p < 0.01) for the DDGS than for the control substrate. With addition of CIN, concentration of total VFA decreased and fermentation pattern changed to greater acetate and less propionate proportions (p < 0.01). The CIN reduced (p < 0.01) methane production and CP degradability. The copy numbers of Fibrobacter, Prevotella and Archaea were not affected by DDGS but were reduced (p < 0.05) by CIN. The results indicate that replacing barley grain by DDGS increased nutrient fermentability and potentially increase protein flows to the intestine. Supplementation of high-grain substrates with CIN reduced methane production and potentially increased the true protein reaching the small intestine; however, overall reduction of feed fermentation may lower the feeding value of a high-grain diet.

  18. Radioprotective effects of miso (fermented soy bean paste) against radiation in B6C3F1 mice: increased small intestinal crypt survival, crypt lengths and prolongation of average time to death.

    PubMed

    Ohara, M; Lu, H; Shiraki, K; Ishimura, Y; Uesaka, T; Katoh, O; Watanabe, H

    2001-12-01

    The radioprotective effect of miso, a fermentation product from soy bean, was investigated with reference to the survival time, crypt survival and jejunum crypt length in male B6C3F1 mice. Miso at three different fermentation stages (early-, medium- and long-term fermented miso) was mixed in MF diet into biscuits at 10% and was administered from 1 week before irradiation. Animal survival in the long-term fermented miso group was significantly prolonged as compared with the short-term fermented miso and MF cases after 8 Gy of 60Co-gamma-ray irradiation at a dose rate of 2Gy min(-1). Delay in mortality was evident in all three miso groups, with significantly increased survival. At doses of 10 and 12 Gy X-irradiation at a dose rate of 4 Gy min(-1), the treatment with long-term fermented miso significantly increased crypt survival. Also the protective influence against irradiation in terms of crypt lengths in the long-term fermented miso group was significantly greater than in the short-term or medium-term fermented miso and MF diet groups. Thus, prolonged fermentation appears to be very important for protection against radiation effects.

  19. Persistence of Lactobacillus Reuteri DSM17938 in the Human Intestinal Tract: Response to Consecutive and Alternate-Day Consumption with Varying Storage Conditions

    DTIC Science & Technology

    2011-08-25

    dietary supplements or food products containing probiotics (e.g. yogurt , kefir, etc…) until study completion. Volunteers were given a reference list... fermented milk containing Lactobacillus casei. J Nutr Health Aging 8: 208-211, 2004. 10. Parra MD, Martinez de Morentin BE, Cobo JM, Mateos A and...Martinez JA. Daily ingestion of fermented milk containing Lactobacillus casei DN114001 improves innate- defense capacity in healthy middle-aged people

  20. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers

    PubMed Central

    Songisepp, Epp; Kals, Jaak; Kullisaar, Tiiu; Mändar, Reet; Hütt, Pirje; Zilmer, Mihkel; Mikelsaar, Marika

    2005-01-01

    Background In persons without clinical symptom it is difficult to assess an impact of probiotics regarding its effect on health. We evaluated the functional efficacy of the probiotic Lactobacillus fermentum ME-3 in healthy volunteers by measuring the influence of two different formulations on intestinal lactoflora, fecal recovery of the probiotic strain and oxidative stress markers of blood and urine after 3 weeks consumption. Methods Two 3-week healthy volunteer trials were performed. Open placebo controlled (OPC) study participants (n = 21) consumed either goat milk or by L. fermentum ME-3 fermented goat milk (daily dose 11.8 log CFU (Colony Forming Units). Double blind randomised placebo controlled (DBRP) study participants (n = 24) received either capsules with L. fermentum ME-3 (daily of dose 9.2 CFU) or placebo capsules. The faecal lactoflora composition, faecal ME-3 recovery, effect of the consumption on intestinal lactoflora, and oxidative stress markers of blood (total antioxidative activity; total antioxidative status and glutathione red-ox ratio) was measured. Results ME-3 was well tolerated and a significant increase in total faecal lactobacilli yet no predominance of ME-3 was detected in all study groups. Faecal recovery of ME-3 was documented by molecular methods only in fermented milk group, however the significant improvement of blood TAA (Total Antioxidative Activity) and TAS (Total Antioxidative Status) indices was seen both in case of fermented goat milk and capsules", yet glutathione re-ox ratio values decreased only in case of fermented by ME-3 goat milk. Conclusion The functional efficacy of both consumed formulations of an antioxidative probiotic L. fermentum ME-3 is proved by the increase of the intestinal lactobacilli counts providing putative defence against enteric infections and by reduction of the oxidative stress indices of blood and urine of healthy volunteers. In non-diseased host the probiotic health claims can be assessed by improvement of some measurable laboratory indices of well-established physiological functions of host, e.g. markers of antioxidative defence system. PMID:16080791

  1. Progressive response of large intestinal bacterial community and fermentation to the stepwise decrease of dietary crude protein level in growing pigs.

    PubMed

    Peng, Yu; Yu, Kaifan; Mu, Chunlong; Hang, Suqin; Che, Lianqiang; Zhu, Weiyun

    2017-07-01

    The study aimed to determine the effects of reduction of dietary crude protein (CP) level with balanced essential amino acids (EAA) on intestinal bacteria and their metabolites of growing pigs. Forty pigs (initial BW 13.50 ± 0.50 kg, 45 ± 2 days of age) were randomly assigned to four dietary treatments containing CP levels at 20.00% (normal crude protein, NP); 17.16% (medium crude protein, MP); 15.30% (low crude protein, LP); and 13.90% (extremely low crude protein, ELP), respectively. Crystalline AAs were added to meet the EAA requirement of pigs. After 4-week feeding, eight pigs per treatment (n = 8) were randomly selected and slaughtered for sampling of ileal, cecal, and colonic digesta and mucosa. Pigs with moderately reduced CP level had increased bacterial diversity, with the Shannon diversity indices for the colon digesta in the LP group and mucosa in the MP and LP groups significantly (P < 0.05) higher than those in the NP and ELP groups. As the CP level reduces, the Bifidobacterium population were linearly decreased (P < 0.05) both in ileum, cecum, and colon, and the ELP group had the lowest Bifidobacterium population in the cecum and colon, with its value significantly lower than NP and MP groups (P < 0.05). However, the ELP group had the highest population of Escherichia coli in the colon, with its value significantly higher than the LP group (P < 0.05). For bacterial metabolites, as CP level decreased, total short-chain fatty acid (T-SCFA), acetate, and butyrate were linearly increased (linear, P < 0.05) in the ileum, while all SCFAs except formate in the cecum and T-SCFA and acetate in the colon, were linearly decreased (P < 0.05). Reducing CP level led to a linear decrease of microbial crude protein (MCP) in the ileum (P < 0.05) and ammonia in all intestine segments (P < 0.05). The spermidine in cecum and total amines, cadaverine, methylamine, and spermidine in colon were shown a quadratic change (P < 0.05) as dietary CP decreases, with the highest concentration in LP group. These findings suggest that moderate reduction of dietary CP level may benefit large intestinal bacterial community and its fermentation, which was negatively affected by extremely low CP diet.

  2. Characterization of the Intestinal Lactobacilli Community following Galactooligosaccharides and Polydextrose Supplementation in the Neonatal Piglet

    PubMed Central

    Hoeflinger, Jennifer L.; Kashtanov, Dimitri O.; Cox, Stephen B.; Dowd, Scot E.; Jouni, Zeina E.; Donovan, Sharon M.; Miller, Michael J.

    2015-01-01

    Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05): Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04) in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater), which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp. PMID:26275147

  3. Dynamics of fecal microbiota in hospitalized elderly fed probiotic LKM512 yogurt.

    PubMed

    Matsumoto, Mitsuharu; Sakamoto, Mitsuo; Benno, Yoshimi

    2009-08-01

    The comprehensive dynamics of intestinal microbiota including uncultured bacteria in response to probiotic consumption have not been well studied. The aims of this study were twofold: firstly to analyze the impact on intestinal microbiota of yogurt fermented by Bifidobacterium animalis subsp. lactis LKM512, Lactobacillus delbrueckii subsp. bulgaricus LKM1759, and Streptococcus thermophilus LKM1742 (LKM512 yogurt) and placebo fermented by these lactic acid bacterial strains without LKM512; and secondly to investigate the changes in intestinal microbiota that influence the concentration of PA, one of the beneficial metabolites produced by bacteria in the intestine. The LKM512 yogurt/placebo trial was performed in six hospitalized elderly patients (three men and three women with an average age of 80.3 years) and lasted seven weeks with the following schedule: pre-consumption for one week, LKM512 yogurt consumption for two weeks, washout period for two weeks, and placebo consumption for two weeks. The amount of ingested LKM512 yogurt or placebo was 100 g/day/individual. Fecal samples were analyzed using T-RFLP and real-time PCR. The T-RFLP patterns in five of the six volunteers were changed in a similar fashion by LKM512 yogurt consumption, although these patterns were individually changed following consumption of placebo. It was confirmed that B. animalis subsp. lactis was increased dramatically and Lactobacillus spp. tended to be decreased by LKM512 yogurt consumption. Some indigenous uncultured bacteria were increased and some decreased by LKM512 yogurt/placebo consumption. The similar changes in the intestinal microbiota of the elderly caused by consumption of the LKM512 yogurt were found to be influenced by the LKM512 strain itself, and not by the lactic acid bacteria in the yogurt. Moreover, this study suggests that the increase in intestinal PA concentrations caused by LKM512 yogurt consumption is probably dependent on the LKM512 strain colonizing the intestine.

  4. Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Yu, Jinghua; Kuo, Sherwin; Coda, Alvin; Jiang, Yong; Gallo, Richard L.; Huang, Chun-Ming

    2013-01-01

    Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes), a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health. PMID:23405142

  5. In vitro and in vivo probiotic assessment of Leuconostoc mesenteroides P45 isolated from pulque, a Mexican traditional alcoholic beverage.

    PubMed

    Giles-Gómez, Martha; Sandoval García, Jorge Giovanni; Matus, Violeta; Campos Quintana, Itzia; Bolívar, Francisco; Escalante, Adelfo

    2016-01-01

    Pulque is a Mexican traditional alcoholic, non-distilled, fermented beverage produced by the fermentation of the sap, known as aguamiel, extracted from several maguey (Agave) species. Pulque has traditionally been considered a healthy beverage due to its nutrient content and also a traditional medicine for the treatment of gastrointestinal disorders and intestinal infections. During pulque fermentation, the development of acidity, alcohol and viscosity define its final sensorial properties, developing an enriched environment where dominant lactic acid bacteria (LAB), including diverse Leuconostoc species, are present. Because traditional pulque is consumed directly from the fermentation vessel, the naturally associated LAB are ingested and reach the human small intestine alive. Here, we report the in vitro and in vivo probiotic assessment of Leuconostoc mesenteroides strain P45 isolated from pulque. This isolated LAB species exhibited lysozyme, acid (pH 3.5) and bile salts (0.1 and 0.3 % oxgall) resistance. Antibacterial activity against the pathogens Listeria monocytogenes, enteropathogenic Escherichia coli, Salmonella enterica serovar Typhi and S. enterica serovar Typhimurium were observed in assays involving cell-to-cell contact, cell-free 2× concentrated supernatants and cell-to-cell contact under exopolysaccharide-producing conditions. The in vivo probiotic assessment showed an anti-infective activity of L. mesenteroides P45 against S. enterica serovar Typhimurium in challenged male and female BALB/c mice. Analysis of the available genome sequence of strain P45 allowed identified a pre-bacteriocin coding gene and six peptidoglycan hydrolase enzymes, probably involved in the antimicrobial activity of this strain. The results presented in this study support some potential microbial mechanisms associated with the beneficial effects on human health of this LAB involved in the fermentation of pulque.

  6. Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens.

    PubMed

    Iraporda, Carolina; Abatemarco Júnior, Mário; Neumann, Elisabeth; Nunes, Álvaro Cantini; Nicoli, Jacques R; Abraham, Analía G; Garrote, Graciela L

    2017-08-01

    Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.

  7. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls.

    PubMed

    Jaworski, N W; Stein, H H

    2017-02-01

    Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed diets containing distillers dried grains with solubles (DDGS), wheat middlings, or soybean hulls was determined. A second objective was to test the hypothesis that physical characteristics of dietary fiber in diets are correlated with the digestibility of nutrients and energy. Eight barrows (initial BW = 37.3 ± 1.0 kg) with a T-cannula in the distal ileum and another T-cannula in the proximal colon were allotted to a replicated 4 × 4 Latin square design with 4 diets and 4 periods in each square. The basal diet was a corn-soybean meal diet and 3 additional diets were formulated by substituting 30% of the basal diet with DDGS, wheat middlings, or soybean hulls. Following an 8-d adaptation period, fecal samples were collected on d 9 and 10, and samples from the colon and the ileum were collected on d 11 and 12, and d 13 and 14, respectively. Values for apparent ileal digestibility (AID), apparent cecal digestibility (ACD), and apparent total tract digestibility (ATTD) of nutrients and energy were calculated. Results indicated that ACD and ATTD of soluble dietary fiber was not different regardless of diet indicating that the soluble dietary fiber is mostly fermented in the small intestine or in the cecum. Pigs fed the wheat middlings diet had greater ( ≤ 0.05) ACD of insoluble dietary fiber compared with pigs fed diets containing DDGS or soybean hulls indicating that the insoluble fiber in wheat middlings may be more fermentable than insoluble fiber in DDGS or soybean hulls. Insoluble dietary fiber disappearance in the colon of pigs fed the soybean hulls diet was greater ( ≤ 0.05) compared with the DGGS containing diet indicating that insoluble fiber in DDGS are more resistant to fermentation than insoluble fiber in soybean hulls. The ATTD of total dietary fiber in wheat middlings was greater ( ≤ 0.05) than in DDGS and soybean hulls further indicating that fiber in wheat middlings are more fermentable than fiber in DDGS and soybean hulls. Water binding capacity, bulk density, and viscosity of dietary fiber were not correlated with digestibility of nutrients and energy regardless of the diet. In conclusion, soluble dietary fiber is mostly fermented before reaching the colon whereas insoluble dietary fiber is mostly fermented in the colon, but fiber in wheat middlings is more fermentable than fiber in DDGS or soybean hulls.

  8. Evaluation of the Antioxidative, Antibacterial, and Anti-Inflammatory Effects of the Aloe Fermentation Supernatant Containing Lactobacillus plantarum HM218749.1.

    PubMed

    Jiang, Meixiu; Deng, Kan; Jiang, Chunling; Fu, Mingui; Guo, Chunlan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Deng, Keyu; Chen, Tingtao; Xin, Hongbo

    2016-01-01

    Little work is done to develop Aloe vera (AV) using probiotics. To explore the potential benefits, the antioxidant effects and the antibacterial effects on foodborne pathogens of Aloe fermentation supernatant were evaluated in vitro. Our results indicated that the Aloe fermentation supernatant fermented by Lactobacillus plantarum HM218749.1 had very strong scavenging capacities of the DPPH (86%), O2 (•-) (85%), (•)OH (76%), and Fe(2+) chelation (82%) and reducing powers (242.5 mg/L), and the inhibition zones for Salmonella typhimurium, Salmonella enteritidis, Shigella flexneri, Escherichia coli, Listeria monocytogenes, S. dysenteriae 301, Staphylococcus aureus Cowan1, and Propionibacterium acnes were 16, 15, 19, 20, 21, 20, and 27 mm. Moreover, the low concentration of Aloe fermentation supernatant had significantly reduced the production of IL-1β, TNF-α, and IL-6 in both mRNA and protein levels (P < 0.01). Therefore, the Aloe fermentation supernatant can be used as functional beverage or cosmetic ingredients to guard human intestinal health, delaying senescence, and prevent chronic diseases.

  9. Evaluation of the Antioxidative, Antibacterial, and Anti-Inflammatory Effects of the Aloe Fermentation Supernatant Containing Lactobacillus plantarum HM218749.1

    PubMed Central

    Deng, Kan; Jiang, Chunling; Fu, Mingui; Guo, Chunlan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Deng, Keyu

    2016-01-01

    Little work is done to develop Aloe vera (AV) using probiotics. To explore the potential benefits, the antioxidant effects and the antibacterial effects on foodborne pathogens of Aloe fermentation supernatant were evaluated in vitro. Our results indicated that the Aloe fermentation supernatant fermented by Lactobacillus plantarum HM218749.1 had very strong scavenging capacities of the DPPH (86%), O2 •− (85%), •OH (76%), and Fe2+ chelation (82%) and reducing powers (242.5 mg/L), and the inhibition zones for Salmonella typhimurium, Salmonella enteritidis, Shigella flexneri, Escherichia coli, Listeria monocytogenes, S. dysenteriae 301, Staphylococcus aureus Cowan1, and Propionibacterium acnes were 16, 15, 19, 20, 21, 20, and 27 mm. Moreover, the low concentration of Aloe fermentation supernatant had significantly reduced the production of IL-1β, TNF-α, and IL-6 in both mRNA and protein levels (P < 0.01). Therefore, the Aloe fermentation supernatant can be used as functional beverage or cosmetic ingredients to guard human intestinal health, delaying senescence, and prevent chronic diseases. PMID:27493450

  10. Effects of Fermented Dairy Products on Skin: A Systematic Review.

    PubMed

    Vaughn, Alexandra R; Sivamani, Raja K

    2015-07-01

    Fermented dairy products, such as yogurt, have been proposed as a natural source of probiotics to promote intestinal health. Growing evidence shows that modulation of the gastrointestinal tract microbiota can modulate skin disease as well. This systematic review was conducted to examine the evidence for the use of ingested fermented dairy products to modulate skin health and function. We also sought to review the effects of the topical application of dairy products. The PubMed and Embase databases were systematically searched for clinical studies involving humans only that examined the relationship between fermented dairy products and skin health. A total of 312 articles were found and a total of 4 studies met inclusion criteria. Three studies evaluated the effects of ingestion, while one evaluated the effects of topical application. All studies noted improvement with the use of fermented dairy. Overall, there is early and limited evidence that fermented dairy products, used both topically and orally, may provide benefits for skin health. However, existing studies are limited and further studies will be important to better assess efficacy and the mechanisms involved.

  11. Assessment of the probiotic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets.

    PubMed

    Cousin, Fabien J; Foligné, Benoît; Deutsch, Stéphanie-Marie; Massart, Sébastien; Parayre, Sandrine; Le Loir, Yves; Boudry, Gaëlle; Jan, Gwénaël

    2012-08-15

    Dairy propionibacteria, including Propionibacterium freudenreichii , display promising probiotic properties, including immunomodulation. These properties are highly strain-dependent and rarely studied in a fermented dairy product. We screened 10 strains, grown in a newly developed fermented milk ultrafiltrate, for immunomodulatory properties in vitro. The most anti-inflammatory strain, P. freudenreichii BIA129, was further tested on piglets. P. freudenreichii -fermented product improved food intake and growth of piglets. Colonic mucosa explants of treated pigs secreted less interleukin 8 (-25%, P < 0.05) and tumor necrosis factor α (-20%, P < 0.05), either in basal conditions or after a lipopolysaccharide challenge. By contrast, the gut structure, barrier function (measured ex vivo in Ussing chambers), microbial diversity (assessed by 16S rRNA pyrosequencing), and colonic short-chain fatty acid content were unchanged, assuming maintenance of normal intestinal physiology. In conclusion, this work confirms in vivo probiotic properties of dairy propionibacteria-fermented products, which are promising for the prevention or healing of inflammatory bowel diseases.

  12. An in silico pan-genomic probe for the molecular traits behind Lactobacillus ruminis gut autochthony.

    PubMed

    Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2017-01-01

    As an ecological niche, the mammalian intestine provides the ideal habitat for a variety of bacterial microorganisms. Purportedly, some commensal genera and species offer a beneficial mix of metabolic, protective, and structural processes that help sustain the natural digestive health of the host. Among these sort of gut inhabitants is the Gram-positive lactic acid bacterium Lactobacillus ruminis, a strict anaerobe with both pili and flagella on its cell surface, but also known for being autochthonous (indigenous) to the intestinal environment. Given that the molecular basis of gut autochthony for this species is largely unexplored and unknown, we undertook a study at the genome level to pinpoint some of the adaptive traits behind its colonization behavior. In our pan-genomic probe of L. ruminis, the genomes of nine different strains isolated from human, bovine, porcine, and equine host guts were compiled and compared for in silico analysis. For this, we conducted a geno-phenotypic assessment of protein-coding genes, with an emphasis on those products involved with cell-surface morphology and anaerobic fermentation and respiration. We also categorized and examined the core and accessory genes that define the L. ruminis species and its strains. Here, we made an attempt to identify those genes having ecologically relevant phenotypes that might support or bring about intestinal indigenousness.

  13. [Role of black bean Phaseolus vulgaris on the nutritional status of Guatemalan population].

    PubMed

    Serrano, José; Goñi, Isabel

    2004-03-01

    Guatemala provides an example of epidemiological superposition, in which health problems typical of developed countries and developing countries are both observed. Nutritional deficiencies in some micronutrients like vitamin A and iron coexist alongside chronic diseases such as diabetes type II and cardiovascular diseases. The importance of black beans in the normal Guatemala diet is well known:70g per capita of black beans are consumed daily. Black beans are an important sources of protein and energy in the diet. They contain "lente" digestion carbohydrates and a high proportion of non-digested carbohydrates that may be fermented in the large intestine. Theses types of carbohydrates are associated with a low glycemic response, low serum cholesterol levels, and a decrease of colon cancer risk factors. These physiological effects may be related to colonic fermentation end products (propionic and butyric acids). Black beans also contain several antinutritional compounds (enzymatic inhibitors, haemaglutenins, saponins and phytic acid, etc.), some of them thermolabiles that are partially eliminated during culinary processes and may modify the nutritional quality of beans. Black beans play a crucial role in the etiology of several diseases in Guatemala.

  14. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease.

    PubMed

    Rose, Devin J; Venema, Koen; Keshavarzian, Ali; Hamaker, Bruce R

    2010-05-01

    The purpose of this research was to test the hypothesis that starch-entrapped microspheres would produce favourable fermentation profiles and microbial shifts during in vitro fermentation with the faecal microbiota from patients with inflammatory bowel disease (IBD). In vitro fermentation was carried out using a validated, dynamic, computer-controlled model of the human colon (Toegepast Natuurwetenschappelijk Onderzoek gastro-intestinal model-2) after inoculation with pooled faeces from healthy individuals, patients with inactive IBD (Crohn's disease (CD)) or patients with active IBD (ulcerative colitis (UC)). Starch-entrapped microspheres fermented more slowly and produced more butyrate than fructo-oligosaccharides (FOS) when fermented with the faecal microbiota from patients with active UC. When fermented with the microbiota from patients with inactive CD, starch-entrapped microspheres also fermented more slowly but produced similar amounts of butyrate compared with FOS. Starch-entrapped microspheres showed a greater ability to maintain a low pH during simulated-distal colon conditions compared with FOS. After fermentation with the microbiota from inactive CD patients, starch-entrapped microspheres resulted in lower concentrations of some potentially harmful gut bacteria, included in Bacteroides, Enterococcus, Fusobacterium and Veillonella, compared with FOS. These findings suggest that slow fermenting starch-entrapped microspheres may induce a favourable colonic environment in patients with IBD through high butyrate production, maintenance of low pH in the distal colon and inhibition of the growth of potentially harmful bacteria.

  15. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  16. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.

    PubMed

    de Vries, Sonja; Gerrits, Walter J J; Kabel, Mirjam A; Vasanthan, Thava; Zijlstra, Ruurd T

    2016-01-01

    Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P<0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (>10%-units, P<0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.

  17. In vitro fermentation characteristics, in vivo ileal and total tract nutrient digestibilities, and fecal microbiota responses of dogs to α-cyclodextrin.

    PubMed

    Guevara, M A; Bauer, L L; Garleb, K A; Fahey, G C; de Godoy, M R C

    2016-05-01

    The objectives were to examine in vitro fermentation characteristics, in vivo nutrient digestibility, fecal microbiota, and serum lipid profiles as affected by α-cyclodextrin (ACD) supplementation. Short-chain fatty acid (SCFA) production was measured after in vitro fermentation for 3, 6, 9, and 12 h of ACD, β-cyclodextrin, and γ-cyclodextrin. Five mixed-breed hounds were used in a Latin square design. Each experimental period comprised 14 d, including 10 d for diet adaptation and 4 d for fecal collection. Dogs were fed, twice a day, an extruded diet made with poultry byproduct meal and brewer's rice as the main ingredients. Dogs were supplemented with 0, 1, 2, 3, or 4 g of ACD diluted in 15 mL of water twice daily for a total of 0, 2, 4, 6, and 8 g ACD/d. Maximal in vitro production of total SCFA was lowest for ACD. However, the greatest maximal production of propionate was noted for ACD treatment. Total tract nutrient digestibility and fecal DM concentration linearly decreased ( < 0.05) for treatment groups receiving ACD; no changes were observed for ileal digestibility. Serum cholesterol and triglyceride concentrations were within normal ranges for dogs and were not different among treatments. Similarly, no changes in fecal microbiota were observed. Overall, ACD supplementation appears to have no effect on nutrient absorption in the small intestine but may alter fermentation in the large bowel, which could lead to a higher proportion of propionate production as observed in the in vitro experiment.

  18. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.

  19. Dietary management of acute diarrhoea in children: effect of fermented and amylase-digested weaning foods on intestinal permeability.

    PubMed

    Willumsen, J F; Darling, J C; Kitundu, J A; Kingamkono, R R; Msengi, A E; Mduma, B; Sullivan, K R; Tomkins, A M

    1997-03-01

    There is a strong relationship between diarrhoea, malnutrition, and intestinal integrity. To investigate the effect of different dietary-treatment on intestinal permeability during acute diarrhoea, 87 Tanzanian children aged 6-25 months were recruited to this study when admitted to hospital. Children with acute diarrhoea were rehydrated and then randomly assigned to one of three dietary treatment groups: a conventional low-energy density porridge, a high-energy density amylase digested porridge (AMD), or a high-energy density amylase digested and then fermented porridge (FAD). Lactulose/mannitol permeability tests were performed on admission, at 3 days, and at follow-up 2 and 4 weeks after discharge. The lactulose/mannitol (L/M) ratios were compared between dietary treatment groups and to a group of age-matched, healthy control subjects. Children with diarrhoea had higher L/M ratios (geometric mean 0.85, 95% CI 0.68-1.05) compared with control subjects (0.14, 0.12-0.17) on admission. There was a significant difference in the change in L/M ratio between admission and 3 days between dietary treatment groups in favour of the FAD group (p < 0.05). Dietary treatment and intestinal damage at admission explain 13.5% of the variation in L/M ratio, but when age at admission and age at weaning are included as covariants, 21.9% is explained. FAD porridge seems to be more effective in the treatment of intestinal permeability than AMD or conventional porridge. Urinary lactose concentrations in spot urine samples taken prior to the permeability test were also measured. There was a significant correlation with the L/M ratio (correlation coefficient = 0.62, p < 0.001).

  20. Effects of dietary fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on growth performance, digestibility, and intestinal microbiology and morphology in broiler chickens.

    PubMed

    Shang, Hong Mei; Song, Hui; Xing, Ya Li; Niu, Shu Li; Ding, Guo Dong; Jiang, Yun Yao; Liang, Feng

    2016-01-15

    The present study was undertaken to investigate the effects of fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. (HFC) on growth performance, digestibility, intestinal microbiology, and intestinal morphology in broiler chickens. A total of 600 male Arbor Acres broilers were randomly divided into five dietary treatments (20 broilers per pen with six pens per treatment): CON (basal diet), ANT (basal diet supplemented with 5 mg kg(-1) flavomycin) and HFC (basal diet supplemented with 6, 12, and 18 g kg(-1) HFC). The experimental lasted for 42 days. The results revealed that the average daily gain [linear (L), P < 0.01; quadratic (Q), P < 0.01] of broilers increased when the HFC levels increased during the starter (days 1-21), finisher (days 22-42), and the overall experiment period (days 1 to 42). In the small intestinal digesta and the caecum digesta, the Escherichia coli count (L, P < 0.05; Q, P < 0.001) decreased while the Lactobacilli count (L, P < 0.01; Q, P < 0.001) and Bifidobacteria count (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. The crude protein digestibility of broilers (L, P < 0.01; Q, P < 0.001) increased when the HFC levels increased. In the duodenum, jejunum, and ileum of broilers, the villus height and villus height to crypt depth ratio (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. Dietary supplementation with HFC increased gut Lactobacilli and Bifidobacteria counts and inhibited E. coli growth, improved nutrient utilisation and intestine villus structure, and thus improved the growth of broilers. © 2015 Society of Chemical Industry.

  1. Dietary Supplementation of Fermented Rice Bran Effectively Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice.

    PubMed

    Islam, Jahidul; Koseki, Takuya; Watanabe, Kouichi; Budijanto, Slamet; Oikawa, Akira; Alauddin, Md; Goto, Tomoko; Aso, Hisahi; Komai, Michio; Shirakawa, Hitoshi

    2017-07-13

    Rice bran (RB) is a major by-product of rice polishing and a rich source of bioactive compounds. Here, we investigated the anti-colitis effect of diet supplementation with fermented rice bran (FRB) in a murine model of ulcerative colitis. FRB was prepared by dual fermentation of RB using fungi and lactic acid bacteria. Colitis was induced in C57Bl/6N male mice ( n = 8/group) by dextran sodium sulfate (DSS). Body weight change, disease activity index (DAI), histopathology score, tissue myeloperoxidase (MPO) activity, cytokine and chemokine transcript levels, and the production of short-chain fatty acids (SCFAs) and mucin in the colonic tissue were monitored. Based on histopathology scores, DSS induced severe mucosal inflammation, with an increased loss of crypts, and inflammatory cell infiltration in the control and RB groups, but not in the FRB group. MPO activity, thiobarbituric acid-reactive substance levels, and pro-inflammatory cytokine transcript ( Tnf-α , Il-1β , Il-6 , and Il-17 ) levels were significantly higher in the control and RB groups than in the FRB group. Thus, dietary FRB attenuated intestinal inflammation owing to elevated SCFAs and tryptamine production, which might regulate tight junction barrier integrity and intestinal homeostasis. These results suggest that FRB could comprise an effective potential preventive agent for ulcerative colitis.

  2. Dietary Supplementation of Fermented Rice Bran Effectively Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice

    PubMed Central

    Islam, Jahidul; Koseki, Takuya; Watanabe, Kouichi; Ardiansyah; Budijanto, Slamet; Oikawa, Akira; Alauddin, Md; Goto, Tomoko; Aso, Hisahi; Komai, Michio; Shirakawa, Hitoshi

    2017-01-01

    Rice bran (RB) is a major by-product of rice polishing and a rich source of bioactive compounds. Here, we investigated the anti-colitis effect of diet supplementation with fermented rice bran (FRB) in a murine model of ulcerative colitis. FRB was prepared by dual fermentation of RB using fungi and lactic acid bacteria. Colitis was induced in C57Bl/6N male mice (n = 8/group) by dextran sodium sulfate (DSS). Body weight change, disease activity index (DAI), histopathology score, tissue myeloperoxidase (MPO) activity, cytokine and chemokine transcript levels, and the production of short-chain fatty acids (SCFAs) and mucin in the colonic tissue were monitored. Based on histopathology scores, DSS induced severe mucosal inflammation, with an increased loss of crypts, and inflammatory cell infiltration in the control and RB groups, but not in the FRB group. MPO activity, thiobarbituric acid-reactive substance levels, and pro-inflammatory cytokine transcript (Tnf-α, Il-1β, Il-6, and Il-17) levels were significantly higher in the control and RB groups than in the FRB group. Thus, dietary FRB attenuated intestinal inflammation owing to elevated SCFAs and tryptamine production, which might regulate tight junction barrier integrity and intestinal homeostasis. These results suggest that FRB could comprise an effective potential preventive agent for ulcerative colitis. PMID:28703759

  3. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer.

    PubMed

    Brewer, Matthew T; Anderson, Kristi L; Yoon, Ilkyu; Scott, Mark F; Carlson, Steve A

    2014-08-06

    Salmonellosis is an insidious and potentially epidemic problem in pre-weaned dairy calves. Managing this disease, or any other diarrheal disease, is a financial burden to producers. Calf mortalities and medicinal treatments are overt costs of salmonellosis, while hidden costs include hampered weight gains and persistent intestinal colonization of the pathogen. In this study, we examined the anti-Salmonella effects of Saccharomyces cerevisiae fermentation products (SCFP) incorporated into both the milk replacer and the starter grain. In a blinded study, 2-8 day-old calves were fed SCFP (n=20 calves) or an SCFP-free Control (n=20 calves) for two weeks before and three weeks after experimental challenge with Salmonella enterica serotype Typhimurium. Following the challenge, calves were monitored for clinical signs and parameters associated with salmonellosis. Calves were then euthanized and examined for rumen development and intestinal Salmonella colonization. When compared to calves that received milk replacer and feed lacking SCFP, calves fed SCFP had fewer bouts of diarrhea and fever. Rumens from these calves were more developed, as measured by the length of papillae, which is consistent with the enhanced weight gain observed in this treatment group. Additionally, Salmonella intestinal colonization was reduced in SCFP-fed calves and Salmonella fecal shedding disappeared at an earlier stage in these calves. This study revealed that the combination of two proprietary S. cerevisiae fermentation products provide marked benefit for preventing the negative effects of salmonellosis in pre-weaned dairy calves, while also boosting productivity. The mechanism of action needs to be clarified, but it may be related to the observed decrease in colonization by the pathogen and increase in rumen development. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD.

  5. Potato powders prepared by successive cooking-process depending on resistant starch content affect the intestinal fermentation in rats.

    PubMed

    Kawakami, Sakura; Han, Kyu-Ho; Araki, Takahiro; Ohba, Kiyoshi; Wakabayashi, Tatsuya; Shimada, Kenichiro; Fukushima, Michihiro

    2017-02-01

    The effects of resistant starch (RS) in dry potato powders prepared by various processes on intestinal fermentation in rats were assessed. Rats were fed raw potato powder (RP), blanched potato powder (BP), steamed potato powder (SP), or drum-dried potato powder (DP) for 4 weeks. The cecal RS content was significantly higher in the RP group than in the control diet (CN) group and other dry potato powder groups. Cecum pH was significantly lower in the RP group compared to the CN group, and was also significantly lower than that in the SP, BP, and DP groups. Lactic acid bacteria levels in the RP group were significantly higher than those in the CN group, and levels in the SP group also increased relative to the control group. Lactobacillus levels in the RP group were higher than in the CN and other dry potato powder groups. Cecal short-chain fatty acid (SCFA) concentrations in the RP group followed by the SP group exhibited significantly higher levels relative to the control levels. Dry potato powders containing RS produced during the cooking process may represent a useful food material that increases intestinal concentrations of SCFA and enhances the growth of certain lactic acid bacteria.

  6. Effects of different rearing systems on growth, small intestinal morphology and selected indices of fermentation status in broilers.

    PubMed

    Li, Jianhui; Miao, Zhiqiang; Tian, Wenxia; Yang, Yu; Wang, Jundong; Yang, Ying

    2017-06-01

    A 3×2 factorial experiment was conducted to determine the effects of rearing system and stocking density on the growth performance, intestinal morphology and fermentation status of broilers. Broilers were kept on three rearing systems: floor litter rearing (FRS), plastic net rearing (NRS) and multilayer cage rearing system (CRS), each with two stocking densities (normal and high stocking densities). Results showed that on 7 to 28 days of age, body weight gain appeared as FRS > NRS > CRS. Whereas, CRS significantly enhanced the weight gain of broilers compared with the other systems subsequently. Broilers on FRS had higher counts of cecum Bifidobacteria and Lactobacilli at 28 days of age but had more Escherichia coli and less Bifidobacteria than CRS at 42 days of age. The FRS also decreased volatile fatty acid (VFA) concentration and jejunal villus height-to-crypt depth ratio at all ages. In conclusion, FRS appeared to benefit gut microorganisms during the early growing period along with high body weight gain of broilers, whereas this system might have a harmful effect on subsequent intestinal growth, as indicated by high E. coli, low Bifidobacteria count, low VFA concentration and villus height-to-crypt depth ratio along with low weight gain of broilers. © 2016 Japanese Society of Animal Science.

  7. Prebiotics: Definition and protective mechanisms.

    PubMed

    Valcheva, Rosica; Dieleman, Levinus A

    2016-02-01

    The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Probiotics as flourishing benefactors for the human body.

    PubMed

    Broekaert, Ilse J; Walker, W Allan

    2006-01-01

    This article provides a comprehensive review of the beneficial effects of various strains of probiotics in preventing and treating certain diseases. Currently, changed lifestyles as well as the increased use of antibiotics are significant factors challenging the preservation of a healthy intestinal microflora. The concept of probiotics is to restore and uphold a microflora advantageous for the human body. Probiotics are found in a number of fermented dairy products, infant formula, and dietary supplements. In the presence of prebiotics, which are nondigestible food ingredients favorable for probiotic growth, their survival in the intestine is ameliorated.

  9. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis.

    PubMed

    Jahan, Musarrat; Zhanel, George G; Sparling, Richard; Holley, Richard A

    2015-04-16

    Enterococcus species are part of the normal intestinal flora of a large number of mammals including humans and consequently, they can be used as indicators of faecal contamination in food and water for human consumption. Their presence in large numbers in foods may indicate a lapse in sanitation and their ability to serve as a genetic reservoir of transferable antibiotic resistance is of concern. In the present study, Enterococcus spp., isolated from commercially fermented meat and human clinical specimen were studied to determine genetic relationships. SmaI pulsed-field gel electrophoresis (PFGE) patterns exhibited genomic heterogeneity within and between both groups of isolates. However, in spite of this heterogeneity there were still substantial phenotypic similarities which suggested that food might be a potential vehicle for distribution of resistant bacteria among humans. In vitro conjugation experiments demonstrated transfer of the tetracycline resistant determinant, tet(M), from Enterococcus faecium S27 isolated from fermented sausage to clinical isolates of both E. faecium and Enterococcus faecalis. The streptomycin resistance of E. faecium S27 was also transferred to a clinical strain, E. faecalis 82916, which was confirmed by the presence of the streptomycin resistance gene, aadA, in the donor and transconjugant strains. Since the aadA gene is associated with a class 1 integron, results also suggested that resistance transfer might have occurred via an integron. It appears this is the first identification of a class 1 integron in E. faecium isolated from food. The importance of food enterococci as a reservoir of antibiotic resistance genes and the potential for their genetic transfer to human strains following consumption of uncooked or undercooked contaminated meat is underlined by this work. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nutritional Guidelines and Fermented Food Frameworks

    PubMed Central

    Bell, Victoria; Ferrão, Jorge; Fernandes, Tito

    2017-01-01

    This review examines different nutritional guidelines, some case studies, and provides insights and discrepancies, in the regulatory framework of Food Safety Management of some of the world’s economies. There are thousands of fermented foods and beverages, although the intention was not to review them but check their traditional and cultural value, and if they are still lacking to be classed as a category on different national food guides. For understanding the inconsistencies in claims of concerning fermented foods among various regulatory systems, each legal system should be considered unique. Fermented foods and beverages have long been a part of the human diet, and with further supplementation of probiotic microbes, in some cases, they offer nutritional and health attributes worthy of recommendation of regular consumption. Despite the impact of fermented foods and beverages on gastro-intestinal wellbeing and diseases, their many health benefits or recommended consumption has not been widely translated to global inclusion in world food guidelines. In general, the approach of the legal systems is broadly consistent and their structures may be presented under different formats. African traditional fermented products are briefly mentioned enhancing some recorded adverse effects. Knowing the general benefits of traditional and supplemented fermented foods, they should be a daily item on most national food guides. PMID:28783111

  11. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    PubMed Central

    Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Conrad, Ralf; Riedel, Christian U.; Egert, Markus

    2017-01-01

    The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health. PMID:28790981

  12. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing.

    PubMed

    Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Conrad, Ralf; Riedel, Christian U; Egert, Markus

    2017-01-01

    The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U 13 C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes , in particular genera affiliated with Prevotellaceae , as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health.

  13. In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets.

    PubMed

    Van Nevel, Christian J; Dierick, Noel A; Decuypere, Jaak A; De Smet, Stefaan M

    2006-12-01

    Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.

  14. Is lactate an undervalued functional component of fermented food products?

    PubMed Central

    Garrote, Graciela L.; Abraham, Analía G.; Rumbo, Martín

    2015-01-01

    Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signaling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria. PMID:26150815

  15. Proximal duodenoileal anastomosis for treatment of small intestinal obstruction and volvulus in a green iguana (Iguana iguana).

    PubMed

    Wills, Sarah; Beaufrère, Hugues; Watrous, Gwyneth; Oblak, Michelle L; Smith, Dale A

    2016-11-01

    CASE DESCRIPTION A 13-year-old female green iguana (Iguana iguana) was examined because of a 6-day history of vomiting, anorexia, and lethargy and a 4-day history of decreased fecal and urate output. CLINICAL FINDINGS Physical examination revealed a distended abdomen, signs of depression, pallor, tachycardia, harsh lung sounds, and vomiting. Abdominal radiographs revealed gas distention of the stomach and small intestine with fluid lines evident on the lateral view. Plasma biochemical analysis indicated hypochloremic metabolic alkalosis, hyperglycemia, and hyperuricemia. TREATMENT AND OUTCOME Exploratory laparotomy confirmed a diagnosis of small intestinal entrapment and 170° volvulus involving approximately 80% (20 to 30 cm) of the small intestine. The portion of the small intestine extending from the middle portion of the duodenum to the caudal extent of the ileum was resected, and end-to-end anastomosis of the remaining small intestine was performed. The iguana recovered without apparent complications and was reportedly doing well 1 year after surgery. CLINICAL RELEVANCE Findings suggested that iguanas, as hindgut fermenters, may tolerate > 70% resection of the small intestine with a good outcome and no clinical evidence of residual gastrointestinal dysfunction.

  16. Kefir milk enhances intestinal immunity in young but not old rats.

    PubMed

    Thoreux, K; Schmucker, D L

    2001-03-01

    The adjuvant effect of kefir fermented milk on the mucosal and systemic immune systems was examined in young (6 mo old) and old (26 mo old) rats. Kefir-fed rats consisted of young or old rats consuming kefir-fermented milk ad libitum on a daily basis in addition to the standard diet, for 28 d. Control rats consumed only the standard diet. The rats were immunized intraduodenally with cholera toxin (CT) on d 7 and 21 and killed on d 28. The nonspecific serum immunoglobulin (Ig)A titers in kefir-fed and control rats did not differ in either age group. The serum anti-CT IgA antibody concentrations were significantly higher in the kefir-fed young rats compared with their age-matched controls (+86%, P: < or = 0.05). This difference was associated with enhanced in vitro antibody secretion by cultured lymphocytes isolated from the Peyer's patches and the intestinal lamina propria (+180%, P: < or = 0.05). These enhanced responses were found only in the young rats. However, the nonspecific serum IgG titer was higher (>120%, P: < or = 0.05) and the anti-CT IgG titer was lower (-80%, P: < or = 0.05), in both young and old kefir-fed rats compared with their respective controls. Nevertheless, these results demonstrate that a kefir-supplemented diet affects the intestinal mucosal and systemic immune responses to intraduodenal CT differently in young and old rats. Most importantly, our data suggest that orally administered kefir enhances the specific intestinal mucosal immune response against CT in young adult, but not in senescent rats.

  17. The Interplay Between Fiber and the Intestinal Microbiome in the Inflammatory Response12

    PubMed Central

    Kuo, Shiu-Ming

    2013-01-01

    Fiber intake is critical for optimal health. This review covers the anti-inflammatory roles of fibers using results from human epidemiological observations, clinical trials, and animal studies. Fiber has body weight–related anti-inflammatory activity. With its lower energy density, a diet high in fiber has been linked to lower body weight, alleviating obesity-induced chronic inflammation evidenced by reduced amounts of inflammatory markers in human and animal studies. Body weight–unrelated anti-inflammatory activity of fiber has also been extensively studied in animal models in which the type and amount of fiber intake can be closely monitored. Fermentable fructose-, glucose-, and galactose-based fibers as well as mixed fibers have shown systemic and local intestinal anti-inflammatory activities when plasma inflammatory markers and tissue inflammation were examined. Similar anti-inflammatory activities have also been demonstrated in some human studies that controlled total fiber intake. The anti-inflammatory activities of synbiotics (probiotics plus fiber) were reviewed as well, but there was no convincing evidence indicating higher efficacy of synbiotics compared with that of fiber alone. Adverse effects have not been observed with the amount of fiber intake or supplementation used in studies, although patients with Crohn’s disease may be more sensitive to inulin intake. Several possible mechanisms that may mediate the body weight–unrelated anti-inflammatory activity of fibers are discussed based on the in vitro and in vivo evidence. Fermentable fibers are known to affect the intestinal microbiome. The immunomodulatory role of the intestinal microbiome and/or microbial metabolites could contribute to the systemic and local anti-inflammatory activities of fibers. PMID:23319119

  18. The importance of dietary carbohydrates.

    PubMed

    Sánchez-Castillo, Claudia P; Hudson, Geoffrey J; Englyst, Hans N; Dewey, Peter; James, W Philip T

    2002-12-01

    Forty years ago carbohydrates (CHO) were regarded as a simple energy source whereas they are now recognized as important food components. The human diet contains a wide range of CHO, the vast majority of which are of plant origin. Modern techniques based on chemical classification of dietary CHO replaced the traditional "by difference" measurement. They provide a logical basis for grouping into categories of specific nutritional importance. The physiological effects of dietary CHO are highly dependent on the rate and extent of digestion and absorption in the small intestine and fermentation in the large intestine, interactions which promote human health. Current knowledge of the fate of dietary CHO means that the potentially undesirable properties of many modern foods could be altered by using processing techniques that yield foods with more intact plant cell wall structures. Such products would more closely resemble the foods in the pre-agriculture diet with respect to the rate of digestion and absorption of CHO in the small intestine. The potentially detrimental physiological consequences of eating sugars and starch that are rapidly digested and absorbed in the small intestine suggest that, as fibre, the form, as well as the amount of starch should be considered. Increasing consumer awareness of the relationship between diet and health has led to demands for more widespread nutrition labelling. The entry "carbohydrate" is required in most countries, and the value is usually obtained "by difference" and used in the calculation of energy content. However, the value provides no nutritional information per se. Food labels should provide values that aid consumers in selecting a healthy diet.

  19. Is there variation in resistant starch among high amylose rice varieties?

    USDA-ARS?s Scientific Manuscript database

    Resistant starch (RS) is the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and is partially or entirely fermented in the colon by the microbiota. RS in food lowers postprandial glucose concentration and has potential in ...

  20. Relationship between selection for feed efficiency and methane production

    USDA-ARS?s Scientific Manuscript database

    Enteric methane is a product of fermentation in the gastro-intestinal tract of ruminants. A group of archaea bacteria collectively called “methanogens” are responsible for the synthesis of methane. In ruminants, the methanogens grow in the reticulum-rumen complex and in the cecum. Most of the met...

  1. A Review of the Disruptive Potential of Botulinum Neurotoxins as Chemical Warfare Agents

    DTIC Science & Technology

    2011-10-01

    canned; fermented , uncooked; or improperly cooked dishes); 2 • Ingestion of spores, which in turn colonize the small intestine (occurs in...should also be noted that some food products may be more amenable to contamination with active BoNT than milk-based dairy products, although for

  2. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    USDA-ARS?s Scientific Manuscript database

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  3. An in silico pan-genomic probe for the molecular traits behind Lactobacillus ruminis gut autochthony

    PubMed Central

    Kant, Ravi; Palva, Airi

    2017-01-01

    As an ecological niche, the mammalian intestine provides the ideal habitat for a variety of bacterial microorganisms. Purportedly, some commensal genera and species offer a beneficial mix of metabolic, protective, and structural processes that help sustain the natural digestive health of the host. Among these sort of gut inhabitants is the Gram-positive lactic acid bacterium Lactobacillus ruminis, a strict anaerobe with both pili and flagella on its cell surface, but also known for being autochthonous (indigenous) to the intestinal environment. Given that the molecular basis of gut autochthony for this species is largely unexplored and unknown, we undertook a study at the genome level to pinpoint some of the adaptive traits behind its colonization behavior. In our pan-genomic probe of L. ruminis, the genomes of nine different strains isolated from human, bovine, porcine, and equine host guts were compiled and compared for in silico analysis. For this, we conducted a geno-phenotypic assessment of protein-coding genes, with an emphasis on those products involved with cell-surface morphology and anaerobic fermentation and respiration. We also categorized and examined the core and accessory genes that define the L. ruminis species and its strains. Here, we made an attempt to identify those genes having ecologically relevant phenotypes that might support or bring about intestinal indigenousness. PMID:28414739

  4. Gastrointestinal effects of low-digestible carbohydrates.

    PubMed

    Grabitske, Hollie A; Slavin, Joanne L

    2009-04-01

    Low-digestible carbohydrates (LDCs) are carbohydrates that are incompletely or not absorbed in the small intestine but are at least partly fermented by bacteria in the large intestine. Fiber, resistant starch, and sugar alcohols are types of LDCs. Given potential health benefits (including a reduced caloric content, reduced or no effect on blood glucose levels, non-cariogenic effect) the prevalence of LDCs in processed foods is increasing. Many of the benefits of LDCs are related to the inability of human digestive enzymes to break down completely the carbohydrates into absorbable saccharides and the subsequent fermentation of unabsorbed carbohydrates in the colon. As a result, LDCs may affect laxation and cause gastrointestinal effects, including abdominal discomfort, flatus, and diarrhea, especially at higher or excessive intakes. Such responses, though transient, affect the perception of the well-being of consumers and their acceptance of food products containing LDCs. Current recommendations for fiber intake do not consider total LDC consumption nor recommend an upper limit for LDC intake based on potential gastrointestinal effects. Therefore, a review of published studies reporting gastrointestinal effects of LDCs was conducted. We included only studies published in refereed journals in English. Additionally, we excluded studies of subjects with incomplete or abnormal functioning gastrointestinal tracts or where antibiotics, stimulant laxatives, or other drugs affecting motility were included. Only in studies with a control period, either placebo treatment or no LDC treatment, were included. Studies must have included an acceptable measure of gastrointestinal effect. Sixty-eight studies and six review articles were evaluated. This review describes definitions, classifications, and mechanisms of LDCs, evaluates published human feeding studies of fifteen LDCs for associations between gastrointestinal effects and levels of LDC intake, and presents recommendations for LDC consumption and further research.

  5. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs

    PubMed Central

    Gerrits, Walter J. J.; Kabel, Mirjam A.; Vasanthan, Thava; Zijlstra, Ruurd T.

    2016-01-01

    Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P<0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (>10%-units, P<0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value. PMID:27911928

  6. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans.

    PubMed

    Sulek, Karolina; Vigsnaes, Louise Kristine; Schmidt, Line Rieck; Holck, Jesper; Frandsen, Henrik Lauritz; Smedsgaard, Jørn; Skov, Thomas Hjort; Meyer, Anne S; Licht, Tine Rask

    2014-08-01

    Prebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the significance of the size of the oligosaccharides remains largely unstudied. By in vitro fermentations in human fecal microbial communities (derived from six different individuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA) sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were included as reference. The changes in bacterial communities and the metabolites produced in response to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79 fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LC-MS analysis suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide structures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine. Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid, indicating that lactobacilli contribute to release of such health-promoting substances from plant structures. Additionally, the combination of qPCR and LC-MS revealed a number of other putative interactions between intestinal microbes and the oligosaccharides, which contributes to the understanding of the mechanisms behind prebiotic impact on human health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology.

    PubMed

    Bircher, Lea; Schwab, Clarissa; Geirnaert, Annelies; Lacroix, Christophe

    2018-01-01

    Interest in faecal microbiota transplantation (FMT) has increased as therapy for intestinal diseases, but safety issues limit its widespread use. Intestinal fermentation technology (IFT) can produce controlled, diverse and metabolically active 'artificial' colonic microbiota as potential alternative to common FMT. However, suitable processing technology to store this artificial microbiota is lacking. In this study, we evaluated the impact of the two cryoprotectives, glycerol (15% v/v) and inulin (5% w/v) alone and in combination, in preserving short-chain fatty acid formation and recovery of major butyrate-producing bacteria in three artificial microbiota during cryopreservation for 3 months at -80°C. After 24 h anaerobic fermentation of the preserved microbiota, butyrate and propionate production were maintained when glycerol was used as cryoprotectant, while acetate and butyrate were formed more rapidly with glycerol in combination with inulin. Glycerol supported cryopreservation of the Roseburia spp./Eubacterium rectale group, while inulin improved the recovery of Faecalibacterium prausnitzii. Eubacterium hallii growth was affected minimally by cryopreservation. Our data indicate that butyrate producers, which are key organisms for gut health, can be well preserved with glycerol and inulin during frozen storage. This is of high importance if artificially produced colonic microbiota is considered for therapeutic purposes. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic.

    PubMed

    Hamajima, Hiroshi; Matsunaga, Haruka; Fujikawa, Ayami; Sato, Tomoya; Mitsutake, Susumu; Yanagita, Teruyoshi; Nagao, Koji; Nakayama, Jiro; Kitagaki, Hiroshi

    2016-01-01

    The Japanese traditional cuisine, Washoku, considered to be responsible for increased longevity among the Japanese, comprises various foods fermented with the non-pathogenic fungus Aspergillus oryzae (koji). We have recently revealed that koji contains an abundant amount of glycosylceramide. Intestinal microbes have significant effect on health. However, the effects of koji glycosylceramide on intestinal microbes have not been studied. Glycosylceramide was extracted and purified from koji. C57BL/6N mice were fed a diet containing 1 % purified koji glycosylceramide for 1 week. Nutritional parameters and faecal lipid constituents were analyzed. The intestinal microbial flora of mice on this diet was investigated. Ingested koji glycosylceramide was neither digested by intestinal enzymes nor was it detected in the faeces, suggesting that koji glycosylceramide was digested by the intestinal microbial flora. Intestinal microbial flora that digested koji glycosylceramide had an increased ratio of Blautia coccoides. Stimulation of B. coccoides growth by pure koji glycosylceramide was confirmed in vitro. Koji functions as a prebiotic for B. coccoides through glycosylceramide. Since there are many reports of the effects of B. coccoides on health, an increase in intestinal B. coccoides by koji glycosylceramide might be the connection between Japanese cuisine, intestinal microbial flora, and longevity.

  9. Hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor.

    PubMed

    Munn, Adam J; Clissold, Fiona; Tarszisz, Esther; Kimpton, Kathleen; Dickman, Christopher R; Hume, Ian D

    2009-01-01

    Phenotypic plasticity of the gastrointestinal tract is crucial for optimal food processing and nutrient balance in many vertebrate species. For mammalian herbivores, gut plasticity is typically correlated with the fiber content of forage; however, we show here that other factors such as ingesta particle size may effect profound phenotypic plasticity of the fermentative hindgut in a medium-sized (10-kg body mass) marsupial herbivore, the red-necked wallaby (Macropus rufogriseus). When dietary fiber contents were comparable, red-necked wallabies that were fed a finely ground, pelleted hay for 60-72 d had hindguts that were some 28% heavier (empty wet mass) than those fed unchopped hay. The hindguts of pellet-fed wallabies contained more wet ingesta, which was also of a finer particle size, than those fed hay, indicating some separation of large- and small-particle fermentation between the foregut and the hindgut, respectively. Such a digestive strategy would benefit animals by allowing fermentation of a range of ingesta particle sizes that are expected for free-ranging animals faced with a spectrum of diet types and qualities. The heavier hindgut of pellet-fed wallabies was correlated with increased concentrations of short-chain fatty acids (SCFAs) in the fermentative hindgut (cecum and proximal colon) and particularly with increases in the molar proportions of n-butyric acid. The mechanisms facilitating gut plasticity in herbivorous mammals are uncertain, but we suggest that manipulating ingesta particle size rather than dietary fiber could provide a useful tool for evaluating causal explanations. In particular, altering ingesta particle size could help to distinguish possible direct processes (e.g., the favoring of smaller intestinal microbes and production of specific SCFAs) from indirect affects of feed structure (e.g., muscular hypertrophy to compensate for increased intakes and digesta bulk or the fermentation of mucus secreted to promote the flow of viscous, fine-particle material).

  10. Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice.

    PubMed

    Wang, Zhiqiang; Hwang, Seung Hwan; Lee, Sun Youb; Lim, Soon Sung

    2016-06-01

    Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.

  11. compuGUT: An in silico platform for simulating intestinal fermentation

    NASA Astrophysics Data System (ADS)

    Moorthy, Arun S.; Eberl, Hermann J.

    The microbiota inhabiting the colon and its effect on health is a topic of significant interest. In this paper, we describe the compuGUT - a simulation tool developed to assist in exploring interactions between intestinal microbiota and their environment. The primary numerical machinery is implemented in C, and the accessory scripts for loading and visualization are prepared in bash (LINUX) and R. SUNDIALS libraries are employed for numerical integration, and googleVis API for interactive visualization. Supplementary material includes a concise description of the underlying mathematical model, and detailed characterization of numerical errors and computing times associated with implementation parameters.

  12. Potential of Using Maize Cobs in Pig Diets — A Review

    PubMed Central

    Kanengoni, A. T.; Chimonyo, M.; Ndimba, B. K.; Dzama, K.

    2015-01-01

    The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs’ digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs. PMID:26580433

  13. Starch digestibility: past, present, and future.

    PubMed

    Bello-Perez, Luis A; Flores-Silva, Pamela C; Agama-Acevedo, Edith; Tovar, Juscelino

    2018-02-10

    In the last century, starch present in foods was considered to be completely digested. However, during the 1980s, studies on starch digestion started to show that besides digestible starch, which could be rapidly or slowly hydrolysed, there was a variable fraction that resisted hydrolysis by digestive enzymes. That fraction was named resistant starch (RS) and it encompasses those forms of starch that are not accessible to human digestive enzymes but can be fermented by the colonic microbiota, producing short-chain fatty acids. RS has been classified into five types, depending on the mechanism governing its resistance to enzymatic hydrolysis. Early research on RS was focused on the methods to determine its content in foods and its physiological effects, including fermentability in the large intestine. Later on, due to the interest of the food industry, methods to increase the RS content of isolated starches were developed. Nowadays, the influence of RS on the gut microbiota is a relevant research topic owing to its potential health-related benefits. This review summarizes over 30 years of investigation on starch digestibility, its relationship with human health, the methods to produce RS and its impact on the microbiome. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Differential Effect of Lactobacillus johnsonii BFE 6128 on Expression of Genes Related to TLR Pathways and Innate Immunity in Intestinal Epithelial Cells.

    PubMed

    Seifert, Stephanie; Rodriguez Gómez, Manuel; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P; Vizoso Pinto, María G

    2010-12-01

    Probiotics have been shown to enhance immune defenses, but their mechanisms of action are only partially understood. We investigated the modulation of signal pathways involved in innate immunity in enterocytes by Lactobacillus johnsonii BFE 6128 isolated from 'Kule naoto', a Maasai traditional fermented milk product. This lactobacillus sensitized HT29 intestinal epithelial cells toward recognition of Salmonella enterica serovar Typhimurium by increasing the IL-8 levels released after challenge with this pathogen and by differentially modulating genes related to toll-like receptor (TLR) pathways and innate immunity. Thus, the modulation of pro-inflammatory mediators and TLR-pathway-related molecules may be an important mechanism contributing to the potential stimulation of innate immunity by lactobacilli at the intestinal epithelial level.

  15. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects.

    PubMed

    Kullisaar, Tiiu; Songisepp, Epp; Mikelsaar, Marika; Zilmer, Kersti; Vihalemm, Tiiu; Zilmer, Mihkel

    2003-08-01

    The increasing interest in a healthy diet is stimulating innovative development of novel scientific products in the food industry. The viable lactic acid bacteria in fermented milk products, such as yoghurt, have been associated with increased lactose tolerance, a well-balanced intestinal microflora, antimicrobial activity, stimulation of the immune system and antitumoural, anticholesterolaemic and antioxidative properties in human subjects. Recently, we have studied a human Lactobacillus spp. strain that possesses antioxidative activity. The aim of the present pilot study was to develop goats' milk fermented with the human antioxidative lactobacilli strain, Lactobacillus fermentum ME-3, and to test the effect of the fermented probiotic goats' milk on oxidative stress markers (including markers for atherosclerosis) in human blood and urine and on the gut microflora. Twenty-one healthy subjects were assigned to two treatment groups: goats' milk group and fermented goats' milk group (150 g/d) for a period of 21 d. Consumption of fermented goats' milk improved anti-atherogenicity in healthy subjects: it prolonged resistance of the lipoprotein fraction to oxidation, lowered levels of peroxidized lipoproteins, oxidized LDL, 8-isoprostanes and glutathione redox ratio, and enhanced total antioxidative activity. The consumption of fermented goats' milk also altered both the prevalence and proportion of lactic acid bacteria species in the gut microflora of the subjects. We conclude that the goats' milk fermented with our special antioxidative lactobacilli strain Lactobacillus fermentum ME-3 exhibits anti-atherogenic effects.

  16. Bacterial isolates from polysaccharide enrichments cluster by host origin for Firmicutes but not Bacteroidetes.

    USDA-ARS?s Scientific Manuscript database

    The intestinal microbiota allows mammals to recover energy stored in plant biomass through fermentation of plant cell walls, primarily cellulose and hemicellulose. Bacteria were isolated from 8 week continuous culture enrichments with cellulose and xylan/pectin from cow (C, n=4), goat (G, n=4), huma...

  17. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin and spectra of antimicrobial activity

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  18. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    PubMed

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-01

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.

  19. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study.

    PubMed

    Hald, Stine; Schioldan, Anne Grethe; Moore, Mary E; Dige, Anders; Lærke, Helle Nygaard; Agnholt, Jørgen; Bach Knudsen, Knud Erik; Hermansen, Kjeld; Marco, Maria L; Gregersen, Søren; Dahlerup, Jens F

    2016-01-01

    Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health and metabolic syndrome. ClinicalTrials.gov NCT01618526.

  20. [Dietary fiber--adequate intake and effects on metabolism health].

    PubMed

    Bernaud, Fernanda Sarmento Rolla; Rodrigues, Ticiana C

    2013-08-01

    The positive effects of dietary fiber are related, in part, to the fact that a portion of the fermentation of components takes place in the large intestine, which has an impact on the speed of digestion, pH of the colon, and production of by-products with important physiological functions. Individuals with high fiber intake seem to have lower risk of developing coronary artery disease, hypertension, obesity, diabetes, and colon cancer. The increase in fiber intake reduces serum cholesterol, improves blood glucose in patients with diabetes, reduces body weight, and is associated with lower serum ultrasensitive C-reactive protein. Increased fiber intake and intake of more fiber than the currently recommended level (14 g/1,000 kcal) may provide greater health benefits, including reducing low-grade inflammation.

  1. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health

    PubMed Central

    Markowiak, Paulina; Śliżewska, Katarzyna

    2017-01-01

    The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented. PMID:28914794

  2. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health.

    PubMed

    Markowiak, Paulina; Śliżewska, Katarzyna

    2017-09-15

    The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented.

  3. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota.

    PubMed

    Kong, Qing; Dong, Shiyuan; Gao, Jian; Jiang, Chaoyu

    2016-10-01

    In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir.

    PubMed

    Romanin, David; Serradell, María; González Maciel, Dolores; Lausada, Natalia; Garrote, Graciela L; Rumbo, Martín

    2010-06-15

    Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk. Copyright 2010 Elsevier B.V. All rights reserved.

  5. The Low FODMAP Diet: Many Question Marks for a Catchy Acronym.

    PubMed

    Catassi, Giulia; Lionetti, Elena; Gatti, Simona; Catassi, Carlo

    2017-03-16

    FODMAP, "Fermentable Oligo-, Di- and Mono-saccharides And Polyols", is a heterogeneous group of highly fermentable but poorly absorbed short-chain carbohydrates and polyols. Dietary FODMAPs might exacerbate intestinal symptoms by increasing small intestinal water volume, colonic gas production, and intestinal motility. In recent years the low-FODMAP diet for treatment of irritable bowel syndrome (IBS) has gained increasing popularity. In the present review we aim to summarize the physiological, clinical, and nutritional issues, suggesting caution in the prolonged use of this dietary treatment on the basis of the existing literature. The criteria for inclusion in the FODMAPs list are not fully defined. Although the low-FODMAP diet can have a positive impact on the symptoms of IBS, particularly bloating and diarrhea, the quality of the evidence is lower than optimal, due to frequent methodological flaws, particularly lack of a proper control group and/or lack of blinding. In particular, it remains to be proven whether this regimen is superior to conventional IBS diets. The drastic reduction of FODMAP intake has physiological consequences, e.g., on the intestinal microbiome and colonocyte metabolism, which are still poorly understood. A low-FODMAP diet imposes an important restriction of dietary choices due to the elimination of some staple foods, such as wheat derivatives, lactose-containing dairy products, many vegetables and pulses, and several types of fruits. For this reason, patients may be at risk of reduced intake of fiber, calcium, iron, zinc, folate, B and D vitamins, and natural antioxidants. The nutritional risk of the low-FODMAP diet may be higher in persons with limited access to the expensive, alternative dietary items included in the low-FODMAP diet.

  6. Purification and characterization of a novel α-D-glucosidase from Lactobacillus fermentum with unique substrate specificity towards resistant starch.

    PubMed

    Addala, Mousami Shankar; Gudipati, Muralikrishna

    2018-01-15

    Resistant starch is not digestible in the small intestine and is fermented by lactic acid bacteria in the large intestine into short chain fatty acids, such as acetate, propionate and butyrate, which result in several health benefits in analogy with dietary fibre components. The mode and mechanism of resistant starch degradation by lactic acid bacteria is still not understood. In the present study, we have purified α-D-glucosidase from Lactobacillus fermentum NCDC 156 by employing three sequential steps i.e. ultra filtration, DEAE-cellulose and Sephadex G-100 chromatographies. It was found to be a monomeric protein (~50 kDa). The optimum pH and temperature of this enzyme were found to be 5.5 and 37°C, respectively. Under optimised conditions with p-nitrophenyl-D-glucopyranoside as the substrate, the enzyme exhibited a K m of 0.97 mM. Its activity was inhibited by Hg 2+ and oxalic acid. N-terminal blocked purified enzyme was subjected to lysyl endopeptidase digestion and the resultant peptides were subjected to BLAST analysis to understand their homology with other α-D-glucosidases from lactobacillus species.

  7. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Chen, Haiqin; Mao, Bingyong; Yang, Qin; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2017-04-01

    As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.

  8. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome

    PubMed Central

    Bruno-Barcena, Jose M.; Azcarate-Peril, M. Andrea

    2014-01-01

    Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1–4) galacto-oligosaccharides [β (1–4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1–4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1–4) GOS generation for industrial production. PMID:25584074

  9. Effects of growing environment and cooking methods on resistant starch content of high amylose rice varieties

    USDA-ARS?s Scientific Manuscript database

    Resistant starch (RS), a type of fermentable dietary fiber, has potential to improve colon health and decrease cardiovascular disease risk factors. It is defined as the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and i...

  10. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  11. Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides

    USDA-ARS?s Scientific Manuscript database

    One of the fascinating functions of the mammalian intestinal microbiota is the fermentation of plant cell wall components. Eight week continuous culture enrichments of cow feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were ...

  12. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB.

    PubMed

    Bielaszewska, Martina; Marejková, Monika; Bauwens, Andreas; Kunsmann-Prokscha, Lisa; Mellmann, Alexander; Karch, Helge

    2018-06-19

    Proinflammatory cytokines play important roles in the pathogenesis of diseases caused by enterohemorrhagic Escherichia coli (EHEC) O157, but the spectrum of bacterial components involved in the proinflammatory responses is not fully understood. Here, we investigated the abilities of outer membrane vesicles (OMVs), nanoparticles released by EHEC O157 during growth, to induce production of proinflammatory cytokines in human intestinal epithelial cells. OMVs from both EHEC O157:H7 and sorbitol-fermenting (SF) EHEC O157:H - induced production of interleukin-8 (IL-8) in Caco-2, HCT-8, and HT-29 intestinal epithelial cell lines. H7 flagellin was the key IL-8-inducing component of EHEC O157:H7 OMVs, whereas cytolethal distending toxin V and O157 lipopolysaccharide (LPS) largely contributed to IL-8 production elicited by flagellin-lacking OMVs from SF EHEC O157:H - . The H7 flagellin-mediated signaling via Toll-like receptor (TLR) 5, and O157 LPS-mediated signaling via TLR4/MD-2 complex, which were followed by activation of the nuclear factor NF-κB were major pathways underlying IL-8 production induced by EHEC O157 OMVs. The proinflammatory and immunomodulatory capacities of EHEC O157 OMVs have pathogenetic implications and support the OMVs as suitable vaccine candidates. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    PubMed

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  14. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health.

    PubMed

    Bach Knudsen, Knud Erik

    2015-03-01

    Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate polyphenolic ether lignin. The highest concentration of NSPs and lignin is found in the outer cell layers of the grain, and refined flour will consequently be depleted of a large proportion of insoluble DF components. The flow and composition of carbohydrates to the large intestine are directly related to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown to augment SCFA production, with the strongest relative effect on butyrate. When arabinoxylans were provided as a concentrate, the effect was only on total SCFA production. Increased SCFA production in the large intestine was shown by the concentration in the portal vein, whereas the impact on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting as signaling molecules between the gut and the peripheral tissues. The latter can have implications for insulin sensitivity and glucose homeostasis. © 2015 American Society for Nutrition.

  15. Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products.

    PubMed

    Speranza, Barbara; Racioppo, Angela; Beneduce, Luciano; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-08-01

    This study focused on the selection of lactic starters with probiotic properties for the production of fermented fish-products by the use of a multivariate approach (Cluster Analysis and Principal Component Analysis). Seventy-five isolates were recovered from fish intestinal microbiota and characterized by evaluating phenotypical, technological and probiotic traits; the most promising isolates were molecularly identified and then used into fish fermented sausage production. Namely, data from technological characterization were modelled through Growth Index and used as input to run a preliminary selection. Thus, 15 promising strains were selected and subjected to probiotic characterization; considering the results from probiotic tests, 3 promising strains were finally chosen (11, 68 and 69), identified as members of the genus Lactobacillus and used for the validation at laboratory level through the assessment of their performances for the production of fermented fish sausages. The results were promising as the use of the selected strains reduced the fermentation time (2 days) ensuring a good microbiological quality of the final product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact of food processing on rye product properties and their in vitro digestion.

    PubMed

    Johansson, Daniel P; Gutiérrez, José L Vázquez; Landberg, Rikard; Alminger, Marie; Langton, Maud

    2018-06-01

    Rye products have been reported to elicit postprandial insulin and glucose responses which may be beneficial for prevention of type-2 diabetes. However, mechanisms underlying variations in responses related to processing techniques are not fully understood. Five differently processed rye products (sourdough-fermented bread, fermented and unfermented crispbread, extrusion-cooked rye, and porridge) and refined wheat bread were characterised. Two in vitro methods, a dynamic method simulating digestion in the stomach and small intestine and a static method, simulating conditions in the stomach were used to determine viscosity development, structural changes and release of glucose during digestion. Structural and compositional differences induced by processing influenced product digestion. Gastric disintegration and digesta particle size were related to characteristics of the starch/protein matrix, while digesta viscosity was reduced due to fibre degradation during fermentation. More cohesive boluses were associated with slower glucose release. Sourdough fermentation increased amylose leakage and appeared to inhibit starch hydrolysis despite low digesta viscosity and rapid disintegration. The net release of glucose during digestion of foods is determined by several factors which may vary in their importance depending on product specific properties.

  17. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fermented Herbal Formulas KIOM-MA128 Ameliorate IL-6-Induced Intestinal Barrier Dysfunction in Colon Cancer Cell Line

    PubMed Central

    Park, Kwang Il; Kim, Dong Gun; Lee, Bo Hyoung

    2016-01-01

    Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD increases the risk of colorectal cancer (CRC), depending on the extent and duration of intestinal inflammation. Increased IL-6 expression has been reported in IBD patients, which may be associated with intestinal barrier function through discontinuous tight junction (TJ). KIOM-MA is a specific agent for allergic diseases and cancer, and it is composed of several plants; these herbs have been used in traditional oriental medicine. We fermented KIOM-MA, the product of KIOM-MA128, using probiotics to improve the therapeutic efficacy via the absorption and bioavailability of the active ingredients. In this study, we demonstrated that KIOM-MA/MA128 exhibited anticolitis effects via the modulation of TJ protein. Interleukin-6 resulted in a dose-dependent decrease in the TER and an increase in the FITC-dextran permeability; however, pretreatment with 400 µg/ml KIOM-MA/MA128 resulted in a significant increase in the TER and a decrease in the FITC-dextran permeability via IL-6 induction. Furthermore, protein and mRNA TJ levels remained stable after pretreatment with 400 µg/ml KIOM-MA/MA128. Moreover, KIOM-MA/MA128 suppressed the expression of PLCγ1 and PKC. Taken together, these findings suggest novel information and clue of the anticolitis effects of KIOM-MA128 via regulation of tight junction. PMID:27980357

  19. Fermented Herbal Formulas KIOM-MA128 Ameliorate IL-6-Induced Intestinal Barrier Dysfunction in Colon Cancer Cell Line.

    PubMed

    Park, Kwang Il; Kim, Dong Gun; Lee, Bo Hyoung; Ma, Jin Yeul

    2016-01-01

    Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD increases the risk of colorectal cancer (CRC), depending on the extent and duration of intestinal inflammation. Increased IL-6 expression has been reported in IBD patients, which may be associated with intestinal barrier function through discontinuous tight junction (TJ). KIOM-MA is a specific agent for allergic diseases and cancer, and it is composed of several plants; these herbs have been used in traditional oriental medicine. We fermented KIOM-MA, the product of KIOM-MA128, using probiotics to improve the therapeutic efficacy via the absorption and bioavailability of the active ingredients. In this study, we demonstrated that KIOM-MA/MA128 exhibited anticolitis effects via the modulation of TJ protein. Interleukin-6 resulted in a dose-dependent decrease in the TER and an increase in the FITC-dextran permeability; however, pretreatment with 400  µ g/ml KIOM-MA/MA128 resulted in a significant increase in the TER and a decrease in the FITC-dextran permeability via IL-6 induction. Furthermore, protein and mRNA TJ levels remained stable after pretreatment with 400  µ g/ml KIOM-MA/MA128. Moreover, KIOM-MA/MA128 suppressed the expression of PLC γ 1 and PKC. Taken together, these findings suggest novel information and clue of the anticolitis effects of KIOM-MA128 via regulation of tight junction.

  20. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals.

    PubMed

    Hong, Kee-Jong; Lee, Chan-Ho; Kim, Sung Woo

    2004-01-01

    This study evaluated the effect of fermentation on the nutritional quality of food-grade soybeans and feed-grade soybean meals. Soybeans and soybean meals were fermented by Aspergillus oryzae GB-107 in a bed-packed solid fermentor for 48 hours. After fermentation, their nutrient contents as well as trypsin inhibitor were measured and compared with those of raw soybeans and soybean meals. Proteins were extracted from fermented and non-fermented soybeans and soybean meals, and the peptide characteristics were evaluated after electrophoresis. Fermented soybeans and fermented soybean meals contained 10% more (P < .05) crude protein than raw soybeans and soybean meals. The essential amino acid profile was unchanged after fermentation. Fermentation eliminated (P < .05) most of the trypsin inhibitor from both soybeans and soybean meals. Fermentation increased the amount of small-size peptides (<20 kDa) (P < .05) compared with raw soybeans, while significantly decreasing large-size peptides (>60 kDa) (P < .05). Fermented soybean meal contained more (P < .01) small-size peptides (<20 kDa) than soybean meal. Fermented soybean meal did not contain large-size peptides (>60 kDa), whereas 22.1% of peptides in soybean meal were large-size (>60 kDa). Collectively, fermentation increased protein content, eliminated trypsin inhibitors, and reduced peptide size in soybeans and soybean meals. These effects of fermentation might make soy foods more useful in human diets as a functional food and benefit livestock as a novel feed ingredient.

  1. Dietary supplementation of different doses of NUTRIOSE FB, a fermentable dextrin, alters the activity of faecal enzymes in healthy men.

    PubMed

    van den Heuvel, Ellen G H M; Wils, Daniel; Pasman, Wilrike J; Saniez, Marie-Hélène; Kardinaal, Alwine F M

    2005-10-01

    It is well documented that fermentation of carbohydrates that escape digestion exert several effects supposed to be beneficial for (colonic) health, including an increase in stool volume, a shorter intestinal transit time, production of short chain fatty acids and a decrease of colonic pH (Kritchevsky 1988). NUTRIOSE FB is a dextrin that is not completely hydrolysed and absorbed in the small intestine, due to many alpha-1.6 linkages and the presence of non-digestible glucoside linkages (e. g. alpha-1.2 and alpha-1.3). To be beneficial for 'colonic' health effective NUTRIOSE FB must reach the cecum in some form. To estimate how much non digested NUTRIOSE FB is fermented and to determine the fibre-like effect of the wheat dextrin NUTRIOSE((R))FB by analysing enzymatic activity in faeces. In a randomized, double-blind,multiple dose, placebo-controlled, combined cross-over and parallel trial, 20 healthy men (age 31.7 +/- 9.1 yrs; BMI 24.5 +/- 2.9 kg.m(-2) received different treatments. One group of ten subjects consumed on top of their diet 10, 30 and 60 g daily of NUTRIOSE FB or maltodextrin (placebo). The other group of 10 subjects consumed 15, 45 and 80 g daily. Each dose was consumed for 7 days. On the last two days of each of the 7-day period, faeces were collected in which the enzymatic activity and NUTRIOSE FB residue were analysed. As expected, the faecal residue of NUTRIOSE FB non-linearly increased with the dose of NUTRIOSE FB to approximately 13% of 80 g/d. Compared with the placebo, 30, 45, 60 and 80 g/d of NUTRIOSE FB increased the concentration of alpha-glucosidase significantly. All daily doses of NUTRIOSE FB (10 g/d to 80 g/d) led to significant changes in concentration of beta-glucosidase. The small amount of the residue of NUTRIOSE FB in the faeces suggests that approximately 87% or more of NUTRIOSE FB is digested or fermented in the gastrointestinal tract. Fermentation of NUTRIOSE FB led to an increased faecal concentration of alpha- and beta-glucosidase.

  2. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon

    PubMed Central

    Ze, Xiaolei; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2012-01-01

    The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. PMID:22343308

  3. Disorders of the Small Intestine

    MedlinePlus

    ... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ... Esophagus Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of ...

  4. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  5. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.

    PubMed

    Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen

    2007-10-01

    The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.

  6. Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts

    PubMed Central

    Chia, Loo Wee; Aalvink, Steven; Chamlagain, Bhawani; Piironen, Vieno; Knol, Jan; de Vos, Willem M.

    2017-01-01

    ABSTRACT Akkermansia muciniphila has evolved to specialize in the degradation and utilization of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus degradation and fermentation by A. muciniphila are known to result in the liberation of oligosaccharides and subsequent production of acetate, which becomes directly available to microorganisms in the vicinity of the intestinal mucosa. Coculturing experiments of A. muciniphila with non-mucus-degrading butyrate-producing bacteria Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii resulted in syntrophic growth and production of butyrate. In addition, we demonstrate that the production of pseudovitamin B12 by E. hallii results in production of propionate by A. muciniphila, which suggests that this syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The observed metabolic interactions between A. muciniphila and butyrogenic bacterial taxa support the existence of colonic vitamin and butyrate production pathways that are dependent on host glycan production and independent of dietary carbohydrates. We infer that the intestinal symbiont A. muciniphila can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial cells with potential health benefits to the host. PMID:28928206

  7. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apcmin/+ mice

    PubMed Central

    Dong, Wenxiao; Zhang, Yujie; Wang, Sinan; Xie, Runxiang; Wang, Bangmao; Cao, Hailong

    2017-01-01

    It is increasingly perceived that dietary components have been linked with the prevention of intestinal cancer. Cranberry is a rich source of phenolic constituents and non-digestible fermentable dietary fiber, which shows anti-proliferation effect in colorectal cancer cells. Herein, we investigated the efficacy of long-term cranberry diet on intestinal adenoma formation in Apcmin/+ mice. Apcmin/+ mice were fed a basal diet or a diet containing 20% (w/w) freeze-dried whole cranberry powder for 12 weeks, and the number and size of tumors were recorded after sacrifice. Our results showed that cranberry strongly prevented the growth of intestinal tumors by 33.1%. Decreased cell proliferation and increased apoptosis were observed in tumors of cranberry-fed mice. Cranberry diet reduced the expression profile of colonic inflammatory cytokines (IFN-γ, IL-1β and TNF-α) accompanied with increased levels of anti-inflammatory cytokines (IL-4 and IL-10). Moreover, the number of colonic goblet cells and MUC2 production were increased, and the intestinal barrier function was also improved. In addition, cranberry diet increased caecal short chain fatty acids concentrations, and down-regulated epidermal growth factor receptor signaling pathway. These data firstly show the efficacy and associated mechanisms of cranberry diet on intestinal tumor growth in Apcmin/+ mice, suggesting its chemopreventive potential against intestinal cancer. PMID:29228651

  8. Role of probiotics and functional foods in health: gut immune stimulation by two probiotic strains and a potential probiotic yoghurt.

    PubMed

    Maldonado Galdeano, Carolina; Novotny Nuñez, Ivanna; Carmuega, Esteban; de Moreno de LeBlanc, Alejandra; Perdigón, Gabriela

    2015-01-01

    There are numerous reports that show the benefits on the health attributed to the probiotic consumptions. Most of the studies were performed using animal models and only some of them were validated in controlled human trials. The present review is divided in two sections. In the first section we describe how the probiotic microorganisms can interact with the intestinal epithelial cells that are the first line of cell in the mucosal site, focusing in the studies of two probiotic strains: Lactobacillus casei DN-114001 (actually Lactobacillus paracasei CNCMI-1518) and Lactobacillus casei CRL 431. Then we describe same beneficial effects attributed to probiotic administration and the administration of fermented milks containing these microorganisms or potential probiotic yoghurt, principally on the immune system and on the intestinal barrier in different experimental mouse models like enteropathogenic infection, malnutrition, cancer and intestinal inflammation.

  9. Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three.

    PubMed

    Gaya, Pilar; Sánchez-Jiménez, Abel; Peirotén, Ángela; Medina, Margarita; Landete, José Maria

    2018-05-01

    Phytoestrogens are plant-derived polyphenols with structural and functional similarities to mammalian oestrogens. The aim of this work was to study the metabolism of phytoestrogens by children's intestinal microbiota and to compare it with previous results in adults. Faecal samples of 24 healthy children were subjected to phytoestrogen fermentation assay. Only one child produced equol, while O-desmethylangolensin was found in all. Urolithin production was detected in 14 children and enterolactone in 10. Further comparison with the metabolism of phytoestrogens by adult intestinal microbiota reflected that glycitein, dihydrogenistein, urolithins D and E, enterolactone, secoisolariciresinol and arctigenin were the most important metabolites differentiating between adult and child microbial gut metabolism. Although the child intestinal microbiota showed the ability to metabolise isoflavones, ellagitannins and lignans to a certain extent, it generally showed a reduced metabolism of phytoestrogens, with a lack of 5-hydroxy equol and enterodiol, and less urolithins and enterolactone producers.

  10. Functional Profile Evaluation of Lactobacillus fermentum TCUESC01: A New Potential Probiotic Strain Isolated during Cocoa Fermentation

    PubMed Central

    dos Santos, Thalis Ferreira; Pereira, Lennon Ramos; Passos, Hélic Moreira; Rezende, Rachel Passos

    2017-01-01

    The use of intestinal probiotic bacteria is very common in the food industry and has been the focus of the majority of research in this field. Yet in recent years, research on extraintestinal microorganisms has greatly increased due to their well-known potential as probiotics. Thus, we studied a strain of Lactobacillus fermentum (TCUESC01) extracted from fermenting cocoa. First, we examined the impact of pH on the growth of this strain and studied its survival under conditions similar to those of the human gastrointestinal tract. L. fermentum TCUESC01 demonstrated resistance to conditions mimicking the human stomach and intestines and grew well between pH 5 and pH 7. Next, we subjected L. fermentum TCUESC01 to storage at 4°C in a milk solution and found that it survived well for 28 days. Lastly, we measured the susceptibility of this strain to numerous antibiotics and its tendency to autoaggregate. L. fermentum TCUESC01 showed significant autoaggregation, as well as susceptibility to the majority of antibiotics tested. Overall, our findings support the potential use of this extraintestinal bacterium as a dietary probiotic. PMID:28808659

  11. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis.

    PubMed

    Reynolds, C K; Kristensen, N B

    2008-04-01

    The extensive development of the ruminant forestomach sets apart their N economy from that of nonruminants in a number of respects. Extensive pregastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds into microbial protein. This process is fueled primarily by carbohydrate fermentation and includes extensive recycling of N between the body and gut lumen pools. Nitrogen recycling occurs via blood and gut lumen exchanges of urea and NH(3), as well as endogenous gut and secretory N entry into the gut lumen, and the subsequent digestion and absorption of microbial and endogenous protein. Factors controlling urea transfer to the gut from blood, including the contributions of urea transporters, remain equivocal. Ammonia produced by microbial degradation of urea and dietary and endogenous AA is utilized by microbial fermentation or absorbed and primarily converted to urea. Therefore, microbial growth and carbohydrate fermentation affect the extent of NH(3) absorption and urea N recycling and excretion. The extensive recycling of N to the rumen represents an evolutionary advantage of the ruminant in terms of absorbable protein supply during periods of dietary protein deficiency, or asynchronous carbohydrate and protein supply, but incurs a cost of greater N intakes, especially in terms of excess N excretion. Efforts to improve the efficiency of N utilization in ruminants by synchronizing fermentable energy and N availability have generally met with limited success with regards to production responses. In contrast, imposing asynchrony through oscillating dietary protein concentration, or infrequent supplementation, surprisingly has not negatively affected production responses unless the frequency of supplementation is less than once every 3 d. In some cases, oscillation of dietary protein concentration has improved N retention compared with animals fed an equal amount of dietary protein on a daily basis. This may reflect benefits of Orn cycle adaptations and sustained recycling of urea to the gut. The microbial symbiosis of the ruminant is inherently adaptable to asynchronous N and energy supply. Recycling of urea to the gut buffers the effect of irregular dietary N supply such that intuitive benefits of rumen synchrony in terms of the efficiency of N utilization are typically not observed in practice.

  12. Gut fermentation seems to promote decompression sickness in humans.

    PubMed

    de Maistre, Sébastien; Vallee, Nicolas; Gempp, Emmanuel; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-10-01

    Massive bubble formation after diving can lead to decompression sickness (DCS) that can result in neurological disorders. In experimental dives using hydrogen as the diluent gas, decreasing the body's H 2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. In contrast, we have shown that gut bacterial fermentation in rats on a standard diet promotes DCS through endogenous hydrogen production. Therefore, we set out to test these experimental results in humans. Thirty-nine divers admitted into our hyperbaric center with neurological DCS (Affected Divers) were compared with 39 healthy divers (Unaffected Divers). Their last meal time and composition were recorded. Gut fermentation rate was estimated by measuring breath hydrogen 1-4 h after the dive. Breath hydrogen concentrations were significantly higher in Affected Divers (15 ppm [6-23] vs. 7 ppm [3-12]; P = 0.0078). With the use of a threshold value of 16.5 ppm, specificity was 87% [95% confidence interval (CI) 73-95] for association with neurological DCS onset. We observed a strong association between hydrogen values above this threshold and an accident occurrence (odds ratio = 5.3, 95% CI 1.8-15.7, P = 0.0025). However, high fermentation potential foodstuffs consumption was not different between Affected and Unaffected Divers. Gut fermentation rate at dive time seemed to be higher in Affected Divers. Hydrogen generated by fermentation diffuses throughout the body and could increase DCS risk. Prevention could be helped by excluding divers who are showing a high fermentation rate, by eliminating gas produced in gut, or even by modifying intestinal microbiota to reduce fermentation rate during a dive. Copyright © 2016 the American Physiological Society.

  13. Effects of viscosity and fermentability of dietary fibre on nutrient digestibility and digesta characteristics in ileal-cannulated grower pigs.

    PubMed

    Hooda, Seema; Metzler-Zebeli, Barbara U; Vasanthan, Thavaratnam; Zijlstra, Ruurd T

    2011-09-01

    Relative contributions of two functional properties, viscosity and fermentability of dietary fibre, on apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), digesta passage rate, N retention and SCFA concentration have not been established. Thus, eight ileal-cannulated pigs randomised in a double 4 × 4 Latin square were fed four diets based on maize starch and casein supplemented with 5 % of actual fibre in a 2 × 2 factorial arrangement: low-fermentable, low-viscous cellulose (CEL); low-fermentable, high-viscous carboxymethylcellulose (CMC); high-fermentable, low-viscous oat β-glucan (LBG); high-fermentable, high-viscous oat β-glucan (HBG). Viscosity and fermentability interacted to affect (P < 0·001) digesta viscosity and AID and ATTD of nutrients. These properties tended to interact to affect (P < 0·10) digesta passage rate and butyrate. Pigs fed the CMC diet had the lowest (P < 0·05) digesta passage rate and the highest (P < 0·001) AID of energy, crude protein and DM, and ATTD of energy and DM. Post-ileal DM digestibility was highest (P < 0·001) for pigs fed the CEL and HBG diets. Post-ileal DM digestibility had a negative, curvilinear relationship with the AID of energy and crude protein (R2 0·85 and 0·72, respectively; P < 0·001). Digesta viscosity had a less strong relationship with the AID of energy and crude protein (R2 0·45 and 0·36, respectively; P < 0·001). In conclusion, high-viscous, low-fermentable dietary fibre increases the proportion of a diet that is digested in the small intestine by reducing digesta passage rate.

  14. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v.

    PubMed

    Molin, G

    2001-02-01

    Lactic acid fermentation is the simplest and safest way of preserving food and has probably always been used by humans. Species such as Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus acidophilus, and Lactobacillus salivarius are common in the human mucosa, from the mouth to the rectum. In food, L. paracasei and L. rhamnosus are usually associated with dairy products whereas L. plantarum is found in fermented foods of plant origin. A probiotic food product containing no milk constituent was launched in Sweden in 1994. The product is a lactic acid fermented oatmeal gruel that is mixed in a fruit drink. It contains approximately 5 x 10(10) colony-forming units of L. plantarum 299v/L. The strain L. plantarum 299v originates from the human intestinal mucosa and has been shown in rats to decrease translocation, improve mucosal status, improve liver status, improve the immunologic status of the mucosa, and reduce mucosal inflammation. In humans, L. plantarum 299v can increase the concentration of carboxylic acids in feces and decrease abdominal bloating in patients with irritable bowel disease. It can also decrease fibrinogen concentrations in blood. Should probiotics be administrated through foods, the probiotic organism must remain vigorous in the food until consumption and the food must remain palatable, ie, the food carrier and the organism must suit each other. L. plantarum 299v not only affects the bacterial flora of the intestinal mucosa but may also regulate the host's immunologic defense. The mechanisms involved need to be clarified.

  15. The piglet as a model for studying dietary components in infant diets: effects of galacto-oligosaccharides on intestinal functions.

    PubMed

    Alizadeh, A; Akbari, P; Difilippo, E; Schols, H A; Ulfman, L H; Schoterman, M H C; Garssen, J; Fink-Gremmels, J; Braber, S

    2016-02-28

    Prebiotic oligosaccharides, including galacto-oligosaccharides (GOS), are used in infant formula to mimic human milk oligosaccharides, which are known to have an important role in the development of the intestinal microbiota and the immune system in neonates. The maturation of the intestines in piglets closely resembles that of human neonates and infants. Hence, a neonatal piglet model was used to study the multi-faceted effect of dietary GOS in early life. Naturally farrowed piglets were separated from the mother sow 24-48 h postpartum and received a milk replacer with or without the addition of GOS for 3 or 26 d, whereafter several indicators of intestinal colonisation and maturation were measured. Dietary GOS was readily fermented in the colon, leading to a decreased pH, an increase in butyric acid in caecum digesta and an increase in lactobacilli and bifidobacteria numbers at day 26. Histomorphological changes were observed in the intestines of piglets fed a GOS diet for 3 or 26 d. In turn, differences in the intestinal disaccharidase activity were observed between control and GOS-fed piglets. The mRNA expression of various tight junction proteins was up-regulated in the intestines of piglet fed a GOS diet and was not accompanied by an increase in protein expression. GOS also increased defensin porcine β-defensin-2 in the colon and secretory IgA levels in saliva. In conclusion, by applying a neonatal piglet model, it could be demonstrated that a GOS-supplemented milk replacer promotes the balance of the developing intestinal microbiota, improves the intestinal architecture and seems to stimulate the intestinal defence mechanism.

  16. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  17. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    PubMed

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these carbon sources in adult intestine was speculated to contribute to the low relative abundance of bifidobacteria.

  18. Counteracting Fusarium proliferatum toxicity in broiler chicks by supplementing drinking water with Poultry Aid Plus.

    PubMed

    Wu, W

    1997-03-01

    To test whether Poultry Aid Plus (PAP, a commercial product for drinking water application) could reduce the stress on broiler chicks caused by Fusarium proliferatum contamination of feed, water (with or without PAP application, according to the manufacturer's instructions), and feed (experimentally infected with F. proliferatum fermented and dried corn culture material, CM) were provided to broiler chicks for 3 wk. Eight treatments consisting of a 2 (with or without PAP in water) x 4 (0, 1, 2, and 4% CM in feed) factorial design were tested in four replicate cages of six chicks each. The diet with 2% CM reduced weight gain by 23%; this reduction was preventable by PAP water application. The diet with 4% CM caused a cumulative mortality of 87.5%, which was reduced by PAP water application to 50%. The population half-life of the chicks on the diet with 4% CM was 6.5 d; this half-life was prolonged to at least 21 d by PAP water application. The PAP application also reduced the relative weight of the small intestine and promoted Lactobacillus colonization of the large intestine regardless of the level of CM in feed. Therefore, water application of PAP can be a prophylactic measure for F. proliferatum toxicity in poultry production.

  19. Feed intake limitation strategies for the growing rabbit: effect on feeding behaviour, welfare, performance, digestive physiology and health: a review.

    PubMed

    Gidenne, T; Combes, S; Fortun-Lamothe, L

    2012-09-01

    This review aims to present the different effects produced by a post-weaning intake limitation strategy on the growing rabbit, now largely used by French professional rabbit breeders. Although a quantitative feed restriction leads to slower growth, feed conversion (FC) is improved, particularly when the rabbits are again fed freely, as compensatory growth occurs. This better FC or the healthy rabbit is because of better digestion resulting from slower passage through the intestine, whereas the digestive physiology is slightly modified (morphometry of the intestinal mucosa, fermentation pattern, microbiota). Meat quality and carcass characteristics are not greatly affected by feed restriction, except for a lower dressing-out percentage. One of the main advantages of limiting post-weaning intake of the rabbit is to reduce the mortality and morbidity rate due to digestive disorders (particularly epizootic rabbit enteropathy syndrome). The consequences for animal welfare are debatable, as feed restriction probably leads to hunger, but it reduces the incidence of digestive troubles after weaning. However, the growing rabbit adapts very well to an intake limitation strategy, without any aggressive behaviour for congener. In conclusion, restriction strategies could improve profitability of rabbit breeding, but they should be adapted to any specific breeding situation, according to the national market, feed prices, etc.

  20. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    PubMed

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  1. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  2. [The influence of probiotic fermented milk product on colon microbiota, hematological parameters and cell immunity in rats].

    PubMed

    Kuznetsova, G G; Trushina, É N; Muatafina, O K; Cherkashin, A V; Batishcheva, S Iu; Semenikhina, V F; Sheveleva, S A

    2012-01-01

    Influence of probiotic fermented milk product on the intestinal microbiota, hematological parameters and immune status of the experiment in vivo at Wistar rats was studied. It was shown, that entering of probiotic strains of Bifidobacterium bifidum 791, Bifidobacterium longum B-379M and Lactobacillus acidophilus NK1 u Streptococcus thermophilus in composition fermented milk products in the total quantity of 2,1 x 10(7) CFU/ sm3 in digestive tract within three weeks has a positive influence on the resident of colon microbiota. Significant increasing of population levels of Bifidobacterium, Enterobacteriaceae with normal biochemical properties, registered a strong tendency to increase the content of Lactobacteria, which led to a decreasing the number of potential pathogenic transient flora with pathogenic factors. Monitoring of body mass in experimental animals has shown that including of fermented milk product with probiotic strains in diet has a positive influence on the feed uptake. Probiotic properties of the product also have stimulated effect on the immune status of the rat: improvements in cell immunity (increasing the relative amount of T-helper cells, immuneregulatory index) and hematological parameters (increase

  3. Non-dairy Based Probiotics: A Healthy Treat for Intestine.

    PubMed

    Bansal, Sangita; Mangal, Manisha; Sharma, Satish K; Gupta, Ram K

    2016-08-17

    Dairy-based fermented products and yoghurts have been utilized as potential probiotic products since ancient times. However, recent upsurge in interest of consumers towards dairy alternatives has opened up new vistas for non-dairy probiotic research and development. Various matrices and substrates such as cereals, fruit juices, or mixture thereof are being utilized for delivering these beneficial microorganisms. Each matrix offers some advantages over the other. Vast knowledge available on a number of conventional fermented foods can also be utilized for future research in this area. The present review provides an insight on the recent research/developments in the field of non-dairy probiotic foods with particular reference to the foods consumed conventionally, in addition to their commercial availability and a way forward.

  4. Genome Sequence of the Verrucomicrobium Opitutus terrae PB90-1, an Abundant Inhabitant of Rice Paddy Soil Ecosystems▿

    PubMed Central

    van Passel, Mark W. J.; Kant, Ravi; Palva, Airi; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Glavina del Rio, Tijana; Pitluck, Sam; Goltsman, Eugene; Clum, Alicia; Sun, Hui; Schmutz, Jeremy; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren; Kyrpides, Nikolaos; Mikhailova, Natalia; Richardson, P. Paul; Janssen, Peter H.; de Vos, Willem M.; Smidt, Hauke

    2011-01-01

    Bacteria of the deeply branching phylum Verrucomicrobia are rarely cultured yet commonly detected in metagenomic libraries from aquatic, terrestrial, and intestinal environments. We have sequenced the genome of Opitutus terrae PB90-1, a fermentative anaerobe within this phylum, isolated from rice paddy soil and capable of propionate production from plant-derived polysaccharides. PMID:21398538

  5. Military Nutrition Initiatives

    DTIC Science & Technology

    1991-02-25

    alternative snacks such as fresh fruit, low fat yogurt , low fat and low salt snack items in vending machines. The recommendation concerning limiting...alternatives to whole milk might be considered for garrison feeding programs: dark green vegetables, low-fat frozen yogurt , and low-fat cheez=s. 7. The... fermentation , and intestinal transit time. Other food components associated with decreased cancer isk are com- monly found in diets high in whole grain cereal

  6. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and intestine of model animals. Furthermore, stool residual IAP, a possible early marker of diabetes, should be assayed in human cohorts. If confirmed, this "alkaline phosphatase" hypothesis will highlight the protective effects of milk alkaline phosphatase and promote the consumption of (microbiologically safe) raw milk and dairy products. Microorganisms secreting alkaline phosphatases may be privileged as ferments in dairy products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparison of Surgically Treated Large Versus Small Intestinal Volvulus (2009-2014).

    PubMed

    Davis, Elizabeth; Townsend, Forrest I; Bennett, Julie W; Takacs, Joel; Bloch, Christopher P

    2016-01-01

    The purpose of this retrospective study was to compare the outcome for dogs with surgically treated large versus small intestinal volvulus between October 2009 and February 2014. A total of 15 dogs met the inclusion criteria and underwent an abdominal exploratory. Nine dogs were diagnosed with large intestinal volvulus during the study period, and all nine had surgical correction for large intestinal volvulus. All dogs were discharged from the hospital. Of the seven dogs available for phone follow-up (74 to 955 days postoperatively), all seven were alive and doing well. Six dogs were diagnosed with small intestinal volvulus during the study period. One of the six survived to hospital discharge. Three of the six were euthanized at the time of surgery due to an extensive amount of necrotic bowel. Of the three who were not, one died postoperatively the same day, one died 3 days later, and one dog survived for greater than 730 days. Results concluded that the outcome in dogs with surgically corrected large intestinal volvulus is excellent, compared with a poor outcome in dogs with small intestinal volvulus. The overall survival to discharge for large intestinal volvulus was 100%, versus 16% for small intestinal volvulus.

  8. Ontogeny of intestinal safety factors: lactase capacities and lactose loads.

    PubMed

    O'Connor, T P; Diamond, J

    1999-03-01

    We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.

  9. Ration formulations containing reduced-fat dried distillers grains with solubles and their effect on lactation performance, rumen fermentation, and intestinal flow of microbial nitrogen in Holstein cows.

    PubMed

    Castillo-Lopez, E; Ramirez Ramirez, H A; Klopfenstein, T J; Hostetler, D; Karges, K; Fernando, S C; Kononoff, P J

    2014-03-01

    Sixteen multiparous lactating Holstein cows were used in 2 experiments to evaluate the effects of reduced-fat dried distillers grains with solubles (RFDG) on milk production, rumen fermentation, intestinal microbial N flow, and total-tract nutrient digestibility. In experiment 1, RFDG was fed at 0, 10, 20, or 30% of diet dry matter (DM) to 12 noncannulated Holstein cows (mean ± standard deviation: 89 ± 11 d in milk and 674 ± 68.2 kg of body weight) to determine effects on milk production. In experiment 2, the same diets were fed to 4 ruminally and duodenally cannulated Holstein cows (mean ± standard deviation: 112 ± 41 d in milk; 590 ± 61.14 kg of body weight) to evaluate the effects on rumen fermentation, intestinal flow of microbial N, and total-tract nutrient digestibility. In both experiments, cows were randomly assigned to 4 × 4 Latin squares over 21-d periods. Treatments (DM basis) were (1) control (0% RFDG), (2) 10% RFDG, (3) 20% RFDG, and (4) 30% RFDG. Feed intake and milk yield were recorded daily. In both experiments, milk samples were collected on d 19 to 21 of each period for analysis of milk components. In experiment 2, ruminal pH was measured; samples of rumen fluid, duodenal digesta, and feces were collected on d 18 to 21. Microbial N was estimated by using purines and DNA as microbial markers. Milk yield was not affected by treatment and averaged 34.0 ± 1.29 kg/d and 31.4 ± 2.81 kg/d in experiments 1 and 2, respectively. Percentage of milk protein tended to increase in experiment 1; estimates were 3.08, 3.18, 3.15, and 3.19 ± 0.06% when RFDG increased from 0 to 30% in the diets. However, milk protein concentration was not affected in experiment 2 and averaged 3.02 ± 0.07%. Percentage of milk fat was not affected and averaged 3.66 ± 0.05% and 3.25 ± 0.14% in experiments 1 and 2, respectively. Total ruminal volatile fatty acids and ammonia concentrations were not affected by treatment and averaged 135.18 ± 6.45 mM and 18.66 ± 2.32 mg/dL, respectively. Intestinal microbial N flow was not affected by treatment; however, purines yielded higher estimates of flow compared with DNA markers. When averaged across treatments, intestinal flow of microbial N was 303 and 218 ± 18 g of N/d, using purines and DNA as the markers. Dry matter, organic matter, neutral detergent fiber, and nonfiber carbohydrate digestibility tended to increase with increasing inclusion of RFDG. Results from these experiments indicate that dairy rations can be formulated to include up to 30% RFDG while maintaining lactation performance, volatile fatty acids concentration, and intestinal supply of microbial N. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. [Dietetic treatment with fructose in a 5-year-old girl with recurrent D-lactic acidosis].

    PubMed

    Travieso Suárez, Lourdes; Quijada Fraile, Pilar; Pedrón Giner, Consuelo

    2018-03-01

    D-lactic acidosis is an infrequent complication, mainly reported in patients with short bowel syndrome. It is characterized by recurrent episodes of encephalopathy with elevated serum D-lactic acid, usually associating metabolic acidosis. The presence of D-lactate-producing bacteria is necessary for the development of this complication. Other factors, such as the ingestion of large amounts of carbohydrates or reduced intestinal motility, contribute to D-lactic acidosis. We report a case of recurrent D-lactic acidosis in a 5-year-old girl with short bowel syndrome, due to a midgut volvulus. She initially received oral antibiotics in order to treat bacterial overgrowth, together with oral carbohydrates restriction. Nevertheless, recurrences did occur. Subsequently, 25% of the enteral nutrition was replaced for a formula containing fructose exclusively, while other fermentable sugars were restricted from the diet. After 16 years of follow up, further recurrences of D-lactic acidosis were not observed.

  11. Development of an In Vivo and In Vitro Ileal Fermentation Method in a Growing Pig Model.

    PubMed

    Montoya, Carlos A; de Haas, Edward S; Moughan, Paul J

    2018-02-01

    Substantial microbial fermentation may occur mainly in the lower small intestine (SI) of human adults, but there is no established methodology to determine this. The study aimed to develop a combined in vivo and in vitro methodology for ileal fermentation based on the pig as an animal model for digestion in human adults. Several aspects of a combined in vivo/in vitro ileal fermentation assay were evaluated. Male 9-wk-old pigs (n = 30; mean ± SD body weight: 23 ± 1.6 kg) were fed a human-type diet (143, 508, 45, 49, and 116 g/kg dry matter diet of crude protein, starch, total lipid, ash, and total dietary fiber) for 15 d. On day 15, pigs were killed, and the last third of the SI was collected to prepare an ileal digesta-based inoculum. Terminal jejunal digesta (last 50 cm of the second third of the SI) were collected as substrate for the assay to test the form of substrate (fresh or freeze-dried), origin (location in jejunum or SI) of the substrate, storage of the inoculum, incubation time (1.2-6.8 h), pH of the medium, and inoculum concentration (6-26 mg inoculum/100 mg substrate). The group of donor pigs used to prepare the inoculum, form of the substrate, origin of the substrate, origin of the inoculum (location in the SI), storage of the inoculum, incubation time, and inoculum concentration did not influence the in vitro ileal organic matter (OM) fermentability (P > 0.05). The in vitro ileal OM fermentability decreased when the pH of the medium increased from 5.5 to 7.5 (31% to 28%; P ≤ 0.05). Predicted (in vivo/in vitro) apparent ileal OM digestibility was similar to the value measured in vivo. Thirty-percent of the terminal jejunal digesta OM was fermented in the ileum. Fiber fermentation in the ileum can be studied using the optimized in vivo/in vitro ileal fermentation method.

  12. In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour.

    PubMed

    Menezes, Elizabete Wenzel; Dan, Milana C T; Cardenette, Giselli H L; Goñi, Isabel; Bello-Pérez, Luis Arturo; Lajolo, Franco M

    2010-12-01

    This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefit effects of the fermentation on intestinal health.

  13. Commercialization of a novel fermentation concept.

    PubMed

    Mazumdar-Shaw, Kiran; Suryanarayan, Shrikumar

    2003-01-01

    Fermentation is the core of biotechnology where current methodologies span across technologies based on the use of either solid or liquid substrates. Traditionally, solid substrate fermentation technologies have been the widely practiced in the Far East to manufacture fermented foods such as soya sauce, sake etc. The Western World briefly used solid substrate fermentation for the manufacture of antibiotics and enzymes but rapidly replaced this technology with submerged fermentation which proved to be a superior technology in terms of automation, containment and large volume fermentation. Biocon India developed its enzyme technology based on solid substrate fermentation as a low-cost, low-energy option for the production of specialty enzymes. However, the limitations of applying solid substrate fermentation to more sophisticated biotechnology products as well as large volume fermentations were recognized by Biocon India as early as 1990 and the company embarked on a 8 year research and development program to develop a novel bioreactor capable of conducting solid substrate fermentation with comparable levels of automation and containment as those practiced by submerged fermentation. In addition, the novel technology enabled fed-batch fermentation, in situ extraction and other enabling features that will be discussed in this article. The novel bioreactor was christened the "PlaFractor" (pronounced play-fractor). The next level of research on this novel technology is now focused on addressing large volume fermentation. This article traces the evolution of Biocon India's original solid substrate fermentation to the PlaFractor technology and provides details of the scale-up and commercialization processes that were involved therein. What is also apparent in the article is Biocon India's commercially focused research programs and the perceived need to be globally competitive through low costs of innovation that address, at all times, processes and technologies that exhibit high degrees of conformance to the international standards of regulatory and good manufacturing practice.

  14. The potential of resistant starch as a prebiotic.

    PubMed

    Zaman, Siti A; Sarbini, Shahrul R

    2016-01-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.

  15. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    PubMed Central

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-01-01

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance. PMID:26393648

  16. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    PubMed

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-18

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  17. Effect of ingestion of soy yogurt on intestinal parameters of rats fed on a beef-based animal diet

    PubMed Central

    Bedani, Raquel; Pauly-Silveira, Nadiége Dourado; Cano, Veridiana Soares Pereira; Valentini, Sandro Roberto; de Rossi, Graciela Font; Valdez, Elizeu Antonio

    2011-01-01

    The aim of this study was to investigate whether the ingestion of soy yogurt fermented with Enterococcus faecium CRL 183 would modify the intestinal count of enterococci, fecal pH and ammonia content in rats fed on a diet containing red meat. The rats were placed in 4 groups: for 60 days, group I was given a standard casein-based rodent feed and groups II-IV, the beef-based feed. From day 30, groups III-IV also received the following products: III) soy yogurt; IV) suspension of E. faecium CRL 183. At the start and on days 30 and 60, feces were collected for the determination of pH, ammonia content, count of enterococci and identification of their species. On day 60, rats were sacrificed and their colons also removed for count of enterococci and identification of their species. Rats that ingested soy yogurt showed no significant change (P<0.05) in fecal counts of Enterococcus spp., but, this rat group showed a higher count of E. faecium than rats that ingested suspension of E. faecium CRL 183. The ingestion of soy yogurt and E. faecium culture caused a significant rise (P < 0.05) in fecal pH and ammonia content. Our results suggest that consumption of soy yogurt fermented with E. faecium CRL 183 and L. helveticus subsp. jugurti could change the species of Enterococcus spp. present in the feces and colon of rats fed on a beef-based diet. However, the fermented soy product and the pure culture of E. faecium CRL 183 also induced undesirable effects such as the increase of fecal pH and ammonia content in the feces of rats fed on a beef-based diet. PMID:24031747

  18. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  19. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large Intestinal Lipid Metabolism.

    PubMed

    Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin

    2017-07-13

    The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.

  20. Urinary Isoflavonoid Excretion is Similar after Consuming Soy Milk and Miso Soup in Japanese-American Women

    PubMed Central

    Maskarinec, Gertraud; Watts, Kirsten; Kagihara, Jamie; Hebshi, Sandra M.; Franke, Adrian A.

    2009-01-01

    Based on the hypothesis that isoflavones are absorbed more efficiently from fermented than from non-fermented soy foods, we compared the urinary isoflavonoid excretion (UIE) after intake of miso soup or soy milk. We recruited 21 women with Japanese ancestry who consumed standardized soy portions containing 48 mg isoflavones. On day 1, half the women consumed soy milk, the other half started with miso soup. On day 3, the subjects ate the other soy food and on day 5, they repeated the first food. Each participant collected a spot urine sample before and an overnight urine sample after soy food intake. All urine samples were analyzed for the daidzein, genistein, and equol using liquid chromatography-mass spectrometry and were expressed as nmol per mg creatinine. We applied mixed models to evaluate the difference in UIE by food while including the baseline values and covariates. Relative to baseline, both groups experienced significantly higher UIE after consuming any of the soy foods. We observed no significant difference in UIE when soy milk was compared to miso soup (p = 0.87) among all women or in the seven equol producers (p = 0.88). Repeated intake of the same food on different days showed high reproducibility within subjects. These preliminary results indicate similar UIEs after consuming a fermented soy food (miso) as compared to a non-fermented soy food (soy milk). Therefore, recommendations favoring fermented soy foods are not justified as long as the intestinal microflora is capable of hydrolyzing the isoflavone glucosides from non-fermented soy foods. PMID:18275624

  1. The role of diet on gut microbiota composition.

    PubMed

    Bibbò, S; Ianiro, G; Giorgio, V; Scaldaferri, F; Masucci, L; Gasbarrini, A; Cammarota, G

    2016-11-01

    Gut microbiota is characterized by an inter-individual variability due to genetic and environmental factors. Among the environmental ones, dietary habits play a key role in the modulation of gut microbiota composition. There are main differences between the intestinal microbiota of subjects fed with prevalent Western diet and that of subjects with a diet rich in fibers. Specific changes in the composition of gut microbiota have been demonstrated among subjects according to a different dietary intake. A particular diet may promote the growth of specific bacterial strains, driving hosts to a consequent alteration of fermentative metabolism, with a direct effect on intestinal pH, which can be responsible for the development of a pathogenic flora. Moreover, a high-fat diet can promote the development of a pro-inflammatory gut microbiota, with a consequent increase of intestinal permeability and, consequently, of circulating levels of lipopolysaccharides. In this review, we discuss the direct role of the diet in the composition of gut microbiota and about the possible clinical consequences.

  2. The Salivary IgA Flow Rate Is Increased by High Concentrations of Short-Chain Fatty Acids in the Cecum of Rats Ingesting Fructooligosaccharides

    PubMed Central

    Yamamoto, Yuko; Takahahi, Toru; To, Masahiro; Nakagawa, Yusuke; Hayashi, Takashi; Shimizu, Tomoko; Kamata, Yohei; Saruta, Juri; Tsukinoki, Keiichi

    2016-01-01

    Salivary immunoglobulin A (IgA) serves as a major effector in mucosal immunity by preventing submucosal invasion of pathogens. However, the mechanism by which consumption of fermentable fibers increases IgA in saliva was not fully elucidated. This study investigated the effects of fructooligosaccharides (FOS) intake and time after feeding on IgA levels in the saliva and cecal digesta and on the concentration of short-chain fatty acids (SCFA) in the cecum in rats. Five-week-old rats were fed a fiber-free diet or a diet with 50 g/kg FOS for zero, one, four, and eight weeks. Ingestion of FOS at one and eight weeks led to a higher IgA flow rate of saliva per weight of submandibular gland tissue (p < 0.05), which positively correlated with the concentration of SCFA in the cecal digesta (rs = 0.86, p = 0.0006, n = 12), but showed no correlation with the concentration of IgA in the cecal digesta (rs = 0.15, p = 0.3, n = 48). These results suggested that ingestion of FOS increased salivary IgA secretion through high levels of SCFA in the large intestine, which was produced by fermentation of FOS. Thus, continuously ingesting FOS for more than one week could increase secretion of salivary IgA. PMID:27548207

  3. Molecular typing of Lactobacillus brevis isolates from Korean food using repetitive element-polymerase chain reaction.

    PubMed

    Kaur, Jasmine; Sharma, Anshul; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    Lactobacillus brevis is a part of a large family of lactic acid bacteria that are present in cheese, sauerkraut, sourdough, silage, cow manure, feces, and the intestinal tract of humans and rats. It finds its use in food fermentation, and so is considered a "generally regarded as safe" organism. L. brevis strains are extensively used as probiotics and hence, there is a need for identifying and characterizing these strains. For identification and discrimination of the bacterial species at the subspecific level, repetitive element-polymerase chain reaction method is a reliable genomic fingerprinting tool. The objective of the present study was to characterize 13 strains of L. brevis isolated from various fermented foods using repetitive element-polymerase chain reaction. Repetitive element-polymerase chain reaction was performed using three primer sets, REP, Enterobacterial Repetitive Intergenic Consensus (ERIC), and (GTG) 5 , which produced different fingerprinting patterns that enable us to distinguish between the closely related strains. Fingerprinting patterns generated band range in between 150 and 5000 bp with REP, 200-7500 bp with ERIC, and 250-2000 bp with (GTG) 5 primers, respectively. The Jaccard's dissimilarity matrices were used to obtain dendrograms by the unweighted neighbor-joining method using genetic dissimilarities based on repetitive element-polymerase chain reaction fingerprinting data. Repetitive element-polymerase chain reaction proved to be a rapid and easy method that can produce reliable results in L. brevis species.

  4. Review article: dietary fibre-microbiota interactions.

    PubMed

    Simpson, H L; Campbell, B J

    2015-07-01

    Application of modern rapid DNA sequencing technology has transformed our understanding of the gut microbiota. Diet, in particular plant-based fibre, appears critical in influencing the composition and metabolic activity of the microbiome, determining levels of short-chain fatty acids (SCFAs) important for intestinal health. To assess current epidemiological, experimental and clinical evidence of how long-term and short-term alterations in dietary fibre intake impact on the microbiome and metabolome. A Medline search including items 'intestinal microbiota', 'nutrition', 'diet', 'dietary fibre', 'SCFAs' and 'prebiotic effect' was performed. Studies found evidence of fibre-influenced differences in the microbiome and metabolome as a consequence of habitual diet, and of long-term or short-term intervention (in both animals and humans). Agrarian diets high in fruit/legume fibre are associated with greater microbial diversity and a predominance of Prevotella over Bacteroides. 'Western'-style diets, high in fat/sugar, low in fibre, decrease beneficial Firmicutes that metabolise dietary plant-derived polysaccharides to SCFAs and increase mucosa-associated Proteobacteria (including enteric pathogens). Short-term diets can also have major effects, particularly those exclusively animal-based, and those high-protein, low-fermentable carbohydrate/fibre 'weight-loss' diets, increasing the abundance of Bacteroides and lowering Firmicutes, with long-term adherence to such diets likely increasing risk of colonic disease. Interventions to prevent intestinal inflammation may be achieved with fermentable prebiotic fibres that enhance beneficial Bifidobacteria or with soluble fibres that block bacterial-epithelial adherence (contrabiotics). These mechanisms may explain many of the differences in microbiota associated with long-term ingestion of a diet rich in fruit and vegetable fibre. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  5. Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs.

    PubMed

    Luo, Yu-Heng; Yang, Can; Wright, André-Denis G; He, Jun; Chen, Dai-Wen

    2015-12-01

    Dietary starch that escapes digestion in the small intestine may serve as a carbon source for bacterial fermentation in the distal intestine. This study aimed to compare the bacterial community in the ileal and cecal digesta of growing pigs fed diets with low (0.14, LR pigs) and high (0.43, HR pigs) amylose/amylopectin ratio. Pyrosequencing based on MiSeq 2000 platform showed that in ileum digesta, Bacteroidetes of LR pigs was markedly higher than that in HR pigs (P < 0.05). Megasphaera and Prevotella were the two most predominant genera in LR pigs, and Prevotella was significantly higher in LR pigs than in HR pigs (P < 0.05). Prevotella was predominant in cecal samples from both LR and HR pigs, although no significant differences were found between the two groups. In the ileum, Megasphaera elsdenii and Mitsuokella multacida were significantly (P < 0.01) higher in LR pigs along with an increase of acetate and butyrate concentrations. Halomonas pacifica, Escherichia fergusonii, and Actinobacillus minor which belong to class Gammaproteobacteria were significantly lower (P < 0.01) in HR pigs with a significant increase (P < 0.01) of Lactobacillus acetotolerans-like bacteria. Therefore, the changed bacterial community may lead to a transformation of microbial function, such as the alteration of fermentation mode which is showed on the change of microbial metabolites like the concentration of short-chain fatty acids (SCFAs), to a response to the switch of dietary composition, and in turn, to help host absorb and utilize nutrients efficiently. The increase of dietary amylose induced the reduction of conditioned pathogens which may probably be due to the increase of some probiotics such as Lactobacillus, thus reducing the risk of intestinal disease.

  6. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    PubMed

    Meersman, Esther; Steensels, Jan; Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J

    2013-01-01

    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  7. Detailed Analysis of the Microbial Population in Malaysian Spontaneous Cocoa Pulp Fermentations Reveals a Core and Variable Microbiota

    PubMed Central

    Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J.

    2013-01-01

    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a “core” and a “variable” part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations (“core” yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations (“variable” yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency. PMID:24358116

  8. Sulfide‐ and nitrite‐dependent nitric oxide production in the intestinal tract

    PubMed Central

    Vermeiren, Joan; Van de Wiele, Tom; Van Nieuwenhuyse, Glynn; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary In the gut ecosystem, nitric oxide (NO) has been described to have damaging effects on the energy metabolism of colonocytes. Described mechanisms of NO production are microbial reduction of nitrate via nitrite to NO and conversion of l‐arginine by NO synthase. The aim of this study was to investigate whether dietary compounds can stimulate the production of NO by representative cultures of the human intestinal microbiota and whether this correlates to other processes in the intestinal tract. We have found that the addition of a reduced sulfur compound, i.e. cysteine, contributed to NO formation. This increase was ascribed to higher sulfide concentrations generated from cysteine that in turn promoted the chemical conversion of nitrite to NO. The NO release from nitrite was of the order of 4‰ at most. Overall, it was shown that two independent biological processes contribute to the chemical formation of NO in the intestinal tract: (i) the production of sulfide by fermentation of sulfur containing amino acids or reduction of sulfate by sulfate reducing bacteria, and (ii) the reduction of nitrate to nitrite. Our results indicate that dietary thiol compounds in combination with nitrate may contribute to colonocytes damaging processes by promoting NO formation. PMID:22129449

  9. Modulating Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Intestinal Microecology in Vitro.

    PubMed

    Xie, Minhao; Chen, Guijie; Wan, Peng; Dai, Zhuqing; Hu, Bing; Chen, Ligen; Ou, Shiyi; Zeng, Xiaoxiong; Sun, Yi

    2017-11-29

    Dietary polyphenols have been considered as novel prebiotics, and polyphenols could exert their functions through modulating intestinal microbiota. The diverse bioactivities of kudingcha could derive from its phenolic compounds, but the effects of dicaffeoylquinic acids (diCQAs) from Ilex kudingcha on intestinal microbiota have not been investigated. In the present study, high-throughput sequencing and anaerobic fermentation in vitro were utilized to investigate the microecology-modulating function of I. kudingcha diCQAs. As a result, diCQAs raised the diversity and exhibited a more considerable impact than a carbon source on the microbial profile. DiCQAs increased the relative abundances of Alistipes, Bacteroides, Bifidobacterium, Butyricimonas, Clostridium sensu stricto, Escherichia/Shigella, Parasutterella, Romboutsia, Oscillibacter, Veillonella, Phascolarctobacterium, Lachnospiracea incertae sedis, Gemmiger, Streptococcus, and Haemophilus and decreased the relative abundances of Ruminococcus, Anaerostipes, Dialister, Megasphaera, Megamonas, and Prevotella. DiCQAs also affected the generation of short-chain fatty acids through microbiota. The contents of acetic and lactic acids were raised, while the production of propionic and butyric acids was reduced. Conclusively, diCQAs from I. kudingcha had significant modulating effects on intestinal microbiota in vitro, which might be the fundamental of diCQAs exerting their bioactivities.

  10. Histomorphometry and macroscopic intestinal lesions in broilers infected with Eimeria acervulina.

    PubMed

    Assis, R C L; Luns, F D; Beletti, M E; Assis, R L; Nasser, N M; Faria, E S M; Cury, M C

    2010-03-25

    This study aimed at measuring intestinal villi and assessing the intestinal absorptive area in broilers infected with Eimeria acervulina under different treatments to control coccidiosis. The experiment was divided into two stages, carried out in successive housings, raised in the same environment (or aviary). In the first stage, on 25 May 2008, fifty 12-day-old birds were orally inoculated with 3 x 10(3) oocysts of E. acervulina. In the second stage, on July 2008, other 50 birds were allocated on litter contaminated by the feces of birds on the first housing (natural infection by oocysts present in the reused litter). The experiment was arranged in a complete randomized design with five treatments and three replicates of 10 chicks per treatment. Broiler chicks were housed at 1 day of age and autopsies were performed at 21 days of age. Three 2-cm-long segments of the duodenum were excised from each bird and fixed in 10% buffered formalin. A total of 30 slides were prepared for each treatment, totaling 150 evaluated histological sections using H&E staining. Villus morphology was carried out by the HL Image 97 software. The intestinal absorptive area was calculated and macroscopic lesions were classified according to standard lesion scores. Results showed that intestinal villus measurements and absorptive area are directly affected by E. acervulina and that there is direct and positive correlation between the macro and microscopic findings observed in intestinal coccidiosis. E. acervulina causes shortening of villi and reduction in the intestinal absorptive area, affecting broiler growth. The prevention method of litter fermentation during the interval between housings and oral administration of Diclazuril can reduce the severity of intestinal lesions by E. acervulina in broilers impairing oocyst virulence or viability.

  11. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    NASA Astrophysics Data System (ADS)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  12. Quality of cucumbers commercially fermented in calcium chloride brine without sodium salts

    USDA-ARS?s Scientific Manuscript database

    Commercial cucumber fermentation produces large volumes of salty wastewater. This study evaluated the quality of fermented cucumbers produced commercially using an alternative calcium chloride brining process. Fermentation conducted in calcium brines (0.1M calcium chloride, 6mM potassium sorbate, eq...

  13. Resistant starch intakes in the United States.

    PubMed

    Murphy, Mary M; Douglass, Judith Spungen; Birkett, Anne

    2008-01-01

    Dietary fiber represents a broad class of undigested carbohydrate components. The components vary in chemical and physical nature and in their physiological outcomes. Resistant starch is starch that escapes digestion in the small intestine and that may be fermented in the large intestine. The purpose of this study was to estimate consumption of resistant starch by the US population and to identify key sources of dietary resistant starch. A database of resistant starch concentrations in foods was developed from the publicly available literature. These concentrations were linked to foods reported in 24-hour dietary recalls from participants in the 1999-2002 National Health and Nutrition Examination Surveys and estimates of resistant starch intakes were generated. The study population included 18,305 nonbreastfeeding individuals in the United States. The dietary intake of resistant starch was determined for 10 US subpopulations defined by age, sex, and race/ethnicity. Three estimates of resistant starch intake were made for each person based on the minimum, mean, and maximum concentrations of resistant starch in the foods consumed. Americans aged 1 year and older were estimated to consume approximately 4.9 g resistant starch per day based on mean resistant starch concentrations (range 2.8 to 7.9 g resistant starch per day). Breads, cooked cereals/pastas, and vegetables (other than legumes) contributed 21%, 19%, and 19% of total resistant starch intake, respectively, and were top sources of resistant starch. Findings from this study suggest that the estimated intake of resistant starch by Americans is approximately 3 to 8 g per person per day. These estimates of resistant starch intake provide a valuable reference for researchers and food and nutrition professionals and will allow for more accurate estimates of total intakes of carbohydrate compounds that escape digestion in the small intestine.

  14. Single or combined effects of Lactobacillus sakei and inulin on growth, non-specific immunity and IgM expression in leopard grouper (Mycteroperca rosacea).

    PubMed

    Reyes-Becerril, Martha; Ascencio, Felipe; Gracia-Lopez, Vicente; Macias, Ma Esther; Roa, Marcos Cadena; Esteban, María Ángeles

    2014-08-01

    The aim of this study was to evaluate the single or combined effects of Lactobacillus sakei with inulin suitable for immunological in vivo studies in farmed fish. By in vitro assays, L. sakei strain 5-4 showed antibacterial activities against all assayed fish pathogens (except the Vibrio harveyi strain CAIM-1793). L. sakei was able to survive at high fish bile concentrations. Fermentation of the agave inulin resulted in a large increase in number of lactobacilli. For the in vivo study, fish were fed for 8 weeks four practical diets: control diet (control), L. sakei 5-4 (10(7) CFU/g), inulin (1% or 10 g/kg) and L. sakei + inulin (10(7) CFU/g + 10 g/kg). The weight gain showed clearly the synergistic effect of L. sakei 5-4 and inulin at 6 and 8 weeks of treatments. Leopard grouper fed with L. sakei alone or combined with inulin have significantly increased the assayed physiological and humoral immune parameters. By real-time PCR assays, the mRNA transcripts of immunoglobulin M (IgM) were found to be higher expressed in intestine, head kidney, mucus, gill, spleen and skin. Moreover, mRNA expression levels of IgM in head kidney and anterior intestine were measured by real-time PCR. L. sakei 5-4 and L. sakei + inulin supplemented diet up-regulated the expression of IgM at week 4 and 8 in intestine and head kidney, respectively. These results support the idea that the L. sakei 5-4 alone or combined with agave inulin improved growth performance and stimulates the immune system of leopard grouper.

  15. Nonprotein nitrogen is absorbed from the large intestine and increases nitrogen balance in growing pigs fed a valine-limiting diet.

    PubMed

    Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M

    2014-05-01

    Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P < 0.01) and did not differ (P > 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.

  16. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  17. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  18. An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity.

    PubMed

    Allsopp, Philip; Possemiers, Sam; Campbell, David; Oyarzábal, Iván Saldaña; Gill, Chris; Rowland, Ian

    2013-08-01

    Linear inulin-type fructan (ITF) prebiotics have a putative role in the prevention of colorectal cancer, whereas relatively little is known about branched fructans. This study aims to investigate the fermentation properties and potential prebiotic activity of branched fructans derived from Agave angustifolia Haw, using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model. The proximal, transverse and distal vessels were used to investigate fructan fermentation throughout the colon and to assess the alterations of the microbial composition and fermentation metabolites (short chain fatty acids and ammonia). The influence on bioactivity of the fermentation supernatant was assessed by MTT, Comet and transepithelial electrical resistance (TER), respectively. Addition of Agave fructan to the SHIME model significantly increased (P < 0.05), bifidobacteria populations (proximal and transverse), SCFA concentrations (proximal, transverse and distal) and decreased ammonia concentrations in the distal vessel. Furthermore, the fermentation supernatant significantly (P < 0.05) increased the TER of a Caco-2 cell monolayer (%) and decreased fluorescein-based paracellular flux, suggesting enhanced barrier function and reduced epithelial barrier permeability (proximal and distal vessel). While cytotoxicity and genotoxicity remained unaltered in response to the presence of Agave fructans. To conclude, branched Agave fructans show indications of prebiotic activity, particularly in relation to colon health by exerting a positive influence on gut barrier function, an important aspect of colon carcinogenesis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Compared with Raw Bovine Meat, Boiling but Not Grilling, Barbecuing, or Roasting Decreases Protein Digestibility without Any Major Consequences for Intestinal Mucosa in Rats, although the Daily Ingestion of Bovine Meat Induces Histologic Modifications in the Colon.

    PubMed

    Oberli, Marion; Lan, Annaïg; Khodorova, Nadezda; Santé-Lhoutellier, Véronique; Walker, Francine; Piedcoq, Julien; Davila, Anne-Marie; Blachier, François; Tomé, Daniel; Fromentin, Gilles; Gaudichon, Claire

    2016-08-01

    Cooking may impair meat protein digestibility. When undigested proteins are fermented by the colon microbiota, they can generate compounds that potentially are harmful to the mucosa. This study addressed the effects of typical cooking processes and the amount of bovine meat intake on the quantity of undigested proteins entering the colon, as well as their effects on the intestinal mucosa. Male Wistar rats (n = 88) aged 8 wk were fed 11 different diets containing protein as 20% of energy. In 10 diets, bovine meat proteins represented 5% [low-meat diet (LMD)] or 15% [high-meat diet (HMD)] of energy, with the rest as total milk proteins. Meat was raw or cooked according to 4 processes (boiled, barbecued, grilled, or roasted). A meat-free diet contained only milk proteins. After 3 wk, rats ingested a (15)N-labeled meat meal and were killed 6 h later after receiving a (13)C-valine injection. Meat protein digestibility was determined from (15)N enrichments in intestinal contents. Cecal short- and branched-chain fatty acids and hydrogen sulfide were measured. Intestinal tissues were used for the assessment of protein synthesis rates, inflammation, and histopathology. Meat protein digestibility was lower in rats fed boiled meat (94.5% ± 0.281%) than in the other 4 groups (97.5% ± 0.0581%, P < 0.001). Cecal and colonic bacterial metabolites, inflammation indicators, and protein synthesis rates were not affected by cooking processes. The meat protein amount had a significant effect on cecal protein synthesis rates (LMD > HMD) and on myeloperoxidase activity in the proximal colon (HMD > LMD), but not on other outcomes. The ingestion of bovine meat, whatever the cooking process and the intake amount, resulted in discrete histologic modifications of the colon (epithelium abrasion, excessive mucus secretion, and inflammation). Boiling bovine meat at a high temperature (100°C) for a long time (3 h) moderately lowered protein digestibility compared with raw meat and other cooking processes, but did not affect cecal bacterial metabolites related to protein fermentation. The daily ingestion of raw or cooked bovine meat had no marked effect on intestinal tissues, despite some slight histologic modifications on distal colon. © 2016 American Society for Nutrition.

  20. In Vitro Activity of Lactobacilli with Probiotic Potential Isolated from Cocoa Fermentation against Gardnerella vaginalis

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Melgaço, Ana Clara Correia; Ramos, Louise Pereira; Rezende, Rachel Passos

    2017-01-01

    Study of the probiotic potential of microorganisms isolated from fermented foods has been increasing, especially studies related to lactobacilli. In intestinal models, lactobacilli have demonstrated beneficial properties, such as anti-inflammatory activity and increased antibody production, but the molecular mechanisms involving probiotic and antagonistic action as well as their effect on human vaginal cells have not yet been fully elucidated. The aim of this study was to evaluate the functional and antagonistic properties of three strains of lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum 5.2, L. plantarum 6.2, and L. plantarum 7.1) against Gardnerella vaginalis. Our results show that the lactobacilli have potential use as probiotics, since they have high hydrophobicity and autoaggregation properties and effectively adhere to vaginal cells. Metabolites secreted into the culture medium and whole cells of the strains under study are capable of interfering with the growth of G. vaginalis to different degrees. The elucidation of the antagonistic mechanisms as well as their effect on human cells may be useful in the development of a product containing such microorganisms or products secreted by them. PMID:29226130

  1. The protective effects of fermented kefir milk on azoxymethane-induced aberrant crypt formation in mice colon.

    PubMed

    Melo, Aline Freitas de Paula; Mendonça, Monique Culturato Padilha; Rosa-Castro, Raquel de Mendonça

    2018-06-01

    Kefir is a probiotic fermented milk product produced from grains with a complex composition of bacteria and yeasts that live in a symbiotic association. Anti-proliferative, anti-inflammatory, and anti-mutagenic effects are some of the health beneficial properties of kefir grains. The present study was conducted to evaluate whether regular consumption of kefir milk would be capable of preventing the development of pre-neoplastic lesions induced by azoxymethane (AOM). Aberrant crypt foci were induced in BALB-c mice via 2 subcutaneous injections of azoxymethane (15 mg/kg) and kefir was administered by daily gavage for 8 weeks (5 ml/kg). Additionally, bacterial growth was monitored in pasteurized and ultra-high temperature (UHT) treated milk to compare different fermentation conditions. Our results showed that UHT milk presented better growth of Lactobacillus acidophilus colonies. The aberrant crypt foci were attenuated by approximately 43% (height) and 20% (width) in the kefir group compared to AOM group, suggesting that kefir treatment may contribute to prevent and control the growth of intestinal neoplastic cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    PubMed Central

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence. PMID:26157121

  3. Irritable Bowel Syndrome

    MedlinePlus

    ... the way the large intestine (say: in-TES-tin) works. The large intestine (also known as the ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  4. Short communication: effect of exopolysaccharide isolated from "viili" on the adhesion of probiotics and pathogens to intestinal mucus.

    PubMed

    Ruas-Madiedo, P; Gueimonde, M; de los Reyes-Gavilán, C G; Salminen, S

    2006-07-01

    The strong ropy character of the Scandinavian fermented milk viili is conferred by the exopolysaccharides (EPS) produced by lactococcal strains. These biopolymers can be responsible for some health benefits. We have assessed the influence of the EPS fraction isolated from commercial viili on the adhesion of some probiotics and pathogens to human intestinal mucus. Concentrations of viili EPS greater than 0.1 mg/mL promoted a decrease in adherence of Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus GG and this effect was dose-dependent. However, no modifications were detected on the adhesion levels of the pathogenic strains tested at a concentration of 1 mg/mL of EPS. Results obtained in the present work should be considered in the design of new probiotic products.

  5. Catabolic flexibility of mammalian-associated lactobacilli

    PubMed Central

    2013-01-01

    Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  6. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage.

    PubMed

    Feng, Wei; Wang, Xiao-Qiang; Zhou, Wei; Liu, Guang-Ying; Wan, Yong-Ji

    2011-01-01

    The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), an oligophagous insect that mainly feeds on mulberry leaves, is susceptible to entomopathogen infection when reared with tricuspid cudrania leaves. A total of 56 dominant bacterial strains, classified into 12 phylotypes based on bacteriological properties and analysis of 16S rRNA genes, were isolated from the intestine of the fourth and fifth instar silkworm larvae. Ten and seven phylotypes exist in the intestine of the silkworm larvae reared with mulberry leaves and tricuspid cudrania leaves, respectively. Four of them are common in the intestine of the two treatment groups. By screening their lipolytic ability on a Rhodamine B agar plate, nine lipase-producing bacterial strains were obtained and classified into six genera, including Bacillus, Brevibacterium, Corynebacterium, Staphylococcus, Klebsiella, and Stenotrophomonas. Except for Stenotrophomonas, which is common in both, the other genera only exist in the intestine of the silkworm larvae fed with mulberry leaves. In addition, by culture and fermentation in vitro, the maximum cell density and lipase activity of lipase-producing bacteria were examined at about 48 hours. The results indicate that diet has a significant impact on the gut bacterial community, especially lipase-producing bacteria. We suggest that the difference of lipase-producing bacterial diversity might be related to disease resistance of the silkworm.

  7. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models.

    PubMed

    Chen, Y P; Lee, T Y; Hong, W S; Hsieh, H H; Chen, M J

    2013-01-01

    A potential probiotic strain, Lactobacillus kefiranofaciens M1, was previously isolated from kefir grains, which are used to manufacture the traditional fermented drink kefir. The aim of this study was to investigate the effects of Lb. kefiranofaciens M1 on enterohemorrhagic Escherichia coli (EHEC) infection, using mice and intestinal cell models. BALB/c mice were daily administrated with either phosphate buffered saline or Lb. kefiranofaciens M1 at 2×10(8) cfu/mouse per day intragastrically for 7 d. Intragastric challenges with EHEC (2×10(9) cfu/mouse) were conducted on d 0, 4, and 7 after treatment. Administration of Lb. kefiranofaciens M1 was able to prevent EHEC infection-induced symptoms, intestinal damage, renal damage, bacterial translocation, and Shiga toxin penetration. Furthermore, the mucosal EHEC-specific IgA responses were increased after Lb. kefiranofaciens M1 administration in the EHEC-infected mouse system. Additionally, in vitro, Lb. kefiranofaciens M1 was shown to have a protective effect on Caco-2 intestinal epithelial cells and Caco-2 intestinal epithelial cell monolayers; the bacteria limited EHEC-induced cell death and reduced the loss of epithelial integrity. These findings support the potential of Lb. kefiranofaciens M1 treatment as an approach to preventing EHEC infection and its effects. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. [The diagnosis and surgical treatment of intestinal amebiasis].

    PubMed

    Dautov, F F

    1997-01-01

    Ninety-one patients with intestinal amebiasis (IA) were studied. All had been long suffering from IA due to the fact that it had not been diagnosed in time. Indications for emergency surgery were profuse hemorrhage, perforation of amebic ulcers, gangrene, and toxic dilatation of the large intestine. Planned operations were made in pseudopolyposis, strictures of the large intestine. Surgical treatment was performed along with specific therapy. Seven patients died due to late diagnosis, ineffective therapy and profound systemic and regional changes caused by these factors. It is necessary to differentiate ulcerative colitis, polyposis, and tumors of the large intestine with IA.

  9. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels.

    PubMed

    Guan, Xuefang; Xu, Qingxian; Zheng, Yi; Qian, Lei; Lin, Bin

    To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels. The strains were isolated from traditional fermented milk in China. In vitro and in vivo evaluation of cholesterol-reduction were used to identify and verify strains of interest. Characteristics were analyzed using spectrophotometry and plate counting assays. The isolate HLX37 consistently produced fermented milk with strong cholesterol-reducing properties was identified as Lactobacillus plantarum (accession number: KR105940) and was thus selected for further study. The cholesterol reduction by strain HLX37 was 45.84%. The isolates were acid-tolerant at pH 2.5 and bile-tolerant at 0.5% (w/v) in simulated gastric juice (pH 2.5) for 2h and in simulated intestinal fluid (pH 8.0) for 3h. The auto-aggregation rate increased to 87.74% after 24h, while the co-aggregation with Escherichia coli DH5 was 27.76%. Strain HLX37 was intrinsically resistant to antibiotics such as penicillin, tobramycin, kanamycin, streptomycin, vancomycin and amikacin. Compared with rats in the model hyperlipidemia group, the total cholesterol content in the serum and the liver as well as the atherogenic index of rats in the viable fermented milk group significantly decreased by 23.33%, 32.37% and 40.23%, respectively. Fewer fat vacuoles and other lesions in liver tissue were present in both the inactivated and viable fermented milk groups compared to the model group. These studies indicate that strain HLX37 of L. plantarum demonstrates probiotic potential, potential for use as a candidate for commercial use for promoting health. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential

    PubMed Central

    Mohedano, María Luz; Spano, Giuseppe; Fiocco, Daniela; Russo, Pasquale; Capozzi, Vittorio

    2017-01-01

    Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-β-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial β-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6’s performance, the isogenic β-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the β-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial β-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial β-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria. PMID:28754020

  11. Plasma cholesterol reduction by defatted soy ontjom (fermented with Neurospora intermedia) in rats fed a cholesterol-free diet.

    PubMed

    Matsuo, M

    2000-02-01

    To popularize defatted soy ontjom (DSB-ontjom, soy product fermented with Neurospora intermedia) as a new food, I examined the plasma cholesterol-reducing effects of DSB-ontjom and DSB in rats fed cholesterol-free diets and compared the efficiencies of these effects. DSB-ontjom greatly reduced the plasma cholesterol level and increased fecal steroid excretion as compared to DSB. DSB-ontjom was rich in pepsin-resistant protein having a high bile acid binding capacity and was abundant in isoflavone-aglycones, especially daizein. The dietary fiber (DF) of DSB-ontjom stimulated the production of short-chain fatty acids (SCFAs) by intestinal microflora. The effect of DSB-ontjom on plasma cholesterol reduction was attributed to the collaborative effects of pepsin-resistant-protein, isoflavone-aglycones and SCFA-producing DF in DSB-ontjom.

  12. Cassava starch fermentation wastewater: characterization and preliminary toxicological studies.

    PubMed

    Avancini, S R P; Faccin, G L; Vieira, M A; Rovaris, A A; Podestá, R; Tramonte, R; de Souza, N M A; Amante, E R

    2007-11-01

    Cassava starch fermentation wastewater is an industrial residue composed mainly of lactic acid bacteria with predominance of the genera Lactobacillus, and organic acids. To evaluate the safety of this residue for possible production of probiotic beverages, acute in mice and sub-chronic (28-day repeated dose) toxicity studies in rats were carried. The administration of a single dose of 5 g/kg/body weight did not produce mortality in mice. Rats treated with water containing 0 (control), 25%, 50%, and 100% of the residue for 28 days, did not present alterations in behaviour or in food and water consumption. There were no treatment-related changes of toxicological significance in the relative weight of the organs neither in the haematological nor in the biochemical parameters. Histopathologic alterations observed in the small intestine did not seem to be associated with the treatment.

  13. Synergistic in vitro and in vivo antimicrobial effect of a mixture of ZnO nanoparticles and Lactobacillus fermentation liquor.

    PubMed

    Kuang, Huijuan; Yang, Lin; Shah, Nagendra P; Aguilar, Zoraida P; Wang, Lijun; Xu, Hengyi; Wei, Hua

    2016-04-01

    In this study, we investigated the antibacterial activity of ZnO nanoparticles (NPs) and Lactobacillus-fermentation liquor (LFL) against two pathogenic bacteria in vitro and in vivo. Bactericidal tests were performed on solid agar plates and quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE) techniques were used to examine the antibacterial activity of the mixture of ZnO NPs and LFL in vivo. The results showed that the mixture exhibited higher antibacterial activity against Salmonella typhimurium in vitro in comparison with ZnO NPs alone. The results showed that ZnO NPs and LFL significantly enhanced microbial diversity in mouse intestine which suggested a synergistic antibacterial activity against the tested pathogenic bacteria that could be used for the control of the spread and persistence of bacterial infections.

  14. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    PubMed Central

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. PMID:25791315

  15. Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts.

    PubMed

    Belzer, Clara; Chia, Loo Wee; Aalvink, Steven; Chamlagain, Bhawani; Piironen, Vieno; Knol, Jan; de Vos, Willem M

    2017-09-19

    Akkermansia muciniphila has evolved to specialize in the degradation and utilization of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus degradation and fermentation by A. muciniphila are known to result in the liberation of oligosaccharides and subsequent production of acetate, which becomes directly available to microorganisms in the vicinity of the intestinal mucosa. Coculturing experiments of A muciniphila with non-mucus-degrading butyrate-producing bacteria Anaerostipes caccae , Eubacterium hallii , and Faecalibacterium prausnitzii resulted in syntrophic growth and production of butyrate. In addition, we demonstrate that the production of pseudovitamin B 12 by E. hallii results in production of propionate by A. muciniphila , which suggests that this syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The observed metabolic interactions between A muciniphila and butyrogenic bacterial taxa support the existence of colonic vitamin and butyrate production pathways that are dependent on host glycan production and independent of dietary carbohydrates. We infer that the intestinal symbiont A. muciniphila can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial cells with potential health benefits to the host. IMPORTANCE The intestinal microbiota is said to be a stable ecosystem where many networks between microorganisms are formed. Here we present a proof of principle study of microbial interaction at the intestinal mucus layer. We show that indigestible oligosaccharide chains within mucus become available for a broad range of intestinal microbes after degradation and liberation of sugars by the species Akkermansia muciniphila This leads to the microbial synthesis of vitamin B 12 , 1,2-propanediol, propionate, and butyrate, which are beneficial to the microbial ecosystem and host epithelial cells. Copyright © 2017 Belzer et al.

  16. Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health

    PubMed Central

    Moslehi-Jenabian, Saloomeh; Pedersen, Line Lindegaard; Jespersen, Lene

    2010-01-01

    Besides being important in the fermentation of foods and beverages, yeasts have shown numerous beneficial effects on human health. Among these, probiotic effects are the most well known health effects including prevention and treatment of intestinal diseases and immunomodulatory effects. Other beneficial functions of yeasts are improvement of bioavailability of minerals through the hydrolysis of phytate, folate biofortification and detoxification of mycotoxins due to surface binding to the yeast cell wall. PMID:22254033

  17. Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.

    PubMed

    Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin

    2017-11-08

    [6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.

  18. Eosinophils may play regionally disparate roles in influencing IgA(+) plasma cell numbers during large and small intestinal inflammation.

    PubMed

    Forman, Ruth; Bramhall, Michael; Logunova, Larisa; Svensson-Frej, Marcus; Cruickshank, Sheena M; Else, Kathryn J

    2016-05-31

    Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.

  19. Measurement of motion detection of wireless capsule endoscope inside large intestine.

    PubMed

    Zhou, Mingda; Bao, Guanqun; Pahlavan, Kaveh

    2014-01-01

    Wireless Capsule Endoscope (WCE) provides a noninvasive way to inspect the entire Gastrointestinal (GI) tract, including large intestine, where intestinal diseases most likely occur. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of detected intestinal diseases. Knowing how the capsule moves inside the large intestine would greatly complement the existing wireless localization systems by providing the motion information. Since the most recently released WCE can take up to 6 frames per second, it's possible to estimate the movement of the capsule by processing the successive image sequence. In this paper, a computer vision based approach without utilizing any external device is proposed to estimate the motion of WCE inside the large intestine. The proposed approach estimate the displacement and rotation of the capsule by calculating entropy and mutual information between frames using Fibonacci method. The obtained results of this approach show its stability and better performance over other existing approaches of motion measurements. Meanwhile, findings of this paper lay a foundation for motion pattern of WCEs inside the large intestine, which will benefit other medical applications.

  20. Cucumber fermentation

    USDA-ARS?s Scientific Manuscript database

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  1. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  2. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice.

    PubMed

    Inoue, Shigeaki; Suzuki-Utsunomiya, Kyoko; Komori, Yukako; Kamijo, Akemi; Yumura, Isao; Tanabe, Koudai; Miyawaki, Ayumi; Koga, Kunimasa

    2013-12-01

    Non-sterilized fish waste containing fish bones was fermented using combined starter cultures of film-forming yeast (Candida ethanolica) and lactic acid bacteria (LAB; Lactobacillus casei and Lactobacillus rhamnosus) in order to obtain a liquefied fermented broth without spoiling. During the entire fermentation, the number of LAB cells was maintained at a high level (6 × 10(8)-5 × 10(7) cells/ml). Although the number of general bacteria was 10(6)cell/ml after adding non-sterilized fish biomass, its growth was suppressed to be 1-3 × 10(4) cells/ml. The entire biomass had completely liquefied and the fermented broth contained all 20 α-amino acids composed of protein and also various kinds of minerals in abundance. The weight of mice group fed the fermented broth content feed (sample feed) for 31 days significantly increased compared with that fed no broth feed (control feed) (21.37 g vs 20.76 g (p < 0.05). No abnormal behavior and appearance were observed. All internal organs (the heart, the liver, the lung, the intestines, and the spleen) of both groups were confirmed to be normal by visual observation. In peripheral blood, the percentages of NK cells and CD8+ T cells of the mice in the sample feed group increased significantly relative to those in the control feed group (NK cells: 19% vs 11%, CD8+ T cells: 9% vs 5%, p < 0.05). In the spleen, the percentage of NK cells in the sample feed group also increased significantly compared to that in the control feed group (p < 0.05). The fermented fish biomass is expected to be effective for innate and adaptive immunity and thus fit for animal feed. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  4. Distribution and Characterisation of Goblet Cells in the Large Intestine of Ostriches during the Pre- and Post-Hatch Period.

    PubMed

    Duritis, I; Mugurevics, A

    2016-12-01

    The role of goblet cell secretion, containing mucopolysaccharides, in the formation of a protective barrier of intestinal mucosa and transportation of the intestinal content has been described quite extensively. However, information on the quality composition of mucopolysaccharides and its changes in the intestinal tract of ostrich chicks, especially in the large intestinal segments, is unavailable. In the current study, ostrich embryos/chicks (n = 6/36) of both sexes were used shortly before hatching and during the first months of the post-hatch period. Tissues for histology were taken from the large intestine: the medium segments of the caecum, proximal and distal parts of colon. By using histochemical reactions, the differentiation of goblet cells as well as chemical composition of mucopolysaccharides was carried out. The cells contained acid (AB+), neutral (PAS+) and mixed (AB/PAS+) mucopolysaccharides. The number of goblet cells in the large intestine per unit area of mucosa increased towards the cloaca, and it was the highest in the distal part of the colon. The qualitative goblet cell composition in different large intestinal parts was different in all ages. In the caecum, goblet cells containing acid and mixed mucopolysaccharides dominate post-hatch, whereas in the colon, goblet cells containing acid mucopolysaccharides predominated. The most rapid changes in the qualitative goblet cell composition occur during the first week post-hatch when in all the intestinal segments the proportion of cells containing acid mucopolysaccharides continuously increased. © 2015 Blackwell Verlag GmbH.

  5. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.

    PubMed

    Xiao, J X; Alugongo, G M; Chung, R; Dong, S Z; Li, S L; Yoon, I; Wu, Z H; Cao, Z J

    2016-07-01

    The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine, especially when supplemented at a higher dosage in the starter. In conclusion, Saccharomyces cerevisiae fermentation products improved gastrointestinal morphology, possibly due to increased Butyrivibrio and decreased Prevotella richness of the rumen fluid, which resulted in an increase in butyrate production, and the effect was slightly greater with the higher dosage of SCFP in the starter. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Accelerated Fermentation of Brewer's Wort by Saccharomyces carlsbergensis1

    PubMed Central

    Porter, Sookie C.

    1975-01-01

    A rapid procedure for wort fermentation with Saccharomyces carlsbergensis at 12 C is described. Fermentation time was reduced from 7 to 4 days with normal inoculum by shaking. Increasing the inoculation to 5 to 10 times normal and shaking resulted in complete fermentation in 3 days. Maximum yeast population was reached rapidly with the large inocula, but fermentation proceeded at approximately the same rate when inoculations in excess of four times the normal were used. Similar results were obtained with both small-scale (100 ml) and microbrew (2.4 liters) fermentations. PMID:16350046

  7. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources.

    PubMed

    Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia

    2018-06-14

    Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p < 0.001) and methane (p < 0.01) production in vitro. In Experiment 1, caecal isobutyrate and isovalerate concentrations varied among the dietary treatments (p < 0.01). The isovalerate concentration of the zinc-supplemented groups in the distal colon was higher (p < 0.001) compared with the control. In Experiment 2, the molar proportion of isobutyrate was the highest in the faeces of the sheep fed the diet with Zn-Gly-Mix (p < 0.01). The plasma zinc concentration was higher in the groups fed a diet supplemented with zinc (p < 0.001). The haematological profile and antioxidant status did not differ between the dietary groups (p > 0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.

  8. Effect of yogurt containing deep sea water on health-related serum parameters and intestinal microbiota in mice.

    PubMed

    Kang, Sun Moon; Jhoo, Jin Woo; Pak, Jae In; Kwon, Ill Kyoung; Lee, Sung Ki; Kim, Gur Yoo

    2015-09-01

    Deep sea water (DSW) has health benefits and is widely used as food supplement; however, its effect in fermented products has not been explored. Here, we investigated the effect of DSW-containing yogurt on health-related serum parameters and intestinal microbiota in mice. Animals were assigned to 3 feeding groups, which received water (control), normal yogurt (N-yogurt), or DSW-containing yogurt (DSW-yogurt) with a basal diet. Mice were killed at wk 4 or 8 of feeding and analyzed for serum parameters and microbial population in the small intestine. Both yogurt groups demonstrated increased populations of intestinal lactic acid bacteria compared with the control group. The activity of serum aspartate aminotransferase and alanine aminotransferase was markedly decreased in the DSW-yogurt and N-yogurt groups, and triglyceride level tended to be lower in the DSW-yogurt group compared with that in the control mice. Furthermore, the DSW-yogurt group showed a more significant decrease in the ratio of total cholesterol to high-density lipoprotein-cholesterol than did the N-yogurt group. These findings suggest that DSW supplementation of yogurt can increase its beneficial effects on lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats.

    PubMed

    Foster, Michelle T; Gentile, Christopher L; Cox-York, Kimberly; Wei, Yuren; Wang, Dong; Estrada, Andrea L; Reese, Lauren; Miller, Tirrel; Pagliassotti, Michael J; Weir, Tiffany L

    2016-05-01

    Nonalcoholic fatty liver disease is an obesity-related disorder characterized by lipid infiltration of the liver. Management is limited to lifestyle modifications, highlighting the need for alternative therapeutic options. The objective of this study was to examine if fermented Fuzhuan tea prevents metabolic impairments associated with development of hepatic steatosis. Rats consumed control (CON) or high saturated fat (SAT) diets with or without Fuzhuan tea for 8 weeks. Outcomes included enzymatic and gene expression measures of metabolic dysregulation in liver and adipose tissue. Pyrosequencing was used to assess intestinal microbiota adaptations. Fuzhuan tea prevented diet-induced inflammation in the liver. Liver triglycerides of ∼18 mg/g were observed in SAT-fed animals, but remained similar to CON diet levels (∼12 mg/g) when supplemented with Fuzhuan tea. In adipose tissue, tea treatment prevented SAT-induced inflammation and reduced plasma leptin approximately twofold. Fuzhuan tea also altered intestinal function and was associated with a threefold increase in two Lactobacillus spp. These data suggest that Fuzhuan tea protects against liver and adipose tissue stress induced by a high SAT diet and positively influences intestinal function. Further investigation of the molecular targets of Fuzhuan tea is warranted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms

    PubMed Central

    Franco-Robles, Elena; López, Mercedes G.

    2015-01-01

    Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease. PMID:25961072

  11. What Fermenter?

    ERIC Educational Resources Information Center

    Terry, John

    1987-01-01

    Discusses the feasibility of using fermenters in secondary school laboratories. Includes discussions of equipment, safety, and computer interfacing. Describes how a simple fermenter could be used to simulate large-scale processes. Concludes that, although teachers and technicians will require additional training, the prospects for biotechnology in…

  12. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells.

    PubMed

    Jia, Fang-Fang; Zhang, Lu-Ji; Pang, Xue-Hui; Gu, Xin-Xi; Abdelazez, Amro; Liang, Yu; Sun, Si-Rui; Meng, Xiang-Chen

    2017-10-01

    Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Contribution of Colonic Fermentation and Fecal Water Toxicity to the Pathophysiology of Lactose-Intolerance

    PubMed Central

    Windey, Karen; Houben, Els; Deroover, Lise; Verbeke, Kristin

    2015-01-01

    Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a 13C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity. PMID:26371036

  14. Contribution of Colonic Fermentation and Fecal Water Toxicity to the Pathophysiology of Lactose-Intolerance.

    PubMed

    Windey, Karen; Houben, Els; Deroover, Lise; Verbeke, Kristin

    2015-09-08

    Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a (13)C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity.

  15. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  16. Supplementation of Low- and High-fat Diets with Fermentable Fiber Exacerbates Severity of DSS-induced Acute Colitis.

    PubMed

    Miles, Jennifer P; Zou, Jun; Kumar, Matam-Vijay; Pellizzon, Michael; Ulman, Edward; Ricci, Matthew; Gewirtz, Andrew T; Chassaing, Benoit

    2017-07-01

    Lack of dietary fiber has been suggested to increase the risk of developing various chronic inflammatory diseases, whereas supplementation of diets with fiber might offer an array of health-promoting benefits. Consistent with this theme, we recently reported that in mice, compositionally defined diets that are made with purified ingredients and lack fermentable fiber promote low-grade inflammation and metabolic syndrome, both of which could be ameliorated by supplementation of such diets with the fermentable fiber inulin. Herein, we examined if, relative to a grain-based mouse diet (chow), compositionally defined diet consumption would impact development of intestinal inflammation induced by dextran sulfate sodium (DSS) and moreover, whether DSS-induced colitis might also be attenuated by diets supplemented with inulin. Analogous to their promotion of low-grade inflammation, compositionally defined diet of high- and low-fat content with cellulose increased the severity of DSS-induced colitis relative to chow. However, in contrast to the case of low-grade inflammation, addition of inulin, but not the insoluble fiber cellulose, further exacerbated the severity of colitis and its associated clinical manifestations (weight loss and bleeding) in both low- and high-fat diets. While inulin, and perhaps other fermentable fibers, can ameliorate low-grade inflammation and associated metabolic disease, it also has the potential to exacerbate disease severity in response to inducers of acute colitis.

  17. Viability and resistance of lactobacilli isolated from cocoa fermentation to simulated gastrointestinal digestive steps in soy yogurt.

    PubMed

    Saito, V S T; Dos Santos, T F; Vinderola, C G; Romano, C; Nicoli, J R; Araújo, L S; Costa, M M; Andrioli, J L; Uetanabaro, A P T

    2014-02-01

    To study the potential probiotic characteristics such as decrease of pH, microbial viability, and tolerance to simulated digestive steps of fermented soy beverage ("soy yogurt") produced with lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum TcUESC01 and Lactobacillus plantarum TcUESC02) during fermentation and refrigerated storage. The sensory acceptance of the yogurts was also tested. Samples of soy yogurt produced with L. fermentum TcUESC01 or L. plantarum TcUESC02 were collected during fermentation (0, 4, 8, and 12 h) and refrigerated storage (1, 9, 18, and 27 d), and submitted to pH and bacterial viability determinations. Tolerance to simulated digestion steps was done with refrigerated storage samples at 9 °C. Simulated digestion was performed in 3 successive steps: exposure to pepsin-HCl solution, bile shock, and simulated small intestinal juice. During storage, a decrease in pH and lactobacillus viability was observed. L. fermentum TcUESC01 showed to be more resistant than L. plantarum TcUESC02 to simulated gastrointestinal digestion. All soy yogurts showed acceptable hedonic scores (greater than 5 in a 9-point hedonic scale ranging from "like extremely" to "dislike extremely") in sensory evaluation for flavor, aroma, color, consistency, and overall impression. L. plantarum TcUESC02 and, especially, L. fermentum TcUESC01 showed potential probiotic characteristics when considering pH, cell viability, and tolerance to simulated digestive steps and did not affect the sensory characteristics when supplemented to soy yogurt during storage. © 2014 Institute of Food Technologists®

  18. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    PubMed

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-02

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility.

  19. Fiber and colorectal diseases: Separating fact from fiction

    PubMed Central

    Tan, Kok-Yang; Seow-Choen, Francis

    2007-01-01

    Whilst fruits and vegetables are an essential part of our dietary intake, the role of fiber in the prevention of colorectal diseases remains controversial. The main feature of a high-fiber diet is its poor digestibility. Soluble fiber like pectins, guar and ispaghula produce viscous solutions in the gastrointestinal tract delaying small bowel absorption and transit. Insoluble fiber, on the other hand, pass largely unaltered through the gut. The more fiber is ingested, the more stools will have to be passed. Fermentation in the intestines results in build up of large amounts of gases in the colon. This article reviews the physiology of ingestion of fiber and defecation. It also looks into the impact of dietary fiber on various colorectal diseases. A strong case cannot be made for a protective effect of dietary fiber against colorectal polyp or cancer. Neither has fiber been found to be useful in chronic constipation and irritable bowel syndrome. It is also not useful in the treatment of perianal conditions. The fiber deficit - diverticulosis theory should also be challenged. The authors urge clinicians to keep an open mind about fiber. One must be aware of the truths and myths about fiber before recommending it. PMID:17696243

  20. Fiber and colorectal diseases: separating fact from fiction.

    PubMed

    Tan, Kok-Yang; Seow-Choen, Francis

    2007-08-21

    Whilst fruits and vegetables are an essential part of our dietary intake, the role of fiber in the prevention of colorectal diseases remains controversial. The main feature of a high-fiber diet is its poor digestibility. Soluble fiber like pectins, guar and ispaghula produce viscous solutions in the gastrointestinal tract delaying small bowel absorption and transit. Insoluble fiber, on the other hand, pass largely unaltered through the gut. The more fiber is ingested, the more stools will have to be passed. Fermentation in the intestines results in build up of large amounts of gases in the colon. This article reviews the physiology of ingestion of fiber and defecation. It also looks into the impact of dietary fiber on various colorectal diseases. A strong case cannot be made for a protective effect of dietary fiber against colorectal polyp or cancer. Neither has fiber been found to be useful in chronic constipation and irritable bowel syndrome. It is also not useful in the treatment of perianal conditions. The fiber deficit - diverticulosis theory should also be challenged. The authors urge clinicians to keep an open mind about fiber. One must be aware of the truths and myths about fiber before recommending it.

  1. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  2. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets

    PubMed Central

    Campbell, Sara; Moreau, Michael; Patel, Falshruti; Brooks, Andrew I.; Zhou, Yin Xiu; Häggblom, Max M.; Storch, Judith

    2017-01-01

    Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined. PMID:28742010

  3. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    PubMed Central

    van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.

    2015-01-01

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291

  4. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

    PubMed

    Usui, Yuki; Kimura, Yasumasa; Satoh, Takeshi; Takemura, Naoki; Ouchi, Yasuo; Ohmiya, Hiroko; Kobayashi, Kyosuke; Suzuki, Hiromi; Koyama, Satomi; Hagiwara, Satoko; Tanaka, Hirotoshi; Imoto, Seiya; Eberl, Gérard; Asami, Yukio; Fujimoto, Kosuke; Uematsu, Satoshi

    2018-05-15

    The gut is an extremely complicated ecosystem where microorganisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.

  5. Encapsulation of Probiotics for use in Food Products

    NASA Astrophysics Data System (ADS)

    Manojlović, Verica; Nedović, Viktor A.; Kailasapathy, Kasipathy; Zuidam, Nicolaas Jan

    The history of the role of probiotics for human health is one century old and several definitions have been derived hitherto. One of them, launched by Huis in't Veld and Havenaar (1991) defines probiotics as being “mono or mixed cultures of live microorganisms which, when applied to a man or an animal (e.g., as dried cells or as a fermented product), beneficially affect the host by improving the properties of the indigenous microflora”. Probiotics are living microorganisms which survive gastric, bile, and pancreatic secretions, attach to epithelial cells and colonize the human intestine (Del Piano et al. 2006). It is estimated that an adult human intestine contains more than 400 different bacterial species (Finegold et al. 1977) and approximately 1014 bacterial cells (which is approximately ten times the total number of eukaryotic cells in the human body). The bacterial cells can be classified into three categories, namely, beneficial, neutral or harmful, with respect to human health. Among the beneficial bacteria are Bifidobacterium and Lactobacilli. The proportion of bifidobacteria represents the third most common genus in the gastrointestinal tract, while Bacteroides predominates at 86% of the total flora in the adult gut, followed by Eubacterium. Infant-type bifidobacteria B. bifidum are replaced with adult-type bifidobacteria, B. longum and B. adolescentis. With weaning and aging, the intestinal flora profile changes. Bifidobacteria decrease, while certain kinds of harmful bacteria increase. Changes in the intestinal flora are affected not only by aging but also by extrinsic factors, for example, stress, diet, drugs, bacterial contamination and constipation. Therefore, daily consumption of probiotic products is recommended for good health and longevity. There are numerous claimed beneficial effects and therapeutic applications of probiotic bacteria in humans, such as maintenance of normal intestinal microflora, improvement of constipation, treatment of diarrhea, enhancement of the immune system, reduction of lactose-intolerance, reduction of serum cholesterol levels, anticarcinogenic activity, and improved nutritional value of foods (Kailasapathy and Chin 2000; Lourens-Hattingh and Viljoen 2001; Mattila-Sandholm et al. 2002). The mechanisms by which probiotics exert their effects are largely unknown, but may involve modifying gut pH, antagonizing pathogens through production of antimicrobial and antibacterial compounds, competing for pathogen binding, and receptor cites, as well as for available nutrients and growth factors, stimulating immunomodulatory cells, and producing lactase (Kopp-Hoolihan 2001).

  6. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp.

  7. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp. PMID:27023062

  8. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    PubMed

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome].

    PubMed

    Halmos, Tamás; Suba, Ilona

    2016-01-03

    The intestinal microbiota is well-known for a long time, but due to newly recognized functions, clinician's attention has turned to it again in the last decade. About 100 000 billion bacteria are present in the human intestines. The composition of bacteriota living in diverse parts of the intestinal tract is variable according to age, body weight, geological site, and diet as well. Normal bacteriota defend the organism against the penetration of harmful microorganisms, and has many other functions in the gut wall integrity, innate immunity, insulin sensitivity, metabolism, and it is in cross-talk with the brain functions as well. It's a recent recognition, that intestinal microbiota has a direct effect on the brain, and the brain also influences the microbiota. This two-way gut-brain axis consists of microbiota, immune and neuroendocrine system, as well as of the autonomic and central nervous system. Emerging from fermentation of carbohydrates, short-chain fatty acids develop into the intestines, which produce butyrates, acetates and propionates, having favorable effects on different metabolic processes. Composition of the intestinal microbiota is affected by the circadian rhythm, such as in shift workers. Dysruption of circadian rhythm may influence intestinal microbiota. The imbalance between the microbiota and host organism leads to dysbacteriosis. From the membrane of Gram-negative bacteria lipopolysacharides penetrate into the blood stream, via impaired permeability of the intestinal mucosa. These processes induce metabolic endotoxaemia, inflammation, impaired glucose metabolism, insulin resistance, obesity, and contribute to the development of metabolic syndrome, type 2 diabetes, inflammarory bowel diseases, autoimmunity and carcinogenesis. Encouraging therapeutic possibility is to restore the normal microbiota either using pro- or prebiotics, fecal transplantation or bariatric surgery. Human investigations seem to prove that fecal transplant from lean healthy individuals into obese diabetic patients improved all the pathological parameters. Wide spread use of bariatric surgery altered gut microbiota and improved metabolic parameters apart from surgery itself. Pathomechanism is not yet completely clarified. Clinicians hope, that deeper understanding of complex functions of intestinal microbiota will contribute to develop more effective therapeutic proceedings against diabetes, metabolic syndrome, and obesity.

  10. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury.

    PubMed

    Cresci, Gail A; Glueck, Bryan; McMullen, Megan R; Xin, Wei; Allende, Daniella; Nagy, Laura E

    2017-09-01

    Impaired gut-liver axis is a potential factor contributing to alcoholic liver disease. Ethanol depletes intestinal integrity and causes gut dysbiosis. Butyrate, a fermentation byproduct of gut microbiota, is altered negatively following chronic ethanol exposure. This study aimed to determine whether prophylactic tributyrin could protect the intestinal barrier and liver in mice during combined chronic-binge ethanol exposure. C57BL/6J mice exposed to 5% v/v ethanol-containing diet for 10 days received a single ethanol gavage (5 g/kg) 9 h before euthanasia. Control mice were isocalorically pair-fed maltose dextrin for ethanol. Diets were supplemented (5 mM) with tributyrin or glycerol. Intestine and liver disease activity was assessed histologically. Protein and mRNA expression of tight junction (TJ) proteins, toll-like receptors, and tumor necrosis factor-alpha were assessed. Caco-2 monolayers with or without ethanol exposure and/or sodium butyrate were used to test butyrate's direct effects on intestinal integrity. Chronic-binge ethanol feeding impaired intestinal TJ protein co-localization staining; however, tributyrin co-treatment mitigated these effects. Ethanol depleted TJ and transepithelial electrical resistance in Caco-2 monolayers, but butyrate co-treatment reduced these effects. Hepatic toll-like receptor mRNA expression and tumor necrosis factor-alpha protein expression was induced by ethanol; however, the response was significantly dampened in mice co-treated with tributyrin. Tributyrin altered localization of both neutrophils and single hepatocyte death: Leukocytes and apoptotic hepatocytes localized predominantly around the portal tract in ethanol-only treated mice, whereas localization predominated around the central vein in ethanol-tributyrin mice. Prophylactic tributyrin supplementation mitigated effects of combined chronic-binge ethanol exposure on disruption of intestinal TJ localization and intestinal permeability and liver injury. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  11. An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds.

    PubMed

    Jandacek, Ronald J; Genuis, Stephen J

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine--thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants.

  12. Prebiotics as functional food ingredients preventing diet-related diseases.

    PubMed

    Florowska, A; Krygier, K; Florowski, T; Dłużewska, E

    2016-05-18

    This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products.

  13. Phytate destruction by yeast fermentation in whole wheat meals. Study of high-extraction rate meals.

    PubMed

    Reinhold, J G

    1975-01-01

    Destruction of phytate by yeast fermentation is compared in sponges prepared from Iranian whole wheat meals of different extraction rates. Phytate was destroyed rapidly in whole meals of 75 to 85 and 85 to 90 per cent extraction, but destruction was retarded in those of 95 to 100 per cent extraction. Production of acid-soluble phosphorus kept pace with phytate destruction in the two whole meals of lower extraction rates but was delayed with less-than-expected yield in those of 95 to 100 per cent rate. Unleavened whole meal bread contains little acid-soluble phosphorus. Leavened breads made from whole meals of slightly lower extraction rate average five times as much. Since phytate phosphorus appears to remain unavailable in the small intestine in many circumstances, dependece on unleavened whole meal bread may result in critically low intakes of available phosphorus when other sources are lacking in the diet. It is concluded that replacement of the whole meals of 95 to 100 per cent extraction rate, presently the main staple of the diet of rural Iran, by those of somewhat lower rate is an important preliminary to the introduction of leaven and fermentation into village bread-making methods.

  14. Selection of Lactic Acid Bacteria with Probiotic Potential Isolated from the Fermentation Process of "Cupuaçu" (Theobroma grandiflorum).

    PubMed

    Ornellas, Roberta Maria Santos; Santos, Tiza Teles; Arcucio, Leonardo Borges; Sandes, Sávio Henrique Cicco; Oliveira, Mayara Messias; Dias, Cristiano Villela; de Carvalho Silva, Samuel; Uetanabaro, Ana Paula Trovatti; Vinderola, Gabriel; Nicoli, Jacques Robert

    2017-01-01

    In the present study, nine lactic acid bacteria isolated from the fermentation process of "cupuaçu" (Theobroma grandiflorum) were selected for probiotic use. In vitro (resistance to gastrointestinal environment, in vitro antagonism and co-aggregation with pathogens) and in vivo (intestinal colonization and ex vivo antagonism in germ-free mice, cumulative mortality, translocation to liver and spleen, histopathological examination of liver and ileum and mRNA cytokine gene expression during an experimental infection with S. Typhimurium) assays were used. Among the nine Lactobacillus strains isolated from the "cupuaçu" fermentation, L. plantarum 81 and L. plantarum 90 were selected as potential probiotics based on better results obtained in in vitro evaluations (production of diffusible inhibitory compounds and co-aggregation) as well as in vivo experiments (resistance to gastrointestinal environment, ex vivo antagonism, higher survival after enteropathogen challenge, lower hepatic translocation of enteropathogen, lower histopathological lesions in ileum and liver and anti-inflammatory pattern of immunological response). Concluding, L. plantarum 81 and L. plantarum 90 showed in vitro and in vivo capacities for probiotic use through different mechanisms of protection and its origin would allow an easier adaptation in an alimentary matrix for its administration.

  15. Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine.

    PubMed

    Welter, Harald; Claus, Rolf

    2008-06-01

    Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.

  16. [Study of the state of parietal microflora and wall of the large intestine of mice under the influence of anomalous magnetic field].

    PubMed

    Medvedeva, O A; Kalutskiĭ, P V; Besedin, A V; Zhiliaeva, L V; Ostap, E V; Ivanov, A V; Medvedeva, S K

    2012-01-01

    Study the possible qualitative and quantitative changes of microbial community of the parietal mucin of the large intestine and the state of the wall of the large intestine in experimental animals underbackground and anomalous influence of geomagnetic field. CBA mice were put under the influence of anomalous magnetic field comparable to its intensity in Zheleznogorsk (3 Oe) for 1 and 2 weeks. Quantitative and qualitative study of mucous microflora of the large intestine of the mice was performed by bacteriological method. Identification of the microorganisms was performed by microbiological analyzer "Multiskan-Ascent" and commercial test-systems "Lachema-Czech Republic": ENTHEROtest-16, STAPHYtest-16, Streptotest-16, En-COCCUStest-16; for lactobacilli and bifidobacteria identification - API 50 CHL (bioMerieux). Bacteria content in 1 g of material was calculated by the number of microorganism colonies grown. A pattern of changes of mucous microflora of the intestine and the state of the wall of the large intestine of the experimental animals that had been put under the influence of anomalous magnetic field is shown. During evaluation of qualitative and quantitative diversity of microbial community of parietal mucin of the large intestine of the mice under the influence of magnetic field on the background and anomalous levels changes not only in quantity and frequency of detection of obligate, transitory flora but also cell elements of mucous membrane of the wall of the large intestine were established. The results of the study allow to make a conclusion about the presence of reactivity of the parietal microflora of the intestine of the mice to the influence of the anomalous magnetic field. This leads to changes in cell elements in the mucous membrane of the wall that manifest by infiltration of the connective tissue stroma by leucocytes and reconstruction of epithelium, that are features of dysbiosis.

  17. Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs.

    PubMed

    Panasevich, M R; Kerr, K R; Serao, M C Rossoni; de Godoy, M R C; Guérin-Deremaux, L; Lynch, G L; Wils, D; Dowd, S E; Fahey, G C; Swanson, K S; Dilger, R N

    2015-05-01

    Dietary fermentable fiber is known to benefit intestinal health of companion animals. Soluble corn fiber (SCF) was evaluated for its chemical composition, nitrogen-corrected true ME (TMEn) content, in vitro digestion and fermentation characteristics, and in vivo effects on nutrient digestibility, fecal fermentation end products, and modulation of the fecal microbiome of dogs. Soluble corn fiber contained 78% total dietary fiber, all present as soluble dietary fiber; 56% was low molecular weight soluble fiber (did not precipitate in 95% ethanol). The SCF also contained 26% starch and 8% resistant starch and had a TMEn value of 2.6 kcal/g. Soluble corn fiber was first subjected to in vitro hydrolytic-enzymatic digestion to determine extent of digestibility and then fermented using dog fecal inoculum, with fermentative outcomes measured at 0, 3, 6, 9, and 12 h. Hydrolytic-enzymatic digestion of SCF was only 7%. In vitro fermentation showed increased (P < 0.05) concentrations of short-chain fatty acids through 12 h, with acetate, propionate, and butyrate reaching peak concentrations of 1,803, 926, and 112 μmol/g DM, respectively. Fermentability of SCF was higher (P < 0.05) than for cellulose but lower (P < 0.05) than for pectin. In the in vivo experiment, 10 female dogs (6.4 ± 0.2 yr and 22 ± 2.1 kg) received 5 diets with graded concentrations of SCF (0, 0.5, 0.75, 1.0, or 1.25% [as-is basis]) replacing cellulose in a replicated 5 × 5 Latin square design. Dogs were first acclimated to the experimental diets for 10 d followed by 4 d of total fecal collection. Fresh fecal samples were collected to measure fecal pH and fermentation end products and permit a microbiome analysis. For microbiome analysis, extraction of DNA was followed by amplification of the V4 to V6 variable region of the 16S rRNA gene using barcoded primers. Sequences were classified into taxonomic levels using a nucleotide basic local alignment search tool (BLASTn) against a curated GreenGenes database. Few changes in nutrient digestibility or fecal fermentation end products or stool consistency were observed, and no appreciable modulation of the fecal microbiome occurred. In conclusion, SCF was fermentable in vitro, but higher dietary concentrations may be necessary to elicit potential in vivo responses.

  18. Nancy Dowe | NREL

    Science.gov Websites

    Center Bioprocess Development Group. The group is largely made up of fermentation scientists and engineers whose focus is on fermentation process development and pilot plant scale-up. Dowe has nearly 30 years of experience working with a wide variety of fermentation processes and microorganisms for the

  19. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate.

    PubMed

    Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun

    2017-03-01

    The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking.

    PubMed

    Verspohl, Alexandra; Solieri, Lisa; Giudici, Paolo

    2017-03-01

    The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  1. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.

    PubMed

    Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou

    2018-06-01

    The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.

  2. Antioxidant changes of leek (Allium ampeloprasum var. porrum) during spontaneous fermentation of the white shaft and green leaves.

    PubMed

    Bernaert, Nathalie; Wouters, Dorrit; De Vuyst, Luc; De Paepe, Domien; De Clercq, Hervé; Van Bockstaele, Erik; De Loose, Marc; Van Droogenbroeck, Bart

    2013-07-01

    Leek is grown for its thickened cylindrical white shaft made up of long leaf bases. Despite the potentially valuable nutritional profile of the green leaves, a large portion remains unused owing its restricted culinary applications. This large quantity of this plant biomass could be valorized given an adequate stabilization method. In this study, we examined leek fermentation with regard to antioxidant changes. The oxygen radical absorbance capacity (ORAC) increased by 62% when the green leaves were fermented for 21 days, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity did not increase significantly. Fermentation resulted in an increase of endogenous polyphenolic compounds such as ferulic acid, astragalin, luteolin and naringenin. Moreover, fermentation stimulated the production of a series of polyphenolic compounds that were not present in the fresh leek. The flavour precursors in leek, i.e. methiin and isoalliin, were reduced by 91-93% and 100%, respectively, when spontaneous fermentation was allowed to occur on the white shaft and green leaves. Our results demonstrated that application of fermentation resulted in a higher ORAC value and polyphenol content of the leek plant, especially in the green leaves. These results indicate the nutritional relevance of fermentation, which hold promise as a stabilization technique. © 2013 Society of Chemical Industry.

  3. Effect of dietary supplementation of Lactobacillus-fermented Artemisia princeps on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens.

    PubMed

    Kim, C H; Kim, G-B; Chang, M B; Bae, G S; Paik, I K; Kil, D Y

    2012-11-01

    The objective of this experiment was to investigate the effect of dietary supplementation of Lactobacillus-fermented Artemisia princeps (LFA) on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens. A total of six hundred twenty-four 1-d-old Hy-Line Brown male chicks were randomly allotted to 3 dietary treatments with 4 replicated pens consisting of 52 chicks. The control diet was formulated to be adequate in energy and nutrients. Two additional diets were prepared by adding 2.5 or 5.0 g/kg of LFA to the control diet. The experimental diets were fed on an ad libitum basis to the birds during 7 wk. Body weight gain and feed intake were recorded at 2 and 7 wk. At the end of the experiment, 2 birds from each treatment were killed by cervical dislocation and the samples for ileal content, breast, and thigh meat were collected for the determination of meat lipid peroxidation and microbial population. Results indicated that increasing inclusion level of LFA in diets improved BW gain (linear and quadratic, P < 0.05) and tended to improve feed efficiency (linear and quadratic, P < 0.10) of birds during 0 to 7 wk. Feeding the diets containing increasing amounts of LFA to birds reduced (quadratic, P < 0.05) thiobarbituric acid-reactive substance (TBARS) values in breast and thigh meat during 15 d of storage. The concentrations of Lactobacillus spp. in the ileal content of birds increased (linear and quadratic, P < 0.05), but those of Salmonella spp. tended to be decreased (quadratic, P < 0.10) as inclusion level of LFA in diets increased. These results suggest that dietary LFA may be used as a functional ingredient to improve growth performance, meat lipid stability, and intestinal health of birds.

  4. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    PubMed

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention.

  5. The effects of Strongylus vulgaris parasitism on eosinophil distribution and accumulation in equine large intestinal mucosa.

    PubMed

    Rötting, A K; Freeman, D E; Constable, P D; Moore, R M; Eurell, J C; Wallig, M A; Hubert, J D

    2008-06-01

    Eosinophilic granulocytes have been associated with parasite or immune-mediated diseases, but their functions in other disease processes remain unclear. Cause and timing of eosinophil migration into the equine gastrointestinal mucosa are also unknown. To determine the effects of intestinal parasitism on eosinophils in equine large intestinal mucosa. Large intestinal mucosal samples were collected from horses and ponies (n = 16) from the general veterinary hospital population, ponies (n = 3) raised in a parasite-free environment, ponies experimentally infected with 500 infective Strongylus vulgaris larvae and treated with a proprietary anthelmintic drug (n = 14), and a similar group of ponies (n = 7) that received no anthelmintic treatment. Total eosinophil counts and eosinophil distribution in the mucosa were determined by histological examination. A mixed model analysis was performed and appropriate Bonferroni adjusted P values used for each family of comparisons. P<0.05 was considered significant. There was no difference in large intestinal mucosal eosinophil counts and eosinophil distribution between ponies infected with S. vulgaris and those raised in a parasite-free environment. Experimental infection with S. vulgaris, with or without subsequent anthelmintic treatment, did not change eosinophil counts, and counts were similar to those for horses from the general population. Migration of eosinophils to the equine large intestinal mucosa appears to be independent of exposure to parasites. Large intestinal mucosal eosinophils may have more functions in addition to their role in defence against parasites.

  6. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    PubMed Central

    2013-01-01

    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580

  7. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    PubMed Central

    Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian

    2017-01-01

    Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301

  8. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    PubMed

    Vaziri, Nosratola D; Liu, Shu-Man; Lau, Wei Ling; Khazaeli, Mahyar; Nazertehrani, Sohrab; Farzaneh, Seyed H; Kieffer, Dorothy A; Adams, Sean H; Martin, Roy J

    2014-01-01

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  9. High Amylose Resistant Starch Diet Ameliorates Oxidative Stress, Inflammation, and Progression of Chronic Kidney Disease

    PubMed Central

    Vaziri, Nosratola D.; Liu, Shu-Man; Lau, Wei Ling; Khazaeli, Mahyar; Nazertehrani, Sohrab; Farzaneh, Seyed H.; Kieffer, Dorothy A.; Adams, Sean H.; Martin, Roy J.

    2014-01-01

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients. PMID:25490712

  10. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora.

    PubMed Central

    Johansson, M L; Molin, G; Jeppsson, B; Nobaek, S; Ahrné, S; Bengmark, S

    1993-01-01

    In vivo colonization by different Lactobacillus strains on human intestinal mucosa of healthy volunteers was studied together with the effect of Lactobacillus administration on different groups of indigenous bacteria. A total of 19 test strains were administered in fermented oatmeal soup containing 5 x 10(6) CFU of each strain per ml by using a dose of 100 ml of soup per day for 10 days. Biopsies were taken from both the upper jejunum and the rectum 1 day before administration was started and 1 and 11 days after administration was terminated. The administration significantly increased the Lactobacillus counts on the jejunum mucosa, and high levels remained 11 days after administration was terminated. The levels of streptococci increased by 10- to 100-fold in two persons, and the levels of sulfite-reducing clostridia in the jejunum decreased by 10- to 100-fold in three of the volunteers 1 day after administration was terminated. In recta, the anaerobic bacterium counts and the gram-negative anaerobic bacterium counts decreased significantly by the end of administration. Furthermore, a decrease in the number of members of the Enterobacteriaceae by 1,000-fold was observed on the rectal mucosa of two persons. Randomly picked Lactobacillus isolates were identified phenotypically by API 50CH tests and genotypically by the plasmid profiles of strains and by restriction endonuclease analysis of chromosomal DNAs.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8439146

  11. Dairy propionibacteria as probiotics: recent evidences.

    PubMed

    Altieri, Clelia

    2016-10-01

    Nowdays there is evidence that dairy propionibacteria display probiotic properties, which as yet have been underestimated. The aim of this paper is to review the recent highlights of data representing the probiotic potential of dairy propionibacteria, studied both by general selection criteria (useful for all probiotic potentials), and by more specific and innovative approach. Dairy propionibacteria show a robust nature, that makes them able to overcome technological hurdles, allowing their future use in various fermented probiotic foods. In addition to the general selection criteria for probiotics in areas such as food safety, technological and digestive stress tolerance, many potential health benefits have been recently described for dairy propionibacteria, including, production of several active molecules and adhesion capability, that can mean a steady action in modulation of microbiota and of metabolic activity in the gut; their impact on intestinal inflammation, modulation of the immune system, potential modulation of risk factors for cancer development modulation of intestinal absorption.

  12. Beneficial Properties of Probiotics.

    PubMed

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-08-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.

  13. A Revised Model for Dosimetry in the Human Small Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  14. Development of CAD prototype system for Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2010-03-01

    The purpose of this paper is to present a CAD prototype system for Crohn's disease. Crohn's disease causes inflammation or ulcers of the gastrointestinal tract. The number of patients of Crohn's disease is increasing in Japan. Symptoms of Crohn's disease include intestinal stenosis, longitudinal ulcers, and fistulae. Optical endoscope cannot pass through intestinal stenosis in some cases. We propose a new CAD system using abdominal fecal tagging CT images for efficient diagnosis of Crohn's disease. The system displays virtual unfolded (VU), virtual endoscopic, curved planar reconstruction, multi planar reconstruction, and outside views of both small and large intestines. To generate the VU views, we employ a small and large intestines extraction method followed by a simple electronic cleansing method. The intestine extraction is based on the region growing process, which uses a characteristic that tagged fluid neighbor air in the intestine. The electronic cleansing enables observation of intestinal wall under tagged fluid. We change the height of the VU views according to the perimeter of the intestine. In addition, we developed a method to enhance the longitudinal ulcer on views of the system. We enhance concave parts on the intestinal wall, which are caused by the longitudinal ulcer, based on local intensity structure analysis. We examined the small and the large intestines of eleven CT images by the proposed system. The VU views enabled efficient observation of the intestinal wall. The height change of the VU views helps finding intestinal stenosis on the VU views. The concave region enhancement made longitudinal ulcers clear on the views.

  15. Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on selected enzymes of some tissues of broiler chicks.

    PubMed

    Muhammad, N O; Oloyede, O B

    2010-05-01

    Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on the activities of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamate transferase (gamma-GT) in the crop, small intestine, gizzard, heart, liver and serum of broiler chicks were investigated. Milled T. catappa seed was inoculated with spores of A.niger (2.21 x 10(4) spores per ml) for 3 weeks. Forty-five day-old broiler chicks weighing between 27.62 and 36.21 g, were divided into three groups. The first group was fed soybean-based (control) diet; the second on raw T. catappa seed meal-based diet; and the third on A. niger-fermented T. catappa seed meal-based diet for 7 weeks. The results revealed a significantly increased (p<0.05) activity of ALP in the tissues. Contrarily, there were significant reductions (p<0.05) in the activities of ALP, ALT, AST and gamma-GT in the liver and heart of the broilers fed the raw T. catappa seed meal-based diet while there were significant increase (p<0.05) in the activities of these enzymes in the serum of the broilers in this group. The data obtained showed that A. niger-fermented T. catappa seed meal reduced the toxic effects of the raw seed meal on the tissues of broiler chicks. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Induction of a Humoral Immune Response following an Escherichia coli O157:H7 Infection with an Immunomodulatory Peptidic Fraction Derived from Lactobacillus helveticus-Fermented Milk

    PubMed Central

    LeBlanc, Jason; Fliss, Ismail; Matar, Chantal

    2004-01-01

    Numerous beneficial effects have been attributed to probiotic lactic acid bacteria (LAB), such as the stimulation of the immune system, the prevention of enteric infections by enteropathogens, and the regression of immunodependent tumors. It has been shown that biologically active metabolites released during fermentation, in particular biopeptides, could act as immunomodulatory agents. However, no studies have been conducted to evaluate the implication of these bioactive peptides in the induction of a protective immune response against enteric infections. The present study aimed to evaluate the possible immunomodulatory and anti-infectious effects of a peptidic fraction released in milk fermented by Lactobacillus helveticus. The immune response in the mucosa-associated lymphoid tissue was monitored following an administration of the potentially bioactive peptidic fraction. The total immunoglobulin A (IgA) immune response was evaluated after an Escherichia coli O157:H7 infection in a BALB/c murine model. Immunohistochemical and enzyme-linked immunosorbent assays revealed an increase in the number of IgA-secreting B lymphocytes in the intestinal lamina propria and an enhanced total secretory and systemic IgA response. Cytokine profiling also revealed stimulation of a Th2 response in mice fed the peptidic fraction, whereas infected controls demonstrated a proinflammatory Th1 response. These results indicate that bioactive peptides released during fermentation by LAB could contribute to the known immunomodulatory effects of probiotic bacteria. PMID:15539524

  17. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens.

    PubMed

    Zhang, Zhihong; Tao, Xueying; Shah, Nagendra P; Wei, Hua

    2016-04-01

    Lactobacillus plantarum ZDY2013 is a potential probiotic isolated from fermented bean acid. In this study, we aimed to evaluate the in vitro antimicrobial activity of this organism against Bacillus cereus in milk fermentation, the antiadhesion ability on intestinal epithelial cells, as well as its ability to abrogate the cytotoxic effect and expression levels of genes. We found no antimicrobial activity produced by L. plantarum once the pH was adjusted to 6.0 and 7.0. The pH decreased continuously when L. plantarum and B. cereus were co-incubated during milk fermentation, which caused a decrease in the B. cereus counts. Antiadhesion assays showed that L. plantarum can significantly inhibit the adhesion of enterotoxin-producing B. cereus ATCC14579 and pathogenic B. cereus HN001 by inhibition, competition, and displacement. The supernatants of B. cereus, either alone or in conjunction with L. plantarum, caused damage to the membrane integrity of Caco-2 cells to release lactate dehydrogenase. In addition, L. plantarum tended to attenuate proinflammatory cytokine and oxidative stress gene expression on Caco-2 cells, inducing with B. cereus HN001 supernatants. This study provided systematic insights into the antagonistic effect of L. plantarum ZDY2013, and the information may be helpful to explore potential control measures for preventing food poisoning by lactic acid bacteria. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    NASA Astrophysics Data System (ADS)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  19. Kinetics of growth and sugar consumption in yeasts.

    PubMed

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  20. Effect of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis in vitro

    USDA-ARS?s Scientific Manuscript database

    The ingestion of large quantities of rapidly fermentable carbohydrates (e.g. fructans) from pasture has been associated with the development of laminitis. Fructans are poorly degraded by mammalian enzymes and, therefore, are able to reach the hindgut. The fermentation of fructans can lead to the ove...

  1. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    USDA-ARS?s Scientific Manuscript database

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  2. Extent and Persistence of Secondary Water Quality Impacts after Enhanced Reductive Bioremediation

    DTIC Science & Technology

    2015-09-01

    7 2.3.5 Substrate Fermentation ...Conceptual Model of SWQI Production and Attenuation During ERB, large amounts of easily fermented organic substrates are added to the target treatment...area to degrade or immobilize the contaminants of concern (CoC). These substrates are fermented to hydrogen (H2), acetate, and other volatile

  3. Biogenic amines in dry fermented sausages: a review.

    PubMed

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production. Moreover, the role of microorganisms with amino oxidase activity as starter cultures to control or reduce the accumulation of biogenic amines during ripening and storage of sausages is discussed.

  4. An Assessment of the Intestinal Lumen as a Site for Intervention in Reducing Body Burdens of Organochlorine Compounds

    PubMed Central

    Jandacek, Ronald J.; Genuis, Stephen J.

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine—thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants. PMID:23476122

  5. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less

  6. Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals.

    PubMed

    Mielenz, M

    2017-06-01

    Data on nutrient sensing by free fatty acid receptors (FFAR1, FFAR2, FFAR3, FFAR4) and hydroxycarboxylic acid receptors (HCAR1, HCAR2) are increasing for human or rodent models. Both receptor families link intestinal fermentation by the microbiota and energy metabolism with cellular responses. Therefore, this finding provides a link that is independent of the only function of the fermentation products as energy substrates. For example, these reactions are associated with insulin secretion, regulation of lipolysis, adipose tissue differentiation and innate immune responses. In farm animals, the available data on both receptor families from the intestine and other tissues increase. However, currently, the data are primarily linked with the distribution of receptor messenger RNAs (mRNAs) and more rarely with proteins. Functional data on the importance of these receptors in farm animal species is not abundant and is often associated with the immune system. In certain farm animal species, the receptors were cloned and ligand binding was characterised. In chicken, only one FFAR2 was recently identified using genome analysis, which is contradictory to a study using an FFAR1 small interfering RNA. The chicken FFAR2 is composed of more than 20 paralogs. No data on HCAR1 or HCAR2 exist in this species. Currently, in pigs, most available data are on the mRNA distribution within intestine. However, no FFAR1 expression has been shown in this organ to date. In addition to FFAR2, an orthologue (FFAR2-like) with the highest abundance in intestine has been reported. The data on HCAR1 and HCAR2 in pigs is scarce. In ruminants, most of the currently available information on receptor distribution is linked to mRNA data and shows the expression, for example, in mammary gland and adipose tissue. However, some protein data on FFAR2 and FFAR1 protein has been reported and functional data availability is slowly increasing. The receptor mRNAs of HCAR1 and HCAR2 are expressed in bovine. The HCAR2 protein has been demonstrated in certain tissues, such as liver and fat. Because of the physiological importance of both receptor families in human life science, more studies that analyse the physiological significance of both receptor families in animal science may be performed within the next several years.

  7. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    PubMed

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  8. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats

    PubMed Central

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L.; Tovar, Armando R.; Torres, Nimbe; Slupsky, Carolyn M.; Raybould, Helen E.

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism. PMID:28196086

  9. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells.

    PubMed

    Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2018-01-01

    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Effect of probiotic product containing bifidobacteria and biogel from brown algae on the intestinal microflora and parameters of innate immunity in mice with experimental drug dysbacteriosis].

    PubMed

    Kuznetsova, T A; Makarenkova, I D; Koneva, E L; Aminina, N M; Yakush, E V

    2015-01-01

    The article represents the results of studying the effect of a new fermented product (FP) containing the probiotic strain Bifidobacterium bifidum 791 and Biogel from brown algae Laminariajaponica on the composition of intestinal microflora and parameters of innate immunity in mice with experimental dysbacteriosis, induced by administration of gentamicin in dose of 25 mg per kg body weight during 7 days. The experimental animals received for 6 weeks in addition to the diet FP, which was 2% of the average volume of feed intake. The FP influence was manifested by more rapid reduction of dyspepsia symptoms, restoration of body weight and balance the intestinal microbiocenosis (increasing of bifido- and lactobacteria, typical E. coli, reducing of the bacteria genus Proteus and Clostridium, elimination of S. aureus). As the results of FP administration we observed the statistically significant reduction of endogenous intoxication values and increasing of the phagocyte activity of neutrophils, related to effector cells of innate immunity, compared with animals not receiving FP. Identified effects of FP are due to both its probiotic properties through the presence of bifidobacteria and immunomodulating and enteral sorbtion activities of alginate component.

  11. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    PubMed Central

    Mack, Isabelle; Cuntz, Ulrich; Grämer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Andreas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-01-01

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55) and after weight gain (n = 44) in comparison to normal-weight participants (NW, n = 55) along with dietary intake and gastrointestinal complaints. We show profound microbial perturbations in AN patients as compared to NW participants, with higher levels of mucin-degraders and members of Clostridium clusters I, XI and XVIII and reduced levels of the butyrate-producing Roseburia spp. Branched-chain fatty acid concentrations, being markers for protein fermentation, were elevated. Distinct perturbations in microbial community compositions were observed for individual restrictive and binge/purging AN-subtypes. Upon weight gain, microbial richness increased, however perturbations in intestinal microbiota and short chain fatty acid profiles in addition to several gastrointestinal symptoms did not recover. These insights provide new leads to modulate the intestinal microbiota in order to improve the outcomes of the standard therapy. PMID:27229737

  12. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  13. Study on traditional Chinese medicine theory of lung being connected with large intestine.

    PubMed

    Liu, Ping; Wang, Ping; Tian, Daizhi; Liu, Junfeng; Chen, Gang; Liu, Songlin

    2012-09-01

    The theory of lung being connected with large intestine, which is a major topic in Traditional Chinese Medicine (TCM), has guided clinical practice for thousands of years in China. In this study, we analyzed the history, main contents, clinical application, and material basis of the theory, to attempt to improve the potential clinical significance of "lung being connected with large intestine" in China. The lung being connected with large intestine was first described in "Huang Di Nei Jing", and formed one of the basic theories of TCM. For thousands of years, the majority of TCM practitioners explored this theory continuously, leading to its development and use as an important theory in the guidance of TCM clinics In the last decade, researchers in the field of integrated TCM and Western medicine have studied clinical applications and biomedical mechanisms with experimental methods to explore the implications of the theory. With the further development of science and technology, research concerning the theory of lung being connected with large intestine will be greatly stimulated and contribute to the modernization of TCM.

  14. Death of a Female Prostitute Due to Intestinal Obstruction by an Unknown Substance.

    PubMed

    Dokoupil, Marek; Marecová, Klára; Handlos, Petr; Březina, Petr

    2018-05-16

    A young adult black female, known to be a prostitute and suspected of smuggling narcotics, was found dead in her apartment in a state of early decomposition. Oval-shaped gray-white masses of exogenous origin protruded from the anus. The autopsy showed dilatation of the folds of the large intestine, which were almost completely filled with these oval-shaped gray-white masses of foreign material. The uterus was enlarged with multiple large leiomyomas. Toxicological tests of blood and the foreign material revealed no toxicologically relevant substances. Kaolin was detected in a sample of the foreign material from the large intestine. The immediate cause of death was intestinal obstruction due to the formation of a kaolin bezoar with simultaneous compression of the large intestine by the enlarged myomatous uterus. Subsequent revelation of a habit the deceased had brought from her native country led to the conclusion that this exotic custom was responsible for her death. © 2018 American Academy of Forensic Sciences.

  15. Heterogeneity across the murine small and large intestine

    PubMed Central

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-01-01

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed. PMID:25386070

  16. Heterogeneity across the murine small and large intestine.

    PubMed

    Bowcutt, Rowann; Forman, Ruth; Glymenaki, Maria; Carding, Simon Richard; Else, Kathryn Jane; Cruickshank, Sheena Margaret

    2014-11-07

    The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.

  17. Monitoring Seasonal Changes in Winery-Resident Microbiota.

    PubMed

    Bokulich, Nicholas A; Ohta, Moe; Richardson, Paul M; Mills, David A

    2013-01-01

    During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.

  18. Monitoring Seasonal Changes in Winery-Resident Microbiota

    PubMed Central

    Bokulich, Nicholas A.; Ohta, Moe; Richardson, Paul M.; Mills, David A.

    2013-01-01

    During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions. PMID:23840468

  19. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  20. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. © 2015 American Society for Nutrition.

  1. A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality.

    PubMed

    Regueiro, Jorge; López-Fernández, Olalla; Rial-Otero, Raquel; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2015-01-01

    Residues of pesticides in food are influenced by processing such as fermentation. Reviewing the extensive literature showed that in most cases, this step leads to large reductions in original residue levels in the fermented food, with the formation of new pesticide by-products. The behavior of residues in fermentation can be rationalized in terms of the physical-chemical properties of the pesticide and the nature of the process. In addition, the presence of pesticides decrease the growth rate of fermentative microbiota (yeasts and bacterias), which provokes stuck and sluggish fermentations. These changes have in consequence repercussions on several aspects of food sensory quality (physical-chemical properties, polyphenolic content, and aromatic profile) of fermented food. The main aim of this review is to deal with all these topics to propose challenging needs in science-based quality management of pesticides residues in food.

  2. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria.

    PubMed

    Fritsch, Caroline; Jänsch, André; Ehrmann, Matthias A; Toelstede, Simone; Vogel, Rudi F

    2017-02-01

    A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.

  3. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis.

    PubMed

    Attri, Sampan; Sharma, Kavita; Raigond, Pinky; Goel, Gunjan

    2018-03-01

    The present study investigates the stability of polyphenolic in Sea buckthorn berries juice (SBJ) during different phases of digestion and its effect on colonic microbial diversity. At each stage, the Total polyphenolic content (TPC), Total antioxidant activity (TAA) and polyphenolic profile was determined. A 1.64 and 2.20 folds increase in TPC with 4.88 and 9.61 folds increase in TAA were observed during gastric and small intestine digestion (p<0.05) with the release of quercetin from food matrix. The digestion resulted in deformation of intact crystalline structure as indicated by scanning electron micrographs. The colonic fermentation resulted in an increase in quercetin, caffeic acid with decrease in rutin and chlorogenic acid after 36h of fermentation (p<0.05). The Shannon diversity index (H) of beneficial groups including Lactic acid bacteria (LAB), Bacteroides/Prevotella and Bifidobacteria was increased by 35%, 71% and 17%, respectively (p<0.05). The PCA analysis indicated that the presence and digestion of polyphenolics promote the proliferation of Bacteroides/Prevotella group as well as Lactic acid bacteria and Bifidobacteria. The results suggest that SBJ is good source of prebiotic substrate in terms of the proliferation of beneficial gut microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microbial ecology of sourdough fermentations: diverse or uniform?

    PubMed

    De Vuyst, L; Van Kerrebroeck, S; Harth, H; Huys, G; Daniel, H-M; Weckx, S

    2014-02-01

    Sourdough is a specific and stressful ecosystem inhabited by yeasts and lactic acid bacteria (LAB), mainly heterofermentative lactobacilli. On the basis of their inocula, three types of sourdough fermentation processes can be distinguished, namely backslopped ones, those initiated with starter cultures, and those initiated with a starter culture followed by backslopping. Typical sourdough LAB species are Lactobacillus fermentum, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus sanfranciscensis. Typical sourdough yeast species are Candida humilis, Kazachstania exigua, and Saccharomyces cerevisiae. Whereas region specificity is claimed in the case of artisan backslopped sourdoughs, no clear-cut relationship between a typical sourdough and its associated microbiota can be found, as this is dependent on the sampling, isolation, and identification procedures. Both simple and very complex consortia may occur. Moreover, a series of intrinsic and extrinsic factors may influence the composition of the sourdough microbiota. For instance, an influence of the flour (type, quality status, etc.) and the process parameters (temperature, pH, dough yield, backslopping practices, etc.) occurs. In this way, the presence of Lb. sanfranciscensis during sourdough fermentation depends on specific environmental and technological factors. Also, Triticum durum seems to select for obligately heterofermentative LAB species. Finally, there are indications that the sourdough LAB are of intestinal origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Intestinal pseudo-obstruction

    MedlinePlus

    ... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...

  6. Description of Tachygonetria combesi n. sp. and redescriptions of four species of Tachygonetria Wedl, 1862 (Nematoda: Pharyngodonidae), with a new diagnosis of the genus.

    PubMed

    Bouamer, Salah; Morand, Serge

    2002-10-01

    The generic diagnosis of Tachygonetria Wedl, 1862 is modified based on the study and redescription of Tachygonetria vivipara Wedl, 1862 (collected from large intestine of Uromastyx acanthinurus Bell, from North Africa) and T. dentata (Drasche, 1883) (collected from large intestine of Testudo graeca Linnaeus in Settat, Morocco and T. hermanni Gmelin in Catalonia, Spain). The following taxa were redescribed: Tachygonetria conica (Drasche, 1883) and T. robusta (Drasche, 1883) (both from the large intestine of Testudo graeca collected in Settat, Morocco); the subspecies Tachygonetria conica nicollei (Seurat, 1918) is suppressed. A new species, T. combesi n. sp. is described from the large intestine of Testudo hermanni, which confirms the revision of the genus. Scanning electron microscopical studies revealed substantial interspecific differences in the structure of the caudal end.

  7. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  8. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets.

    PubMed

    Poulsen, H V; Jensen, B B; Finster, K; Spence, C; Whitehead, T R; Cotta, M A; Canibe, N

    2012-07-01

      To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production.   Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate-reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet-related differences were observed.   VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet.   This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease- and odour mitigation research. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  9. Constipation (For Kids)

    MedlinePlus

    ... on to the small intestine (say: in-TES-tin), then the large intestine (or bowels), and finally ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  10. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota.

    PubMed

    Sánchez-Patán, Fernando; Barroso, Elvira; van de Wiele, Tom; Jiménez-Girón, Ana; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria; Martínez-Cuesta, M Carmen; Peláez, Carmen; Requena, Teresa; Bartolomé, Begoña

    2015-09-15

    In this study, we have assessed the phenolic metabolism of a cranberry extract by microbiota obtained from the ascending colon and descending colon compartments of a dynamic gastrointestinal simulator (SHIME). For comparison, parallel fermentations with a grape seed extract were carried out. Extracts were used directly without previous intestinal digestion. Among the 60 phenolic compounds targeted, our results confirmed the formation of phenylacetic, phenylpropionic and benzoic acids as well as phenols such as catechol and its derivatives from the action of colonic microbiota on cranberry polyphenols. Benzoic acid (38.4μg/ml), 4-hydroxy-5-(3'-hydroxyphenyl)-valeric acid (26.2μg/ml) and phenylacetic acid (19.5μg/ml) reached the highest concentrations. Under the same conditions, microbial degradation of grape seed polyphenols took place to a lesser extent compared to cranberry polyphenols, which was consistent with the more pronounced antimicrobial effect observed for the grape seed polyphenols, particularly against Bacteroides, Prevotella and Blautia coccoides-Eubacterium rectale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Rumen escape of methionine and lysine administered intraruminally to growing double-muscled Belgian Blue bulls.

    PubMed

    Froidmont, Eric; Rondia, Pierre; Théwis, André; Beckers, Yves

    2002-01-01

    In many dietary conditions, methionine (Met) and lysine (Lys) are the most limiting amino acids (AA) for ruminants. The AA protected from ruminal fermentation are not commercially available, with the exception of Met which is not always economical, especially for meat production. This study measured ruminal escape of free Met and Lys supplemented intraruminally to fast growing bulls. Six double-muscled Belgian Blue bulls, fed a high concentrate diet and fitted with a rumen cannula, received free Met (40 g x d(-1)) and free Lys (60 g x d(-1)), individually or simultaneously, in a duplicated Latin square design. The mean ruminal escape of Met and Lys reached 37 and 45% respectively, and did not differ if administered separately or together. Plasma Lys and Met concentrations were increased by 504 and 126%, respectively. Substantial proportions of free AA escaped ruminal fermentation and were available for absorption from the small intestine when they were administered at physiologically high levels.

  12. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation.

    PubMed

    Arihara, K; Itoh, M

    2000-06-01

    Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.

  13. Cha-Koji, comprising green tea leaves fermented with Aspergillus luchuensis var kawachii kitahara, increases regulatory T cell production in mice and humans.

    PubMed

    Yamamoto, Bunsei; Suzuki, Yusuke; Yonezu, Takahisa; Mizushima, Nanami; Watanabe, Nobuo; Sato, Takehito; Inoue, Shigeaki; Inokuchi, Sadaki

    2018-03-02

    Green tea leaves fermented with Aspergillus luchuensis var kawachii kitahara (Cha-Koji) are a health food containing live A. luchuensis. In this study, we examined the effects of Cha-Koji on the immune system and the enteric environment. First, we designed a clinical trial; after ingesting Cha-Koji daily for 28 days, blood parameters and the fecal composition of the participants were analyzed. Similarly, mice were administered (oral administration) with Cha-Koji suspension or its vehicle for 14 days. Thereafter, both humans and mice were examined by analyzing their immune cell phenotypes and intestinal microbiota. Regulatory T cell (Treg) numbers were significantly increased after administering Cha-Koji. An increase of Clostridium subcluster XIVa, that were known to be rich in butyrate-producing bacterium, was observed in human feces, but not in mice. These results suggest that Cha-Koji has the ability to increase Treg production in both humans and mice, irrespective of the presence of enteric butyrate.

  14. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect.

    PubMed

    Capuano, Edoardo

    2017-11-02

    A diet rich in dietary fiber (DF) is considered healthy and recommended dietary intake of DF is established all over the world. The physiological effect of DF is mostly related to its behavior during digestion. In this review, the behavior of DF in the human digestive tract is discussed and linked to its physiological effect with special attention to four aspects of such behavior: (i) the modulation of bioavailability by the plant cell walls, (ii) the effect of DF on the rheological and colloidal state of digesta, (iii) the binding of DF with phenolic compounds, bile salts, mineral ions, and digestive enzymes, and (iv) DF fermentation in the large intestine and the corresponding effect on microbiota composition. It is stressed that the detailed chemical characterization of DF is crucial to explain its effect on health and that DF behavior in the digestive tract can be modulated by interactions with other food and meal components so that information of the bare content in DF of food is not sufficient to predict its physiological effect.

  15. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice.

    PubMed

    Dalby, Matthew J; Ross, Alexander W; Walker, Alan W; Morgan, Peter J

    2017-11-07

    Evidence suggests that altered gut microbiota composition may be involved in the development of obesity. Studies using mice made obese with refined high-fat diets have supported this; however, these have commonly used chow as a control diet, introducing confounding factors from differences in dietary composition that have a key role in shaping microbiota composition. We compared the effects of feeding a refined high-fat diet with those of feeding either a refined low-fat diet or a chow diet on gut microbiota composition and host physiology. Feeding both refined low- or high-fat diets resulted in large alterations in the gut microbiota composition, intestinal fermentation, and gut morphology, compared to a chow diet. However, body weight, body fat, and glucose intolerance only increased in mice fed the refined high-fat diet. The choice of control diet can dissociate broad changes in microbiota composition from obesity, raising questions about the previously proposed relationship between gut microbiota and obesity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Necrotizing Enterocolitis

    MedlinePlus

    ... large section of the intestine was removed, an ostomy is done. During an ostomy, surgeons bring an area of the intestine to ... to re-examine the intestines or close the ostomy. What Can I Expect? Most babies who develop ...

  17. The Low FODMAP Diet and Its Application in East and Southeast Asia.

    PubMed

    Iacovou, Marina; Tan, Victoria; Muir, Jane G; Gibson, Peter R

    2015-10-01

    There is growing interest in using food choice/dietary change to influence clinical outcomes in patients with irritable bowel syndrome (IBS). The low fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) diet is an evidence-based approach that is gaining popularity in many Western countries. The low FODMAP diet is based on restricting dietary intake of short chain carbohydrates that are slowly absorbed or indigestible and not absorbed during passage through the small intestine. These are collectively described as "FODMAPs" and comprise oligosaccharides (mostly fructans, galacto-oligosaccharides), sugar polyols, fructose in excess of glucose, and lactose in lactose malabsorbers. The general strategy of the diet is to avoid foods high in FODMAPs and replace them with foods low in FODMAPs, with long-term restriction limited to what is required to control symptoms. The likely mechanism of action is minimisation of the stimulation of mechanoreceptors exerted by distension of the intestinal lumen with water from osmotic effects and gases from bacterial fermentation in those with visceral hypersensitivity. The success of this dietary approach greatly depends on detailed knowledge about the FODMAP composition of food com - monly consumed in that country. While the content of foods associated with East and Southeast Asian cuisines has not been fully explored, major high FODMAP sources are frequently used and include onion, garlic, shallots, legumes/pulses, and wheat-based products. Thus, this dietary approach holds great promise in treating IBS patients in East and Southeast Asia. The aim of this review is to highlight how the diet is implemented, its efficacy, and troublesome ingredients frequently used in Asian dishes.

  18. The Low FODMAP Diet and Its Application in East and Southeast Asia

    PubMed Central

    Iacovou, Marina; Tan, Victoria; Muir, Jane G; Gibson, Peter R

    2015-01-01

    There is growing interest in using food choice/dietary change to influence clinical outcomes in patients with irritable bowel syndrome (IBS). The low fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) diet is an evidence-based approach that is gaining popularity in many Western countries. The low FODMAP diet is based on restricting dietary intake of short chain carbohydrates that are slowly absorbed or indigestible and not absorbed during passage through the small intestine. These are collectively described as “FODMAPs” and comprise oligosaccharides (mostly fructans, galacto-oligosaccharides), sugar polyols, fructose in excess of glucose, and lactose in lactose malabsorbers. The general strategy of the diet is to avoid foods high in FODMAPs and replace them with foods low in FODMAPs, with long-term restriction limited to what is required to control symptoms. The likely mechanism of action is minimisation of the stimulation of mechanoreceptors exerted by distension of the intestinal lumen with water from osmotic effects and gases from bacterial fermentation in those with visceral hypersensitivity. The success of this dietary approach greatly depends on detailed knowledge about the FODMAP composition of food commonly consumed in that country. While the content of foods associated with East and Southeast Asian cuisines has not been fully explored, major high FODMAP sources are frequently used and include onion, garlic, shallots, legumes/pulses, and wheat-based products. Thus, this dietary approach holds great promise in treating IBS patients in East and Southeast Asia. The aim of this review is to highlight how the diet is implemented, its efficacy, and troublesome ingredients frequently used in Asian dishes. PMID:26350937

  19. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  20. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism.

    PubMed

    Zhang, Limin; Xie, Cen; Nichols, Robert G; Chan, Siu H J; Jiang, Changtao; Hao, Ruixin; Smith, Philip B; Cai, Jingwei; Simons, Margaret N; Hatzakis, Emmanuel; Maranas, Costas D; Gonzalez, Frank J; Patterson, Andrew D

    2016-01-01

    The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt ( p hylogenetic i nvestigation of c ommunities by r econstruction of u nobserved st ates), then validated using 1 H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr -null ( Fxr ΔIE ) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results.

  1. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

    PubMed Central

    Zhang, Limin; Xie, Cen; Nichols, Robert G.; Chan, Siu H. J.; Jiang, Changtao; Hao, Ruixin; Smith, Philip B.; Cai, Jingwei; Simons, Margaret N.; Hatzakis, Emmanuel; Maranas, Costas D.; Gonzalez, Frank J.

    2016-01-01

    ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results. PMID:27822554

  2. Position of the American Dietetic Association: health implications of dietary fiber.

    PubMed

    Marlett, Judith A; McBurney, Michael I; Slavin, Joanne L

    2002-07-01

    Dietary fiber consists of the structural and storage polysaccharides and lignin in plants that are not digested in the human stomach and small intestine. A wealth of information supports the American Dietetic Association position that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Recommended intakes, 20-35 g/day for healthy adults and age plus 5 g/day for children, are not being met, because intakes of good sources of dietary fiber, fruits, vegetables, whole and high-fiber grain products, and legumes are low. Consumption of dietary fibers that are viscous lowers blood cholesterol levels and helps to normalize blood glucose and insulin levels, making these kinds of fibers part of the dietary plans to treat cardiovascular disease and type 2 diabetes. Fibers that are incompletely or slowly fermented by microflora in the large intestine promote normal laxation and are integral components of diet plans to treat constipation and prevent the development of diverticulosis and diverticulitis. A diet adequate in fiber-containing foods is also usually rich in micronutrients and nonnutritive ingredients that have additional health benefits. It is unclear why several recently published clinical trials with dietary fiber intervention failed to show a reduction in colon polyps. Nonetheless, a fiber-rich diet is associated with a lower risk of colon cancer. A fiber-rich meal is processed more slowly, which promotes earlier satiety, and is frequently less calorically dense and lower in fat and added sugars. All of these characteristics are features of a dietary pattern to treat and prevent obesity. Appropriate kinds and amounts of dietary fiber for the critically ill and the very old have not been clearly delineated; both may need nonfood sources of fiber. Many factors confound observations of gastrointestinal function in the critically ill, and the kinds of fiber that would promote normal small and large intestinal function are usually not in a form suitable for the critically ill. Maintenance of body weight in the inactive older adult is accomplished in part by decreasing food intake. Even with a fiber-rich diet, a supplement may be needed to bring fiber intakes into a range adequate to prevent constipation. By increasing variety in the daily food pattern, the dietetics professional can help most healthy children and adults achieve adequate dietary fiber intakes.

  3. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  4. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method.

    PubMed

    Manoury, E; Jourdon, K; Boyaval, P; Fourcassié, P

    2013-03-01

    We evaluated menaquinone contents in a large set of 62 fermented dairy products samples by using a new liquid chromatography method for accurate quantification of lipo-soluble vitamin K(2), including distribution of individual menaquinones. The method used a simple and rapid purification step to remove matrix components in various fermented dairy products 3 times faster than a reference preparation step. Moreover, the chromatography elution time was significantly shortened and resolution and efficiency were optimized. We observed wide diversity of vitamin K(2) contents in the set of fermented dairy products, from undetectable to 1,100 ng/g of product, and a remarkable diversity of menaquinone forms among products. These observations relate to the main microorganism species currently in the different fermented product technologies. The major form in this large set of fermented dairy products was menaquinone (MK)-9, and contents of MK-9 and MK-8 forms were correlated, that of MK-9 being around 4 times that of MK-8, suggesting that microorganisms able to produce MK-9 also produce MK-8. This was not the case for the other menaquinones, which were produced independently of each other. Finally, no obvious link was established between MK-9 content and fat content or pH of the fermented dairy products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Water reuse in the l-lysine fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained formore » 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.« less

  6. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    PubMed

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Protective Effect of Lactobacillus casei Strain Shirota on Shiga Toxin-Producing Escherichia coli O157:H7 Infection in Infant Rabbits

    PubMed Central

    Ogawa, Michinaga; Shimizu, Kensuke; Nomoto, Koji; Takahashi, Masatoshi; Watanuki, Masaaki; Tanaka, Ryuichiro; Tanaka, Tetsuya; Hamabata, Takashi; Yamasaki, Shinji; Takeda, Yoshifumi

    2001-01-01

    We examined colonization patterns of Shiga toxin-producing Escherichia coli (STEC), concentrations of Shiga toxins (Stxs) and specific immunoglobulin A (lgA) against Stxs and STEC bacterial cell surface antigen in various portions of the gastrointestinal tract in an infant rabbit infection model. After inoculation of 3-day-old infant rabbits with STEC strain 89020087 at low doses (∼103 CFU/body), numbers of colonizing STEC bacteria and concentrations of Stxs in the intestine increased dramatically and the animals developed diarrhea within a couple of days after infection. Daily administration of Lactobacillus casei from the day of birth dramatically decreased the severity of diarrhea and lowered STEC colonization levels in the gastrointestinal tract 100-fold day 7 after infection. Both Stx1 and Stx2 concentrations in the intestines and histological damage to the intestinal mucus induced by STEC infection were decreased by the administration of L. casei. Examination of the concentrations of volatile fatty acids and pH of the intestinal contents revealed that the protective effect of L. casei administration against STEC infection was not due to fermented products such as lactic acid in the gastrointestinal tract. Administration of L. casei increased levels of lgAs against Stx1, Stx2, and formalin-killed STEC cells in the colon approximately two-, four-, and threefold, respectively, compared with those of the untreated controls by day 7 after infection. These results suggest that administration of L. casei strain Shirota enhances the local immune responses to STEC cells and Stxs and leads to elimination of STEC and thus decreases Stx concentrations in the intestines. PMID:11160007

  8. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8.

    PubMed

    Mishiro, Tsuyoshi; Kusunoki, Ryusaku; Otani, Aya; Ansary, Md Mesbah Uddin; Tongu, Miki; Harashima, Nanae; Yamada, Takaya; Sato, Shuichi; Amano, Yuji; Itoh, Kazuhito; Ishihara, Shunji; Kinoshita, Yoshikazu

    2013-07-01

    Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.

  9. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    PubMed

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  10. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.

    PubMed

    Rose, Devin J; Patterson, John A; Hamaker, Bruce R

    2010-01-13

    Human fecal fermentation profiles of maize, rice, and wheat bran and their dietary fiber fractions released by alkaline-hydrogen peroxide treatment (principally arabinoxylan) were obtained with the aim of identifying and characterizing fractions associated with high production of short chain fatty acids and a linear fermentation profile for possible application as a slowly fermentable dietary fiber. The alkali-soluble fraction from maize bran resulted in the highest short chain fatty acid production among all samples tested, and was linear over the 24 h fermentation period. Size-exclusion chromatography and (1)H NMR suggested that higher molecular weight and uniquely substituted arabinose side chains may contribute to these properties. Monosaccharide disappearance data suggest that maize and rice bran arabinoxylans are fermented by a debranching mechanism, while wheat bran arabinoxylans likely contain large unsubstituted xylose regions that are fermented preferentially, followed by poor fermentation of the remaining, highly branched oligosaccharides.

  11. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods

    PubMed Central

    Kuwaki, Shinsuke; Nakajima, Nobuyoshi; Tanaka, Hidehiko; Ishihara, Kohji

    2012-01-01

    A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1, B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases. PMID:25114554

  12. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  13. Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Tuśnio, Anna; Pastuszewska, Barbara

    2015-01-01

    The effects of indigestible carbohydrates, protein type, and protein level on large intestine health were examined in rats. For 21 days, 12 groups of six 12-week-old male Wistar rats were fed diets with casein (CAS), or potato protein concentrate (PPC), providing 14% (lower protein level; LP), or 20% (higher protein level; HP) protein, and containing cellulose, resistant potato starch, or pectin. Fermentation end-products, pH, and β-glucuronidase levels in cecal digesta, and ammonia levels in colonic digesta were determined. Cecal digesta, tissue weights, cecal and colon morphology, and colonocyte DNA damage were also analyzed. Digesta pH was lower, whereas relative mass of cecal tissue and digesta were higher in rats fed pectin diets than in those fed cellulose. Cecal parameters were greater in rats fed PPC and HP diets than in those fed CAS and LP diets, respectively. Short-chain fatty acid (SCFA) concentrations were unaffected by protein or carbohydrate type. Total SCFA, acetic acid, and propionic acid concentrations were greater in rats fed LP diets than in those fed HP. Cecal pool of isobutyric and isovaleric acids was greater in rats fed PPC than in those fed CAS diets. PPC diets decreased phenol concentration and increased ammonia concentration in cecal and colonic digesta, respectively. Cecal crypt depth was greater in rats fed PPC and HP diets, and was unaffected by carbohydrates; whereas colonic crypt depth was greater in rats fed cellulose. Myenteron thickness in the cecum was unaffected by nutrition, but was greater in the colon of rats fed cellulose. Colonocyte DNA damage was greater in rats fed LP diets than in those fed HP diets, and was unaffected by carbohydrate or protein type. It was found that nutritional factors decreasing cecal digesta weight contribute to greater phenol production, increased DNA damage, and reduced ammonia concentration in the colon. PMID:26536028

  14. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.

    PubMed

    Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan

    2016-10-01

    This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production.

  15. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.

    PubMed

    Ko, Ja Kyong; Jung, Je Hyeong; Altpeter, Fredy; Kannan, Baskaran; Kim, Ha Eun; Kim, Kyoung Heon; Alper, Hal S; Um, Youngsoon; Lee, Sun-Mi

    2018-05-01

    The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less

  18. Fatal case of ectopic enterobiasis: Enterobius vermicularis in the kidneys.

    PubMed

    Serpytis, Mindaugas; Seinin, Dmitrij

    2012-02-01

    Enterobius vermicularis is one of the most common intestinal parasites found in humans. They commonly infest the terminal ileum and large intestine, and are usually considered an innocuous parasite that can be easily eradicated with proper treatment. However, extraintestinal migration of worms, although very rare, may lead to severe health disorders or even death. This article, reports the first fatal case of ectopic enterobiasis known to the authors, which developed in an adult patient with E. vermicularis infection, causing perforation of the large intestine and generalized bacterial peritonitis. Despite emergency laparotomy, the patient died from septic shock on the day after surgery. During pathological examination, worms were found not only in the large intestine, but also in the renal parenchyma; worm eggs were found deposited in the lungs as well.

  19. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli.

    PubMed

    Holm, Jacob Bak; Sorobetea, Daniel; Kiilerich, Pia; Ramayo-Caldas, Yuliaxis; Estellé, Jordi; Ma, Tao; Madsen, Lise; Kristiansen, Karsten; Svensson-Frej, Marcus

    2015-01-01

    The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance of the immune system. In line with this, the prevalence of persistent worm infections is inversely correlated with the incidence of immune-associated diseases, prompting the use of controlled parasite infections for therapeutic purposes. Despite this, the impact of parasite infection on the intestinal microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance of the Lactobacillus genus. In parallel, chronic T. muris infection resulted in a significant shift in the balance between regulatory and inflammatory T cells in the intestinal adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate that chronic parasite infection strongly influences the intestinal microbiota and the adaptive immune system. Our results illustrate the complex interactions between these factors in the intestinal tract, and contribute to furthering the understanding of this interplay, which is of crucial importance considering that 500 million people globally are suffering from these infections and their potential use for therapeutic purposes.

  20. Oatmeal porridge: impact on microflora-associated characteristics in healthy subjects.

    PubMed

    Valeur, Jørgen; Puaschitz, Nathalie G; Midtvedt, Tore; Berstad, Arnold

    2016-01-14

    Oatmeal porridge has been consumed for centuries and has several health benefits. We aimed to investigate the effect of oatmeal porridge on gut microflora functions. A total of ten healthy subjects ingested 60 g oatmeal porridge daily for 1 week. The following microflora-associated characteristics were assessed before and after the intervention: intestinal gas production following lactulose ingestion, faecal excretion of SCFA and faecal levels of urease and β-galactosidase. In addition, rectal levels of PGE2 were measured. Microbial fermentation as evaluated by intestinal gas production and excretion of SCFA did not change significantly following the dietary intervention. However, faecal levels of β-galactosidase and urease decreased after eating oatmeal porridge (P=0·049 and 0·031, respectively). Host inflammatory state, as measured by rectal levels of PGE2, also decreased, but the change was not significant (P=0·168). The results suggest that oatmeal porridge has an effect on gut microbial functions and may possess potential prebiotic properties that deserve to be investigated further.

  1. Early-Life Food Nutrition, Microbiota Maturation and Immune Development Shape Life-Long Health.

    PubMed

    Zhou, Xiaoli; Du, Lina; Shi, Ronghua; Chen, Zhidong; Zhou, Yiming; Li, Zongjie

    2018-06-06

    The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.

  2. Potential role of probiotics on colorectal cancer prevention

    PubMed Central

    2012-01-01

    Background Colorectal cancer represents the most common malignancy of the gastrointestinal tract. Owing to differences in dietary habits and lifestyle, this neoplasm is more common in industrialized countries than in developing ones. Evidence from a wide range of sources supports the assumption that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. Discussion Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host, and they have been investigated for their protective anti-tumor effects. In vivo and molecular studies have displayed encouraging findings that support a role of probiotics in colorectal cancer prevention. Summary Several mechanisms could explain the preventive action of probiotics against colorectal cancer onset. They include: alteration of the intestinal microflora; inactivation of cancerogenic compounds; competition with putrefactive and pathogenic microbiota; improvement of the host’s immune response; anti-proliferative effects via regulation of apoptosis and cell differentiation; fermentation of undigested food; inhibition of tyrosine kinase signaling pathways. PMID:23173670

  3. Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria

    PubMed Central

    Arena, Mattia P.; Caggianiello, Graziano; Fiocco, Daniela; Russo, Pasquale; Torelli, Michele; Spano, Giuseppe; Capozzi, Vittorio

    2014-01-01

    Currently, the majority of prebiotics in the market are derived from non-digestible oligosaccharides. Very few studies have focused on non-digestible long chain complex polysaccharides in relation to their potential as novel prebiotics. Cereals β-glucans have been investigated for immune-modulating properties and beneficial effects on obesity, cardiovascular diseases, diabetes, and cholesterol levels. Moreover, β-glucans have been reported to be highly fermentable by the intestinal microbiota in the caecum and colon, and can enhance both growth rate and lactic acid production of microbes isolated from the human intestine. In this work, we report the effects of food matrices containing barley β-glucans on growth and probiotic features of four Lactobacillus strains. Such matrices were able to improve the growth rate of the tested bacteria both in unstressed conditions and, importantly, after exposure to in vitro simulation of the digestive tract. Moreover, the effect of β-glucans-containing food on bacterial adhesion to enterocyte-like cells was analyzed and a positive influence on probiotic-enterocyte interaction was observed. PMID:24562330

  4. Beneficial Properties of Probiotics

    PubMed Central

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-01-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as “health friendly bacteria”, which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller’s diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents. PMID:27688852

  5. Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects.

    PubMed

    Rumessen, J J; Bodé, S; Hamberg, O; Gudmand-Høyer, E

    1990-10-01

    Fructans are naturally occurring plant oligosaccharides with sweetening properties. Fructans (FAs) isolated from Jerusalem artichokes (Helianthus tuberosus) were studied with respect to intestinal handling and influence on blood glucose (BG), insulin, and C-peptide responses in eight healthy subjects. The responses were compared with those for fructose ingestion. The effect of FAs added to a wheat-starch meal was also studied. Standardized breath-hydrogen excretion indicated that FAs were completely malabsorbed and, after a 20-g dose, traces of FA were detected in 24-h urine collections in one subject only. Orocecal transit times were longer for FAs than for lactulose and fructose. The BG and insulin increments were very low after FA ingestion, lower than after fructose ingestion, whereas hydrogen production was much higher. Areas under BG curves tended to be smaller when 10 g FA was added to a 50-g wheat-starch meal, but there was no apparent interference with starch absorption.

  6. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng

    PubMed Central

    Kim, Dong-Hyun

    2012-01-01

    The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides Rg3, Rg5, and Rk1 by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside Rh1, protoand panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed. PMID:23717099

  7. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  8. Histamine and Tyramine in Food.

    DTIC Science & Technology

    1985-05-01

    normal constituents of many foods and have been found in cheese; sauerkraut; wine; fish; and putrid, aged or fermented meats. These low molecular...constituents of many foods and have been found in cheese; sauerkraut; wine; fish; and putrid, aged, or fermented meats. These low molecular weight organic...amounts of tyramine and histamine, formation of large amounts of these amines has been reported only in aged, fermented products or products such as

  9. Addressing endotoxin issues in bioengineered heparin.

    PubMed

    Suwan, Jiraporn; Torelli, Amanda; Onishi, Akihiro; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Heparin is a widely used clinical anticoagulant that is prepared from pig intestine. A contamination of heparin in 2008 has led to a reexamination of animal-derived pharmaceuticals. A bioengineered heparin prepared by bacterial fermentation and chemical and enzymatic processing is currently under development. This study examines the challenges of reducing or removing endotoxins associated with this process that are necessary to proceed with preclinical in vivo evaluation of bioengineered heparin. The current process is assessed for endotoxin levels, and strategies are examined for endotoxin removal from polysaccharides and enzymes involved in this process. © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    NASA Astrophysics Data System (ADS)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  11. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    PubMed Central

    Bourke, Michael F; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L.M.

    2016-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments. PMID:28070216

  12. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism.

    PubMed

    Iizuka, Katsumi

    2017-02-22

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp -/- mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  13. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    PubMed Central

    Iizuka, Katsumi

    2017-01-01

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. PMID:28241431

  14. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets.

    PubMed

    Biagia, Giacomo; Cipollini, Irene; Paulicks, Brigitte R; Roth, Franz X

    2010-04-01

    Tannins are natural polyphenolic compounds that can reduce digestibility of dietary protein but also display antibacterial effects. The present study investigated, in vitro and in vivo, the effect of different levels of tannins (using a chestnut wood extract containing 75% tannins) on growth performance, intestinal microbiota and wall morphology in piglets. During a 24 h in vitro caecal fermentation, the utilisation of tannins at 0.75, 1.5, 3, and 6 g/l significantly reduced total gas production and concentrations of ammonia and volatile fatty acids and increased viable counts of enterococci and coliforms. When fed to piglets at 1.13, 2.25, and 4.5 g/kg, tannins significantly improved feed efficiency and reduced caecal concentrations of ammonia, iso-butyric, and iso-valeric acid. Viable counts of lactobacilli tended to be increased by tannins in the jejunum, while bacterial caecal counts were not affected. Depth of ileal crypts tended to decrease in piglets fed tannins at 2.25 and 4.5 g/kg. The present study showed that feeding weaned piglets with a tannin-rich wood extract can result in improved feed efficiency and reduction of intestinal bacterial proteolytic reactions. The growth-enhancing effect that tannins had on enterococci and coliforms under in vitro conditions deserves further investigation.

  15. Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe.

    PubMed

    Borsodi, Andrea K; Szabó, Attila; Krett, Gergely; Felföldi, Tamás; Specziár, András; Boros, Gergely

    2017-01-01

    Studying the microbiota in the alimentary tract of bigheaded carps (Hypophthalmichthys spp.) gained special interest recently, as these types of investigations on non-native fish species may lead to a better understanding of their ecological role and feeding habits in an invaded habitat. For microbiological examinations, bigheaded carp gut contents and water column samples from Lake Balaton (Hungary) were collected from spring to autumn in 2013. Denaturing Gradient Gel Electrophoresis (DGGE) and pyrosequencing of the 16S rRNA gene were performed to reveal the composition. According to the DGGE patterns, bacterial communities of water samples separated clearly from that of the intestines. Moreover, the bacterial communities in the foreguts and hindguts were also strikingly dissimilar. Based on pyrosequencing, both foregut and hindgut samples were predominated by the fermentative genus Cetobacterium (Fusobacteria). The presence of some phytoplankton taxa and the high relative abundance of cellulose-degrading bacteria in the guts suggest that intestinal microbes may have an important role in digesting algae and making them utilizable for bigheaded carps that lack cellulase enzyme. In turn, the complete absence of typical heterotrophic freshwater bacteria in all studied sections of the intestines indicated that bacterioplankton probably has a negligible role in the nutrition of bigheaded carps. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group. Copyright © 2016 Hymes et al.

  17. The symbiotic intestinal ciliates and the evolution of their hosts.

    PubMed

    Moon-van der Staay, Seung Yeo; van der Staay, Georg W M; Michalowski, Tadeusz; Jouany, Jean-Pierre; Pristas, Peter; Javorský, Peter; Kišidayová, Svetlana; Varadyova, Zora; McEwan, Neil R; Newbold, C Jamie; van Alen, Theo; de Graaf, Rob; Schmid, Markus; Huynen, Martijn A; Hackstein, Johannes H P

    2014-04-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives of this microbial community. Analyses of a total of 484 different 18S rRNA genes show that extremely complex, but related ciliate communities can occur in the rumen of cattle, sheep, goats and red deer (301 sequences). The communities in the hindgut of equids (Equus caballus, Equus quagga), and elephants (Elephas maximus, Loxodonta africanus; 162 sequences), which are clearly distinct from the ruminant ciliate biota, exhibit a much higher diversity than anticipated on the basis of their morphology. All these ciliates from the gastro-intestinal tract constitute a monophyletic group, which consists of two major taxa, i.e. Vestibuliferida and Entodiniomorphida. The ciliates from the evolutionarily older hindgut fermenters exhibit a clustering that is specific for higher taxa of their hosts, as extant species of horse and zebra on the one hand, and Africa and Indian elephant on the other hand, share related ciliates. The evolutionary younger ruminants altogether share the various entodiniomorphs and the vestibuliferids from ruminants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention. PMID:26872019

  20. Intestinal development and differentiation

    PubMed Central

    Noah, Taeko K.; Donahue, Bridgitte; Shroyer, Noah F.

    2011-01-01

    In this review, we present an overview of intestinal development and cellular differentiation of the intestinal epithelium. The review is separated into two sections: Section one summarizes organogenesis of the small and large intestines, including endoderm and gut tube formation in early embryogenesis, villus morphogenesis, and crypt formation. Section two reviews cell fate specification and differentiation of each cell type within the intestinal epithelium. Growth factor and transcriptional networks that regulate these developmental processes are summarized. PMID:21978911

  1. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels.

    PubMed

    Hao, W; Wang, H L; Ning, T T; Yang, F Y; Xu, C C

    2015-06-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 10(7) to 10(10) cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 10(9) cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  2. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    PubMed Central

    Hao, W.; Wang, H. L.; Ning, T. T.; Yang, F. Y.; Xu, C. C.

    2015-01-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR. PMID:25925059

  3. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    PubMed Central

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  4. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  5. Clear Evidence of Carcinogenic Activity by a Whole-Leaf Extract of Aloe barbadensis Miller (Aloe vera) in F344/N Rats

    PubMed Central

    Boudreau, Mary D.

    2013-01-01

    Aloe barbadensis Miller (Aloe vera) is an herbal remedy promoted to treat a variety of illnesses; however, only limited data are available on the safety of this dietary supplement. Drinking water exposure of F344/N rats and B6C3F1 mice to an Aloe vera whole-leaf extract (1, 2, and 3%) for 13 weeks resulted in goblet cell hyperplasia of the large intestine in both species. Based upon this observation, 2-year drinking water studies were conducted to assess the carcinogenic potential of an Aloe vera whole-leaf extract when administered to F344/N rats (48 per sex per group) at 0.5, 1, and 1.5%, and B6C3F1 mice (48 per sex per group) at 1, 2, and 3%. Compared with controls, survival was decreased in the 1.5% dose group of female rats. Treatment-related neoplasms and nonneoplastic lesions in both species were confined primarily to the large intestine. Incidences of adenomas and/or carcinomas of the ileo-cecal and cecal-colic junction, cecum, and ascending and transverse colon were significantly higher than controls in male and female rats in the 1 and 1.5% dose groups. There were no neoplasms of the large intestine in mice or in the 0 or 0.5% dose groups of rats. Increased incidences of mucosa hyperplasia of the large intestine were observed in F344/N rats, and increased incidences of goblet cell hyperplasia of the large intestine occurred in B6C3F1 mice. These results indicate that Aloe vera whole-leaf extract is an intestinal irritant in F344/N rats and B6C3F1 mice and a carcinogen of the large intestine in F344/N rats. PMID:22968693

  6. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers.

    PubMed

    Yeh, Ruei Han; Hsieh, Chia Wen; Chen, Kuo Lung

    2018-01-01

    Bacillus subtilis var. natto N21 (BS) and different lactic acid bacteria were applied to produce two-stage fermented feeds. Broilers were fed these feeds to select the best fermented feed. The selected fermented feed was pelleted and investigated for its effects on growth performance, carcass traits, intestinal microflora, serum biochemical constituents, and apparent ileal nutrient digestibility. Trial 1 involved three hundred thirty-six 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BS + Bacillus coagulans L12 (BBC), BS + Lactobacillus casei (BLC), BS + Lactobacillus acidophilus (BLA), BS + Lactobacillus acidophilus L15 (BLA15), BS + Lactobacillus delbruekckii (BLD), and BS + Lactobacillus reuteri P24 (BLR24) groups with 3 replicates per group. Trial 2 involved two hundred forty 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BBC, and pelleted BS + Bacillus coagulans L12 fermented feed (PBBC) groups with 4 replicates per group. Trial 3 involved sixteen 21-d-old male broilers randomly assigned into control and PBBC groups with 4 replicates per group for a nutrient digestibility trial. The feed conversion ratio (FCR) in the BBC group was better than the control (P < 0.05), and the production efficiency factor (PEF) was the best. However, weight gain (WG), feed intake (FI), and PEF were the lowest in the BLD group (P < 0.05). The WG during 0 to 21 d and 0 to 35 d in the PBBC groups were higher than the control (P < 0.05). The relative weight of the proventriculus + gizzard in the BBC and PBBC groups were higher than the control (P < 0.05). The digestible amino acid content in the PBBC group increased significantly (P < 0.05). Bacillus coagulans L12 is the best lactic acid bacteria for second stage fermentation. PBBC improved broiler growth performance, which may be due to the higher digestible amino acid content, it has the potential to become a commercial feed. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  7. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers

    PubMed Central

    Yeh, Ruei Han; Hsieh, Chia Wen; Chen, Kuo Lung

    2018-01-01

    Abstract Bacillus subtilis var. natto N21 (BS) and different lactic acid bacteria were applied to produce two-stage fermented feeds. Broilers were fed these feeds to select the best fermented feed. The selected fermented feed was pelleted and investigated for its effects on growth performance, carcass traits, intestinal microflora, serum biochemical constituents, and apparent ileal nutrient digestibility. Trial 1 involved three hundred thirty-six 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BS + Bacillus coagulans L12 (BBC), BS + Lactobacillus casei (BLC), BS + Lactobacillus acidophilus (BLA), BS + Lactobacillus acidophilus L15 (BLA15), BS + Lactobacillus delbruekckii (BLD), and BS + Lactobacillus reuteri P24 (BLR24) groups with 3 replicates per group. Trial 2 involved two hundred forty 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BBC, and pelleted BS + Bacillus coagulans L12 fermented feed (PBBC) groups with 4 replicates per group. Trial 3 involved sixteen 21-d-old male broilers randomly assigned into control and PBBC groups with 4 replicates per group for a nutrient digestibility trial. The feed conversion ratio (FCR) in the BBC group was better than the control (P < 0.05), and the production efficiency factor (PEF) was the best. However, weight gain (WG), feed intake (FI), and PEF were the lowest in the BLD group (P < 0.05). The WG during 0 to 21 d and 0 to 35 d in the PBBC groups were higher than the control (P < 0.05). The relative weight of the proventriculus + gizzard in the BBC and PBBC groups were higher than the control (P < 0.05). The digestible amino acid content in the PBBC group increased significantly (P < 0.05). Bacillus coagulans L12 is the best lactic acid bacteria for second stage fermentation. PBBC improved broiler growth performance, which may be due to the higher digestible amino acid content, it has the potential to become a commercial feed. PMID:29126320

  8. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2018-01-16

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  9. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    PubMed Central

    2011-01-01

    Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates. PMID:21995488

  10. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors▿

    PubMed Central

    Hayes, M.; Stanton, C.; Slattery, H.; O'Sullivan, O.; Hill, C.; Fitzgerald, G. F.; Ross, R. P.

    2007-01-01

    This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract. PMID:17483275

  11. Design of a novel automated methanol feed system for pilot-scale fermentation of Pichia pastoris.

    PubMed

    Hamaker, Kent H; Johnson, Daniel C; Bellucci, Joseph J; Apgar, Kristie R; Soslow, Sherry; Gercke, John C; Menzo, Darrin J; Ton, Christopher

    2011-01-01

    Large-scale fermentation of Pichia pastoris requires a large volume of methanol feed during the induction phase. However, a large volume of methanol feed is difficult to use in the processing suite because of the inconvenience of constant monitoring, manual manipulation steps, and fire and explosion hazards. To optimize and improve safety of the methanol feed process, a novel automated methanol feed system has been designed and implemented for industrial fermentation of P. pastoris. Details of the design of the methanol feed system are described. The main goals of the design were to automate the methanol feed process and to minimize the hazardous risks associated with storing and handling large quantities of methanol in the processing area. The methanol feed system is composed of two main components: a bulk feed (BF) system and up to three portable process feed (PF) systems. The BF system automatically delivers methanol from a central location to the portable PF system. The PF system provides precise flow control of linear, step, or exponential feed of methanol to the fermenter. Pilot-scale fermentations with linear and exponential methanol feeds were conducted using two Mut(+) (methanol utilization plus) strains, one expressing a recombinant therapeutic protein and the other a monoclonal antibody. Results show that the methanol feed system is accurate, safe, and efficient. The feed rates for both linear and exponential feed methods were within ± 5% of the set points, and the total amount of methanol fed was within 1% of the targeted volume. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  12. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations.

    PubMed

    Looft, Torey; Allen, Heather K; Cantarel, Brandi L; Levine, Uri Y; Bayles, Darrell O; Alt, David P; Henrissat, Bernard; Stanton, Thaddeus B

    2014-08-01

    Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.

  13. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  14. Isotope-labelled urea to test colon drug delivery devices in vivo: principles, calculations and interpretations.

    PubMed

    Maurer, Marina J M; Schellekens, Reinout C A; Wutzke, Klaus D; Stellaard, Frans

    2013-01-01

    This paper describes various methodological aspects that were encountered during the development of a system to monitor the in vivo behaviour of a newly developed colon delivery device that enables oral drug treatment of inflammatory bowel diseases. [(13)C]urea was chosen as the marker substance. Release of [(13)C]urea in the ileocolonic region is proven by the exhalation of (13)CO2 in breath due to bacterial fermentation of [(13)C]urea. The (13)CO2 exhalation kinetics allows the calculation of a lag time as marker for delay of release, a pulse time as marker for the speed of drug release and the fraction of the dose that is fermented. To determine the total bioavailability, also the fraction of the dose absorbed from the intestine must be quantified. Initially, this was done by calculating the time-dependent [(13)C]urea appearance in the body urea pool via measurement of (13)C abundance and concentration of plasma urea. Thereafter, a new methodology was successfully developed to obtain the bioavailability data by measurement of the urinary excretion rate of [(13)C]urea. These techniques required two experimental days, one to test the coated device, another to test the uncoated device to obtain reference values for the situation that 100 % of [(13)C]urea is absorbed. This is hampered by large day-to-day variations in urea metabolism. Finally, a completely non-invasive, one-day test was worked out based on a dual isotope approach applying a simultaneous administration of [(13)C]urea in a coated device and [(15)N2]urea in an uncoated device. All aspects of isotope-related analytical methodologies and required calculation and correction systems are described.

  15. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures.

    PubMed

    Thapa, Dinesh; Louis, Petra; Losa, Riccardo; Zweifel, Béatrice; Wallace, R John

    2015-02-01

    A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of Bifidobacterium spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of Eubacterium hallii. Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of Faecalibacterium prausnitzii was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen Clostridium difficile was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of C. difficile. Numbers of C. difficile were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of C. difficile numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut. © 2015 The Authors.

  16. Functional microorganisms for functional food quality.

    PubMed

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  17. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity.

    PubMed

    Campanella, Daniela; Rizzello, Carlo Giuseppe; Fasciano, Cristina; Gambacorta, Giuseppe; Pinto, Daniela; Marzani, Barbara; Scarano, Nicola; De Angelis, Maria; Gobbetti, Marco

    2017-08-01

    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (>9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Detection of longitudinal ulcer using roughness value for computer aided diagnosis of Crohn's disease

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku

    2011-03-01

    The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.

  19. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    PubMed

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    PubMed

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (p<0.05). Meanwhile, low amount of acrylamide were detected. Its concentration increased after 7-days' fermentation and then decreased gradually. The results provided the useful information for the manipulation of fermentation process according to the changes of amino acids and acrylamide contents in Pu-erh ripened tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An alternative continence tube for continent urinary reservoirs: evaluation of surgical technique, pressure and continence study in an ex-vivo model.

    PubMed

    Honeck, Patrick; Michel, Maurice Stephan; Trojan, Lutz; Alken, Peter

    2009-02-01

    Despite the large number of surgical techniques for continent cutaneous diversion described in literature, the creation of a reliable, continent and easily catheterizable continence mechanism remains a complex surgical procedure. Aim of this study was the evaluation of a new method for a catheterizable continence mechanism using stapled pig intestine. Small and large pig intestines were used for construction. A 3 or 6 cm double row stapling system was used. Three variations using small and large intestine segments were constructed. A 3 or 6 cm long stapler line was placed alongside a 12 Fr catheter positioned at the antimesenterial side creating a partially two-luminal segment. Construction time for the tube was measured. The created tube was then embedded into the pouch. Pressure evaluation of the continence mechanism was performed for each variation. Intermittent external manual compression was used to simulate sudden pressure exposure. All variations were 100% continent under filling volumes of up to 700 ml and pressure levels of 58 +/- 6 cm H(2)O for large intestine and 266 ml and 87 +/- 18 cm H(2)O for small intestine, respectively. With further filling above the mentioned capacity suture insufficiency occurred but no tube insufficiency. Construction time for all variations was less than 12 min. The described technique is an easy and fast method to construct a continence mechanism using small or large intestine. Our ex vivo experiments have shown sufficient continence situation in an ex-vivo model. Further investigations in an in-vivo model are needed to confirm these results.

  2. [Experience with the clinical use of the PKS-25 and KTs-28 suturing devices].

    PubMed

    Kalinina, T V

    1976-01-01

    A study of the experience gained during many years of use in the surgical practice of a stitcher PKS-25 for establishing esophageal-intestinal anastomoses and of the KTs-28 apparatus for anastomosing the colon with superjacent segments of the large intestine proved their efficient performance. Their utilization makes it possible to reduce the percentage of lethal outcomes due to inadequacy of the anastomosis sutures following operations involving gastrectomy, resection of the cardia, esophagus and segments of the large intestine.

  3. Supplemental Oxygen and Carbon Dioxide Each Increase Subcutaneous and Intestinal Intramural Oxygenation

    PubMed Central

    Ratnaraj, Jebadurai; Kabon, Barbara; Talcott, Michael R.; Sessler, Daniel I.

    2005-01-01

    Oxidative killing by neutrophils, a primary defense against surgical pathogens, is directly related to tissue oxygenation. We tested the hypothesis that supplemental inspired oxygen or mild hypercapnia (end-tidal PCO2 of 50 mmHg) improves intestinal oxygenation. Pigs (25±2.5 kg) were used in two studies in random order: 1) Oxygen Study — 30% vs. 100% inspired oxygen concentration at an end-tidal PCO2 of 40 mmHg, and 2) Carbon Dioxide Study — end-tidal PCO2 of 30 mmHg vs. 50 mmHg with 30% oxygen. Within each study, treatment order was randomized. Treatments were maintained for 1.5 hours; measurements were averaged over the final hour. A tonometer inserted in the subcutaneous tissue of the left upper foreleg measured subcutaneous oxygen tension. Tonometers inserted into the intestinal wall measured intestinal intramural oxygen tension from the small and large intestines. 100% oxygen administration doubled subcutaneous oxygen partial pressure (PO2) (57±10 to 107±48 mmHg, P=0.006) and large intestine intramural PO2 (53±14 to 118±72 mmHg, P=0.014); intramural PO2increased 40% in the small intestine (37±10 to 52±25 mmHg, P=0.004). An end-tidal PCO2 of 50 mmHg increased large intestinal PO2 approximately 16% (49±10 to 57±12 mmHg, P=0.039), while intramural PO2 increased by 45% in the small intestine (31±12 to 44±16 mmHg, P=0.002). Supplemental oxygen and mild hypercapnia each increased subcutaneous and intramural tissue PO2, with supplemental oxygen being most effective. PMID:15281531

  4. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    PubMed

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

  5. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium.

    PubMed

    Kim, J S; Hosseindoust, A; Lee, S H; Choi, Y H; Kim, M J; Lee, J H; Kwon, I K; Chae, B J

    2017-01-01

    Two experiments were conducted to investigate the effects of dietary supplementation of bacteriophage cocktail, probiotics and a combination of these two supplements on performance and gut health of weanling pigs. In Experiment 1, 150 weaned piglets were randomly allotted to three treatments on the basis of BW. The dietary treatments included a basal diet supplemented with 0 (control), 1.0 and 1.5 g/kg bacteriophage cocktail. Pigs fed 1.0 and 1.5 g/kg bacteriophage product had greater (P<0.05) average daily gain (ADG), apparent total tract digestibility of dry matter from day 22 to 35, ileal Lactobacillus spp., villus height (duodenum and jejunum), and fewer coliforms (ileum) and Clostridium spp. (ileum). In Experiment 2, 200 weaned piglets were randomly allotted to four treatments. Dietary treatments included basal diet, basal diet supplemented with 3.0 g/kg fermented probiotic product (P), 1.0 g/kg bacteriophage cocktail (B) and combination of 1.0 g/kg bacteriophage cocktail and 3.0 g/kg fermented probiotic product. Pigs fed bacteriophage cocktail diets had greater (P<0.05) overall ADG, gain to feed ratio (G : F), fecal score from day 8 to day 21, and pigs fed bacteriophage cocktail diets had fewer coliforms (ileum) Clostridium spp. (ileum and cecum). Probiotics significantly increased G : F, colonization of Lactobacillus spp. in ileum. At day 35, bacteriophage treatment group showed greater (P<0.05) villus height of the duodenum, but a deeper crypt in duodenum. The present results indicate that the bacteriophage cocktail had a potential to enhance the performance and gut health of weanling pigs, however their combination with probiotics did not show an interaction.

  6. Feed efficiency and the liver proteome of fattening lambs are modified by feed restriction during the suckling period.

    PubMed

    Santos, A; Valdés, C; Giráldez, F J; López, S; France, J; Frutos, J; Fernández, M; Andrés, S

    2018-01-24

    The present study was designed to describe the effects of early feed restriction of Merino lambs on feed efficiency during the fattening period by examining ruminal microbiota and fermentation parameters, gastrointestinal morphology, digestibility or liver proteome. In total, 24 male Merino lambs were randomly assigned to two experimental treatments (n=12 per treatment). Lambs of the first group (ad libitum (ADL)) were kept permanently with the dams, whereas the other 12 lambs (restricted (RES)) were milk restricted. When lambs reached a live BW (LBW) of 15 kg, all the animals were offered the same complete pelleted diet (35 g dry matter/kg LBW per day) until slaughter at a LBW of 27 kg. The RES lambs showed poorer feed efficiency during the fattening period when compared with the ADL group (feed to gain ratio, 3.69 v. 3.05, P<0.001). No differences were observed in ruminal microbiota, fermentation parameters or apparent digestibility. However, the proportion of the small intestine and the length of ileal villi were reduced in the RES lambs. In total, 26 spots/proteins were identified in the liver proteomic profile, with significant differences (P<0.05) between experimental treatments, suggesting a higher catabolism of proteins and a reduction in β-oxidation of fatty acids in RES lambs when compared with the ADL animals. In conclusion, early feed restriction of Merino lambs during the suckling period promotes long-term effects on the small intestine and the proteomic profile of the liver, which may influence the metabolic use of nutrients, thus negatively affecting feed efficiency during the fattening phase.

  7. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model.

    PubMed

    Triff, Karen; McLean, Mathew W; Callaway, Evelyn; Goldsby, Jennifer; Ivanov, Ivan; Chapkin, Robert S

    2018-04-16

    Dietary fermentable fiber generates short-chain fatty acids (SCFA), e.g., butyrate, in the colonic lumen which serves as a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for histone acetylases. In addition, n-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear receptors. In an effort to gain insight into the global dimension of post-translational modification of histones (including H3K4me3 and H3K9ac) and clarify the chemoprotective impact of dietary bioactive compounds on transcriptional control in a preclinical model of colon cancer, we generated high-resolution genome-wide RNA (RNA-Seq) and "chromatin-state" (H3K4me3-seq and H3K9ac-seq) maps for intestinal (epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed diets containing bioactive (i) fish oil, (ii) fermentable fiber (a rich source of SCFA), (iii) a combination of fish oil plus pectin or (iv) control, devoid of fish oil or pectin. In general, poor correlation was observed between differentially transcribed (DE) and enriched genes (DERs) at multiple epigenetic levels. The combinatorial diet (fish oil + pectin) uniquely affected transcriptional profiles in the intestinal epithelium, e.g., upregulating lipid catabolism and beta-oxidation associated genes. These genes were linked to activated ligand-dependent nuclear receptors associated with n-3 PUFA and were also correlated with the mitochondrial L-carnitine shuttle and the inhibition of lipogenesis. These findings demonstrate that the chemoprotective fish oil + pectin combination diet uniquely induces global histone state modifications linked to the expression of chemoprotective genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  8. Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats.

    PubMed

    Lopez, Hubert W; Duclos, Virgile; Coudray, Charles; Krespine, Virginie; Feillet-Coudray, Christine; Messager, Arnaud; Demigné, Christian; Rémésy, Christian

    2003-06-01

    We compared the effects of different kinds of bread fermentation on mineral bioavailability. Wistar rats were fed one of the following experimental diets for 21 d: control, reconstituted whole wheat flour (white flour plus bran), yeast bread, and sourdough bread. The apparent mineral absorption and intestinal fermentation were measured in each animal. Phytate contents in yeast and sourdough bread were lower than in reconstituted whole wheat flour (-52% and -71%, respectively). Total cecal pool of short-chain fatty acids, in particular the butyrate pool, was significantly increased by the ingestion of unrefined products. Calcium homeostasis was not modified by these nutritional conditions, whereas magnesium absorption was significantly greater in rats fed the control and sourdough diets than in those consuming whole wheat flour and yeast bread. Magnesium kidney excretion was slightly stimulated by sourdough bread. Compared with the control diet, iron balance was significantly reduced by reconstituted whole wheat flour diet. Yeast bread making counteracted the deleterious effects of whole wheat on iron absorption, whereas sourdough bread making enhanced iron absorption. Further, liver and plasma iron and transferrin saturation levels were lower in rats adapted to the flour diet than in other groups. Zinc absorption was strongly depressed in the presence of unprocessed reconstituted whole wheat flour in the diet, but yeast fermentation afforded a zinc assimilation comparable to the control diet, whereas the sourdough bread led to maximal zinc absorption. Copper absorption increased significantly when rats were fed the sourdough bread, whereas unprocessed whole flour depressed copper absorption (-41% versus control diet). Mineral bioavailability from reconstituted whole wheat flour can be improved by bread making. Although yeast fermentation minimizes the unfavorable effects of phytic acid, sourdough bread is a better source of available minerals, especially magnesium, iron, and zinc.

  9. Impact of style of processing on retention and bioaccessibility of beta-carotene in cassava (Manihot esculanta, Crantz).

    PubMed

    Thakkar, Sagar K; Huo, Tianyao; Maziya-Dixon, Bussie; Failla, Mark L

    2009-02-25

    We previously demonstrated that the quantity of beta-carotene (BC) partitioning in mixed micelles during simulated small intestinal digestion, i.e., the bioaccessibility, of boiled cassava is highly correlated with the BC content of different cultivars. However, cassava is also traditionally prepared by fermentation and roasting. These different methods of preparation have the potential to affect both the retention and bioaccessibility of BC. Here, we first compared retention of BC in boiled cassava, gari (fermentation followed by roasting), and fufu (fermentation followed by sieving and cooking into a paste) prepared from roots of three cultivars. BC content in unprocessed cultivars ranged from 6-8 microg/g wet weight, with cis isomers accounting for approximately one-third of total BC. Apparent retention of BC was approximately 90% for boiled cassava and fufu. In contrast, roasting fermented cassava at 195 degrees C for 20 min to prepare gari decreased BC content by 90%. Retention was increased to 63% when temperature was decreased to 165 degrees C and roasting was limited to 10 min. Processing was also associated with a decline in all-trans-BC and concomitant increase in 13-cis-BC. The efficiency of micellarization of all-trans and cis isomers of BC during simulated digestion was 25-30% for boiled cassava and gari and independent of cultivar. However, micellarization of BC isomers during digestion of fufu was only 12-15% (P < 0.05). These differences in retention and bioaccessibility of BC from cassava products prepared according to traditional processing methods suggest that gari and fufu may provide less retinol activity equivalents than isocaloric intake of boiled cassava.

  10. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model.

    PubMed

    Cinquin, C; Le Blay, G; Fliss, I; Lacroix, C

    2004-07-01

    Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experiment.

  11. The effects singular or combined administration of fermentable fiber and probiotic on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisii kutum) fingerlings.

    PubMed

    Mirghaed, Ali Taheri; Yarahmadi, Peyman; Hosseinifar, Seyed Hossein; Tahmasebi, Davood; Gheisvandi, Nahid; Ghaedi, Alireza

    2018-06-01

    The aim of the present study was to investigate the effects of single or combined administration of dietary fermentable fiber (Vitacel ® ) and probiotic PrimaLac ® on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisii kutum) fingerlings. Fish were transferred to laboratory, acclimatized for two weeks and then fish (0.56 ± 0.026 g) were allocated into 12 tanks (30 fish per tank). Triplicate groups were fed a basal diet (Control) or basal diet supplemented with fermentable fiber [Vitacel ® ] (FF), probiotic [PrimaLac ® ] (P) and combined fermentable fiber and probiotic (FF + P). At the end of feeding trial, growth performance and feed utilization parameters were significantly (P < 0.05) improved in FF, P and FF + P treatments compared control group. Evaluation of digestive enzyme activity revealed significant (P < 0.05) increase of lipase activity in fish fed supplemented diet. However, amylase, protease and alkaline phosphatase were significantly higher (P < 0.05) only in P and FF + P treatments. Furthermore, total autochthonous intestinal microbiota and autochthonous LAB levels significantly increased in fish fed supplemented diet (P < 0.05). Also, inclusion of FF, P and FF + P in Caspian white fish diet remarkably increased skin mucus immune parameters compared control group (P < 0.05). These results indicate that singular or combined administration of FF and P can be considered as a beneficial dietary supplement for early stages of Caspian white fish (Rutilus fresii kutumn) culture. Copyright © 2018. Published by Elsevier Ltd.

  12. Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5% broccoli dietary fiber or microcrystalline cellulose.

    PubMed

    Paturi, Gunaranjan; Butts, Christine; Monro, John; Nones, Katia; Martell, Sheridan; Butler, Ruth; Sutherland, Juliet

    2010-05-26

    Growing evidence suggests that microbiota in the human gastrointestinal tract play a crucial role in mediating the effects of foods on colonic health and host metabolism. The large bowel ecosystem is known to be perturbed in humans and animals fed high-fat diets and conversely to be protected by fermentable oligosaccharides. We examined the ability of largely fermentable dietary fiber from broccoli ( Brassica oleracea L. var. italica ) and minimally fermented microcrystalline cellulose to buffer against the effects of high-fat intakes. The results showed that high fat lowered food intakes and therefore fiber intake by 27%. The addition of fermentable oligosaccharide to the diet was shown to be beneficial to some microbiota in cecum, altered cecal short-chain fatty acids, and increased the colon crypt depth and the number of goblet cells per crypt in high- and low-fat diets. Although, the fat level was the predominant factor in changes to the large bowel ecosystem, we have shown that broccoli fiber conferred some protection to consumption of a high-fat diet and particularly in terms of colon morphology.

  13. Intestinal ischemia-reperfusion injury in horses: pathogenesis and therapeutics.

    PubMed

    Wong, David M; Moore, Rustin M; Brockus, Charles W

    2012-08-01

    This article discusses the potential role of oxidative injury to the intestinal tract of horses and the therapeutic approaches that have been investigated to decrease cellular damage secondary to ischemia-reperfusion (IR) injury. Equine colic is a major concern for horse owners and veterinary practitioners. Strangulating and obstructive lesions of the small and large intestines commonly require intervention in patients via exploratory celiotomy. However, the application of information from experimentally induced IR injury in horses to clinical cases of naturally occurring equine colic is not clear. Thus, while the exact mechanisms and clinical significance of intestinal IR are being defined and may be matters of academic debate, a review of the available information may provide knowledge of potential underlying pathophysiologic mechanisms contributing to intestinal injury in equine colic. This information may allow clinicians to offer additional therapeutic strategies for horses with strangulating obstruction of the small or large intestine. Further clinical study of the therapeutic options for horses with naturally occurring disease is warranted.

  14. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure.

    PubMed

    Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan

    2017-01-01

    The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.

  15. A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung's disease utilizing ls/ls model mice.

    PubMed

    Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro

    2005-06-01

    Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.

  16. Production of Self-Purifying Proteins in a Variety of Expression Hosts with Focus on Organophosphorus Hydrolase

    DTIC Science & Technology

    2012-08-17

    cell-density fermentation at laboratory scale, and have provided evidence of their effectiveness. Our most recent work has been on the optimization...of the fermentation process itself, as well as a more biochemical optimization of the expression system. Overall, the ARO support on this project...large scale in high-density fermentation in microbial hosts, which is a critical gap in its appeal. The overall goals of our first renewal proposal

  17. Improvement of ε-poly-L-lysine production through seed stage development based on in situ pH monitoring.

    PubMed

    Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui

    2015-01-01

    Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.

  18. [Development and application of morphological analysis method in Aspergillus niger fermentation].

    PubMed

    Tang, Wenjun; Xia, Jianye; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2015-02-01

    Filamentous fungi are widely used in industrial fermentation. Particular fungal morphology acts as a critical index for a successful fermentation. To break the bottleneck of morphological analysis, we have developed a reliable method for fungal morphological analysis. By this method, we can prepare hundreds of pellet samples simultaneously and obtain quantitative morphological information at large scale quickly. This method can largely increase the accuracy and reliability of morphological analysis result. Based on that, the studies of Aspergillus niger morphology under different oxygen supply conditions and shear rate conditions were carried out. As a result, the morphological responding patterns of A. niger morphology to these conditions were quantitatively demonstrated, which laid a solid foundation for the further scale-up.

  19. Abdominal exploration - slideshow

    MedlinePlus

    ... ency/presentations/100049.htm Abdominal exploration - series—Normal ... intestine (jejunum and ileum), the large intestine (colon), the liver, the spleen, the gallbladder, the pancreas, the uterus, ...

  20. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria.

    PubMed

    Salzman, Nita H; de Jong, Hendrik; Paterson, Yvonne; Harmsen, Hermie J M; Welling, Gjalt W; Bos, Nicolaas A

    2002-11-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including Lactobacillus spp., Helicobacter spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the Cytophaga-Flavobacter-Bacteroides phylum, which the authors named 'mouse intestinal bacteria'. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the Eubacterium rectale-Clostridium coccoides group and three clustered within the Bacteroides group. One of the novel sequences was distantly related to Verrucomicrobium spinosum and one was distantly related to Bacillus mycoides. Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence in situ hybridization (FISH).

  1. Development of the normal gastrointestinal microflora of specific pathogen-free chickens.

    PubMed

    Coloe, P J; Bagust, T J; Ireland, L

    1984-02-01

    The development of the normal intestinal microflora of the small intestine, caecum and large intestine of specific pathogen-free (SPF) chickens, was studied in the period from hatching to 84 days of age. No bacteria were detected in any of the sites at hatchery (day 1), but by day 3 significant levels of faecal streptococci and coliforms were isolated from all sites. The flora of the small intestine was limited to faecal streptococci and coliforms for the first 40 days and then lactobacilli became established and dominated the flora. A large variety of facultative and strictly anaerobic organisms colonized the caecum. Many of these species were transient and were only present for a limited period; after 40 days the flora stabilized to consist predominantly of faecal streptococci, Escherichia coli, Bacteroides spp. and Lactobacillus sp. The flora of the large intestine was composed of organisms also present in the small intestine or the caecum. These findings differ from previously published studies on conventionally reared chickens in that the number of species isolated and the population levels of organisms are much lower. This probably reflects the absence of continuous environmental challenge to the chickens because of the housing and feeding facilities in which the chickens were maintained.

  2. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats.

    PubMed

    Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T

    1998-01-01

    SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.

  3. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong

    2014-05-01

    Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00699b

  4. Triennial Growth Symposium: effects of polymeric carbohydrates on growth and development in pigs.

    PubMed

    Bach Knudsen, K E

    2011-07-01

    Polymeric carbohydrates, starch and nonstarch polysaccharides (NSP), quantitatively represent the largest portion of the diets for pigs and are, therefore, the largest energy contributor. The 2 types of polysaccharides, however, have different fates and functions in the gastrointestinal tract and lead to different metabolites upon digestion. Pancreatic and mucosal enzymes in the small intestine break down the majority of starch, whereas NSP primarily are degraded by the microflora in the large intestine. Starch degradation leads to the release of glucose, which is absorbed by an active absorption process that triggers the release of insulin from the pancreas, whereas the fermentation of NSP to short-chain fatty acids (SCFA; i.e., acetate, propionate, and butyrate) occurs at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and amounts of polymeric carbohydrates influence growth and development through different mechanisms. First, the proportion of starch to NSP plays an important role for the content of available energy (i.e., DE, ME, and NE); available energy relative to protein is crucial for performance and carcass quality. Second, the proportion of starch to NSP will influence rate and type of metabolites (i.e., glucose vs. SCFA) deriving from carbohydrate assimilation. Third and finally, the type of starch (i.e., types A, B, and C) and soluble NSP will influence the release of insulin, the hormone that facilitates nutrient uptake by tissues, organs, and cells, and thus plays a critically essential role in protein synthesis and muscle growth, as well as lipid synthesis and adipose tissue growth. In conclusion, polymeric carbohydrates influence growth and development through events in the gut and direct and indirect effects of different metabolites deriving from carbohydrate assimilation. © 2011 American Society of Animal Science. All rights reserved.

  5. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    PubMed

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.

  6. In Vitro Utilization of Amylopectin and High-Amylose Maize (Amylomaize) Starch Granules by Human Colonic Bacteria

    PubMed Central

    Wang, Xin; Conway, Patricia Lynne; Brown, Ian Lewis; Evans, Anthony John

    1999-01-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (Mr) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch. PMID:10543795

  7. Steering Endogenous Butyrate Production in the Intestinal Tract of Broilers as a Tool to Improve Gut Health

    PubMed Central

    Onrust, Lonneke; Ducatelle, Richard; Van Driessche, Karolien; De Maesschalck, Celine; Vermeulen, Karen; Haesebrouck, Freddy; Eeckhaut, Venessa; Van Immerseel, Filip

    2015-01-01

    The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that are sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate-producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS) are such compounds as they can be converted to lactate, which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate-producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies. PMID:26734618

  8. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.

    PubMed

    Mills, Charlotte E; Tzounis, Xenofon; Oruna-Concha, Maria-Jose; Mottram, Don S; Gibson, Glenn R; Spencer, Jeremy P E

    2015-04-28

    Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (P<0·05, relative to the other coffees) induced a significant increase in the growth of Bifidobacterium spp. relative to the control vessel at 10 h after exposure (P<0·05). Similarly, an equivalent quantity of CGA (80·8 mg, matched with that in high-CGA coffee) induced a significant increase in the growth of Bifidobacterium spp. (P<0·05). CGA alone also induced a significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group (P<0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.

  9. Effect of Probiotics/Prebiotics on Cattle Health and Productivity.

    PubMed

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal.

  10. Effect of Probiotics/Prebiotics on Cattle Health and Productivity

    PubMed Central

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal. PMID:26004794

  11. Prebiotics and synbiotics: dietary strategies for improving gut health.

    PubMed

    Krumbeck, Janina A; Maldonado-Gomez, Maria X; Ramer-Tait, Amanda E; Hutkins, Robert W

    2016-03-01

    A wide range of dietary carbohydrates, including prebiotic food ingredients, fermentable fibers, and milk oligosaccharides, are able to produce significant changes in the intestinal microbiota. These shifts in the microbial community are often characterized by increased levels of bifidobacteria and lactobacilli. More recent studies have revealed that species of Faecalibacterium, Akkermansia, and other less well studied members may also be enriched. We review the implications of these recent studies on future design of prebiotics and synbiotics to promote gastrointestinal health. Investigations assessing the clinical outcomes associated with dietary modification of the gut microbiota have shown systemic as well as specific health benefits. Both prebiotic oligosaccharides comprised of a linear arrangement of simple sugars, as well as fiber-rich foods containing complex carbohydrates, have been used in these trials. However, individual variability and nonresponding study participants can make the outcome of dietary interventions less predictable. In contrast, synergistic synbiotics containing prebiotics that specifically stimulate a cognate probiotic provide additional options for personalized gut therapies. This review describes recent research on how prebiotics and fermentable fibers can influence the gut microbiota and result in improvements to human health.

  12. Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers.

    PubMed

    Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R

    2013-06-01

    Grape seed phenolic extract (GSE) is predicted to have health benefits, even though its bioavailability, including digestibility, permeability and ultimate metabolism, are still poorly understood. In vitro gastric and pancreatic digestion and in vitro ileal and faecal fermentation were combined with Caco-2 cell permeability studies for GSE samples. Qualitatively, there was no change in type/number of GSE compounds following gastric and pancreatic digestion and LC-MS analysis. However, the monomers were significantly (P<0.05) increased after gastric digestion, along with a significant (P<0.05) decrease in polymers. In addition, all forms of phenolic compounds decreased following pancreatic digestion. However, none of the original GSE phenolic compounds passed the Caco-2 cell monolayer, since all were recovered in the apical compartment. In contrast, the two intestinal microbiota metabolites with deprotonated molecular weights of [M-H]-165/121 and 193/175, that were found both in the ileal and faecal fermented samples, passed the Caco-2 cell monolayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Lactobacillus brevis strains from fermented aloe vera survive gastroduodenal environment and suppress common food borne enteropathogens.

    PubMed

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research.

  14. Probiotics: Healthy bugs and nourishing elements of diet.

    PubMed

    Pandey, Vijayendra; Berwal, Vikas; Solanki, Neeraj; Malik, Narender Singh

    2015-01-01

    The use of probiotics is based on the concept that adding the right live microbes to the complex human system can result in physiological benefits. The benefit of fermented milk in human diet has been acknowledged since Vedic times; however, the scientific interest in this field was evoked by Ellie Metchinkoff who recommended that people should consume fermented milk containing lactobacilli to prolong their lives, as accelerated aging is due to autointoxication caused by the toxins produced by the gut microflora. They have been used to improve gastrointestinal health and their attractiveness has evinced interest to study their role in the promotion of oral health also. Studies have been widely carried out to establish the role of intestinal lactobacilli as probiotic to treat various gastrointestinal disorders, but only limited studies are available on the oral use of probiotics. The probiotic products usually contain lactobacilli and bifidobacteria, and their demand in the market is growing day by day. This paper provides an overview of various studies in the literature that emphasize on the role of probiotics to combat oral diseases and encourages more research in this field.

  15. Probiotics: Healthy bugs and nourishing elements of diet

    PubMed Central

    Pandey, Vijayendra; Berwal, Vikas; Solanki, Neeraj; Malik, Narender Singh

    2015-01-01

    The use of probiotics is based on the concept that adding the right live microbes to the complex human system can result in physiological benefits. The benefit of fermented milk in human diet has been acknowledged since Vedic times; however, the scientific interest in this field was evoked by Ellie Metchinkoff who recommended that people should consume fermented milk containing lactobacilli to prolong their lives, as accelerated aging is due to autointoxication caused by the toxins produced by the gut microflora. They have been used to improve gastrointestinal health and their attractiveness has evinced interest to study their role in the promotion of oral health also. Studies have been widely carried out to establish the role of intestinal lactobacilli as probiotic to treat various gastrointestinal disorders, but only limited studies are available on the oral use of probiotics. The probiotic products usually contain lactobacilli and bifidobacteria, and their demand in the market is growing day by day. This paper provides an overview of various studies in the literature that emphasize on the role of probiotics to combat oral diseases and encourages more research in this field. PMID:25992331

  16. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    PubMed

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Lactobacillus brevis Strains from Fermented Aloe vera Survive Gastroduodenal Environment and Suppress Common Food Borne Enteropathogens

    PubMed Central

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research. PMID:24598940

  18. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    PubMed

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  20. Editorial: Emerging approaches for typing, detection, characterization, and traceback of Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Commensal E. coli inhabit the large intestines of humans and animals and are important in maintaining normal intestinal homeostasis. There are also many groups of disease-causing E. coli, including diarrheagenic and extra-intestinal pathogenic E. coli (ExPEC). There are approximately O188 somatic O...

Top