Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
Two modular neuro-fuzzy system for mobile robot navigation
NASA Astrophysics Data System (ADS)
Bobyr, M. V.; Titov, V. S.; Kulabukhov, S. A.; Syryamkin, V. I.
2018-05-01
The article considers the fuzzy model for navigation of a mobile robot operating in two modes. In the first mode the mobile robot moves along a line. In the second mode, the mobile robot looks for an target in unknown space. Structural and schematic circuit of four-wheels mobile robot are presented in the article. The article describes the movement of a mobile robot based on two modular neuro-fuzzy system. The algorithm of neuro-fuzzy inference used in two modular control system for movement of a mobile robot is given in the article. The experimental model of the mobile robot and the simulation of the neuro-fuzzy algorithm used for its control are presented in the article.
Zens, Martin; Grotejohann, Birgit; Tassoni, Adrian; Duttenhoefer, Fabian; Südkamp, Norbert P; Niemeyer, Philipp
2017-05-23
Observational studies have proven to be a valuable resource in medical research, especially when performed on a large scale. Recently, mobile device-based observational studies have been discovered by an increasing number of researchers as a promising new source of information. However, the development and deployment of app-based studies is not trivial and requires profound programming skills. The aim of this project was to develop a modular online research platform that allows researchers to create medical studies for mobile devices without extensive programming skills. The platform approach for a modular research platform consists of three major components. A Web-based platform forms the researchers' main workplace. This platform communicates via a shared database with a platform independent mobile app. Furthermore, a separate Web-based login platform for physicians and other health care professionals is outlined and completes the concept. A prototype of the research platform has been developed and is currently in beta testing. Simple questionnaire studies can be created within minutes and published for testing purposes. Screenshots of an example study are provided, and the general working principle is displayed. In this project, we have created a basis for a novel research platform. The necessity and implications of a modular approach were displayed and an outline for future development given. International researchers are invited and encouraged to participate in this ongoing project. ©Martin Zens, Birgit Grotejohann, Adrian Tassoni, Fabian Duttenhoefer, Norbert P Südkamp, Philipp Niemeyer. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2017.
Modular survivable satellite support
NASA Astrophysics Data System (ADS)
Wagner, R. E.
The development of a highly mobile, survivable satellite system from the Transportable Mobile Ground Station (T/MGS) is proposed. The addition of advanced capabilities to the T/MGS such as telemetry processing equipment, and the flexibility of a modularly designed system are examined. The need to increase survivability and mobility while reducing life cycle costs is discussed. A modular survivable satellite support system which consists of a 40-foot van, a diesel tractor, and a multimedia communications subsystem is described. The use of planar and phased arrays to improve transportability and new materials and structural designs to enhance hardness are discussed. Diagrams of the system are provided.
SMARBot: a modular miniature mobile robot platform
NASA Astrophysics Data System (ADS)
Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew
2008-04-01
Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.
Manufactured Housing--The Modular Home in Texas.
ERIC Educational Resources Information Center
Sindt, Roger P.
This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…
Serum Metal Ion Levels Following Total Hip Arthroplasty With Modular Dual Mobility Components.
Matsen Ko, Laura J; Pollag, Kimberley E; Yoo, Joanne Y; Sharkey, Peter F
2016-01-01
Dual mobility acetabular components can reduce the incidence of total hip arthroplasty (THA) instability. Modular dual mobility (MDM) components facilitate acetabular component implantation. However, corrosion can occur at modular junctions. Serum cobalt and chromium levels and Oxford scores were obtained at minimum two year follow-up for 100 consecutive patients who had THA with MDM components. Average Oxford score was 43 (range 13-48). Average serum cobalt and chromium values were 0.7 mcg/L (range, 0.0 to 7.0) and 0.6 mcg/L (range, 0.1 to 2.7), respectively. MARS MRI was performed for four patients with pain and elevated serum cobalt levels. Two of these studies were consistent with adverse local tissue reaction. We recommend use of MDM implants in only patients at high risk for dislocation following THA. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic Responses of Modular Hybrid Pier to Docking and Drifting Ships
2011-10-01
Utilities for ship “ hotel ” services are on the lower, “service” deck. This leaves the operations deck uncluttered for operation of mobile cranes...expand the simulation domain by adding a large outer basin around the core basin as shown in Figure 12 to allow proper propagation of the outbound ...accommodate larger distortions, implying a longer standoff distance once ship docking is completed, hamper cargo transfer and logistic operations
Fully decentralized estimation and control for a modular wheeled mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutambara, A.G.O.; Durrant-Whyte, H.F.
2000-06-01
In this paper, the problem of fully decentralized data fusion and control for a modular wheeled mobile robot (WMR) is addressed. This is a vehicle system with nonlinear kinematics, distributed multiple sensors, and nonlinear sensor models. The problem is solved by applying fully decentralized estimation and control algorithms based on the extended information filter. This is achieved by deriving a modular, decentralized kinematic model by using plane motion kinematics to obtain the forward and inverse kinematics for a generalized simple wheeled vehicle. This model is then used in the decentralized estimation and control algorithms. WMR estimation and control is thusmore » obtained locally using reduced order models with reduced communication of information between nodes is carried out after every measurement (full rate communication), the estimates and control signals obtained at each node are equivalent to those obtained by a corresponding centralized system. Transputer architecture is used as the basis for hardware and software design as it supports the extensive communication and concurrency requirements that characterize modular and decentralized systems. The advantages of a modular WMR vehicle include scalability, application flexibility, low prototyping costs, and high reliability.« less
Self mobile space manipulator project
NASA Technical Reports Server (NTRS)
Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo
1992-01-01
A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.
Faxing Structures to the Moon: Freeform Additive Construction System (FACS)
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John
2013-01-01
Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.
Obstacle avoidance system with sonar sensing and fuzzy logic
NASA Astrophysics Data System (ADS)
Chiang, Wen-chuan; Kelkar, Nikhal; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of an obstacle avoidance system using sonar sensors for a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. The obstacle avoidance system is based on a micro-controller interfaced with multiple ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends a distance measurement back to the computer via the serial line. This design yields a portable independent system. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous obstacle avoidance controller applicable for any mobile vehicle with only minor adaptations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cester, D.; Lunardon, M.; Stevanato, L.
2015-07-01
MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)
Automatic Modeling and Simulation of Modular Robots
NASA Astrophysics Data System (ADS)
Jiang, C.; Wei, H.; Zhang, Y.
2018-03-01
The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.
A modular wireless in vivo surgical robot with multiple surgical applications.
Hawks, Jeff A; Rentschler, Mark E; Farritor, Shane; Oleynikov, Dmitry; Platt, Stephen R
2009-01-01
The use of miniature in vivo robots that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Previous work demonstrates that both mobile and fixed-based robots can successfully operate inside the abdominal cavity. A modular wireless mobile platform has also been developed to provide surgical vision and task assistance. This paper presents an overview of recent test results of several possible surgical applications that can be accommodated by this modular platform. Applications such as a biopsy grasper, stapler and clamp, video camera, and physiological sensors have been integrated into the wireless platform and tested in vivo in a porcine model. The modular platform facilitates rapid development and conversion from one type of surgical task assistance to another. These self-contained surgical devices are much more transportable and much lower in cost than current robotic surgical assistants. These devices could ultimately be carried and deployed by non-medical personnel at the site of an injury. A remotely located surgeon could use these robots to provide critical first response medical intervention.
Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Rong, E-mail: rongchen@mail.hust.edu.cn; Lin, Ji-Long; He, Wen-Jie
2016-09-15
Spatial atomic layer deposition (S-ALD) is a potential high-throughput manufacturing technique offering fast and large scale ultrathin films deposition. Here, an S-ALD system with modular injectors is introduced for fabricating binary oxides and their nanolaminates. By optimizing the deposition conditions, both ZnO and TiO{sub 2} films demonstrate linear growth and desired surface morphology. The as-deposited ZnO film has high carrier mobility, and the TiO{sub 2} film shows suitable optical transmittance and band gap. The ZnO/TiO{sub 2} nanolaminates are fabricated by alternating substrate movement between each S-ALD modular units of ZnO and TiO{sub 2}. The grazing incidence x-ray diffraction spectra ofmore » nanolaminates demonstrating the signature peaks are weaker for the same thickness nanolaminates with more bilayers, suggesting tuning nanolaminates from crystalline to amorphous. Optical transmittances of ZnO/TiO{sub 2} laminates are enhanced with the increase of the bilayers' number in the visible range. Refractive indices of nanolaminates increase with the thickness of each bilayer decreasing, which demonstrates the feasibility of obtaining desired refractive indices by controlling the bilayer number. The electronic properties, including mobility, carrier concentration, and conductivity, are also tunable with different bilayers.« less
Modular Filter and Source-Management Upgrade of RADAC
NASA Technical Reports Server (NTRS)
Lanzi, R. James; Smith, Donna C.
2007-01-01
In an upgrade of the Range Data Acquisition Computer (RADAC) software, a modular software object library was developed to implement required functionality for filtering of flight-vehicle-tracking data and management of tracking-data sources. (The RADAC software is used to process flight-vehicle metric data for realtime display in the Wallops Flight Facility Range Control Center and Mobile Control Center.)
Development of a mobile robot for the 1995 AUVS competition
NASA Astrophysics Data System (ADS)
Matthews, Bradley O.; Ruthemeyer, Michael A.; Perdue, David; Hall, Ernest L.
1995-12-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors systems. The speed and steering control are supervised by a 486 computer through a 3-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. The is micro-controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system, where even computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating with the computer the X,Y coordinates of the lane marker. Testing of these systems yielded positive results by showing that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous controller applicable for any mobile vehicle with only minor adaptations.
2008-06-13
Mobility Division AMLO Air Mobility Liaison Officer AMR Air Movement Request AO Area of Operations AOC Air and Space Operations Center BAE...those forces and by doctrine can only advise the AOC Director. Adding to this confused chain of command, the Air Mobility Liaison Officers ( AMLO ...there is not a commander of airlift forces and the AMLO typically answers to Air Mobility Command’s (AMC) 18th Air Force Commander when deployed to
The relative efficiency of modular and non-modular networks of different size
Tosh, Colin R.; McNally, Luke
2015-01-01
Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996
A Modular Habitation System for Human Planetary and Space Exploration
NASA Technical Reports Server (NTRS)
Howe, A. Scott
2015-01-01
A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.
Code of Federal Regulations, 2013 CFR
2013-10-01
... from the requirement to report prior to the report-for-duty time. Camp car means a trailer and/or on-track vehicle, including an outfit, camp, bunk car, or modular home mounted on a flatcar, or any other mobile vehicle or mobile structure used to house or accommodate an employee or MOW worker. An office car...
Code of Federal Regulations, 2014 CFR
2014-10-01
... from the requirement to report prior to the report-for-duty time. Camp car means a trailer and/or on-track vehicle, including an outfit, camp, bunk car, or modular home mounted on a flatcar, or any other mobile vehicle or mobile structure used to house or accommodate an employee or MOW worker. An office car...
Design and Development of a Low-Cost Aerial Mobile Mapping System for Multi-Purpose Applications
NASA Astrophysics Data System (ADS)
Acevedo Pardo, C.; Farjas Abadía, M.; Sternberg, H.
2015-08-01
The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.
Laboratory on legs: an architecture for adjustable morphology with legged robots
NASA Astrophysics Data System (ADS)
Haynes, G. Clark; Pusey, Jason; Knopf, Ryan; Johnson, Aaron M.; Koditschek, Daniel E.
2012-06-01
For mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize the diversity of applications and experiments. To address this issue, we introduce a modular architecture originally developed and tested in the design and implementation of the X-RHex hexapod that allows the robot to operate as a mobile laboratory on legs. In the present paper we will introduce the specification, design and very earliest operational data of Canid, an actively driven compliant-spined quadruped whose completely different morphology and intended dynamical operating point are nevertheless built around exactly the same "Lab on Legs" actuation, computation, and sensing infrastructure. We will review as well, more briefly a second RHex variation, the XRL platform, built using the same components.
ATHLETE as a Mobile ISRU and Regolith Construction Platform
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; Barmatz, Martin; Voecks, Gerald
2016-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility platform can provide precision positioning and mobility for site preparation and regolith construction needs. ATHLETE is a multi-use platform designed to use swap-out tools and implements that can be applied to any number of tasks that need precision limb manipulation or mobility. Major capabilities include off-loading habitats, transporting surface assets, robotically assembling outposts from multiple mission manifests, and supporting science and technology objectives. This paper describes conceptual approaches for supporting NASA regolith construction research, such as additive construction, modular brick and panel factory, and mobile ISRU platform.
A reconfigurable, wearable, wireless ECG system.
Borromeo, S; Rodriguez-Sanchez, C; Machado, F; Hernandez-Tamames, J A; de la Prieta, R
2007-01-01
New emerging concepts as "wireless hospital", "mobile healthcare" or "wearable telemonitoring" require the development of bio-signal acquisition devices to be easily integrated into the clinical routine. In this work, we present a new system for Electrocardiogram (ECG) acquisition and its processing, with wireless transmission on demand (either the complete ECG or only one alarm message, just in case a pathological heart rate detected). Size and power consumption are optimized in order to provide mobility and comfort to the patient. We have designed a modular hardware system and an autonomous platform based on a Field-Programmable Gate Array (FPGA) for developing and debugging. The modular approach allows to redesign the system in an easy way. Its adaptation to a new biomedical signal would only need small changes on it. The hardware system is composed of three layers that can be plugged/unplugged: communication layer, processing layer and sensor layer. In addition, we also present a general purpose end-user application developed for mobile phones or Personal Digital Assistant devices (PDAs).
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 63.4681 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Application of trademarks and grade stamp to reconstituted wood products or plywood. (vii) Application of nail... prefabricated homes and mobile/modular homes. (4) Surface coating that occurs at research or laboratory...
40 CFR 63.4681 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Application of trademarks and grade stamp to reconstituted wood products or plywood. (vii) Application of nail... prefabricated homes and mobile/modular homes. (4) Surface coating that occurs at research or laboratory...
40 CFR 63.4681 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Application of trademarks and grade stamp to reconstituted wood products or plywood. (vii) Application of nail... prefabricated homes and mobile/modular homes. (4) Surface coating that occurs at research or laboratory...
NASA Astrophysics Data System (ADS)
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements
NASA Technical Reports Server (NTRS)
Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.
2017-01-01
NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to traditional construction methods without compromising the preservation of the sample or Earth.
Modeling information diffusion in time-varying community networks
NASA Astrophysics Data System (ADS)
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Cook, David J; Moradkhani, Anilga; Douglas, Kristin S Vickers; Prinsen, Sharon K; Fischer, Erin N; Schroeder, Darrell R
2014-04-01
The objective of this investigation was to assess whether a new electronic health (e-health) platform, combining mobile computing and a content management system, could effectively deliver modular and "just-in-time" education to older patients following cardiac surgery. Patients were provided with iPad(®) (Apple(®), Cupertino, CA) tablets that delivered educational modules as part of a daily "to do" list in a plan of care. The tablet communicated wirelessly to a dashboard where data were aggregated and displayed for providers. A surgical population of 149 patients with a mean age of 68 years utilized 5,267 of 6,295 (84%) of education modules delivered over a 5.3-day hospitalization. Increased age was not associated with decreased use. We demonstrate that age, hospitalization, and major surgery are not significant barriers to effective patient education if content is highly consumable and relevant to patients' daily care experience. We also show that mobile technology, even if unfamiliar to many older patients, makes this possible. The combination of mobile computing with a content management system allows for dynamic, modular, personalized, and "just-in-time" education in a highly consumable format. This approach presents a means by which patients may become informed participants in new healthcare models.
A Modular Localization System as a Positioning Service for Road Transport
Brida, Peter; Machaj, Juraj; Benikovsky, Jozef
2014-01-01
In recent times smart devices have attracted a large number of users. Since many of these devices allow position estimation using Global Navigation Satellite Systems (GNSS) signals, a large number of location-based applications and services have emerged, especially in transport systems. However GNSS signals are affected by the environment and are not always present, especially in dense urban environment or indoors. In this work firstly a Modular Localization Algorithm is proposed to allow seamless switching between different positioning modules. This helps us develop a positioning system that is able to provide position estimates in both indoor and outdoor environments without any user interaction. Since the proposed system can run as a service on any smart device, it could allow users to navigate not only in outdoor environments, but also indoors, e.g., underground garages, tunnels etc. Secondly we present the proposal of a 2-phase map reduction algorithm which allows one to significantly reduce the complexity of position estimation processes in case that positioning is performed using a fingerprinting framework. The proposed 2-phase map reduction algorithm can also improve the accuracy of the position estimates by filtering out reference points that are far from the mobile device. Both algorithms were implemented into a positioning system and tested in real world conditions in both indoor and outdoor environments. PMID:25353979
Rasid, Mohd Fadlee A; Woodward, Bryan
2005-03-01
One of the emerging issues in m-Health is how best to exploit the mobile communications technologies that are now almost globally available. The challenge is to produce a system to transmit a patient's biomedical signals directly to a hospital for monitoring or diagnosis, using an unmodified mobile telephone. The paper focuses on the design of a processor, which samples signals from sensors on the patient. It then transmits digital data over a Bluetooth link to a mobile telephone that uses the General Packet Radio Service. The modular design adopted is intended to provide a "future-proofed" system, whose functionality may be upgraded by modifying the software.
Design and development of solar power-assisted manual/electric wheelchair.
Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min
2014-01-01
Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.
NASA Astrophysics Data System (ADS)
Gutwill-Wise, Joshua P.
2001-05-01
This study evaluates new materials, "modules", for teaching introductory chemistry courses. The modules, under development by faculty from two NSF-funded consortia, employ real-world contexts and an interactive class format to foster conceptual understanding, scientific thinking, and improved attitudes toward science. The evaluation studies were conducted at two institutions, a small college and a large university. The experimental design at each school compared students in a course section taught with modules to those in a section that used a textbook and lecture format. At both schools, students in the modular section outperformed the control group on conceptual problems in chemistry and on scientific thinking problems. Modular section students at the large university also outperformed their peers on the first midterm exam in the subsequent organic chemistry course. Regarding attitudes, the modular section students were more positive about chemistry and the course than their peers in the control section at the small college. However, at the large school, the opposite attitudinal pattern was found. An analysis of informal focus group data provides insight into the negative attitudes in the modular section of the large course. Possible remedies for the issues raised are discussed.
Design and implementation of modular home security system with short messaging system
NASA Astrophysics Data System (ADS)
Budijono, Santoso; Andrianto, Jeffri; Axis Novradin Noor, Muhammad
2014-03-01
Today we are living in 21st century where crime become increasing and everyone wants to secure they asset at their home. In that situation user must have system with advance technology so person do not worry when getting away from his home. It is therefore the purpose of this design to provide home security device, which send fast information to user GSM (Global System for Mobile) mobile device using SMS (Short Messaging System) and also activate - deactivate system by SMS. The Modular design of this Home Security System make expandable their capability by add more sensors on that system. Hardware of this system has been designed using microcontroller AT Mega 328, PIR (Passive Infra Red) motion sensor as the primary sensor for motion detection, camera for capturing images, GSM module for sending and receiving SMS and buzzer for alarm. For software this system using Arduino IDE for Arduino and Putty for testing connection programming in GSM module. This Home Security System can monitor home area that surrounding by PIR sensor and sending SMS, save images capture by camera, and make people panic by turn on the buzzer when trespassing surrounding area that detected by PIR sensor. The Modular Home Security System has been tested and succeed detect human movement.
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA Technical Reports Server (NTRS)
Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.
2014-01-01
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.
Planning Related to the Curation and Processing of Returned Martian Samples
NASA Astrophysics Data System (ADS)
McCubbin, F. M.; Harrington, A. D.
2018-04-01
Many of the planning activities in the NASA Astromaterials Acquisition and Curation Office at JSC are centered around Mars Sample Return. The importance of contamination knowledge and the benefits of a mobile/modular receiving facility are discussed.
A Software Architecture for Adaptive Modular Sensing Systems
Lyle, Andrew C.; Naish, Michael D.
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614
A software architecture for adaptive modular sensing systems.
Lyle, Andrew C; Naish, Michael D
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
Large-scale modular biofiltration system for effective odor removal in a composting facility.
Lin, Yueh-Hsien; Chen, Yu-Pei; Ho, Kuo-Ling; Lee, Tsung-Yih; Tseng, Ching-Ping
2013-01-01
Several different foul odors such as nitrogen-containing groups, sulfur-containing groups, and short-chain fatty-acids commonly emitted from composting facilities. In this study, an experimental laboratory-scale bioreactor was scaled up to build a large-scale modular biofiltration system that can process 34 m(3)min(-1)waste gases. This modular reactor system was proven effective in eliminating odors, with a 97% removal efficiency for 96 ppm ammonia, a 98% removal efficiency for 220 ppm amines, and a 100% removal efficiency of other odorous substances. The results of operational parameters indicate that this modular biofiltration system offers long-term operational stability. Specifically, a low pressure drop (<45 mmH2O m(-1)) was observed, indicating that the packing carrier in bioreactor units does not require frequent replacement. Thus, this modular biofiltration system can be used in field applications to eliminate various odors with compact working volume.
Sensor deployment on unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Gerhart, Grant R.; Witus, Gary
2007-10-01
TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.
Moradkhani, Anilga; Douglas, Kristin S. Vickers; Prinsen, Sharon K.; Fischer, Erin N.; Schroeder, Darrell R.
2014-01-01
Abstract Objective: The objective of this investigation was to assess whether a new electronic health (e-health) platform, combining mobile computing and a content management system, could effectively deliver modular and “just-in-time” education to older patients following cardiac surgery. Subjects and Methods: Patients were provided with iPad® (Apple®, Cupertino, CA) tablets that delivered educational modules as part of a daily “to do” list in a plan of care. The tablet communicated wirelessly to a dashboard where data were aggregated and displayed for providers. Results: A surgical population of 149 patients with a mean age of 68 years utilized 5,267 of 6,295 (84%) of education modules delivered over a 5.3-day hospitalization. Increased age was not associated with decreased use. Conclusions: We demonstrate that age, hospitalization, and major surgery are not significant barriers to effective patient education if content is highly consumable and relevant to patients' daily care experience. We also show that mobile technology, even if unfamiliar to many older patients, makes this possible. The combination of mobile computing with a content management system allows for dynamic, modular, personalized, and “just-in-time” education in a highly consumable format. This approach presents a means by which patients may become informed participants in new healthcare models. PMID:24443928
Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597
Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.
Integrated Microsensors for Autonomous Microrobots
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADKINS, DOUGLAS R.; BYRNE, RAYMOND H.; HELLER, EDWIN J.
2003-02-01
This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.
1996-01-01
INTENSIFICATION (AI2) ATD AERIAL SCOUT SENSORS INTEGRATION (ASSI) BISTATIC RADAR FOR WEAPONS LOCATION (BRWL) ATD CLOSE IN MAN PORTABLE MINE DETECTOR (CIMMD...MS IV PE & LINE #: 1X428010.D107 HI Operations/Support DESCRIPTION: The AN/TTC-39A Circuit Switch is a 744 line mobile , automatic ...SYNOPSIS: AN/TTC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL COMSEC AND MULTIPLEX EQUIPMENT. AN/TTC
Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar
NASA Astrophysics Data System (ADS)
Nicolls, M.
The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.
2009-12-10
Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,
Extensible Hardware Architecture for Mobile Robots
NASA Technical Reports Server (NTRS)
Park, Eric; Kobayashi, Linda; Lee, Susan Y.
2005-01-01
The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the k9 rover. and won to be integrated onto the K10 series of human-robot collaboration research robots, this architecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide vane6 of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10 , followed by plans for future work.
Analysis of three-dimensionally proliferated sensor architectures for flexible SSA
NASA Astrophysics Data System (ADS)
Cunio, Phillip M.; Flewelling, Brien
2018-05-01
The evolution of space into a congested, contested, and competitive regime drives a commensurate need for awareness of events there. As the number of systems on orbit grows, so will the need for sensing and tracking these systems. One avenue for advanced sensing capability is a widespread network of small but capable Space Situational Awareness (SSA) sensors, proliferated widely in the three-dimensional volume extending from the Earth's surface to the Geosynchronous Earth Orbit (GEO) belt, incorporating multiple different varieties and types of sensors. Due to the freedom of movement afforded by solid surfaces and atmosphere, some of these sensors may have substantial mobility. Accordingly, designing a network for maximum SSA coverage at reasonable cost may entail heterogeneous architectures with common logistics (including modular sensor packages or mobility platforms, which may be flexibly re-assigned). Smaller mobile sensors leveraging Commercial-Off-The-Shelf (COTS) components and software are appealing for their ability to simplify logistics versus large, monolithic, uniquely-exquisite sensor systems. This paper examines concepts for such sensor systems, and analyzes the costs associated with their use, while assessing the benefits (including reduced gap time, weather resilience, and multiple-sensor coverage) that such an architecture enables. Recommendations for preferred modes and mixes of fielding sensors in a heterogeneous architecture are made, and directions for future related research are suggested.
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305
49 CFR 228.101 - Distance requirement; definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... determined in accordance with rules prescribed by the Secretary of Transportation) of any area where railroad... of a new facility; (ii) Expansion of an existing facility; (iii) Placement of a mobile or modular...) Replacement of an existing facility with a new facility on the same site; or (ii) Rehabilitation or...
The modular socket system in a rural setting in Indonesia.
Giesberts, Bob; Ennion, Liezel; Hjelmstrom, Olle; Karma, Agusni; Lechler, Knut; Hekman, Edsko; Bergsma, Arjen
2018-06-01
Prosthetic services are inaccessible to people living in rural areas. Systems like the modular socket system have the potential to be fabricated outside of the prosthetic workshop. This study aimed to evaluate the patient's performance and satisfaction with the use of the modular socket system, and the technical feasibility of its implementation in a rural setting. A quantitative longitudinal descriptive study design was followed. A total of 15 persons with a lower limb amputation were fitted with the modular socket system and followed over 4-6 months. Performance was measured using a 2-min walk test, 10-m walk test and mobility and function questionnaire. Satisfaction was measured by the Socket Fit Comfort Score, Prosthesis Evaluation Questionnaire and EuroQoL 5 Dimensions 5 Levels. Notes on technical feasibility were taken at the moment of fitting ( t 0 ), at 1-3 months post fitting ( t 1 ) and at the end evaluation at 4-6 months post fitting ( t 2 ). Performance did not change between t 0 and t 2 . The comfort of the socket fit reduced between t 0 and t 2 . Satisfaction with prosthesis and general health status stayed constant over time. The average fitting-time for the modular socket system was 6.4 h. The modular socket system can be considered a useful alternative for use in rural settings. Clinical relevance The use of the modular socket system is feasible and can improve accessibility to prosthetic technology in rural areas. Experienced prosthetic users were satisfied with the performance and the device. The shorter manufacturing time and use of only hand-held tools makes it an ideal alternative for use in remote and rural settings.
Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard
2017-04-01
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
X-ray optics for the LAMAR facility, an overview. [Large Area Modular Array of Reflectors
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The paper surveys the Large Area Modular Array of Reflectors (LAMAR), the concept of which is based on meeting two major requirements in X-ray astronomy, large collecting area and moderately good or better angular resolution for avoiding source confusion and imaging source fields. It is shown that the LAMAR provides the same sensitivity and signal to noise in imaging as a single large telescope having the same area and angular resolution but is a great deal less costly to develop, construct, and integrate into a space mission. Attention is also given to the LAMAR modular nature which will allow for an evolutionary development from a modest size array on Spacelab to a Shuttle launched free flyer. Finally, consideration is given to manufacturing methods which show promise of making LAMAR meet the criteria of good angular resolution, relatively low cost, and capability for fast volume production.
Qian, Jun; Zi, Bin; Ma, Yangang; Zhang, Dan
2017-01-01
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields. PMID:28891964
Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan
2017-09-10
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.
Clustering algorithm for determining community structure in large networks
NASA Astrophysics Data System (ADS)
Pujol, Josep M.; Béjar, Javier; Delgado, Jordi
2006-07-01
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.
The development of a lightweight modular compliant surface bio-inspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John
2004-09-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morphable robot for military forces in the field and for other industrial uses. The USTLAB effort builds on proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. In Phase I, basic open plant stability was proven for climbing over obstacles of ~18 inches high and traversing ~75 degree inclines (up, down, or sideways) in a platform of approximately 15 kilograms. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved changes which currently enable future work in active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), and we have reduced platform weight by one third. Currently the vehicle weighs 10 kilograms and will grow marginally as additional actuation, MEMS based organic sensing, payload, and autonomous processing is added. The CSR vehicle"s modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process and the vehicle characteristics will be discussed.
The application of SMA spring actuators to a lightweight modular compliant surface bioinspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John; Liang, Robert; Taya, Minoru
2004-07-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morph-able robot for military forces in the field and for other industrial uses. The USTLAB and University of Washington Center for Intelligent Materials and Systems (CIMS) effort builds on USTLAB proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. A collaborative effort between USTLAB and UW-CIMS explored the application of Shape Memory Alloy Nickel Titanium Alloy springs to a leg extension actuator capable of actuating with 4.5 Newton force over a 50 mm stroke. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved conventional actuation which currently enable active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), have developed a leg extension actuator demonstration model, and we have positioned our team to pursue a small vehicle with leg extension actuators in follow on work. The CSR vehicle's modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process, actuator and vehicle characteristics will be discussed.
Tarity, T David; Koch, Chelsea N; Burket, Jayme C; Wright, Timothy M; Westrich, Geoffrey H
2017-03-01
Adverse local tissue reaction formation has been suggested to occur with the Modular Dual Mobility (MDM) acetabular design. Few reports in the literature have evaluated fretting and corrosion damage between the acetabular shell and modular metal inserts in this modular system. We evaluated a series of 18 retrieved cobalt chromium MDM inserts for evidence of fretting and corrosion. We assessed the backsides of 18 MDM components for evidence of fretting and corrosion in polar and taper regions based on previously established methods. We collected and assessed 30 similarly designed modular inserts retrieved from metal-on-metal (MoM) total hip arthroplasties as a control. No specific pattern of fretting or corrosion was identified on the MDM inserts. Both fretting and corrosion were significantly greater in the MoM cohort than the MDM cohort, driven by higher fretting and corrosion scores in the engaged taper region of the MoM inserts. MoM components demonstrated more fretting and corrosion than MDM designs, specifically at the taper region, likely driven by differences in the taper engagement mechanism and geometry among the insert designs. The lack of significant fretting and corrosion observed in the MDM inserts are inconsistent with recent claims that this interface may produce clinically significant metallosis and adverse local tissue reactions. Copyright © 2016 Elsevier Inc. All rights reserved.
A modular computational framework for automated peak extraction from ion mobility spectra
2014-01-01
Background An ion mobility (IM) spectrometer coupled with a multi-capillary column (MCC) measures volatile organic compounds (VOCs) in the air or in exhaled breath. This technique is utilized in several biotechnological and medical applications. Each peak in an MCC/IM measurement represents a certain compound, which may be known or unknown. For clustering and classification of measurements, the raw data matrix must be reduced to a set of peaks. Each peak is described by its coordinates (retention time in the MCC and reduced inverse ion mobility) and shape (signal intensity, further shape parameters). This fundamental step is referred to as peak extraction. It is the basis for identifying discriminating peaks, and hence putative biomarkers, between two classes of measurements, such as a healthy control group and a group of patients with a confirmed disease. Current state-of-the-art peak extraction methods require human interaction, such as hand-picking approximate peak locations, assisted by a visualization of the data matrix. In a high-throughput context, however, it is preferable to have robust methods for fully automated peak extraction. Results We introduce PEAX, a modular framework for automated peak extraction. The framework consists of several steps in a pipeline architecture. Each step performs a specific sub-task and can be instantiated by different methods implemented as modules. We provide open-source software for the framework and several modules for each step. Additionally, an interface that allows easy extension by a new module is provided. Combining the modules in all reasonable ways leads to a large number of peak extraction methods. We evaluate all combinations using intrinsic error measures and by comparing the resulting peak sets with an expert-picked one. Conclusions Our software PEAX is able to automatically extract peaks from MCC/IM measurements within a few seconds. The automatically obtained results keep up with the results provided by current state-of-the-art peak extraction methods. This opens a high-throughput context for the MCC/IM application field. Our software is available at http://www.rahmannlab.de/research/ims. PMID:24450533
A modular computational framework for automated peak extraction from ion mobility spectra.
D'Addario, Marianna; Kopczynski, Dominik; Baumbach, Jörg Ingo; Rahmann, Sven
2014-01-22
An ion mobility (IM) spectrometer coupled with a multi-capillary column (MCC) measures volatile organic compounds (VOCs) in the air or in exhaled breath. This technique is utilized in several biotechnological and medical applications. Each peak in an MCC/IM measurement represents a certain compound, which may be known or unknown. For clustering and classification of measurements, the raw data matrix must be reduced to a set of peaks. Each peak is described by its coordinates (retention time in the MCC and reduced inverse ion mobility) and shape (signal intensity, further shape parameters). This fundamental step is referred to as peak extraction. It is the basis for identifying discriminating peaks, and hence putative biomarkers, between two classes of measurements, such as a healthy control group and a group of patients with a confirmed disease. Current state-of-the-art peak extraction methods require human interaction, such as hand-picking approximate peak locations, assisted by a visualization of the data matrix. In a high-throughput context, however, it is preferable to have robust methods for fully automated peak extraction. We introduce PEAX, a modular framework for automated peak extraction. The framework consists of several steps in a pipeline architecture. Each step performs a specific sub-task and can be instantiated by different methods implemented as modules. We provide open-source software for the framework and several modules for each step. Additionally, an interface that allows easy extension by a new module is provided. Combining the modules in all reasonable ways leads to a large number of peak extraction methods. We evaluate all combinations using intrinsic error measures and by comparing the resulting peak sets with an expert-picked one. Our software PEAX is able to automatically extract peaks from MCC/IM measurements within a few seconds. The automatically obtained results keep up with the results provided by current state-of-the-art peak extraction methods. This opens a high-throughput context for the MCC/IM application field. Our software is available at http://www.rahmannlab.de/research/ims.
The Case for Modular Redundancy in Large-Scale High Performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L
2009-01-01
Recent investigations into resilience of large-scale high-performance computing (HPC) systems showed a continuous trend of decreasing reliability and availability. Newly installed systems have a lower mean-time to failure (MTTF) and a higher mean-time to recover (MTTR) than their predecessors. Modular redundancy is being used in many mission critical systems today to provide for resilience, such as for aerospace and command \\& control systems. The primary argument against modular redundancy for resilience in HPC has always been that the capability of a HPC system, and respective return on investment, would be significantly reduced. We argue that modular redundancy can significantly increasemore » compute node availability as it removes the impact of scale from single compute node MTTR. We further argue that single compute nodes can be much less reliable, and therefore less expensive, and still be highly available, if their MTTR/MTTF ratio is maintained.« less
Modularized battery management for large lithium ion cells
NASA Astrophysics Data System (ADS)
Stuart, Thomas A.; Zhu, Wei
A modular electronic battery management system (BMS) is described along with important features for protecting and optimizing the performance of large lithium ion (LiIon) battery packs. Of particular interest is the use of a much improved cell equalization system that can increase or decrease individual cell voltages. Experimental results are included for a pack of six series connected 60 Ah (amp-hour) LiIon cells.
Enhanced hybrid TV platform with multiscreen, advanced EPG and recommendation enablers
NASA Astrophysics Data System (ADS)
Kovacik, Tomas; Bencel, Rastislav; Mato, Jan; Bronis, Roman; Truchly, Peter; Kotuliak, Ivan
2017-05-01
TV watching dramatically changes with introduction of new technologies such as Internet-connected TVs, enriched digital broadcasting (DVB), on-demand content, additional programme information, mobile phones and tablets enabling multiscreen functions etc that offer added values to content consumers. In this paper we propose modular advanced TV platform and its enablers enhancing TV watching. They allow users to receive aside of EPG also additional information about broadcasted content, to be reminded of requested programme, to utilize recommendation and search features, thanks to multiscreen functionality to allow users to take watched content with them or transfer it onto another device. The modularity of the platform allows new features to be added in future.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2006-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2007-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots
Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.
2009-01-01
Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337
NASA Astrophysics Data System (ADS)
Herbrechtsmeier, Stefan; Witkowski, Ulf; Rückert, Ulrich
Mobile robots become more and more important in current research and education. Especially small ’on the table’ experiments attract interest, because they need no additional or special laboratory equipments. In this context platforms are desirable which are small, simple to access and relatively easy to program. An additional powerful information processing unit is advantageous to simplify the implementation of algorithm and the porting of software from desktop computers to the robot platform. In this paper we present a new versatile miniature robot that can be ideally used for research and education. The small size of the robot of about 9 cm edge length, its robust drive and its modular structure make the robot a general device for single and multi-robot experiments executed ’on the table’. For programming and evaluation the robot can be wirelessly connected via Bluetooth or WiFi. The operating system of the robot is based on the standard Linux kernel and the GNU C standard library. A player/stage model eases software development and testing.
NASA Technical Reports Server (NTRS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-01-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
NASA Astrophysics Data System (ADS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-05-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.
2014-01-01
We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.
A modular approach to creating large engineered cartilage surfaces.
Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D
2018-01-23
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and performance of an ultra-flexible two-photon microscope for in vivo research.
Mayrhofer, Johannes M; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J P; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S; Stobart, Jillian L; Wyss, Matthias T; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno
2015-11-01
We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance.
Design and performance of an ultra-flexible two-photon microscope for in vivo research
Mayrhofer, Johannes M.; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J. P.; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S.; Stobart, Jillian L.; Wyss, Matthias T.; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M.; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E.; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno
2015-01-01
We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance. PMID:26600989
Modularity Induced Gating and Delays in Neuronal Networks
Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael
2016-01-01
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350
Carron, P-N; Yersin, B; Fishman, D; Ribordy, V
2005-06-01
The occurrence of the 2003 G8 summit in Evian and the threat of major civil riots or even terrorist attacks in the Swiss neighbourhood forced us to imagine a new system of rescue and medical care in case of numerous victims. Previous occurrences of the G8 in Europe or America have demonstrated the need of flexible and mobile structures, able to respond quickly to crowd movements, unlike the usual static structure of rescue systems designed for major accidents. We developed a new concept of Mobile Medical Squadrons (MMS) consisting of several vehicles and medical care and rescue human resources. In our concept, each MMS consisted of 3 emergency doctors, 5 paramedics and 9 first-aid workers. They were designed to handle 15 patients, with a large autonomy in terms of rescue, medical care, evacuation and medical authority. The equipment included medical, resuscitation, simple decontamination, evacuation and communication materials. The MMS were dispatched four times during the G8 summit following civil riots. They took care of 12 injured patients. The concept of MMS as a reinforcement of the existing rescue and health care resources appears as a new flexible, a modular and useful concept for the medical management of collective prehospital emergency situations. Its use is suggested instead of the traditional static concept of rescue systems designed for major accidents.
Establishing Systematic Modular Courses for Key Teaching Competencies of Teachers in Hsinchu City
ERIC Educational Resources Information Center
Cheng, Yuan-Chuan; Chen, Yin-Che; Chiang, Woei-Min; Yang, Chuan-Lien
2015-01-01
The evolution of the Internet, trends in mobile device usage, and changes in the perceptions of city leaders and residents have gradually transformed cities into smart cities. Through a literature review, survey analysis, and focus group interview, this study explored the educational vision and consensus in developing Smart Hsinchu, and analyzed…
2011-06-01
are provided as needed: − RCP requesting – in favour of mobile patrols, due to engineer reconnaissance in areas with higher risk of IED occurrence... hospitals , EOD and other military specialists gradually operated. PRT established by the Czech Republic within the ISAF operation in the province of Logar
Towards Principled Experimental Study of Autonomous Mobile Robots
NASA Technical Reports Server (NTRS)
Gat, Erann
1995-01-01
We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.
Online Community Detection for Large Complex Networks
Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian
2014-01-01
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683
Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H
2018-06-11
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.
Position reporting system using small satellites
NASA Technical Reports Server (NTRS)
Pavesi, B.; Rondinelli, G.; Graziani, F.
1990-01-01
A system able to provide position reporting and monitoring services for mobile applications represents a natural complement to the Global Positioning System (GPS) navigation system. The system architecture is defined on the basis of the communications requirements derived by user needs, allowing maximum flexibility in the use of channel capacity, and a very simple and low cost terminal. The payload is sketched, outlining the block modularity and the use of qualified hardware. The global system capacity is also derived. The spacecraft characteristics are defined on the basis of the payload requirements. A small bus optimized for Ariane IV, Delta II vehicles and based on the modularity concept is presented. The design takes full advantage of each launcher with a common basic bus or bus elements for a mass production.
Optimizing Aspect-Oriented Mechanisms for Embedded Applications
NASA Astrophysics Data System (ADS)
Hundt, Christine; Stöhr, Daniel; Glesner, Sabine
As applications for small embedded mobile devices are getting larger and more complex, it becomes inevitable to adopt more advanced software engineering methods from the field of desktop application development. Aspect-oriented programming (AOP) is a promising approach due to its advanced modularization capabilities. However, existing AOP languages tend to add a substantial overhead in both execution time and code size which restricts their practicality for small devices with limited resources. In this paper, we present optimizations for aspect-oriented mechanisms at the level of the virtual machine. Our experiments show that these optimizations yield a considerable performance gain along with a reduction of the code size. Thus, our optimizations establish the base for using advanced aspect-oriented modularization techniques for developing Java applications on small embedded devices.
A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring
NASA Technical Reports Server (NTRS)
White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.
2017-01-01
With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.
Delahay, Robin M; Croxall, Nicola J; Stephens, Amberley D
2018-01-01
The genome of the gastric pathogen Helicobacter pylori is characterised by considerable variation of both gene sequence and content, much of which is contained within three large genomic islands comprising the cag pathogenicity island ( cag PAI) and two mobile integrative and conjugative elements (ICEs) termed tfs3 and tfs4 . All three islands are implicated as virulence factors, although whereas the cag PAI is well characterised, understanding of how the tfs elements influence H. pylori interactions with different human hosts is significantly confounded by limited definition of their distribution, diversity and structural representation in the global H. pylori population. To gain a global perspective of tfs ICE population dynamics we established a bioinformatics workflow to extract and precisely define the full tfs pan-gene content contained within a global collection of 221 draft and complete H. pylori genome sequences. Complete (ca. 35-55kbp) and remnant tfs ICE clusters were reconstructed from a dataset comprising > 12,000 genes, from which orthologous gene complements and distinct alleles descriptive of different tfs ICE types were defined and classified in comparative analyses. The genetic variation within defined ICE modular segments was subsequently used to provide a complete description of tfs ICE diversity and a comprehensive assessment of their phylogeographic context. Our further examination of the apparent ICE modular types identified an ancient and complex history of ICE residence, mobility and interaction within particular H. pylori phylogeographic lineages and further, provided evidence of both contemporary inter-lineage and inter-species ICE transfer and displacement. Our collective results establish a clear view of tfs ICE diversity and phylogeographic representation in the global H. pylori population, and provide a robust contextual framework for elucidating the functional role of the tfs ICEs particularly as it relates to the risk of gastric disease associated with different tfs ICE genotypes.
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Multiple D3-Instantons and Mock Modular Forms II
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris
2018-03-01
We analyze the modular properties of D3-brane instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In Part I, we found a necessary condition for the existence of an isometric action of S-duality on this moduli space: the generating function of DT invariants in the large volume attractor chamber must be a vector-valued mock modular form with specified modular properties. In this work, we prove that this condition is also sufficient at two-instanton order. This is achieved by producing a holomorphic action of {SL(2,Z)} on the twistor space which preserves the holomorphic contact structure. The key step is to cancel the anomalous modular variation of the Darboux coordinates by a local holomorphic contact transformation, which is generated by a suitable indefinite theta series. For this purpose we introduce a new family of theta series of signature (2, n - 2), find their modular completion, and conjecture sufficient conditions for their convergence, which may be of independent mathematical interest.
Domain organizations of modular extracellular matrix proteins and their evolution.
Engel, J
1996-11-01
Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.
Speed control for a mobile robot
NASA Astrophysics Data System (ADS)
Kolli, Kaylan C.; Mallikarjun, Sreeram; Kola, Krishnamohan; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a speed control for a modular autonomous mobile robot controller. The speed control of the traction motor is essential for safe operation of a mobile robot. The challenges of autonomous operation of a vehicle require safe, runaway and collision free operation. A mobile robot test-bed has been constructed using a golf cart base. The computer controlled speed control has been implemented and works with guidance provided by vision system and obstacle avoidance using ultrasonic sensors systems. A 486 computer through a 3- axis motion controller supervises the speed control. The traction motor is controlled via the computer by an EV-1 speed control. Testing of the system was done both in the lab and on an outside course with positive results. This design is a prototype and suggestions for improvements are also given. The autonomous speed controller is applicable for any computer controlled electric drive mobile vehicle.
Unraveling the disease consequences and mechanisms of modular structure in animal social networks
Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta
2017-01-01
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567
Unraveling the disease consequences and mechanisms of modular structure in animal social networks
Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta
2017-01-01
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.
Unraveling the disease consequences and mechanisms of modular structure in animal social networks.
Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta
2017-04-18
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.
Size variation, growth strategies, and the evolution of modularity in the mammalian skull.
Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel
2013-11-01
Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Phage-bacteria infection networks: From nestedness to modularity
NASA Astrophysics Data System (ADS)
Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.
2013-03-01
Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation
Mobile work platform for initial lunar base construction
NASA Technical Reports Server (NTRS)
Brazell, James W.; Maclaren, Brice K.; Mcmurray, Gary V.; Williams, Wendell M.
1992-01-01
Described is a system of equipment intended for site preparation and construction of a lunar base. The proximate era of lunar exploration and the initial phase of outpost habitation are addressed. Drilling, leveling, trenching, and cargo handling are within the scope of the system's capabilities. The centerpiece is a three-legged mobile work platform, named SKITTER. Using standard interfaces, the system is modular in nature and analogous to the farmer's tractor and implement set. Conceptually somewhat different from their Earthbound counterparts, the implements are designed to take advantage of the lunar environment as well as the capabilities of the work platform. The proposed system is mechanically simple and weight efficient.
Common modular avionics - Partitioning and design philosophy
NASA Astrophysics Data System (ADS)
Scott, D. M.; Mulvaney, S. P.
The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.
Clearing the skies over modular polyketide synthases.
Sherman, David H; Smith, Janet L
2006-09-19
Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.
Large Metal Heads and Vitamin E Polyethylene Increase Frictional Torque in Total Hip Arthroplasty.
Meneghini, R Michael; Lovro, Luke R; Wallace, Joseph M; Ziemba-Davis, Mary
2016-03-01
Trunnionosis has reemerged in modern total hip arthroplasty for reasons that remain unclear. Bearing frictional torque transmits forces to the modular head-neck interface, which may contribute to taper corrosion. The purpose of this study is to compare frictional torque of modern bearing couples in total hip arthroplasty. Mechanical testing based on in vivo loading conditions was used to measure frictional torque. All bearing couples were lubricated and tested at 1 Hz for more than 2000 cycles. The bearing couples tested included conventional, highly crosslinked (XLPE) and vitamin E polyethylene, CoCr, and ceramic femoral heads and dual-mobility bearings. Statistical analysis was performed using Student t test for single-variable and analysis of variance for multivariant analysis. P ≤ .05 was considered statistically significant. Large CoCr metal heads (≥36 mm) substantially increased frictional torque against XLPE liners (P = .01), a finding not observed in ceramic heads. Vitamin E polyethylene substantially increased frictional torque compared with XLPE in CoCr and ceramic heads (P = .001), whereas a difference between conventional and XLPE was not observed (P = .69) with the numbers available. Dual-mobility bearing with ceramic inner head demonstrated the lowest mean frictional torque of all bearing couples. In this simulated in vivo model, large-diameter CoCr femoral heads and vitamin E polyethylene liners are associated with increased frictional torque compared with smaller metal heads and XLPE, respectively. The increased frictional torque of vitamin E polyethylene and larger-diameter femoral heads should be considered and further studied, along with reported benefits of these modern bearing couples. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...
USDA-ARS?s Scientific Manuscript database
A new stackable modular system was developed for continuous in-vivo production of phytoseiid mites. The system consists of cage units that are filled with lima bean, Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. T...
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Technical Reports Server (NTRS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
1987-01-01
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Astrophysics Data System (ADS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
NASA Astrophysics Data System (ADS)
Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.
2018-02-01
In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.
A Sensor Middleware for integration of heterogeneous medical devices.
Brito, M; Vale, L; Carvalho, P; Henriques, J
2010-01-01
In this paper, the architecture of a modular, service-oriented, Sensor Middleware for data acquisition and processing is presented. The described solution was developed with the purpose of solving two increasingly relevant problems in the context of modern pHealth systems: i) to aggregate a number of heterogeneous, off-the-shelf, devices from which clinical measurements can be acquired and ii) to provide access and integration with an 802.15.4 network of wearable sensors. The modular nature of the Middleware provides the means to easily integrate pre-processing algorithms into processing pipelines, as well as new drivers for adding support for new sensor devices or communication technologies. Tests performed with both real and artificially generated data streams show that the presented solution is suitable for use both in a Windows PC or a Windows Mobile PDA with minimal overhead.
Modular telerobot control system for accident response
NASA Astrophysics Data System (ADS)
Anderson, Richard J. M.; Shirey, David L.
1999-08-01
The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.
von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert
2017-06-01
For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).
A hardware/software environment to support R D in intelligent machines and mobile robotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1990-01-01
The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration
Losada, Diego P.; Fernández, Joaquín L.; Paz, Enrique; Sanz, Rafael
2017-01-01
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead. PMID:28467381
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration.
Losada, Diego P; Fernández, Joaquín L; Paz, Enrique; Sanz, Rafael
2017-05-03
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead.
Modular assembly of a photovoltaic solar energy receiver
Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.
1978-01-01
There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.
Environmental versatility promotes modularity in genome-scale metabolic networks.
Samal, Areejit; Wagner, Andreas; Martin, Olivier C
2011-08-24
The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.
Design of a multimedia gateway for mobile devices
NASA Astrophysics Data System (ADS)
Hens, Raf; Goeminne, Nico; Van Hoecke, Sofie; Verdickt, Tom; Bouve, Thomas; Gielen, Frank; Demeester, Piet
2005-03-01
Although mobile users are currently offered a lot more capabilities on their mobile devices, they still experience some limitations. They can surf the Internet, read their e-mail and receive MMS messages, but they have limited processing power, storage capacity and bandwidth and are limited in their access to peripherals (e.g. printers). We have designed and implemented a multimedia gateway for mobile devices that reduces these limitations. It gives the mobile devices transparent access to high capacity devices connected to the gateway, which is built around a central, modularly extensible server that can run on any PC or home gateway. It manages two sets of modules: one set offering the actual services and another set handling the IP-based wireless interaction with the client applications on the mobile devices. These modules can be added and removed dynamically, offering new services on the fly. Currently services for storage, printing, domotics and playing music are provided. Others can easily be added later on. This paper discusses the architecture and development, the management of modules, the actual services and their benefits. Besides a proprietary implementation, it also looks into OSGi and how both platforms compare to each other, concerning design, architecture, ease of development, functionality, ...
NASA Astrophysics Data System (ADS)
Mulyono, Grace; Thamrin, Diana; Antoni
2017-09-01
The development of public parks into green city facilities in Surabaya has triggered the need of outdoor furniture designs that can resist the tropical wet and dry weather conditions while also having a certain mobility to support flexible park arrangement. However, present furniture designs made of concrete material are generally heavy and immovable. Flexible designs are needed for various activities that can take place at the same time such as sitting and playing, and to support changes in arrangement to keep the green open spaces attractive from time to time. This research develops the idea of a modular outdoor furniture design using cellular lightweight concrete (CLC) as the main material as a result from observing its resistance towards weather change and its relative light weight. It starts with analysis of problems, formulation of design concept, creation of design alternatives, selection of design, calculation of mouldings, adaptation of design to the mouldings and production of a scaled mock-up using CLC. Findings of this research reveal that the modular design along with the CLC material used not only support the flexibility of change in function and arrangement but also make these furniture resistant to the hot and humid weather of Surabaya.
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
Advanced Modular Power Approach to Affordable, Supportable Space Systems
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond
2013-01-01
Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.
Subcommunities and Their Mutual Relationships in a Transaction Network
NASA Astrophysics Data System (ADS)
Iino, T.; Iyetomi, H.
We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.
A Modular Re-configurable Rover System
NASA Astrophysics Data System (ADS)
Bouloubasis, A.; McKee, G.; Active Robotics Lab
In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2003, Taipei, Taiwan, September 2003, pp. 2287-2292. [4] www.gumstix.com [5] M. G. Lewis, P. M. Sharkey, A plug and play architecture for emergent behaviour in robot control, Proceedings Configuration an Control Aspects of Mechatronics, Ilmeneau, Germany, September 1997. 2
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1984-01-01
Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
[Anterograde declarative memory and its models].
Barbeau, E-J; Puel, M; Pariente, J
2010-01-01
Patient H.M.'s recent death provides the opportunity to highlight the importance of his contribution to a better understanding of the anterograde amnesic syndrome. The thorough study of this patient over five decades largely contributed to shape the unitary model of declarative memory. This model holds that declarative memory is a single system that cannot be fractionated into subcomponents. As a system, it depends mainly on medial temporal lobes structures. The objective of this review is to present the main characteristics of different modular models that have been proposed as alternatives to the unitary model. It is also an opportunity to present different patients, who, although less famous than H.M., helped make signification contribution to the field of memory. The characteristics of the five main modular models are presented, including the most recent one (the perceptual-mnemonic model). The differences as well as how these models converge are highlighted. Different possibilities that could help reconcile unitary and modular approaches are considered. Although modular models differ significantly in many aspects, all converge to the notion that memory for single items and semantic memory could be dissociated from memory for complex material and context-rich episodes. In addition, these models converge concerning the involvement of critical brain structures for these stages: Item and semantic memory, as well as familiarity, are thought to largely depend on anterior subhippocampal areas, while relational, context-rich memory and recollective experiences are thought to largely depend on the hippocampal formation. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar
2017-09-01
Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.
Truong, Cong-Doan; Kwon, Yung-Keun
2017-12-21
Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks. In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis. Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.
Toward modular biological models: defining analog modules based on referent physiological mechanisms
2014-01-01
Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169
Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony
2014-08-16
Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.
NASA Technical Reports Server (NTRS)
Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan
2010-01-01
We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.
Revealing in-block nestedness: Detection and benchmarking
NASA Astrophysics Data System (ADS)
Solé-Ribalta, Albert; Tessone, Claudio J.; Mariani, Manuel S.; Borge-Holthoefer, Javier
2018-06-01
As new instances of nested organization—beyond ecological networks—are discovered, scholars are debating the coexistence of two apparently incompatible macroscale architectures: nestedness and modularity. The discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular structures. In this work, we tackle the latter problem, presenting the concept of in-block nestedness, a structural property determining to what extent a network is composed of blocks whose internal connectivity exhibits nestedness. We then put forward a set of optimization methods that allow us to identify such organization successfully, in synthetic and in a large number of real networks. These findings challenge our understanding of the topology of ecological and social systems, calling for new models to explain how such patterns emerge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-08
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile,more » a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.« less
Brain anatomical networks in early human brain development.
Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang
2011-02-01
Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.
Origin and evolution of SINEs in eukaryotic genomes.
Kramerov, D A; Vassetzky, N S
2011-12-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.
Advantages of a Modular Mars Surface Habitat Approach
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin
2018-01-01
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.
Ontology Alignment Repair through Modularization and Confidence-Based Heuristics
Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.
2015-01-01
Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335
Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.
Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M
2015-01-01
Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Quinto-Sánchez, Mirsha; Muñoz-Muñoz, Francesc; Gomez-Valdes, Jorge; Cintas, Celia; Navarro, Pablo; Cerqueira, Caio Cesar Silva de; Paschetta, Carolina; de Azevedo, Soledad; Ramallo, Virginia; Acuña-Alonzo, Victor; Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Hünemeier, Tábita; Everardo, Paola; de Avila, Francisco; Jaramillo, Claudia; Arias, Williams; Gallo, Carla; Poletti, Giovani; Bedoya, Gabriel; Bortolini, Maria Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Rosique, Javier; Ruiz-Linares, Andres; Gonzalez-Jose, Rolando
2018-01-17
Facial asymmetries are usually measured and interpreted as proxies to developmental noise. However, analyses focused on its developmental and genetic architecture are scarce. To advance on this topic, studies based on a comprehensive and simultaneous analysis of modularity, morphological integration and facial asymmetries including both phenotypic and genomic information are needed. Here we explore several modularity hypotheses on a sample of Latin American mestizos, in order to test if modularity and integration patterns differ across several genomic ancestry backgrounds. To do so, 4104 individuals were analyzed using 3D photogrammetry reconstructions and a set of 34 facial landmarks placed on each individual. We found a pattern of modularity and integration that is conserved across sub-samples differing in their genomic ancestry background. Specifically, a signal of modularity based on functional demands and organization of the face is regularly observed across the whole sample. Our results shed more light on previous evidence obtained from Genome Wide Association Studies performed on the same samples, indicating the action of different genomic regions contributing to the expression of the nose and mouth facial phenotypes. Our results also indicate that large samples including phenotypic and genomic metadata enable a better understanding of the developmental and genetic architecture of craniofacial phenotypes.
Rodrigues, Danieli C.; Urban, Robert M.; Jacobs, Joshua J.; Gilbert, Jeremy L.
2009-01-01
Titanium alloys are widely used in total-joint replacements due to a combination of outstanding mechanical properties, biocompatibility, passivity and corrosion resistance. Nevertheless, retrieval studies have pointed out that these materials can be subjected to localized or general corrosion in modular interfaces when mechanical abrasion of the oxide film (fretting) occurs. Modularity adds large crevice environments, which are subject to micromotion between contacting interfaces and differential aeration of the surface. Titanium alloys are also known to be susceptible to hydrogen absorption, which can induce precipitation of hydrides and subsequent brittle failure. In this work, the surface of three designs of retrieved hip-implants with Ti-6Al-4V/Ti-6Al-4V modular taper interfaces in the stem were investigated for evidence of severe corrosion and precipitation of brittle hydrides during fretting-crevice corrosion in the modular connections. The devices were retrieved from patients and studied by means of scanning electron microscopy (SEM), x-ray diffraction (XRD) and chemical analysis. The surface qualitative investigation revealed severe corrosion attack in the mating interfaces with evidence of etching, pitting, delamination and surface cracking. In vivo hydrogen embrittlement was shown to be a mechanism of degradation in modular connections resulting from electrochemical reactions induced in the crevice environment of the tapers during fretting-crevice corrosion. PMID:18683224
Mobile and stationary laser weapon demonstrators of Rheinmetall Waffe Munition
NASA Astrophysics Data System (ADS)
Ludewigt, K.; Riesbeck, Th.; Baumgärtel, Th.; Schmitz, J.; Graf, A.; Jung, M.
2014-10-01
For some years Rheinmetall Waffe Munition has successfully developed, realised and tested a variety of versatile high energy laser (HEL) weapon systems for air- and ground-defence scenarios like C-RAM, UXO clearing. By employing beam superimposition technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms and now military mobile vehicles were equipped with high energy laser effectors. Our contribution summarises the most recent development stages of Rheinmetalls high energy laser weapon program. We present three different vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V integrated in an M113 tank, the 20 kW class Mobile HEL Effector Wheel XX integrated in a multirole armoured vehicle GTK Boxer 8x8 and the 50 kW class Mobile HEL Effector Container L integrated in a reinforced container carried by an 8x8 truck. As a highlight, a stationary 30 kW Laser Weapon Demonstrator shows the capability to defeat saturated attacks of RAM targets and unmanned aerial vehicles. 2013 all HEL demonstrators were tested in a firing campaign at the Rheinmetall testing centre in Switzerland. Major results of these tests are presented.
The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing
Iranzo, Jaime
2016-01-01
ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193
Active-passive bistatic surveillance for long range air defense
NASA Astrophysics Data System (ADS)
Wardrop, B.; Molyneux-Berry, M. R. B.
1992-06-01
A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks.
The Mobile Modular Surgical Hospital: the Army Medical Department’s Future Unit of Action
2005-06-17
Freedom PROFIS Professional Filler System TDA Table of Distribution and Allowances viii ILLUSTRATIONS Page Figure 1. The 212th MASH Level III...nurses present at the unit. These PROFIS personnel are assigned both to permanent TDA facilities and the PROFIS (operational unit). In the event of...activation, the PROFIS personnel move from the TDA to the operational unit and deploy with them. PROFIS personnel are required to train at least five
Purple: a modular system for developing and deploying behavioral intervention technologies.
Schueller, Stephen M; Begale, Mark; Penedo, Frank J; Mohr, David C
2014-07-30
The creation, deployment, and evaluation of Web-based and mobile-based applications for health, mental health, and wellness within research settings has tended to be siloed, with each research group developing their own systems and features. This has led to technological features and products that are not sharable across research teams, thereby limiting collaboration, reducing the speed of dissemination, and raising the bar for entry into this area of research. This paper provides an overview of Purple, an extensible, modular, and repurposable system created for the development of Web-based and mobile-based applications for health behavior change. Purple contains features required to construct applications and to manage and evaluate research trials using these applications. Core functionality of Purple includes elements that support user management, content authorship, content delivery, and data management. We discuss the history and development of the Purple system guided by the rationale of producing a system that allows greater collaboration and understanding across research teams interested in investigating similar questions and using similar methods. Purple provides a useful tool to meet the needs of stakeholders involved in the creation, provision, and usage of eHealth and mHealth applications. Housed in a non-profit, academic institution, Purple also offers the potential to facilitate the diffusion of knowledge across the research community and improve our capacity to deliver useful and usable applications that support the behavior change of end users.
Purple: A Modular System for Developing and Deploying Behavioral Intervention Technologies
Schueller, Stephen M; Begale, Mark; Penedo, Frank J
2014-01-01
The creation, deployment, and evaluation of Web-based and mobile-based applications for health, mental health, and wellness within research settings has tended to be siloed, with each research group developing their own systems and features. This has led to technological features and products that are not sharable across research teams, thereby limiting collaboration, reducing the speed of dissemination, and raising the bar for entry into this area of research. This paper provides an overview of Purple, an extensible, modular, and repurposable system created for the development of Web-based and mobile-based applications for health behavior change. Purple contains features required to construct applications and to manage and evaluate research trials using these applications. Core functionality of Purple includes elements that support user management, content authorship, content delivery, and data management. We discuss the history and development of the Purple system guided by the rationale of producing a system that allows greater collaboration and understanding across research teams interested in investigating similar questions and using similar methods. Purple provides a useful tool to meet the needs of stakeholders involved in the creation, provision, and usage of eHealth and mHealth applications. Housed in a non-profit, academic institution, Purple also offers the potential to facilitate the diffusion of knowledge across the research community and improve our capacity to deliver useful and usable applications that support the behavior change of end users. PMID:25079298
Innovative Mobile Smart Photonic Dimensional, Color and Spectral Measurement Engineering
NASA Astrophysics Data System (ADS)
Hofmann, Dr Dietrich, Prof; Dittrich (B. Eng. , Paul-Gerald; Höfner (B. Eng. , Dieter; Kraus, Daniel
2015-02-01
Aim of the paper is the demonstration of a paradigm shift in dimensional, color and spectral measurements in industry, biology/medicine, farming/environmental protection and security, as well as in education and training: Measurement engineering and quality assurance become mobile, modular and smart. Smartpads, smartphones and smartwatches (smartcomps) in combination with innovative hardware apps (hwapps) and conventional software apps (swapps) are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Furthermore mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro dimensiometers, colorimeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering, applications, education and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartcomps is the huge number of their real distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, obtained with their private smartcomps.
Crepin, Valerie F; Faulds, Craig B; Connerton, Ian F
2003-01-01
Feruloyl esterases, a subclass of the carboxylic acid esterases (EC 3.1.1.1), are able to hydrolyse the ester bond between the hydroxycinnamic acids and sugars present in the plant cell wall. The enzymes have been classified as type A or type B, based on their substrate specificity for aromatic moieties. We show that Neurospora crassa has the ability to produce multiple ferulic acid esterase activities depending upon the length of fermentation with either sugar beet pulp or wheat bran substrates. A gene identified on the basis of its expression on sugar beet pulp has been cloned and overexpressed in Pichia pastoris. The gene encodes a single-domain ferulic acid esterase, which represents the first report of a non-modular type B enzyme (fae-1 gene; GenBank accession no. AJ293029). The purified recombinant protein has been shown to exhibit concentration-dependent substrate inhibition (K(m) 0.048 mM, K (i) 2.5 mM and V(max) 8.2 units/mg against methyl 3,4-dihydroxycinnamate). The kinetic behaviour of the non-modular enzyme is discussed in terms of the diversity in the roles of the feruloyl esterases in the mobilization of plant cell wall materials and their respective modes of action. PMID:12435269
Soffers, Rutger; Meijboom, Bert; van Zaanen, Jos; van der Feltz-Cornelis, Christina
2014-05-09
The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research.
2014-01-01
Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research. PMID:24886367
Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition
2017-01-01
004 OFFICE OF NAVAL RESEARCH ATTN JASON STACK MINE WARFARE & OCEAN ENGINEERING PROGRAMS CODE 32, SUITE 1092 875 N RANDOLPH ST ARLINGTON VA 22203 ONR...naval mine countermeasures (MCM) operations by automating a large portion of the data analysis. Successful long-term implementation of ATR requires a...Modular Algorithm Testbed Suite; MATS; Mine Countermeasures Operations U U U SAR 24 Derek R. Kolacinski (850) 230-7218 THIS PAGE INTENTIONALLY LEFT
Asynchronous networks: modularization of dynamics theorem
NASA Astrophysics Data System (ADS)
Bick, Christian; Field, Michael
2017-02-01
Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.
Dillingham, Christopher H; Gay, Sean M; Behrooz, Roxana; Gabriele, Mark L
2017-12-01
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed. © 2017 Wiley Periodicals, Inc.
Authomatization of Digital Collection Access Using Mobile and Wireless Data Terminals
NASA Astrophysics Data System (ADS)
Leontiev, I. V.
Information technologies become vital due to information processing needs, database access, data analysis and decision support. Currently, a lot of scientific projects are oriented on database integration of heterogeneous systems. The problem of on-line and rapid access to large integrated systems of digital collections is also very important. Usually users move between different locations, either at work or at home. In most cases users need an efficient and remote access to information, stored in integrated data collections. Desktop computers are unable to fulfill the needs, so mobile and wireless devices become helpful. Handhelds and data terminals are nessessary in medical assistance (they store detailed information about each patient, and helpful for nurses), immediate access to data collections is used in a Highway patrol services (databanks of cars, owners, driver licences). Using mobile access, warehouse operations can be validated. Library and museum items cyclecounting will speed up using online barcode-scanning and central database access. That's why mobile devices - cell phones, PDA, handheld computers with wireless access, WindowsCE and PalmOS terminals become popular. Generally, mobile devices have a relatively slow processor, and limited display capabilities, but they are effective for storing and displaying textual data, recognize user hand-writing with stylus, support GUI. Users can perform operations on handheld terminal, and exchange data with the main system (using immediate radio access, or offline access during syncronization process) for update. In our report, we give an approach for mobile access to data collections, which raises an efficiency of data processing in a book library, helps to control available books, books in stock, validate service charges, eliminate staff mistakes, generate requests for book delivery. Our system uses mobile devices Symbol RF (with radio-channel access), and data terminals Symbol Palm Terminal for batch-processing and synchronization with remote library databases. We discuss the use of PalmOS-compatible devices, and WindowsCE terminals. Our software system is based on modular, scalable three-tier architecture. Additional functionality can be easily customized. Scalability is also supplied by Internet / Intranet technologies, and radio-access points. The base module of the system supports generic warehouse operations: cyclecounting with handheld barcode-scanners, efficient items delivery and issue, item movement, reserving, report generating on finished and in-process operations. Movements are optimized using worker's current location, operations are sorted in a priority order and transmitted to mobile and wireless worker's terminals. Mobile terminals improve of tasks processing control, eliminate staff mistakes, display actual information about main processes, provide data for online-reports, and significantly raise the efficiency of data exchange.
20131201-1231_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-01-08
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.
20131101-1130_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-12-02
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.
20130416_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-04-24
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.
20131001-1031_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-11-05
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.
20140201-0228_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-03-03
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.
20130801-0831_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-09-10
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.
20140101-0131_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-02-03
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.
20140430_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-05-05
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.
20140301-0331_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-04-07
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.
20140501-0531_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-06-02
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.
20140601-0630_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-06-30
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.
20140701-0731_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-07-31
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.
20130901-0930_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-10-25
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.
Green Machine Florida Canyon Hourly Data 20130731
Vanderhoff, Alex
2013-08-30
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.
20130501-20130531_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-06-18
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013
Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-07-15
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13
Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms.
Ries, Jonas; Yu, Shuizi Rachel; Burkhardt, Markus; Brand, Michael; Schwille, Petra
2009-09-01
Analysis of receptor-ligand interactions in vivo is key to biology but poses a considerable challenge to quantitative microscopy. Here we combine static-volume, two-focus and dual-color scanning fluorescence correlation spectroscopy to solve this task at cellular resolution in complex biological environments. We quantified the mobility of fibroblast growth factor receptors Fgfr1 and Fgfr4 in cell membranes of living zebrafish embryos and determined their in vivo binding affinities to their ligand Fgf8.
1994-04-01
TSW-7A, AIR TRAFFIC CONTROL CENTRAL (ATCC) 32- 8 AN/TTC-41(V), CENTRAL OFFICE, TELEPHONE, AUTOMATIC 32- 9 MISSILE COUNTERMEASURE DEVICE (MCD) .- 0 MK...a Handheld Terminal Unit (HTU), Portable Computer Unit (PCU), Transportable Computer Unit (TCU), and compatible NOI peripheral devices . All but the...CLASSIFICATION: ASARC-III, Jun 80, Standard. I I I AN/TIC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL
A Review of the Army’s Modular Force Structure
2011-01-01
was a subsequent desire by then–U.S. Army Chief of Staff (CSA, 1999–2003) Gen- eral Eric K. Shinseki for a responsive, mobile, midweight (that is...validation. The objective stage, during which implementation of the force would occur, was set to begin in 2005.15 When General Eric K. Shinseki became...Force—A Relevant Concept? Ft. Leavenworth, Kan.: School of Advanced Military Studies, April 1999, pp. 12–13. 16 General Eric K. Shinseki, U.S. Army
Modular evolution of the Cetacean vertebral column.
Buchholtz, Emily A
2007-01-01
Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).
Preliminary design study. Shuttle modular scanning spectroradiometer
NASA Technical Reports Server (NTRS)
1975-01-01
Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.
2012-01-01
Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html. PMID:22531049
Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.
Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E
2016-09-03
The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.
Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications
Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.
2016-01-01
The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208
Navy Littoral Combat Ship (LCS) Program: Oversight Issues and Options for Congress
2007-06-11
Summary The Littoral Combat Ship (LCS) is a small, fast ship that uses modular “plug- and-fight” mission packages, including unmanned vehicles (UVs). The...small, fast ship that uses modular “plug-and- fight” mission packages, including unmanned vehicles (UVs). The basic version of the LCS, without any...including unmanned vehicles (UVs). Rather than being a multimission ship like the Navy’s current large surface combatants, the LCS is a focused-mission ship
lazar: a modular predictive toxicology framework
Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph
2013-01-01
lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761
Origin and evolution of SINEs in eukaryotic genomes
Kramerov, D A; Vassetzky, N S
2011-01-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements. PMID:21673742
NASA Technical Reports Server (NTRS)
Scharfstein, Gregory; Cox, Russell
2012-01-01
A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.
On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding
NASA Technical Reports Server (NTRS)
Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.
2005-01-01
This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.
Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks
Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki
2018-01-01
Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483
Cisler, Josh M; Sigel, Benjamin A; Kramer, Teresa L; Smitherman, Sonet; Vanderzee, Karin; Pemberton, Joy; Kilts, Clinton D
2016-01-01
Posttraumatic stress disorder (PTSD) is often chronic and disabling across the lifespan. The gold standard treatment for adolescent PTSD is Trauma-Focused Cognitive-Behavioral Therapy (TF-CBT), though treatment response is variable and mediating neural mechanisms are not well understood. Here, we test whether PTSD symptom reduction during TF-CBT is associated with individual differences in large-scale brain network organization during emotion processing. Twenty adolescent girls, aged 11-16, with PTSD related to assaultive violence completed a 12-session protocol of TF-CBT. Participants completed an emotion processing task, in which neutral and fearful facial expressions were presented either overtly or covertly during 3T fMRI, before and after treatment. Analyses focused on characterizing network properties of modularity, assortativity, and global efficiency within an 824 region-of-interest brain parcellation separately during each of the task blocks using weighted functional connectivity matrices. We similarly analyzed an existing dataset of healthy adolescent girls undergoing an identical emotion processing task to characterize normative network organization. Pre-treatment individual differences in modularity, assortativity, and global efficiency during covert fear vs neutral blocks predicted PTSD symptom reduction. Patients who responded better to treatment had greater network modularity and assortativity but lesser efficiency, a pattern that closely resembled the control participants. At a group level, greater symptom reduction was associated with greater pre-to-post-treatment increases in network assortativity and modularity, but this was more pronounced among participants with less symptom improvement. The results support the hypothesis that modularized and resilient brain organization during emotion processing operate as mechanisms enabling symptom reduction during TF-CBT.
Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong
2010-01-01
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971
Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.
Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki
2018-04-08
Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan
2018-05-01
Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Collins, Oliver (Inventor); Dolinar, Jr., Samuel J. (Inventor); Hus, In-Shek (Inventor); Bozzola, Fabrizio P. (Inventor); Olson, Erlend M. (Inventor); Statman, Joseph I. (Inventor); Zimmerman, George A. (Inventor)
1991-01-01
A method of formulating and packaging decision-making elements into a long constraint length Viterbi decoder which involves formulating the decision-making processors as individual Viterbi butterfly processors that are interconnected in a deBruijn graph configuration. A fully distributed architecture, which achieves high decoding speeds, is made feasible by novel wiring and partitioning of the state diagram. This partitioning defines universal modules, which can be used to build any size decoder, such that a large number of wires is contained inside each module, and a small number of wires is needed to connect modules. The total system is modular and hierarchical, and it implements a large proportion of the required wiring internally within modules and may include some external wiring to fully complete the deBruijn graph. pg,14.
User's guide to the Reliability Estimation System Testbed (REST)
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Damiano, S. G.; Hicks, S.; Horsburgh, J. S.
2017-12-01
EnviroDIY is a community for do-it-yourself environmental science and monitoring (https://envirodiy.org), largely focused on sharing ideas for developing Arduino-compatible open-source sensor stations, similar to the EnviroDIY Mayfly datalogger (http://envirodiy.org/mayfly/). Here we present the ModularSensors Arduino code library (https://github.com/EnviroDIY/ModularSensors), deisigned to give all sensors and variables a common interface of functions and returns and to make it very easy to iterate through and log data from many sensors and variables. This library was written primarily for the EnviroDIY Mayfly, but we have begun to test it on other Arduino based boards. We will show the large number of developed sensor interfaces, and examples of using this library code to stream near real time data to the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a data and software system based on the Observations Data Model v2 (http://www.odm2.org).
[Intra-prosthetic dislocation of the Bousquet dual mobility socket].
Lecuire, F; Benareau, I; Rubini, J; Basso, M
2004-05-01
The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk of dislocation or a chronically unstable hip prosthesis. Careful technique is required to reduce or retard the risk of intra-prosthetic dislocation. Intra-prosthetic dislocation of a dual mobility socket is an exceptional complication at mid-term. Surgical treatment is required but may be limited to simple insert replacement. Systematic use of this type of implant in young subjects must be carefully examined, but for us, the risk of dislocation does not outweigh the advantages of this original concept of dual mobility. This type of socket remains an useful preventive technique for high-risk hips or for curative treatment of recurrent dislocation.
Superconductor bearings, flywheels and transportation
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.
2012-01-01
This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.
Characteristics and Concepts of Dynamic Hub Proteins in DNA Processing Machinery from Studies of RPA
Sugitani, Norie; Chazin, Walter J.
2015-01-01
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA). PMID:25542993
López-Sanz, David; Garcés, Pilar; Álvarez, Blanca; Delgado-Losada, María Luisa; López-Higes, Ramón; Maestú, Fernando
2017-12-01
Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a preclinical stage of Alzheimer's Disease (AD) previous to mild cognitive impairment (MCI). However, the course of network disruption in these stages is scarcely characterized. We employed resting state magnetoencephalography in the source space to calculate network smallworldness, clustering, modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions were compared between groups. The MCI group exhibited decreased smallworldness, clustering and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in modular partition variability in both SCD and MCI in theta and beta bands. SCD elders exhibit a significant network disruption, showing intermediate values between HC and MCI groups in multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting and suggest that network disorganization in AD could start in the preclinical stages before the onset of cognitive symptoms.
Model validation of simple-graph representations of metabolism
Holme, Petter
2009-01-01
The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012
Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E
2012-06-20
A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.
Algorithm for parametric community detection in networks.
Bettinelli, Andrea; Hansen, Pierre; Liberti, Leo
2012-07-01
Modularity maximization is extensively used to detect communities in complex networks. It has been shown, however, that this method suffers from a resolution limit: Small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multiresolution methods. In this paper we systematically study a simple model (proposed by Pons and Latapy [Theor. Comput. Sci. 412, 892 (2011)] and similar to the parametric model of Reichardt and Bornholdt [Phys. Rev. E 74, 016110 (2006)]) with a single parameter α that balances the fraction of within community edges and the expected fraction of edges according to the configuration model. An exact algorithm is proposed to find optimal solutions for all values of α as well as the corresponding successive intervals of α values for which they are optimal. This algorithm relies upon a routine for exact modularity maximization and is limited to moderate size instances. An agglomerative hierarchical heuristic is therefore proposed to address parametric modularity detection in large networks. At each iteration the smallest value of α for which it is worthwhile to merge two communities of the current partition is found. Then merging is performed and the data are updated accordingly. An implementation is proposed with the same time and space complexity as the well-known Clauset-Newman-Moore (CNM) heuristic [Phys. Rev. E 70, 066111 (2004)]. Experimental results on artificial and real world problems show that (i) communities are detected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram summarizing the results of the heuristic method provides a useful tool for substantive analysis, as illustrated particularly on a Les Misérables data set; (iii) the difference between the parametric modularity values given by the exact method and those given by the heuristic is moderate; (iv) the heuristic version of the proposed parametric method, viewed as a modularity maximization tool, gives better results than the CNM heuristic for large instances.
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; Neumann, Holger
2015-12-01
Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
CosmoSIS: Modular cosmological parameter estimation
Zuntz, J.; Paterno, M.; Jennings, E.; ...
2015-06-09
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less
A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures
NASA Astrophysics Data System (ADS)
Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.
2017-10-01
An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.
Spectral statistics of the uni-modular ensemble
NASA Astrophysics Data System (ADS)
Joyner, Christopher H.; Smilansky, Uzy; Weidenmüller, Hans A.
2017-09-01
We investigate the spectral statistics of Hermitian matrices in which the elements are chosen uniformly from U(1) , called the uni-modular ensemble (UME), in the limit of large matrix size. Using three complimentary methods; a supersymmetric integration method, a combinatorial graph-theoretical analysis and a Brownian motion approach, we are able to derive expressions for 1 / N corrections to the mean spectral moments and also analyse the fluctuations about this mean. By addressing the same ensemble from three different point of view, we can critically compare their relative advantages and derive some new results.
The axion mass in modular invariant supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butter, Daniel; Gaillard, Mary K.
2005-02-09
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).
Parallel heuristics for scalable community detection
Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth
2015-08-14
Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less
Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.
Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut
2017-11-13
Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.
Cooper, H. John; Urban, Robert M.; Wixson, Richard L.; Meneghini, R. Michael; Jacobs, Joshua J.
2013-01-01
Background: Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the modular neck-body junction. Methods: This was a multicenter retrospective case series of twelve hips (eleven patients) with adverse local tissue reactions secondary to corrosion at the modular neck-body junction. The cohort included eight women and three men who together had an average age of 60.1 years (range, forty-three to seventy-seven years); all hips were implanted with a titanium-alloy stem and cobalt-chromium-alloy neck. Patients presented with new-onset and increasing pain at a mean of 7.9 months (range, five to thirteen months) following total hip arthroplasty. After serum metal-ion studies and metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) revealed abnormal results, the patients underwent hip revision at a mean of 15.2 months (range, ten to twenty-three months). Tissue specimens were examined by a single histopathologist, and the retrieved implants were studied with use of light and scanning electron microscopy. Results: Serum metal levels demonstrated greater elevation of cobalt (mean, 6.0 ng/mL) than chromium (mean, 0.6 ng/mL) or titanium (mean, 3.4 ng/mL). MRI with use of MARS demonstrated adverse tissue reactions in eight of nine patients in which it was performed. All hips showed large soft-tissue masses and surrounding tissue damage with visible corrosion at the modular femoral neck-body junction. Available histology demonstrated large areas of tissue necrosis in seven of ten cases, while remaining viable capsular tissue showed a dense lymphocytic infiltrate. Microscopic analysis was consistent with fretting and crevice corrosion at the modular neck-body interface. Conclusions: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction. Adverse local tissue reaction should be considered as a potential cause for new-onset pain in patients with these components, and early revision should be considered given the potentially destructive nature of these reactions. A workup including serologic studies (erythrocyte sedimentation rate and C-reactive protein), serum metal levels, and MARS MRI can be helpful in establishing this diagnosis. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23677352
Mobile Traffic Alert and Tourist Route Guidance System Design Using Geospatial Data
NASA Astrophysics Data System (ADS)
Bhattacharya, D.; Painho, M.; Mishra, S.; Gupta, A.
2017-09-01
The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.
TMAP - A Versatile Mobile Robot
NASA Astrophysics Data System (ADS)
Weiss, Joel A.; Simmons, Richard K.
1989-03-01
TMAP, the Teleoperated Mobile All-purpose Platform, provides the Army with a low cost, light weight, flexibly designed, modularly expandable platform for support of maneuver forces and light infantry units. The highly mobile, four wheel drive, diesel-hydraulic platform is controllable at distances of up to 4km from a portable operator control unit using either fiber optic or RF control links. The Martin Marietta TMAP system is based on a hierarchical task decomposition Real-time Control System architecture that readily supports interchange of mission packages and provides the capability for simple incorporation of supervisory control concepts leading to increased system autonomy and resulting force multiplication. TMAP has been designed to support a variety of missions including target designation, anti-armor, anti-air, countermine, and reconnaissance/surveillance. As a target designation system TMAP will provide the soldier with increased survivability and effectiveness by providing substantial combat standoff, and the firepower effectiveness of several manual designator operators. Force-on-force analysis of simulated TMAP engagements indicate that TMAP should provide significant force multiplication for the Army in Air-Land Battle 2000.
NASA Astrophysics Data System (ADS)
Latinovic, T. S.; Kalabic, S. B.; Barz, C. R.; Petrica, P. Paul; Pop-Vădean, A.
2018-01-01
This paper analyzes the influence of the Doppler Effect on the length of time to establish synchronization pseudorandom sequences in radio communications systems with an expanded spectrum. Also, this paper explores the possibility of using secure wireless communication for modular robots. Wireless communication could be used for local and global communication. We analyzed a radio communication system integrator, including the two effects of the Doppler signal on the duration of establishing synchronization of the received and locally generated pseudorandom sequence. The effects of the impact of the variability of the phase were analyzed between the said sequences and correspondence of the phases of these signals with the interval of time of acquisition of received sequences. An analysis of these impacts is essential in the transmission of signal and protection of the transfer of information in the communication systems with an expanded range (telecommunications, mobile telephony, Global Navigation Satellite System GNSS, and wireless communication). Results show that wireless communication can provide a safety approach for communication with mobile robots.
System for assisted mobility using eye movements based on electrooculography.
Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena
2002-12-01
This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.
NASA Astrophysics Data System (ADS)
Seamon, E.; Gessler, P. E.; Flathers, E.
2015-12-01
The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.
Re-emergence of modular brain networks in stroke recovery.
Siegel, Joshua S; Seitzman, Benjamin A; Ramsey, Lenny E; Ortega, Mario; Gordon, Evan M; Dosenbach, Nico U F; Petersen, Steven E; Shulman, Gordon L; Corbetta, Maurizio
2018-04-01
Studies of stroke have identified local reorganization in perilesional tissue. However, because the brain is highly networked, strokes also broadly alter the brain's global network organization. Here, we assess brain network structure longitudinally in adult stroke patients using resting state fMRI. The topology and boundaries of cortical regions remain grossly unchanged across recovery. In contrast, the modularity of brain systems i.e. the degree of integration within and segregation between networks, was significantly reduced sub-acutely (n = 107), but partially recovered by 3 months (n = 85), and 1 year (n = 67). Importantly, network recovery correlated with recovery from language, spatial memory, and attention deficits, but not motor or visual deficits. Finally, in-depth single subject analyses were conducted using tools for visualization of changes in brain networks over time. This exploration indicated that changes in modularity during successful recovery reflect specific alterations in the relationships between different networks. For example, in a patient with left temporo-parietal stroke and severe aphasia, sub-acute loss of modularity reflected loss of association between frontal and temporo-parietal regions bi-hemispherically across multiple modules. These long-distance connections then returned over time, paralleling aphasia recovery. This work establishes the potential importance of normalization of large-scale modular brain systems in stroke recovery. Copyright © 2017. Published by Elsevier Ltd.
Modular Software Interfaces for Revolutionary Flexibility in Space Operations
NASA Technical Reports Server (NTRS)
Glass, Brian; Braham, Stephen; Pollack, Jay
2005-01-01
To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.
Point-Focusing Solar-Power Distributed Receivers
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1985-01-01
Two-volume annual report describes development work aimed at achieving large-scale production of modular, point-focusing distributed receivers (PFDR's) for solar-powered generation of electricity or thermal power for industrial use.
A neuronal model of a global workspace in effortful cognitive tasks.
Dehaene, S; Kerszberg, M; Changeux, J P
1998-11-24
A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.
A comparison of radioisotope Brayton and Stirling systems for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
A study was performed by the Rocketdyne Division of Rockwell International on a 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The application considered was for lunar mobile power sources in the power range of 2.5 kWe to 15 kWe. The study indicated that the Stirling power module has 20 percent lower mass and 40 percent lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangement to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
Patterns of interactions of a large fish-parasite network in a tropical floodplain.
Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M
2012-07-01
1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
A modular approach to adaptive structures.
Pagitz, Markus; Pagitz, Manuel; Hühne, Christian
2014-10-07
A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.
NASA Astrophysics Data System (ADS)
Wu, Z.; Zheng, Y.; Wang, K. W.
2018-02-01
We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.
From lab to full-scale ultrafiltration in microalgae harvesting
NASA Astrophysics Data System (ADS)
Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.
2017-07-01
Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.
NASA Technical Reports Server (NTRS)
Rushby, John; Miner, Paul S. (Technical Monitor)
2002-01-01
Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.
Research on Self-Reconfigurable Modular Robot System
NASA Astrophysics Data System (ADS)
Kamimura, Akiya; Murata, Satoshi; Yoshida, Eiichi; Kurokawa, Haruhisa; Tomita, Kohji; Kokaji, Shigeru
Growing complexity of artificial systems arises reliability and flexibility issues of large system design. Robots are not exception of this, and many attempts have been made to realize reliable and flexible robot systems. Distributed modular composition of robot is one of the most effective approaches to attain such abilities and has a potential to adapt to its surroundings by changing its configuration autonomously according to information of surroundings. In this paper, we propose a novel three-dimensional self-reconfigurable robotic module. Each module has a very simple structure that consists of two semi-cylindrical parts connected by a link. The modular system is capable of not only building static structure but also generating dynamic robotic motion. We present details of the mechanical/electrical design of the developed module and its control system architecture. Experiments using ten modules with centralized control demonstrate robotic configuration change, crawling locomotion and three types of quadruped locomotion.
The $19.95 Solution to Large Group Telephone Interviews with Special Speakers.
ERIC Educational Resources Information Center
Robinson, George H.
1998-01-01
Describes an inexpensive solution for holding large-group telephone interviews, listing the equipment needed (record control, telephone, phone line with modular jack, portable amplifier with microphone-level input jack, audio cable with jack and plug compatible with the microphone input jack on the amplifier) and providing directions for setup.…
Modular invariant representations of infinite-dimensional Lie algebras and superalgebras
Kac, Victor G.; Wakimoto, Minoru
1988-01-01
In this paper, we launch a program to describe and classify modular invariant representations of infinite-dimensional Lie algebras and superalgebras. We prove a character formula for a large class of highest weight representations L(λ) of a Kac-Moody algebra [unk] with a symmetrizable Cartan matrix, generalizing the Weyl-Kac character formula [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70]. In the case of an affine [unk], this class includes modular invariant representations of arbitrary rational level m = t/u, where t [unk] Z and u [unk] N are relatively prime and m + g ≥ g/u (g is the dual Coxeter number). We write the characters of these representations in terms of theta functions and calculate their asymptotics, generalizing the results of Kac and Peterson [Kac, V. G. & Peterson, D. H. (1984) Adv. Math. 53, 125-264] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1988) Adv. Math. 70, 156-234] for the u = 1 (integrable) case. We work out in detail the case [unk] = A1(1), in particular classifying all its modular invariant representations. Furthermore, we show that the modular invariant representations of the Virasoro algebra Vir are precisely the “minimal series” of Belavin et al. [Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. (1984) Nucl. Phys. B 241, 333-380] using the character formulas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1984) Lect. Notes Math. 1060, 230-245]. We show that tensoring the basic representation and modular invariant representations of A1(1) produces all modular invariant representations of Vir generalizing the results of Goddard et al. [Goddard P., Kent, A. & Olive, D. (1986) Commun. Math. Phys. 103, 105-119] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1986) Lect. Notes Phys. 261, 345-371] in the unitary case. We study the general branching functions as well. All these results are generalized to the Kac-Moody superalgebras introduced by Kac [Kac, V. G. (1978) Adv. Math. 30, 85-136] and to N = 1 super Virasoro algebras. We work out in detail the case of the superalgebra B(0, 1)(1), showing, in particular, that restricting to its even part produces again all modular invariant representations of Vir. These results lead to general conjectures about asymptotic behavior of positive energy representations and classification of modular invariant representations. PMID:16593954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham
2014-10-31
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately describedmore » by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.« less
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
A modular projection autostereoscopic system for stereo cinema
NASA Astrophysics Data System (ADS)
Elkhov, Victor A.; Kondratiev, Nikolai V.; Ovechkis, Yuri N.; Pautova, Larisa V.
2009-02-01
The lenticular raster system for 3D movies non-glasses show designed by NIKFI demonstrated commercially in Moscow in the 40'st of the last century. Essential lack of this method was narrow individual viewing zone as only two images on the film used. To solve this problem, we propose to use digital video projective system with modular principle of its design. Increase of the general number of the pixels forming the stereo image is reached by using of more than one projector. The modular projection autostereoscopic system for demonstration of the 3D movies includes diffuser screen; lenticular plate located in front of the screen; projective system consisted from several projectors and the block of parallax panoramogram fragments creator. By means of this block the parallax panoramogram is broken into fragments which quantity corresponds to number of projectors. For the large dimension lenticular screen making rectangular fragments of inclined raster were joined in a uniform leaf. To obtain the needed focal distance of the screen lenses we used immersion - aqueous solution of glycerin. The immersion also let essentially decrease visibility of fragments joints. An experimental prototype of the modular projection autostereoscopic system was created to validate proposed system.
Modular separation-based fiber-optic sensors for remote in situ monitoring.
Dickens, J; Sepaniak, M
2000-02-01
A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.
Soapy: an adaptive optics simulation written purely in Python for rapid concept development
NASA Astrophysics Data System (ADS)
Reeves, Andrew
2016-07-01
Soapy is a newly developed Adaptive Optics (AO) simulation which aims be a flexible and fast to use tool-kit for many applications in the field of AO. It is written purely in the Python language, adding to and taking advantage of the already rich ecosystem of scientific libraries and programs. The simulation has been designed to be extremely modular, such that each component can be used stand-alone for projects which do not require a full end-to-end simulation. Ease of use, modularity and code clarity have been prioritised at the expense of computational performance. Though this means the code is not yet suitable for large studies of Extremely Large Telescope AO systems, it is well suited to education, exploration of new AO concepts and investigations of current generation telescopes.
A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, Alejandro; Grunfeld, Christian
2016-02-01
The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.
Modularization of gradient-index optical design using wavefront matching enabled optimization.
Nagar, Jogender; Brocker, Donovan E; Campbell, Sawyer D; Easum, John A; Werner, Douglas H
2016-05-02
This paper proposes a new design paradigm which allows for a modular approach to replacing a homogeneous optical lens system with a higher-performance GRadient-INdex (GRIN) lens system using a WaveFront Matching (WFM) method. In multi-lens GRIN systems, a full-system-optimization approach can be challenging due to the large number of design variables. The proposed WFM design paradigm enables optimization of each component independently by explicitly matching the WaveFront Error (WFE) of the original homogeneous component at the exit pupil, resulting in an efficient design procedure for complex multi-lens systems.
Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly
NASA Technical Reports Server (NTRS)
LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.
2006-01-01
The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.
Technology Challenges and Opportunities for Very Large In-Space Structural Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2009-01-01
Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions
NASA Astrophysics Data System (ADS)
Mosch, Thomas; Fietzek, Peer
2016-04-01
In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the efficiency of subsea monitoring in a variety of applications.
Gédet, Philippe; Haschtmann, Daniel; Thistlethwaite, Paul A.
2009-01-01
The goal of non-fusion stabilization is to reduce the mobility of the spine segment to less than that of the intact spine specimen, while retaining some residual motion. Several in vitro studies have been conducted on a dynamic system currently available for clinical use (Dynesys®). Under pure moment loading, a dependency of the biomechanical performance on spacer length has been demonstrated; this variability in implant properties is removed with a modular concept incorporating a discrete flexible element. An in vitro study was performed to compare the kinematic and stabilizing properties of a modular dynamic lumbar stabilization system with those of Dynesys, under the influence of an axial preload. Six human cadaver spine specimens (L1–S1) were tested in a spine loading apparatus. Flexibility measurements were performed by applying pure bending moments of 8 Nm, about each of the three principal anatomical axes, with a simultaneously applied axial preload of 400 N. Specimens were tested intact, and following creation of a defect at L3–L4, with the Dynesys implant, with the modular implant and, after removal of the hardware, the injury state. Segmental range of motion (ROM) was reduced for flexion–extension and lateral bending with both implants. Motion in flexion was reduced to less than 20% of the intact level, in extension to approximately 40% and in lateral bending a motion reduction to less than 40% was measured. In torsion, the total ROM was not significantly different from that of the intact level. The expectations for a flexible posterior stabilizing implant are not fulfilled. The assumption that a device which is particularly compliant in bending allows substantial intersegmental motion cannot be fully supported when one considers that such devices are placed at a location far removed from the natural rotation center of the intervertebral joint. PMID:19565278
Implementationof a modular software system for multiphysical processes in porous media
NASA Astrophysics Data System (ADS)
Naumov, Dmitri; Watanabe, Norihiro; Bilke, Lars; Fischer, Thomas; Lehmann, Christoph; Rink, Karsten; Walther, Marc; Wang, Wenqing; Kolditz, Olaf
2016-04-01
Subsurface georeservoirs are a candidate technology for large scale energy storage required as part of the transition to renewable energy sources. The increased use of the subsurface results in competing interests and possible impacts on protected entities. To optimize and plan the use of the subsurface in large scale scenario analyses,powerful numerical frameworks are required that aid process understanding and can capture the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes with high computational efficiency. Due to having a multitude of different couplings between basic T, H, M, or C processes and the necessity to implement new numerical schemes the development focus has moved to software's modularity. The decreased coupling between the components results in two major advantages: easier addition of specialized processes and improvement of the code's testability and therefore its quality. The idea of modularization is implemented on several levels, in addition to library based separation of the previous code version, by using generalized algorithms available in the Standard Template Library and the Boost library, relying on efficient implementations of liner algebra solvers, using concepts when designing new types, and localization of frequently accessed data structures. This procedure shows certain benefits for a flexible high-performance framework applied to the analysis of multipurpose georeservoirs.
Large-scale diversification of skull shape in domestic dogs: disparity and modularity.
Drake, Abby Grace; Klingenberg, Christian Peter
2010-03-01
Abstract: The variation among domestic dog breeds offers a unique opportunity to study large-scale diversification by microevolutionary mechanisms. We use geometric morphometrics to quantify the diversity of skull shape in 106 breeds of domestic dog, in three wild canid species, and across the order Carnivora. The amount of shape variation among domestic dogs far exceeds that in wild species, and it is comparable to the disparity throughout the Carnivora. The greatest shape distances between dog breeds clearly surpass the maximum divergence between species in the Carnivora. Moreover, domestic dogs occupy a range of novel shapes outside the domain of wild carnivorans. The disparity among companion dogs substantially exceeds that of other classes of breeds, suggesting that relaxed functional demands facilitated diversification. Much of the diversity of dog skull shapes stems from variation between short and elongate skulls and from modularity of the face versus that of the neurocranium. These patterns of integration and modularity apply to variation among individuals and breeds, but they also apply to fluctuating asymmetry, indicating they have a shared developmental basis. These patterns of variation are also found for the wolf and across the Carnivora, suggesting that they existed before the domestication of dogs and are not a result of selective breeding.
NASA Astrophysics Data System (ADS)
Miles, B.; Chepudira, K.; LaBar, W.
2017-12-01
The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next-generation large-scale and high-resolution real-time environmental monitoring networks used in domains such as hydrology, geomorphology, and geophysics, as well as management applications such as flood early warning, and regulatory enforcement.
Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R
2014-01-01
A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.].
NASA Astrophysics Data System (ADS)
Kennedy, J. L.; Marston, T. M.; Lee, K.; Lopes, J. L.; Lim, R.
2014-01-01
A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.
System on Mobile Devices Middleware: Thinking beyond Basic Phones and PDAs
NASA Astrophysics Data System (ADS)
Prasad, Sushil K.
Several classes of emerging applications, spanning domains such as medical informatics, homeland security, mobile commerce, and scientific applications, are collaborative, and a significant portion of these will harness the capabilities of both the stable and mobile infrastructures (the “mobile grid”). Currently, it is possible to develop a collaborative application running on a collection of heterogeneous, possibly mobile, devices, each potentially hosting data stores, using existing middleware technologies such as JXTA, BREW, Compact .NET and J2ME. However, they require too many ad-hoc techniques as well as cumbersome and time-consuming programming. Our System on Mobile Devices (SyD) middleware, on the other hand, has a modular architecture that makes such application development very systematic and streamlined. The architecture supports transactions over mobile data stores, with a range of remote group invocation options and embedded interdependencies among such data store objects. The architecture further provides a persistent uniform object view, group transaction with Quality of Service (QoS) specifications, and XML vocabulary for inter-device communication. I will present the basic SyD concepts, introduce the architecture and the design of the SyD middleware and its components. We will discuss the basic performance figures of SyD components and a few SyD applications on PDAs. SyD platform has led to developments in distributed web service coordination and workflow technologies, which we will briefly discuss. There is a vital need to develop methodologies and systems to empower common users, such as computational scientists, for rapid development of such applications. Our BondFlow system enables rapid configuration and execution of workflows over web services. The small footprint of the system enables them to reside on Java-enabled handheld devices.
Towards a sustainable modular robot system for planetary exploration
NASA Astrophysics Data System (ADS)
Hossain, S. G. M.
This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.
Engineering of Data Acquiring Mobile Software and Sustainable End-User Applications
NASA Technical Reports Server (NTRS)
Smith, Benton T.
2013-01-01
The criteria for which data acquiring software and its supporting infrastructure should be designed should take the following two points into account: the reusability and organization of stored online and remote data and content, and an assessment on whether abandoning a platform optimized design in favor for a multi-platform solution significantly reduces the performance of an end-user application. Furthermore, in-house applications that control or process instrument acquired data for end-users should be designed with a communication and control interface such that the application's modules can be reused as plug-in modular components in greater software systems. The application of the above mentioned is applied using two loosely related projects: a mobile application, and a website containing live and simulated data. For the intelligent devices mobile application AIDM, the end-user interface have a platform and data type optimized design, while the database and back-end applications store this information in an organized manner and manage access to that data to only to authorized user end application(s). Finally, the content for the website was derived from a database such that the content can be included and uniform to all applications accessing the content. With these projects being ongoing, I have concluded from my research that the applicable methods presented are feasible for both projects, and that a multi-platform design for the mobile application only marginally drop the performance of the mobile application.
Modular Mount Control System for Telescopes
NASA Astrophysics Data System (ADS)
Mooney, J.; Cleis, R.; Kyono, T.; Edwards, M.
The Space Observatory Control Kit (SpOCK) is the hardware, computers and software used to run small and large telescopes in the RDS division of the Air Force Research Laboratories (AFRL). The system is used to track earth satellites, celestial objects, terrestrial objects and aerial objects. The system will track general targets when provided with state vectors in one of five coordinate systems. Client-toserver and server-to-gimbals communication occurs via human-readable s-expressions that may be evaluated by the computer language called Racket. Software verification is achieved by scripts that exercise these expressions by sending them to the server, and receiving the expressions that the server evaluates. This paper describes the adaptation of a modular mount control system developed primarily for LEO satellite imaging on large and small portable AFRL telescopes with a goal of orbit determination and the generation of satellite metrics.
Switching algorithm for maglev train double-modular redundant positioning sensors.
He, Ning; Long, Zhiqiang; Xue, Song
2012-01-01
High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments.
Switching Algorithm for Maglev Train Double-Modular Redundant Positioning Sensors
He, Ning; Long, Zhiqiang; Xue, Song
2012-01-01
High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments. PMID:23112657
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Investigations of coastal zones using a modular amphibious vehicle
NASA Astrophysics Data System (ADS)
Zeziulin, Denis; Makarov, Vladimir; Filatov, Valery; Beresnev, Pavel; Belyakov, Vladimir; Kurkin, Andrey
2017-04-01
The project aims to develop a means of verification of data on sea excitement derived from Autonomous mobile robotic system (AMRS) for coastal monitoring and forecasting marine natural disasters [Kurkin A., Pelinovsky E., Tyugin D., Giniyatullin A., Kurkina O., Belyakov V., Makarov V., Zeziulin D., Kuznetsov K. Autonomous Robotic System for Coastal Monitoring // Proceedings of the 12th International Conference on the Mediterranean Coastal Environment MEDCOAST. 2015. V. 2. P. 933-944]. The chassis of the developed remote-controlled modular amphibious vehicle (MAV) will be equipped with a video camera and a hydrostatic wave-plotting device with strings sensors mounted on the stationary body's supports. To track the position of the MAV there will be installed the navigation system in order to correct the measurement data. The peculiarity of the tricycle MAV is the ability to change its geometric parameters that will increase its stability to actions of destructive waves and mobility. In May-June 2016 authors took part in conducting field tests of the AMRS on the Gulf of Mordvinov (Sea of Okhotsk, Sakhalin Island). Participation in this expedition contributed to obtaining experimental data on the topography and the physical and mechanical properties of the surf zone of the most promising field of using the MAV as a road for its moving. Within the project there was developed a mathematical model of the MAV motion in coastal conditions taking into account the new analytical dependences describing the physical and mechanical characteristics of the ground surfaces and the landscape, as well as hydrodynamic effects of surf zones. The reasonable selection of rational parameters of the MAV and developing the methodology of creating effective vehicles for investigations of specific coastal areas of the Okhotsk Sea will be made by using the mathematical model.
Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.
SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less
Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.
Forrester, Larry W; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F
2014-09-01
BACKGROUND. Modular lower extremity robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually guided and visually evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. To assess the feasibility and efficacy of daily anklebot training during early subacute hospitalization poststroke. Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (n = 18) or passive manual stretching (n = 16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an "assist-as-needed" approach during >200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Both groups walked faster at discharge; however, the robot group improved more in percentage change of temporal symmetry (P = .032) and also of step length symmetry (P = .038), with longer nonparetic step lengths in the robot (133%) versus stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (P ≤ .001) and mean (P ≤ .01) angular speeds, and increased movement smoothness (P ≤ .01). There were no adverse events. Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early subacute hospitalization is well tolerated and improves ankle motor control and gait patterning. © The Author(s) 2014.
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
Real Time Wide Area Radiation Surveillance System
NASA Astrophysics Data System (ADS)
Biafore, M.
2012-04-01
We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity of it based on the latest needs and also on the budget.
Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
1991-01-01
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
López-Aguirre, Camilo; Pérez-Torres, Jairo; Wilson, Laura A B
2015-01-01
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.
Hufnagel, Hansjörg; Huebner, Ansgar; Gülch, Carina; Güse, Katharina; Abell, Chris; Hollfelder, Florian
2009-06-07
We present a modular system of microfluidic PDMS devices designed to incorporate the steps necessary for cell biological assays based on mammalian tissue culture 'on-chip'. The methods described herein include the on-chip immobilization and culturing of cells as well as their manipulation by transfection. Assessment of cell viability by flow cytrometry suggests low attrition rates (<3%) and excellent growth properties in the device for up to 7 days for CHO-K1 cells. To demonstrate that key procedures from the repertoire of cell biology are possible in this format, transfection of a reporter gene (encoding green fluorescent protein) was carried out. The modular design enables efficient detachment and recollection of cells and allows assessment of the success of transfection achieved on-chip. The transfection levels (20%) are comparable to standard large scale procedures and more than 500 cells could be transfected. Finally, cells are transferred into microfluidic microdoplets, where in principle a wide range of subsequent assays can be carried out at the single cell level in droplet compartments. The procedures developed for this modular device layout further demonstrate that commonly used methods in cell biology involving mammalian cells can be reliably scaled down to allow single cell investigations in picolitre volumes.
Pérez-Torres, Jairo; Wilson, Laura A. B.
2015-01-01
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations. PMID:26413433
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
A modular positron camera for the study of industrial processes
NASA Astrophysics Data System (ADS)
Leadbeater, T. W.; Parker, D. J.
2011-10-01
Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the system under study. A standard technique, called positron emitting particle tracking (PEPT) [1], uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Typical applications of PEPT are in the study of granular and multi-phase materials in the disciplines of engineering and the physical sciences. Using components from redundant medical PET scanners a modular positron camera has been developed. This camera consists of a number of small independent detector modules, which can be arranged in custom geometries tailored towards the application in question. The flexibility of the modular camera geometry allows for high photon detection efficiency within specific regions of interest, the ability to study large and bulky systems and the application of PEPT to difficult or remote processes as the camera is inherently transportable.
Evolution of synthetic signaling scaffolds by recombination of modular protein domains.
Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G
2015-06-19
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
Modular cell biology: retroactivity and insulation
Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D
2008-01-01
Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378
Nayak, Losiana; De, Rajat K
2007-12-01
Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.
De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity
Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David
2017-01-01
In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862
JS-MS: a cross-platform, modular javascript viewer for mass spectrometry signals.
Rosen, Jebediah; Handy, Kyle; Gillan, André; Smith, Rob
2017-11-06
Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS storage systems or data processing algorithms. We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and better navigation interfaces. The client includes a modular Java backend with a novel streaming.mzML parser to demonstrate the API-based serving of MS data to the viewer. JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at github.com/optimusmoose/jsms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup
Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less
Zajonz, Dirk; Zieme, Almut; Prietzel, Torsten; Moche, Michael; Tiepoldt, Solveig; Roth, Andreas; Josten, Christoph; von Salis-Soglio, Georg Freiherr; Heyde, Christoph-E; Ghanem, Mohamed
2016-01-01
Modular mega-endoprosthesis systems are used to bridge very large bone defects and have become a widespread method in orthopaedic surgery for the treatment of tumours and revision arthroplasty. However, the indications for the use of modular mega-endoprostheses must be carefully considered. Implanting modular endoprostheses requires major, complication-prone surgery in which the limited salvage procedures should always be borne in mind. The management of periprosthetic infection is particularly difficult and beset with problems. Given this, the present study was designed to gauge the significance of periprosthetic infections in connection with modular mega-implants in the lower extremities among our own patients. Patients who had been fitted with modular endoprosthesis on a lower extremity at our department between September 1994 and December 2011 were examined retrospectively. A total of 101 patients with 114 modular prostheses were identified. Comprising 30 men (29.7 %) and 71 women (70.3 %), their average age at the time of surgery was 67 years (18-92 years). The average follow-up period was 27 months (5 months and 2 weeks to 14 years and 11 months) and the drop-out rate was about 8.8 %. Altogether, there were 19 (17.7 %) endoprosthesis infections: 3 early infections and 16 late or delayed infections. The pathogen spectrum was dominated by coagulase-negative staphylococci (36 %) and Staphylococcus aureus (16 %), including 26 % multi-resistant pathogens. Reinfection occurred in 37 % of cases of infection. Tumours were followed by significantly fewer infections than the other indications. Infections were twice as likely to occur after previous surgery. In our findings modular endoprostheses (18 %) are much more susceptible to infection than primary endoprostheses (0.5-2,5 %). Infection is the most common complication alongside the dislocation of proximal femur endoprostheses. Consistent, radical surgery is essential - although even with an adequate treatment strategy, the recurrence rate is very high. Unfortunately, the functional results are frequently unsatisfactory, with amputation often being the last resort. Therefore, the indication for implantation must be carefully considered and discussed in great detail, especially in the case of multimorbid patients with previous joint infections.
NASA Technical Reports Server (NTRS)
Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.
1995-01-01
Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.
von Lühmann, Alexander; Herff, Christian; Heger, Dominic; Schultz, Tanja
2015-01-01
Brain-Computer Interfaces (BCIs) and neuroergonomics research have high requirements regarding robustness and mobility. Additionally, fast applicability and customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology with a potential to satisfy these conditions. EEG acquisition technology, currently one of the main modalities used for mobile brain activity assessment, is widely spread and open for access and thus easily customizable. fNIRS technology on the other hand has either to be bought as a predefined commercial solution or developed from scratch using published literature. To help reducing time and effort of future custom designs for research purposes, we present our approach toward an open source multichannel stand-alone fNIRS instrument for mobile NIRS-based neuroimaging, neuroergonomics and BCI/BMI applications. The instrument is low-cost, miniaturized, wireless and modular and openly documented on www.opennirs.org. It provides features such as scalable channel number, configurable regulated light intensities, programmable gain and lock-in amplification. In this paper, the system concept, hardware, software and mechanical implementation of the lightweight stand-alone instrument are presented and the evaluation and verification results of the instrument's hardware and physiological fNIRS functionality are described. Its capability to measure brain activity is demonstrated by qualitative signal assessments and a quantitative mental arithmetic based BCI study with 12 subjects. PMID:26617510
Improvements in SMR Modular Construction through Supply Chain Optimization and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
White III, Chelsea C.; Petrovic, Bojan
Affordable energy is a critical societal need. Capital construction cost is a significant portion of nuclear energy cost. By controlling and reducing cost, companies can build more competitive nuclear power plants and hence provide access to more affordable energy. Modular construction provides an opportunity to reduce the cost of construction, and as projects scale up in number, the cost of each unit can be further reduced. The objective of this project was to advance design and construction methods for manufacturing Small Modular Reactors (SMRs), and in particular to improve modular construction techniques and develop best practices for designing and operatingmore » supply chains that take advantage of these techniques. The overarching objectives were to accelerate the construction schedule and reduce its variability, reduce the cost of construction, reduce interest costs accrued during construction (IDC), and thus enhance the economic attractiveness of SMRs. Our fundamental measure of merit was total capital investment cost (TCIC). To achieve these objectives, this project developed a decision support system, EVAL, to support identifying, addressing, and resolving or ameliorating challenges and deficiencies in the current modular construction approach. The results of this effort were consistent with the facts that the cost of a construction activity is often smallest when accomplished in the factory, greatest when accomplished at the construction site, and at an intermediate level when accomplished at an assembly area close to the construction site. Further, EVAL can aid in providing insight into ways to reduce waste, improve quality, efficiency, and throughput and reflects the fact that the more done early in the construction process, i.e., in the factory, the more upfront funding is required and hence the more IDC will be accrued. The analysis has lead to a better understanding of circumstances under which modular construction performed mainly in the factory will result in lower expected total cost, relative to more traditional, on-site construction procedures. Further, we anticipate that EVAL can be used to gain insight regarding what role standardization can play in order for modularization to be most effectively defined. Such results would ultimately benefit all (small and large) new nuclear construction.« less
Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach
Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.
2006-01-01
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.
2017-01-01
Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070
Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G
2017-01-01
Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
NASA Technical Reports Server (NTRS)
Williams, J. L.; Copeland, R. J.; Nebbon, B. W.
1972-01-01
The most promising closed CO2 control concept identified by this study is the solid pellet, Mg(OH2)2 system. Two promising approaches to closed thermal control were identified. The AHS system uses modular fusible heat sinks, with a contingency evaporative mode, to allow maximum EVA mobility. The AHS/refrigerator top-off subsystem requires an umbilical to minimize expendables, but less EVA time is used to operate the system, since there is no requirement to change modules. Both of these subsystems are thought to be practical solutions to the problem of providing closed heat rejection for an EVA system.
Space Station crew workload - Station operations and customer accommodations
NASA Technical Reports Server (NTRS)
Shinkle, G. L.
1985-01-01
The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.
1981-09-01
AD-ASll 717 ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMN-ETC F /6 13/9 MOD4JLAR DISTRIBUTION SYSTEMS NOCEL 4DS-16 2O-TON TRANSFER rRAME--ETC...8217 TEMPERATURE -exact) OF degrees .S 9 f after degrees C Fahrenheit subtra’ting Celsius 32) F 32 96.6 2F -40 0 40 so 120 160 200 -40 -20 0 20 140 60 80 100...evaluated favorably by the British Army and reported in their Trial Report No. 233, "Evaluation of MDS Ltd. Transfer System," dated March 1978. f . Under
Iakovlev, S V; Sidorov, V A; Korniushko, I G; Medvedev, V R; Matveev, A G
2011-11-01
Presented data is about attendance means of deployment of field medical units and pieces of army-level medical services and disaster medicine Defense Ministry did not ensure compliance with requirements to create optimal conditions for highly effective work of the medical staff, placing the wounded, the use of modern aids and appliances. The prospects of creation of mobile unit for high-availability modular pre-fabricated on the basis of tent structures, pneumoconstructions and removable habitable bodies, containers, tents, pneumocovers till 2020 are analyzed. Livelihood systems provide armor protection against fragments, bullets, flames, damaging factors of chemical and biological weapons.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In FY2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. Although ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
Driving ATHLETE: Analysis of Operational Efficiency
NASA Technical Reports Server (NTRS)
Townsend, Julie; Mittman, David
2012-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a modular mobility and manipulation platform being developed to support NASA operations in a variety of missions, including exploration of planetary surfaces. The agile system consists of a symmetrical arrangement of six limbs, each with seven articulated degrees of freedom and a powered wheel. This design enables transport of bulky payloads over a wide range of terrain and is envisioned as a tool to mobilize habitats, power-generation equipment, and other supplies for long-range exploration and outpost construction. In 2010, ATHLETE traversed more than 80 km in field environments over eight weeks of testing, demonstrating that the concept is well suited to long-range travel. However, while ATHLETE is designed to travel at speeds of up to 5 kilometers per hour, the observed average traverse rate during field-testing rarely exceeded 1.5 kilometers per hour. This paper investigates sources of inefficiency in ATHLETE traverse operations and identifies targets for improvement of overall traverse rate.
Material processing: AI-MSG modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolsey, C.C.; Carnazzola, A.
1973-12-18
This specification establishes fabrication processing requirements such as cleaning, welding, brazing, and post-weld heat treating for the modification of the Atomics International (AI) Modular Steam Generator (MSG) for use in the Large Leak Test Rig (LLTR) for the study of sodium-water reactions.
Design and development of a mobile system for supporting emergency triage.
Michalowski, W; Slowinski, R; Wilk, S; Farion, K J; Pike, J; Rubin, S
2005-01-01
Our objective was to design and develop a mobile clinical decision support system for emergency triage of different acute pain presentations. The system should interact with existing hospital information systems, run on mobile computing devices (handheld computers) and be suitable for operation in weak-connectivity conditions (with unstable connections between mobile clients and a server). The MET (Mobile Emergency Triage) system was designed following an extended client-server architecture. The client component, responsible for triage decision support, is built as a knowledge-based system, with domain ontology separated from generic problem solving methods and used for the automatic creation of a user interface. The MET system is well suited for operation in the Emergency Department of a hospital. The system's external interactions are managed by the server, while the MET clients, running on handheld computers are used by clinicians for collecting clinical data and supporting triage at the bedside. The functionality of the MET client is distributed into specialized modules, responsible for triaging specific types of acute pain presentations. The modules are stored on the server, and on request they can be transferred and executed on the mobile clients. The modular design provides for easy extension of the system's functionality. A clinical trial of the MET system validated the appropriateness of the system's design, and proved the usefulness and acceptance of the system in clinical practice. The MET system captures the necessary hospital data, allows for entry of patient information, and provides triage support. By operating on handheld computers, it fits into the regular emergency department workflow without introducing any hindrances or disruptions. It supports triage anytime and anywhere, directly at the point of care, and also can be used as an electronic patient chart, facilitating structured data collection.
Survey of Modular Military Vehicles: Benefits and Burdens
2016-01-01
Survey of Modular Military Vehicles: BENEFITS and BURDENS Jean M. Dasch and David J. Gorsich Modularity in military vehicle design is generally...considered a positive attribute that promotes adaptability, resilience, and cost savings. The benefits and burdens of modularity are considered by...Engineering Center, vehicles were considered based on horizontal modularity , vertical modularity , and distributed modularity . Examples were given for each
A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.
2008-01-01
A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.
Emergence of bursts and communities in evolving weighted networks.
Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo
2011-01-01
Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.
The Sargassum Early Advisory System (SEAS)
NASA Astrophysics Data System (ADS)
Armstrong, D.; Gallegos, S. C.
2016-02-01
The Sargassum Early Advisory System (SEAS) web-app was designed to automatically detect Sargassum at sea, forecast movement of the seaweed, and alert users of potential landings. Inspired to help address the economic hardships caused by large landings of Sargassum, the web app automates and enhances the manual tasks conducted by the SEAS group of Texas A&M University at Galveston. The SEAS web app is a modular, mobile-friendly tool that automates the entire workflow from data acquisition to user management. The modules include: 1) an Imagery Retrieval Module to automatically download Landsat-8 Operational Land Imagery (OLI) from the United States Geological Survey (USGS), 2) a Processing Module for automatic detection of Sargassum in the OLI imagery, and subsequent mapping of theses patches in the HYCOM grid, producing maps that show Sargassum clusters; 3) a Forecasting engine fed by the HYbrid Coordinate Ocean Model (HYCOM) model currents and winds from weather buoys; and 4) a mobile phone optimized geospatial user interface. The user can view the last known position of Sargassum clusters, trajectory and location projections for the next 24, 72 and 168 hrs. Users can also subscribe to alerts generated for particular areas. Currently, the SEAS web app produces advisories for Texas beaches. The forecasted Sargassum landing locations are validated by reports from Texas beach managers. However, the SEAS web app was designed to easily expand to other areas, and future plans call for extending the SEAS web app to Mexico and the Caribbean islands. The SEAS web app development is led by NASA, with participation by ASRC Federal/Computer Science Corporation, and the Naval Research Laboratory, all at Stennis Space Center, and Texas A&M University at Galveston.
Dynamic social community detection and its applications.
Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T
2014-01-01
Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.
Dynamic Social Community Detection and Its Applications
Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.
2014-01-01
Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164
The Evolutionary Origins of Hierarchy
Huizinga, Joost; Clune, Jeff
2016-01-01
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881
Modularity in protein structures: study on all-alpha proteins.
Khan, Taushif; Ghosh, Indira
2015-01-01
Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.
Project Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-06-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Project Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-01-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Modular and hierarchical structure of social contact networks
NASA Astrophysics Data System (ADS)
Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong
2013-10-01
Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.
The Evolutionary Origins of Hierarchy.
Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff
2016-06-01
Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.
Modular Ankle Robotics Training in Early Sub-Acute Stroke: A Randomized Controlled Pilot Study
Forrester, Larry W.; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F.
2014-01-01
Background Modular lower extremity (LE) robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually-guided and visually-evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. Objective Assess the feasibility and efficacy of daily anklebot training during early sub-acute hospitalization post-stroke. Methods Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (N=18) or passive manual stretching (N=16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an “assist-as-needed” approach during > 200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Results Both groups walked faster at discharge, however the robot group improved more in percent change of temporal symmetry (p=0.032) and also of step length symmetry (p=0.038), with longer nonparetic step lengths in the robot (133%) vs. stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (p≤ 0.001) and mean (p≤ 0.01) angular speeds, and increased movement smoothness (p≤ 0.01). There were no adverse events. Conclusion Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early sub-acute hospitalization is well tolerated and improves ankle motor control and gait patterning. PMID:24515923
Fong, Monica; Berrin, Jean-Guy; Paës, Gabriel
2016-01-01
Enzymes degrading plant biomass polymers are widely used in biotechnological applications. Their efficiency can be limited by non-specific interactions occurring with some chemical motifs. In particular, the lignin component is known to bind enzymes irreversibly. In order to determine interactions of enzymes with their substrates, experiments are usually performed on isolated simple polymers which are not representative of plant cell wall complexity. But when using natural plant substrates, the role of individual chemical and structural features affecting enzyme-binding properties is also difficult to decipher. We have designed and used lignified model assemblies of plant cell walls as templates to characterize binding properties of multi-modular cellulases. These three-dimensional assemblies are modulated in their composition using the three principal polymers found in secondary plant cell walls (cellulose, hemicellulose, and lignin). Binding properties of enzymes are obtained from the measurement of their mobility that depends on their interactions with the polymers and chemical motifs of the assemblies. The affinity of the multi-modular GH45 cellulase was characterized using a statistical analysis to determine the role played by each assembly polymer. Presence of hemicellulose had much less impact on affinity than cellulose and model lignin. Depending on the number of CBMs appended to the cellulase catalytic core, binding properties toward cellulose and lignin were highly contrasted. Model assemblies bring new insights into the molecular determinants that are responsible for interactions between enzymes and substrate without the need of complex analysis. Consequently, we believe that model bioinspired assemblies will provide relevant information for the design and optimization of enzyme cocktails in the context of biorefineries.
An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen
2015-01-01
This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.
Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R
2015-01-01
Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint. PMID:26306175
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Jessen, Jari Due; Lund, Henrik Hautop
2017-01-19
Loss of functional capabilities due to inactivity is one of the most common reasons for fall accidents, and it has been well established that loss of capabilities can be effectively reduced by physical activity. Pilot studies indicate a possible improvement in functional abilities of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles. The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group of 30 participants training with the interactive modular tiles, and a control group of 30 participants that will receive the usual care provided to non-patient elderly. The intervention period will be 12 weeks. The intervention group will perform group training (4-5 individuals for 1 h training session with each participant receiving 13 min training) on the interactive tiles twice a week. Follow-up tests include 6-min Walk Test (6MWT), the 8-ft Timed Up & Go Test (TUG), and the Chair-Stand Test (CS) from the Senior Fitness Test, along with balancing tests (static test on Wii Board and Line Walk test). Secondary outcomes related to adherence, motivation and acceptability will be investigated through semi-structured interviews. Data will be collected from pre- and post-tests. Data will be analyzed for statistically significant differences by checking that there is a Gaussian distribution and then using paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done. The trial tests for increased mobility, agility, balancing and general fitness of community-dwelling elderly as a result of playing, in this case on modular interactive tiles. A positive outcome may help preventing loss of functional capabilities due to inactivity. ClinicalTrials.gov: Nr. NCT02496702 , Initial Release date 7/7-2015.
The Case for and against Modularisation.
ERIC Educational Resources Information Center
Jonathan, Ruth
1987-01-01
Presents arguments for and against modularization as a form of curriculum organization. Looks at implications for the content of the curriculum, for the learning experience of students, for the professional experience of teachers, for the development of the educational institution, and for the society at large. (JHZ)
Code modernization and modularization of APEX and SWAT watershed simulation models
USDA-ARS?s Scientific Manuscript database
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
A Modular PV System Using Chain-Link-Type Multilevel Converter
NASA Astrophysics Data System (ADS)
Hatano, Nobuhiko; Ise, Toshifumi
This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ficko-Blean, E.; Gregg, K; Adams, J
2009-01-01
Common features of the extracellular carbohydrate-active virulence factors involved in host-pathogen interactions are their large sizes and modular complexities. This has made them recalcitrant to structural analysis, and therefore our understanding of the significance of modularity in these important proteins is lagging. Clostridium perfringens is a prevalent human pathogen that harbors a wide array of large, extracellular carbohydrate-active enzymes and is an excellent and relevant model system to approach this problem. Here we describe the complete structure of C. perfringens GH84C (NagJ), a 1001-amino acid multimodular homolog of the C. perfringens ?-toxin, which was determined using a combination of smallmore » angle x-ray scattering and x-ray crystallography. The resulting structure reveals unprecedented insight into how catalysis, carbohydrate-specific adherence, and the formation of molecular complexes with other enzymes via an ultra-tight protein-protein interaction are spatially coordinated in an enzyme involved in a host-pathogen interaction.« less
Product modular design incorporating preventive maintenance issues
NASA Astrophysics Data System (ADS)
Gao, Yicong; Feng, Yixiong; Tan, Jianrong
2016-03-01
Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.
The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Schwartz, D.
1981-01-01
The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.
NASA Astrophysics Data System (ADS)
Chang, G.; Kim, R.; Bui, B.; Sadaqathullah, S.; Law, E.; Malhotra, S.
2012-12-01
The Lunar Mapping and Modeling Portal (LMMP, https://www.lmmp.nasa.gov/) is a collaboration between four NASA centers, JPL, Marshall, Goddard, and Ames, along with the USGS and US Army to provide a centralized geospatial repository for storing processed lunar data collected from the Apollo missions to the latest data acquired by the Lunar Reconnaissance Orbiter (LRO). We offer various scientific and visualization tools to analyze rock and crater densities, lighting maps, thermal measurements, mineral concentrations, slope hazards, and digital elevation maps with the intention of serving not only scientists and lunar mission planners, but also the general public. The project has pioneered in leveraging new technologies and embracing new computing paradigms to create a system that is sophisticated, secure, robust, and scalable all the while being easy to use, streamlined, and modular. We have led innovations through the use of a hybrid cloud infrastructure, authentication through various sources, and utilizing an in-house GIS framework, TWMS (TiledWMS) as well as the commercial ArcGIS product from ESRI. On the client end, we also provide a Flash GUI framework as well as REST web services to interact with the portal. We have also developed a visualization framework on mobile devices, specifically Apple's iOS, which allows anyone from anywhere to interact with LMMP. At the most basic level, the framework allows users to browse LMMP's entire catalog of over 600 data imagery products ranging from global basemaps to LRO's Narrow Angle Camera (NAC) images that provide details of up to .5 meters/pixel. Users are able to view map metadata and can zoom in and out as well as pan around the entire lunar surface with the appropriate basemap. They can arbitrarily stack the maps and images on top of each other to show a layered view of the surface with layer transparency adjusted to suit the user's desired look. Once the user has selected a combination of layers, he can also bookmark those layers for quick access in subsequent sessions. A search tool is also provided to allow users to quickly find points of interests on the moon and to view the auxiliary data associated with that feature. More advanced features include the ability to interact with the data. Using the services provided by the portal, users will be able to log in and access the same scientific analysis tools provided on the web site including measuring between two points, generating subsets, and running other analysis tools, all by using a customized touch interface that are immediately familiar to users of these smart mobile devices. Users can also access their own storage on the portal and view or send the data to other users. Finally, there are features that will utilize functionality that can only be enabled by mobile devices. This includes the use of the gyroscopes and motion sensors to provide a haptic interface visualize lunar data in 3D, on the device as well as potentially on a large screen. The mobile framework that we have developed for LMMP provides a glimpse of what is possible in visualizing and manipulating large geospatial data on small portable devices. While the framework is currently tuned to our portal, we hope that we can generalize the tool to use data sources from any type of GIS services.
Using peptide array to identify binding motifs and interaction networks for modular domains.
Li, Shawn S-C; Wu, Chenggang
2009-01-01
Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.
Modularity of mind and the role of incentive motivation in representing novelty.
Anselme, Patrick
2012-07-01
Animal and human brains contain a myriad of mental representations that have to be successfully tracked within fractions of a second in a large number of situations. This retrieval process is hard to explain without postulating the massive modularity of cognition. Assuming that the mind is massively modular, it is then necessary to understand how cognitive modules can efficiently represent dynamic environments-in which some modules may have to deal with change-induced novelty and uncertainty. Novelty of a stimulus is a problem for a module when unknown, significant stimuli do not satisfy the module's processing criteria-or domain specificity-and cannot therefore be included in its database. It is suggested that the brain mechanisms of incentive motivation, recruited when faced with novelty and uncertainty, induce transient variations in the domain specificity of cognitive modules in order to allow them to process information they were not prepared to learn. It is hypothesised that the behavioural transitions leading from exploratory activity to habit formation are correlated with (and possibly caused by) the organism's ability to counter novelty-induced uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N.A.; Kelton, K.F.
2011-10-27
High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less
Multiway spectral community detection in networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Newman, M. E. J.
2015-11-01
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.
Thermal Characterization for a Modular 3-D Multichip Module
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Plante, Jeannette; Shaw, Harry
2000-01-01
NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.
Functional connectivity and graph theory in preclinical Alzheimer's disease.
Brier, Matthew R; Thomas, Jewell B; Fagan, Anne M; Hassenstab, Jason; Holtzman, David M; Benzinger, Tammie L; Morris, John C; Ances, Beau M
2014-04-01
Alzheimer's disease (AD) has a long preclinical phase in which amyloid and tau cerebral pathology accumulate without producing cognitive symptoms. Resting state functional connectivity magnetic resonance imaging has demonstrated that brain networks degrade during symptomatic AD. It is unclear to what extent these degradations exist before symptomatic onset. In this study, we investigated graph theory metrics of functional integration (path length), functional segregation (clustering coefficient), and functional distinctness (modularity) as a function of disease severity. Further, we assessed whether these graph metrics were affected in cognitively normal participants with cerebrospinal fluid evidence of preclinical AD. Clustering coefficient and modularity, but not path length, were reduced in AD. Cognitively normal participants who harbored AD biomarker pathology also showed reduced values in these graph measures, demonstrating brain changes similar to, but smaller than, symptomatic AD. Only modularity was significantly affected by age. We also demonstrate that AD has a particular effect on hub-like regions in the brain. We conclude that AD causes large-scale disconnection that is present before onset of symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Huijun; Wang, Hao; Lü, Linyuan
Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.
Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.
2014-01-01
We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.
Modular Activating Receptors in Innate and Adaptive Immunity.
Berry, Richard; Call, Matthew E
2017-03-14
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors
Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal
2011-01-01
Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper. PMID:22247679
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.
2008-01-01
NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.
Electronic bracelet and vision-enabled waist-belt for mobility of visually impaired people.
Bhatlawande, Shripad; Sunkari, Amar; Mahadevappa, Manjunatha; Mukhopadhyay, Jayanta; Biswas, Mukul; Das, Debabrata; Gupta, Somedeb
2014-01-01
A wearable assistive system is proposed to improve mobility of visually impaired people (subjects). This system has been implemented in the shape of a bracelet and waist-belt in order to increase its wearable convenience and cosmetic acceptability. A camera and an ultrasonic sensor are attached to a customized waist-belt and bracelet, respectively. The proposed modular system will act as a complementary aid along with a white cane. Its vision-enabled waist-belt module detects the path and distribution of obstacles on the path. This module conveys the required information to a subject via a mono earphone by activating relevant spoken messages. The electronic bracelet module assists the subject to verify this information and to perceive distance of obstacles along with their locations. The proposed complementary system provides an improved understanding of the surrounding environment with less cognitive and perceptual efforts as compared to a white cane alone. This system was subjected to clinical evaluations with 15 totally blind subjects. Results of usability experiments demonstrated effectiveness of the system as a mobility aid. Amongst the participated subjects, 93.33% expressed satisfaction with the information content of this system, 86.66% subjects comprehended its operational convenience, and 80% appreciated the comfort of the system.
An integrated testbed for cooperative perception with heterogeneous mobile and static sensors.
Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal
2011-01-01
Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper.
Development of modularity in the neural activity of childrenʼs brains
NASA Astrophysics Data System (ADS)
Chen, Man; Deem, Michael W.
2015-02-01
We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.
Dynamics of modularity of neural activity in the brain during development
NASA Astrophysics Data System (ADS)
Deem, Michael; Chen, Man
2014-03-01
Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.
Using real options to evaluate the flexibility in the deployment of SMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Ruiz, F.
2012-07-01
According to recent estimations the financial gap between Large Reactors (LR) and Small Medium Reactors (SMRs) seems not as huge as the economy of scale would suggest, so the SMRs are going to be important players of the worldwide nuclear renaissance. POLIMIs INCAS model has been developed to compare the investment in SMR with respect to LR. It provides the value of IRR (Internal Rate of Return), NPV (Net Present Value), LUEC (Levelized Unitary Electricity Cost), up-front investment, etc. The aim of this research is to integrate the actual INCAS model, based on discounted cash flows, with the real optionmore » theory to measure flexibility of the investor to expand, defer or abandon a nuclear project, under future uncertainties. The work compares the investment in a large nuclear power plant with a series of smaller, modular nuclear power plants on the same site. As a consequence it compares the benefits of the large power plant, coming from the economy of scale, to the benefit of the modular project (flexibility) concluding that managerial flexibility can be measured and used by an investor to face the investment risks. (authors)« less
Experience and results of the 1991 MTLRS-1 USSR campaign
NASA Technical Reports Server (NTRS)
Sperber, Peter; Hauck, H.
1993-01-01
The year 1991 was a special year for the mobile laser ranging systems. Due to the scheduled upgrades of the Modular Transportable Laser Ranging Systems, MTLRS#1 and MTLRS#2, neither a WEGENER MEDLAS nor a Crustal Dynamics Project campaign was carried out in 1991. After the successful upgrade of MTLRS#1 in the first half of 1991 the system departed from Wettzell in August to make measurements at two sites in the USSR. In Riga/Latvia, we operated close to the fixed SLR system. In Simeiz/Ucrainea, the place for MTLRS#1 pad was choosen to collocate the two fixed SLR stations in Simeiz (300 m distance to MTLRS#1) and Kazivelli (about 3 km distance).
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.
2012-01-01
This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.
New high-throughput measurement systems for radioactive wastes segregation and free release.
Suran, J; Kovar, P; Smoldasova, J; Solc, J; Skala, L; Arnold, D; Jerome, S; de Felice, P; Pedersen, B; Bogucarska, T; Tzika, F; van Ammel, R
2017-12-01
This paper addresses the measurement facilities for pre-selection of waste materials prior to measurement for repository acceptance or possible free release (segregation measurement system); and free release (free release measurement system), based on a single standardized concept characterized by unique, patented lead-free shielding. The key objective is to improve the throughput, accuracy, reliability, modularity and mobility of segregation and free-release measurement. This will result in a more reliable decision-making with regard to the safe release and disposal of radioactive wastes into the environment and, resulting in positive economic outcomes. The research was carried out within "Metrology for Decommissioning Nuclear Facilities" (MetroDecom) project. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decoupling local mechanics from large-scale structure in modular metamaterials.
Yang, Nan; Silverberg, Jesse L
2017-04-04
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Decoupling local mechanics from large-scale structure in modular metamaterials
NASA Astrophysics Data System (ADS)
Yang, Nan; Silverberg, Jesse L.
2017-04-01
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Masek, Pavel; Masek, Jan; Frantik, Petr; Fujdiak, Radek; Ometov, Aleksandr; Hosek, Jiri; Andreev, Sergey; Mlynek, Petr; Misurec, Jiri
2016-11-08
The unprecedented growth of today's cities together with increased population mobility are fueling the avalanche in the numbers of vehicles on the roads. This development led to the new challenges for the traffic management, including the mitigation of road congestion, accidents, and air pollution. Over the last decade, researchers have been focusing their efforts on leveraging the recent advances in sensing, communications, and dynamic adaptive technologies to prepare the deployed road traffic management systems (TMS) for resolving these important challenges in future smart cities. However, the existing solutions may still be insufficient to construct a reliable and secure TMS that is capable of handling the anticipated influx of the population and vehicles in urban areas. Along these lines, this work systematically outlines a perspective on a novel modular environment for traffic modeling, which allows to recreate the examined road networks in their full resemblance. Our developed solution is targeted to incorporate the progress in the Internet of Things (IoT) technologies, where low-power, embedded devices integrate as part of a next-generation TMS. To mimic the real traffic conditions, we recreated and evaluated a practical traffic scenario built after a complex road intersection within a large European city.
Masek, Pavel; Masek, Jan; Frantik, Petr; Fujdiak, Radek; Ometov, Aleksandr; Hosek, Jiri; Andreev, Sergey; Mlynek, Petr; Misurec, Jiri
2016-01-01
The unprecedented growth of today’s cities together with increased population mobility are fueling the avalanche in the numbers of vehicles on the roads. This development led to the new challenges for the traffic management, including the mitigation of road congestion, accidents, and air pollution. Over the last decade, researchers have been focusing their efforts on leveraging the recent advances in sensing, communications, and dynamic adaptive technologies to prepare the deployed road traffic management systems (TMS) for resolving these important challenges in future smart cities. However, the existing solutions may still be insufficient to construct a reliable and secure TMS that is capable of handling the anticipated influx of the population and vehicles in urban areas. Along these lines, this work systematically outlines a perspective on a novel modular environment for traffic modeling, which allows to recreate the examined road networks in their full resemblance. Our developed solution is targeted to incorporate the progress in the Internet of Things (IoT) technologies, where low-power, embedded devices integrate as part of a next-generation TMS. To mimic the real traffic conditions, we recreated and evaluated a practical traffic scenario built after a complex road intersection within a large European city. PMID:27834796
A protein domain-based interactome network for C. elegans early embryogenesis
Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc
2008-01-01
Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475
Charged structure constants from modularity
NASA Astrophysics Data System (ADS)
Das, Diptarka; Datta, Shouvik; Pal, Sridip
2017-11-01
We derive a universal formula for the average heavy-heavy-light structure constants for 2 d CFTs with non-vanishing u(1) charge. The derivation utilizes the modular properties of one-point functions on the torus. Refinements in N=2 SCFTs, show that the resulting Cardy-like formula for the structure constants has precisely the same shifts in the central charge as that of the thermodynamic entropy found earlier. This analysis generalizes the recent results by Kraus and Maloney for CFTs with an additional global u(1) symmetry [1]. Our results at large central charge are also shown to match with computations from the holographic dual, which suggest that the averaged CFT three-point coefficient also serves as a useful probe of detecting black hole hair.
Modular Courses in British Higher Education: A Critical Assessment
ERIC Educational Resources Information Center
Church, Clive
1975-01-01
The trends towards modular course structures is examined. British conceptions of modularization are compared with American interpretations of modular instruction, the former shown to be concerned almost exclusively with content, the latter attempting more radical changes in students' learning behavior. Rationales for British modular schemes are…
mORCA: ubiquitous access to life science web services.
Diaz-Del-Pino, Sergio; Trelles, Oswaldo; Falgueras, Juan
2018-01-16
Technical advances in mobile devices such as smartphones and tablets have produced an extraordinary increase in their use around the world and have become part of our daily lives. The possibility of carrying these devices in a pocket, particularly mobile phones, has enabled ubiquitous access to Internet resources. Furthermore, in the life sciences world there has been a vast proliferation of data types and services that finish as Web Services. This suggests the need for research into mobile clients to deal with life sciences applications for effective usage and exploitation. Analysing the current features in existing bioinformatics applications managing Web Services, we have devised, implemented, and deployed an easy-to-use web-based lightweight mobile client. This client is able to browse, select, compose parameters, invoke, and monitor the execution of Web Services stored in catalogues or central repositories. The client is also able to deal with huge amounts of data between external storage mounts. In addition, we also present a validation use case, which illustrates the usage of the application while executing, monitoring, and exploring the results of a registered workflow. The software its available in the Apple Store and Android Market and the source code is publicly available in Github. Mobile devices are becoming increasingly important in the scientific world due to their strong potential impact on scientific applications. Bioinformatics should not fall behind this trend. We present an original software client that deals with the intrinsic limitations of such devices and propose different guidelines to provide location-independent access to computational resources in bioinformatics and biomedicine. Its modular design makes it easily expandable with the inclusion of new repositories, tools, types of visualization, etc.
Residential solar-heating system-design package
NASA Technical Reports Server (NTRS)
1979-01-01
Design package for modular solar heating system includes performance specifications, design data, installation guidelines, and other information that should be valuable to those interested in system (or similar systems) for projected installation. When installed in insulated "energy saver" home, system can supply large percentage of total energy needs of building.
Inhaled reactive gases typically cause respiratory tract toxicity with a prominent proximal to distal lesion pattern. This pattern is largely driven by airflow and interspecies differences between rodents and humans result from factors such as airway architecture, ventilation ra...
Test Information Targeting Strategies for Adaptive Multistage Testing Designs.
ERIC Educational Resources Information Center
Luecht, Richard M.; Burgin, William
Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…
The Measurement of Instructional Accomplishments.
ERIC Educational Resources Information Center
Fraley, Lawrence E.; Vargas, Ernest A.
Instructional System Technology in recent years has been characterized by an increase in individualized instruction and the modularization of the curriculum. In traditional systems the learners are forced to take blocks of instruction the size of entire courses and these are much too large. The courses can now be broken down into conceptual…
Exploration Rover Concepts and Development Challenges
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.
2005-01-01
This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.
Sasaki, Kotaro; Rispin, Karen
2017-01-01
In under-resourced settings where motorized wheelchairs are rarely available, manual wheelchair users with limited upper-body strength and functionalities need to rely on assisting pushers for their mobility. Because traveling surfaces in under-resourced settings are often unpaved and rough, wheelchair pushers could experience high physiological loading. In order to evaluate pushers' physiological loading and to improve wheelchair designs, we built indoor modular units that simulate rough surface conditions, and tested a hypothesis that pushing different wheelchairs would result in different physiological performances and pushers' perception of difficulty on the simulated rough surface. Eighteen healthy subjects pushed two different types of pediatric wheelchairs (Moti-Go manufactured by Motivation, and KidChair by Hope Haven) fitted with a 50-kg dummy on the rough and smooth surfaces at self-selected speeds. Oxygen uptake, traveling distance for 6 minutes, and the rating of difficulty were obtained. The results supported our hypothesis, showing that pushing Moti-Go on the rough surface was physiologically less loading than KidChair, but on the smooth surface, the two wheelchairs did not differ significantly. These results indicate wheelchair designs to improve pushers' performance in under-resourced settings should be evaluated on rough surfaces.
Dissociation of modular total hip arthroplasty at the neck-stem interface without dislocation.
Kouzelis, A; Georgiou, C S; Megas, P
2012-12-01
Modular femoral and acetabular components are now widely used, but only a few complications related to the modularity itself have been reported. We describe a case of dissociation of the modular total hip arthroplasty (THA) at the femoral neck-stem interface during walking. The possible causes of this dissociation are discussed. Successful treatment was provided with surgical revision and replacement of the modular neck components. Surgeons who use modular components in hip arthroplasties should be aware of possible early complications in which the modularity of the prostheses is the major factor of failure.
Quasispecies theory for evolution of modularity.
Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W
2015-01-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.
Self-organized modularization in evolutionary algorithms.
Dauscher, Peter; Uthmann, Thomas
2005-01-01
The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).
[Modular enteral nutrition in pediatrics].
Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D
1991-01-01
Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.
Convergent evolution of modularity in metabolic networks through different community structures.
Zhou, Wanding; Nakhleh, Luay
2012-09-14
It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, P.L.; Hoeschele, M.
This paper discussed a market-transformation program to reduce energy use in modular school classrooms, a large part of new construction activities in California's schools. Today's modular classrooms cost more to operate than is necessary to provide effective, comfortable learning conditions for students and teachers. Although past resource acquisition programs have created a demand for efficient products and services, modular classrooms remain poorly differentiated in this respect. The cost-effectiveness of a range of potential energy efficiency measures (EEM's) were evaluated including lighting, alternative HVAC options, and improved envelope features. Viable EEM's were combined in two separate packages. The first includes measuresmore » that can easily be implemented and are projected to reduce operating costs by 30%. The second implements a daylighting system, a two-stage evaporative cooler, and radiant heating, resulting in projected annual energy cost savings over 60%. Transforming the market for modular classrooms is accomplished using natural market forces, rather than financial incentives directed at an entire industry. Proactive efforts are focused on the manufacturing industry's change leaders to commercialize energy-efficient products. Lost market share and peer pressure do the heavy lifting of convincing market followers to upgrade their products. Demand for efficient classrooms is increased by educating schools about the new products' financial advantages, comfort enhancements, and environmental benefits. As new products become established in the marketplace, support will be gradually withdrawn. The relevance of this work extends beyond California, given other States' programs to reduce class size, and the Presidents initiative to reduce class size nationally.« less
On Functional Module Detection in Metabolic Networks
Koch, Ina; Ackermann, Jörg
2013-01-01
Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
2013-01-01
Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177
Planet, Paul J.; LaRussa, Samuel J.; Dana, Ali; Smith, Hannah; Xu, Amy; Ryan, Chanelle; Uhlemann, Anne-Catrin; Boundy, Sam; Goldberg, Julia; Narechania, Apurva; Kulkarni, Ritwij; Ratner, Adam J.; Geoghegan, Joan A.; Kolokotronis, Sergios-Orestis; Prince, Alice
2013-01-01
ABSTRACT The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. PMID:24345744
Electron delocalization and charge mobility as a function of reduction in a metal-organic framework.
Aubrey, Michael L; Wiers, Brian M; Andrews, Sean C; Sakurai, Tsuneaki; Reyes-Lillo, Sebastian E; Hamed, Samia M; Yu, Chung-Jui; Darago, Lucy E; Mason, Jarad A; Baeg, Jin-Ook; Grandjean, Fernande; Long, Gary J; Seki, Shu; Neaton, Jeffrey B; Yang, Peidong; Long, Jeffrey R
2018-06-04
Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe 2 (BDP) 3 (0 ≤ x ≤ 2; BDP 2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe 2 (BDP) 3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe 2 (BDP) 3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.
Engineering management consideration for an integrated aeronautical mobile satellite service
NASA Astrophysics Data System (ADS)
Belcher, John M.
In order to meet local air traffic control terminal requirements as well as national and transborder requirements, countries have developed communications, navigation, and surveillance (CNS) systems having little systems integration and a solely ground-based solution to air traffic control problems. It is believed that the application of satellite technology is the only currently viable solution that will enable international civil aviation to overcome the shortcomings of the presently available CNS systems. If properly implemented, available satellite system technology integrated with avionics and ground based capabilities, can be used to meet new global aviation demands. A clear transition plan has to be implemented so as to ensure continuity of service, recognize user-borne costs, and satisfy institutional and national objectives in the progress toward a universal air traffic management (ATM) system. ATM systems design should rely on a modular approach for flexibility and upgrading. An aeronautical mobile satellite service is intended to provide a worldwide satellite data link and direct air/ground voice communication. Institutional and financial roadblocks for implemetation of a global based approach will likely be far greater than technical constraints.
One-click scanning of large-size documents using mobile phone camera
NASA Astrophysics Data System (ADS)
Liu, Sijiang; Jiang, Bo; Yang, Yuanjie
2016-07-01
Currently mobile apps for document scanning do not provide convenient operations to tackle large-size documents. In this paper, we present a one-click scanning approach for large-size documents using mobile phone camera. After capturing a continuous video of documents, our approach automatically extracts several key frames by optical flow analysis. Then based on key frames, a mobile GPU based image stitching method is adopted to generate a completed document image with high details. There are no extra manual intervention in the process and experimental results show that our app performs well, showing convenience and practicability for daily life.
Spatiotemporal property and predictability of large-scale human mobility
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin
2018-04-01
Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.
Configurable double-sided modular jet impingement assemblies for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet
2018-05-22
A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.
Study of Polyolefines Waste Thermo-Destruction in Large Laboratory and in Industrial Installations
2014-12-15
coke ”–waste after thermo-destruction carried out on the module No 2 showed an content to 46.1% of ash [20]. This ash content indicates a very large... coke (post-production waste) from the wastes thermo-destruction on 2 modules of vertical modular installation for thermo-destruction of used polymer...of receivedwaste water, the quantity of received coke , the quantity of gaseous product in periods of carrying out installation work before (first
A Mobile Sensor Network to Map CO2 in Urban Environments
NASA Astrophysics Data System (ADS)
Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.
2014-12-01
Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.
Nonparametric Bayesian inference of the microcanonical stochastic block model
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
2017-01-01
A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.
Theodorou, E.G; Provatidis, C.G; Babis, G.C; Georgiou, C.S; Megas, P.D
2011-01-01
Total Hip Arthroplasty aims at fully recreating a functional hip joint. Over the past years modular implant systems have become common practice and are widely used, due to the surgical options they provide. In addition Big Femoral Heads have also been implemented in the process, providing more flexibility for the surgeon. The current study aims at investigating the effects that femoral heads of bigger diameter may impose on the mechanical behavior of the bone-implant assembly. Using data acquired by Computed Tomographies and a Coordinate Measurement Machine, a cadaveric femur and a Profemur-E modular stem were fully digitized, leading to a three dimensional finite element model in ANSYS Workbench. Strains and stresses were then calculated, focusing on areas of clinical interest, based on Gruen zones: the calcar and the corresponding below the greater trochanter area in the proximal femur, the stem tip region and a profile line along linea aspera. The performed finite elements analysis revealed that the use of large diameter heads produces significant changes in strain development within the bone volume, especially in the lateral side. The application of Frost’s law in bone remodeling, validated the hypothesis that for all diameters normal bone growth occurs. However, in the calcar area lower strain values were recorded, when comparing with the reference model featuring a 28mm femoral head. Along line aspera and for the stem tip area, higher values were recorded. Finally, stresses calculated on the modular neck revealed increased values, but without reaching the yield strength of the titanium alloy used. PMID:21792381
Theodorou, E G; Provatidis, C G; Babis, G C; Georgiou, C S; Megas, P D
2011-01-01
Total Hip Arthroplasty aims at fully recreating a functional hip joint. Over the past years modular implant systems have become common practice and are widely used, due to the surgical options they provide. In addition Big Femoral Heads have also been implemented in the process, providing more flexibility for the surgeon. The current study aims at investigating the effects that femoral heads of bigger diameter may impose on the mechanical behavior of the bone-implant assembly. Using data acquired by Computed Tomographies and a Coordinate Measurement Machine, a cadaveric femur and a Profemur-E modular stem were fully digitized, leading to a three dimensional finite element model in ANSYS Workbench. Strains and stresses were then calculated, focusing on areas of clinical interest, based on Gruen zones: the calcar and the corresponding below the greater trochanter area in the proximal femur, the stem tip region and a profile line along linea aspera. The performed finite elements analysis revealed that the use of large diameter heads produces significant changes in strain development within the bone volume, especially in the lateral side. The application of Frost's law in bone remodeling, validated the hypothesis that for all diameters normal bone growth occurs. However, in the calcar area lower strain values were recorded, when comparing with the reference model featuring a 28mm femoral head. Along line aspera and for the stem tip area, higher values were recorded. Finally, stresses calculated on the modular neck revealed increased values, but without reaching the yield strength of the titanium alloy used.
Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero
2012-03-26
Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.
Network community structure and loop coefficient method
NASA Astrophysics Data System (ADS)
Vragović, I.; Louis, E.
2006-07-01
A modular structure, in which groups of tightly connected nodes could be resolved as separate entities, is a property that can be found in many complex networks. In this paper, we propose a algorithm for identifying communities in networks. It is based on a local measure, so-called loop coefficient that is a generalization of the clustering coefficient. Nodes with a large loop coefficient tend to be core inner community nodes, while other vertices are usually peripheral sites at the borders of communities. Our method gives satisfactory results for both artificial and real-world graphs, if they have a relatively pronounced modular structure. This type of algorithm could open a way of interpreting the role of nodes in communities in terms of the local loop coefficient, and could be used as a complement to other methods.
Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM
NASA Technical Reports Server (NTRS)
Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip
2017-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.
Multimodular biocatalysts for natural product assembly
NASA Astrophysics Data System (ADS)
Schwarzer, Dirk; Marahiel, Mohamed A.
2001-03-01
Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.
Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures.
Gu, Yifan; Wu, Yi-Nan; Li, Liangchun; Chen, Wei; Li, Fengting; Kitagawa, Susumu
2017-12-04
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influenza type A virus: an outstandingly protean pathogen and a potent modular weapon.
Shoham, Dany
2013-05-01
A remarkable debate recently arose on a global scale, about bioethics, biohazard, bioweaponry and bioterrorism issues related to scientific research concerning the induced transition of the highly lethal H5N1 avian flu virus from a non-pandemic to a tentatively pandemic strain, which might fall into malevolent hands. Appreciable ecogenetic complexity marks the main attributes of influenza type A viruses, namely infectivity, virulence, antigenicity, transmissibility, host range, endemicity, and epidemicity. They all shape, conjunctively, the outstanding protean nature of this pathogen, hence the modularity of the latter as a potent weapon. The present analysis inquires into those attributes, so as to profile and gauge threat, usability, impact and coping, particularly that the dimension of genetic engineering of this virus largely amplifies its potential. Within that context, various human interventions and misuses, including human experimental infections, undesirable vaccinations, as well as unauthorized and unskillful operations, led to bad corollaries and are also discussed in the present study. Altogether, a variety of interrelated properties underlying the complicatedness of and menaces posed by influenza A virus as a grave medical challenge, a dually explorable pathogen, and a modular biological warfare agent, are thereby illuminated, alongside with their scientific, strategic and practical implications.
NASA Astrophysics Data System (ADS)
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-12-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.
Quantification of complex modular architecture in plants.
Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain
2018-04-01
Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong
2016-01-01
The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958
A parallel and modular deformable cell Car-Parrinello code
NASA Astrophysics Data System (ADS)
Cavazzoni, Carlo; Chiarotti, Guido L.
1999-12-01
We have developed a modular parallel code implementing the Car-Parrinello [Phys. Rev. Lett. 55 (1985) 2471] algorithm including the variable cell dynamics [Europhys. Lett. 36 (1994) 345; J. Phys. Chem. Solids 56 (1995) 510]. Our code is written in Fortran 90, and makes use of some new programming concepts like encapsulation, data abstraction and data hiding. The code has a multi-layer hierarchical structure with tree like dependences among modules. The modules include not only the variables but also the methods acting on them, in an object oriented fashion. The modular structure allows easier code maintenance, develop and debugging procedures, and is suitable for a developer team. The layer structure permits high portability. The code displays an almost linear speed-up in a wide range of number of processors independently of the architecture. Super-linear speed up is obtained with a "smart" Fast Fourier Transform (FFT) that uses the available memory on the single node (increasing for a fixed problem with the number of processing elements) as temporary buffer to store wave function transforms. This code has been used to simulate water and ammonia at giant planet conditions for systems as large as 64 molecules for ˜50 ps.
Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong
2017-11-01
A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong
2017-11-01
A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A modular modulation method for achieving increases in metabolite production.
Acerenza, Luis; Monzon, Pablo; Ortega, Fernando
2015-01-01
Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.
Using VCL as an Aspect-Oriented Approach to Requirements Modelling
NASA Astrophysics Data System (ADS)
Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian
Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.
Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...
2015-07-14
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less
Modular data acquisition system and its use in gas-filled detector readout at ESRF
NASA Astrophysics Data System (ADS)
Sever, F.; Epaud, F.; Poncet, F.; Grave, M.; Rey-Bakaikoa, V.
1996-09-01
Since 1992, 18 ESRF beamlines are open to users. Although the data acquisition requirements vary a lot from one beamline to another, we are trying to implement a modular data acquisition system architecture that would fit with the maximum number of acquisition projects at ESRF. Common to all of these systems are large acquisition memories and the requirement to visualize the data during an acquisition run and to transfer them quickly after the run to safe storage. We developed a general memory API handling the acquisition memory and its organization and another library that provides calls for transferring the data over TCP/IP sockets. Interesting utility programs using these libraries are the `online display' program and the `data transfer' program. The data transfer program as well as an acquisition control program rely on our well-established `device server model', which was originally designed for the machine control system and then successfully reused in beamline control systems. In the second half of this paper, the acquisition system for a 2D gas-filled detector is presented, which is one of the first concrete examples using the proposed modular data acquisition architecture.
The modular architecture of protein-protein binding interfaces.
Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G
2005-01-04
Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.
The Value of Oral Feedback in the Context of Capstone Projects in Design Education
ERIC Educational Resources Information Center
Karlsen, Kristine Hoeg
2017-01-01
Research frequently reports student dissatisfaction with feedback in higher education. Large class sizes and modularization challenge teachers in providing useful feedback. Most of these studies have investigated student perceptions of written feedback in coursework, and few attempts have been made considering feedback in face-to-face contexts…
An Integrated Modular Approach to Teaching Introductory Economics.
ERIC Educational Resources Information Center
Hallagan, William; Donnelly, John
1985-01-01
Described is the design and administration of a large two-semester course in principles of economics that permits both students and faculty some choice of both subject matter and meeting times. Students complete a standardized nine-week core and are then allowed to select topical modules. Advantages and disadvantages are discussed. (Author/RM)
Chung, Jeanhee; Pankey, Evan; Norris, Ryan J
2007-10-11
We describe the application of the Agile method-- a short iteration cycle, user responsive, measurable software development approach-- to the project management of a modular personal health record, iHealthSpace, to be deployed to the patients and providers of a large academic primary care practice.
ERIC Educational Resources Information Center
Furge, Laura Lowe; Stevens-Truss, Regina; Moore, D. Blaine; Langeland, James A.
2009-01-01
Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option.…
NASA Astrophysics Data System (ADS)
Gengenbach, Ulrich K.; Hofmann, Andreas; Engelhardt, Friedhelm; Scharnowell, Rudolf; Koehler, Bernd
2001-10-01
A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.
NASA Astrophysics Data System (ADS)
Niu, Ran; Khodorov, Stanislav; Weber, Julian; Reinmüller, Alexander; Palberg, Thomas
2017-11-01
Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.
Universal phase transition in community detectability under a stochastic block model.
Chen, Pin-Yu; Hero, Alfred O
2015-03-01
We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.
Convergent evolution of modularity in metabolic networks through different community structures
2012-01-01
Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Mobile Phone Middleware Architecture for Energy and Context Awareness in Location-Based Services
Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier
2014-01-01
The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution. PMID:25513821
Mobile phone middleware architecture for energy and context awareness in location-based services.
Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier
2014-12-10
The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Publication of conference presentations include--(1) a brief review of current modular standard development, (2) the statistical status of modular practice, (3) availability of modular products, and (4) educational programs on modular coordination. Included are--(1) explanatory diagrams, (2) text of an open panel discussion, and (3) a list of…
Modular Design in Treaty Verification Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macarthur, Duncan Whittemore; Benz, Jacob; Tolk, Keith
2015-01-27
It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffsmore » described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.« less
High energy laser demonstrators for defense applications
NASA Astrophysics Data System (ADS)
Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.
2017-01-01
Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.
Multi-barrier approach for removing organic micropollutants using mobile water treatment systems.
Yu, Youngbeom; Choi, Yang Hun; Choi, Jaewon; Choi, Soohoon; Maeng, Sung Kyu
2018-05-20
The diversity of organic micropollutants (OMPs) in aquatic environments has been increasing rapidly during the last decade. Therefore, it is important to monitor and attenuate emerging contaminants before they can negatively affect the aquatic environment. However, due to the diversity and complexity of OMPs, there are limitations to using a single method for treating a combination of these pollutants. To address this issue, a mobile water treatment system (MWTS) equipped with different treatment units was designed to remove OMPs under field conditions. The MWTS was configured with various modular units including coagulation, flocculation, dissolved air flotation, membrane filtration, ozone oxidation, granular activated carbon, and UV disinfection. Each treatment unit could be operated either individually or in different combinations to identify the optimal configuration of treatment units for the removal of OMPs. To investigate the effectiveness of the MWTS, twelve OMPs were selected and introduced simultaneously into the feed water samples collected from different rivers throughout Korea. The current study proved that the MTWS is an effective solution to treat OMPs and is a time saving treatment system. The combined effects of the different treatment units removed over 99% of the selected OMPs, regardless of their physicochemical properties. Moreover, since the system is mobile, on-site analyses can be conducted to identify the most effective treatment method and configuration for each OMP. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudergui, K.; Carrel, F.; Domenech, T.
2011-07-01
The MOBISIC project, funded by the Systematic Paris-Region cluster, is being developed in the context of local crisis (attack bombing in urban environment, in confined space such as an underground train tunnel etc.) or specific event securing (soccer world cup, political meeting etc.). It consists in conceiving, developing and experimenting a mobile, modular ('plug and play') and multi-sensors securing system. In this project, CEA LIST has suggested different solutions for nuclear risks detection and identification. It results in embedding a CZT sensor and a gamma camera in an indoor drone. This article first presents the different modifications carried out onmore » the UAV and different sensors, and focuses then on the experimental performances. (authors)« less
NASA Astrophysics Data System (ADS)
Lewis, Norris E.; Moore, Emery L.
The present conference on fiber-optic (FO) systems discusses topics in shipboard, automotive, spacecraft, and aeronautical FO applications. Attention is given to an FO interferometric ellipsoidal shell hydrophone, an FO backbone for a submarine combat system, EM environmental effects on shipboard FO installations, and recent developments in polymeric FO systems for automotive use. Also discussed are a wavelength-multiplexed FO position encoder for aircraft control systems, a code-division multiple-access system for integrated modular avionics, fly-by-light systems for commercial aircraft, FO temperature sensors for aerospace applications, a hybrid FO/electrical network for launch vehicles, the effects of ionizing radiation on FO systems, and FO systems in liquid propellant rocket environments.
A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
1991-01-01
A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
NASA Technical Reports Server (NTRS)
Esper, Jaime
2004-01-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
“Modular Biospheres” New testbed platforms for public environmental education and research
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.
Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung
2017-09-22
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented.
NASA Astrophysics Data System (ADS)
Esper, Jaime
2005-02-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.
2012-01-01
Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205
Chong, Ilyoung
2017-01-01
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented. PMID:28937590
Comparative modular analysis of gene expression in vertebrate organs.
Piasecka, Barbara; Kutalik, Zoltán; Roux, Julien; Bergmann, Sven; Robinson-Rechavi, Marc
2012-03-29
The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.
Usability-driven pruning of large ontologies: the case of SNOMED CT.
López-García, Pablo; Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan
2012-06-01
To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Graph-traversal heuristics provided high coverage (71-96% of terms in the test sets of discharge summaries) at the expense of subset size (17-51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24-55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available.
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Racanelli, Marco; Howard, David; Miyagi, Glenn; Bowler, Mark; Jordan, Scott; Zhang, Tao; Krieger, William
2010-04-01
Today's modular, mixed-signal CMOS process platforms are excellent choices for manufacturing of highly integrated, large-format read out integrated circuits (ROICs). Platform features, that can be used for both cooled and un-cooled ROIC applications, can include (1) quality passives such as 4fFμm2 stacked MIM capacitors for linearity and higher density capacitance per pixel, 1kOhm high-value poly-silicon resistors, 2.8μm thick metals for efficient power distribution and reduced I-R drop; (2) analog active devices such as low noise single gate 3.3V, and 1.8V/3.3V or 1.8V/5V dual gate configurations, 40V LDMOS FETs, and NPN and PNP devices, deep n-well for substrate isolation for analog blocks and digital logic; (3) tools to assist the circuit designer such as models for cryogenic temperatures, CAD assistance for metal density uniformity determination, statistical, X-sigma and PCM-based models for corner validation and to simulate design sensitivity, and (4) sub-field stitching for large die. The TowerJazz platform of technology for 0.50μm, 0.25μm and 0.18μm CMOS nodes, with features as described above, is described in detail in this paper.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures. PMID:25295187
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.
Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.
2016-01-01
Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486
Tekewe, Alemu; Connors, Natalie K; Middelberg, Anton P J; Lua, Linda H L
2016-08-01
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. © 2016 The Protein Society.
NASA Technical Reports Server (NTRS)
Thate, Robert
2012-01-01
The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.
Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)
2000-01-01
HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).
Stackable In-Line Surface Missile Launch System for a Modular Payload Bay
2004-11-08
stacked modules 14 are connected 8 and sealed to form a single long continuous missile tube . 9 Flexible seals may be used at the base of each missile...vehicles, such as missiles, 22 both through vertical launch via specialized launch tubes on the 23 submarine, and horizontal launch via the submarine’s...torpedo 24 tubes . In some cases, the missiles are quite large, such as the 1 1 Tomahawk missile, which requires sufficient support for the 2 large
Design of an airborne lidar for stratospheric aerosol measurements
NASA Technical Reports Server (NTRS)
Evans, W. E.
1977-01-01
A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.
Modular workcells: modern methods for laboratory automation.
Felder, R A
1998-12-01
Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.
The Modular need for the Division Signal Battalion
2017-06-09
findings and analyzes them to expand on them. It is with these findings and subsequent analysis that the case studies shape the answer to the three...These case studies focus on the signal leadership development and how it occurred in the pre-modular force structure, during modularity, and the...the comparative case study research. The case studies focus on signal leader development in a pre-modular signal force, a modular signal force, and
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)
2017-01-01
The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.
Assessing the effects of large mobile predators on ecosystem connectivity.
McCauley, Douglas J; Young, Hillary S; Dunbar, Robert B; Estes, James A; Semmens, Brice X; Micheli, Fiorenza
2012-09-01
Large predators are often highly mobile and can traverse and use multiple habitats. We know surprisingly little about how predator mobility determines important processes of ecosystem connectivity. Here we used a variety of data sources drawn from Palmyra Atoll, a remote tropical marine ecosystem where large predators remain in high abundance, to investigate how these animals foster connectivity. Our results indicate that three of Palmyra's most abundant large predators (e.g., two reef sharks and one snapper) use resources from different habitats creating important linkages across ecosystems. Observations of cross-system foraging such as this have important implications for the understanding of ecosystem functioning, the management of large-predator populations, and the design of conservation measures intended to protect whole ecosystems. In the face of widespread declines of large, mobile predators, it is important that resource managers, policy makers, and ecologists work to understand how these predators create connectivity and to determine the impact that their depletions may be having on the integrity of these linkages.
A Modularized Counselor-Education Program.
ERIC Educational Resources Information Center
Miller, Thomas V.; Dimattia, Dominic J.
1978-01-01
Counselor-education programs may be enriched through the use of modularized learning experiences. This article notes several recent articles on competency-based counselor education, the concepts of simulation and modularization, and describes the process of developing a modularized master's program at the University of Bridgeport in Connecticut.…
On the classification of weakly integral modular categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Galindo, César; Ng, Siu-Hung
In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less
A comparative analysis of the statistical properties of large mobile phone calling networks.
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N
2014-05-30
Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
An object-oriented forest landscape model and its representation of tree species
Hong S. He; David J. Mladenoff; Joel Boeder
1999-01-01
LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...
ERIC Educational Resources Information Center
Anderson, Cynthia M.; Smith, Tristram; Iovannone, Rose
2018-01-01
There is a large gap between research-based interventions for supporting children with autism spectrum disorder (ASD) and current practices implemented by educators to meet the needs of these children in typical school settings. Myriad reasons for this gap exist including the external validity of existing research, the complexity of ASD, and…
Extending the Capabilities of Internet-Based Research: Lessons from the Field.
ERIC Educational Resources Information Center
Tingling, Peter; Parent, Michael; Wade, Michael
2003-01-01
Summarizes the existing practices of Internet research and suggests extensions to them (e.g., consideration of new capabilities, such as adaptive questions and higher levels of flexibility and control) based on a large-scale, national Web survey. Lessons learned include the use of a modular design, management of Web traffic, and the higher level…
An Assessment Arms Race and Its Fallout: High-Stakes Grading and the Case for Slow Scholarship
ERIC Educational Resources Information Center
Harland, Tony; McLean, Angela; Wass, Rob; Miller, Ellen; Sim, Kwong Nui
2015-01-01
This research questions the impact of assessment on university teaching and learning in circumstances where all student work is graded. Sixty-two students and lecturers were interviewed to explore their experiences of assessment at an institution that had adopted a modular course structure and largely unregulated numbers of internal assessments.…
1971-01-01
This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.
Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawab, Jamshaid; Lim, Ing; Mo, Yi-Lung
Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments andmore » mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear containment structures to resist lateral forces induced by severe earthquakes and heavy winds. SC modules have good potential for SMR because of their cost-effectiveness and reduced construction time. However, the minimum shear reinforcement (i.e. cross tie) ratio needs to be determined for the steel plate-UHPC (S-UHPC) beams to exhibit a ductile failure mode. In this project, S-UHPC beams were designed and constructed. The beams were tested to evaluate structural capacity and identify the minimum cross ties ratios. In addition, as the bond between UHPC and steel plate is essential for ensuring structural integrity under shear and flexure, it was measured and examined in this project through digital image correlation system and smart piezoelectric aggregate sensors. Large-scale testing and finite element simulation were also performed on S-UHPC wall panels. New bond slip-based constitutive models of steel plate were developed for S-UHPC, which were used in finite element analysis program to predict S-UHPC behavior under shear. The results were well validated through experimental data. The long-term durability of UHPC were established in this project. UHPC specimens were tested under free shrinkage, restrained shrinkage, elevated temperature, water permeation, chloride diffusion, corrosion, and alkali silica reaction. UHPC has demonstrated significantly improved durability compared with control concrete specimens. This research led to a new generation of steel plate-UHPC modules for SMR that can provide large benefits to the electric power industry. Taking advantage of the high strength and durability of UHPC, their modularity and ease of assembly can address the high cost barriers of typical nuclear power plants.« less
The Planform Mobility of Large River Channel Confluences
NASA Astrophysics Data System (ADS)
Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul
2017-04-01
Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock record.
Modular photovoltaic stand-alone systems: Phase 1
NASA Technical Reports Server (NTRS)
Naff, G. J.; Marshall, N. A.
1983-01-01
A family of modular stand-alone power systems that covered the range in power level from 1 kw to 14 kw was developed. Products within this family were required to be easily adaptable to different environments and applications, and were to be both reliable and cost effective. Additionally, true commonality in hardware was to be exploited, and unnecessary recurrence of design and development costs were to be minimized; thus improving hardware availability. Assurance of compatibility with large production runs, was also an underlying program goal. A secondary objective was to compile, evaluate, and determine the economic and technical status of available, and potentially available, technology options associated with the balance of systems (BOS) for stand-along photovoltaic (PV) power systems. The secondary objective not only directly supported the primary but additionally contributed to the definition and implementation of the BOS cost reduction plan.
Modular Chemical Descriptor Language (MCDL): Stereochemical modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.
2011-01-01
In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDLmore » processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.« less
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2015-11-01
We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub- and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the role of the brain plasticity in some functional behaviors associated with population synchronization.
Modular Apparatus and Method for Attaching Multiple Devices
NASA Technical Reports Server (NTRS)
Okojie, Robert S (Inventor)
2015-01-01
A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.
Robotic hand with modular extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salisbury, Curt Michael; Quigley, Morgan
A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.
Highly Mobile Students: Educational Problems and Possible Solutions. ERIC/CUE Digest, Number 73.
ERIC Educational Resources Information Center
ERIC Clearinghouse on Urban Education, New York, NY.
The following two types of student mobility stand out as causing educational problems: (1) inner-city mobility, which is prompted largely by fluctuations in the job market; and (2) intra-city mobility, which is caused by upward mobility or by poverty and homelessness. Most research indicates that high mobility negatively affects student…
Multigene Expression In Vivo: Supremacy of Large Versus Small Terminators for T7 RNA Polymerase
Du, Liping; Villarreal, Seth; Forster, Anthony C.
2012-01-01
Designing and building multigene constructs is commonplace in synthetic biology. Yet functional successes at first attempts are rare because the genetic parts are not fully modular. In order to improve the modularity of transcription, we previously showed that transcription termination in vitro by bacteriophage T7 RNA polymerase could be made more efficient by substituting the standard, single, TΦ large (class I) terminator with adjacent copies of the Vesicular Stomatitis Virus (VSV) small (class II) terminator. However, in vitro termination at the downstream VSV terminator was less efficient than at the upstream VSV terminator, and multigene overexpression in vivo was complicated by unexpectedly inefficient VSV termination within E. coli cells. Here, we address hypotheses raised in that study by showing that VSV or preproparathyroid hormone (PTH) small terminators spaced further apart can work independently (i.e. more efficiently) in vitro, and that VSV and PTH terminations are severely inhibited in vivo. Surprisingly, the difference between class II terminator function in vivo versus in vitro is not due to differences in plasmid supercoiling, as supercoiling had a minimal effect on termination in vitro. We therefore turned to TΦ terminators for “BioBrick” synthesis of a pentameric gene construct suitable for overexpression in vivo. This indeed enabled coordinated overexpression and copurification of five His-tagged proteins using the first construct attempted, indicating that this strategy is more modular than other strategies. An application of this multigene overexpression and protein copurification method is demonstrated by supplying five of the six E. coli translation factors required for reconstitution of translation from a single cell line via copurification, greatly simplifying the reconstitution. PMID:22094962
2012-01-01
Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Modular femoral neck fracture after primary total hip arthroplasty.
Sotereanos, Nicholas G; Sauber, Timothy J; Tupis, Todd T
2013-01-01
The use of modular femoral stems in primary total hip arthroplasty has increased considerably in recent years. These modular components offer the surgeon the ability to independently alter version, offset, and length of the femoral component of a hip arthroplasty. This increases the surgeon's ability to accurately recreate the relevant anatomy but increases the possibilities of corrosion and fracture. Multiple case reports have highlighted fractures of these modular components. We present a case of a fracture of a modular design that has had no previously reported modular neck fractures. The patient was informed that data concerning the case would be submitted, and he consented. Copyright © 2013 Elsevier Inc. All rights reserved.
Modular properties of 6d (DELL) systems
NASA Astrophysics Data System (ADS)
Aminov, G.; Mironov, A.; Morozov, A.
2017-11-01
If super-Yang-Mills theory possesses the exact conformal invariance, there is an additional modular invariance under the change of the complex bare charge [InlineMediaObject not available: see fulltext.]. The low-energy Seiberg-Witten prepotential ℱ( a), however, is not explicitly invariant, because the flat moduli also change a - → a D = ∂ℱ/∂ a. In result, the prepotential is not a modular form and depends also on the anomalous Eisenstein series E 2. This dependence is usually described by the universal MNW modular anomaly equation. We demonstrate that, in the 6 d SU( N) theory with two independent modular parameters τ and \\widehat{τ} , the modular anomaly equation changes, because the modular transform of τ is accompanied by an ( N -dependent!) shift of \\widehat{τ} and vice versa. This is a new peculiarity of double-elliptic systems, which deserves further investigation.
Towards a Formal Basis for Modular Safety Cases
NASA Technical Reports Server (NTRS)
Denney, Ewen; Pai, Ganesh
2015-01-01
Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.
Brain modularity controls the critical behavior of spontaneous activity.
Russo, R; Herrmann, H J; de Arcangelis, L
2014-03-13
The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.
Why Go Modular? A Review of Modular A-Level Mathematics.
ERIC Educational Resources Information Center
Taverner, Sally; Wright, Martin
1997-01-01
Attitudes, academic intentions, and attainment of students gaining a grade in A-level (Advanced level) mathematics were compared for those who followed a modular course and those assessed at the end of two years of study. Overall, the final grades of those assessed modularly were half a grade higher. (JOW)
On Classification of Modular Categories by Rank: Table A.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.
2016-04-10
The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
Letarov, A V; Krisch, H M
2013-01-01
The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. PMID:24223296
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe; Paulus, Beate; Hege, Hans-Christian; Schild, Axel
2016-06-15
ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT possesses routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Portable modular detection system
Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA
2009-10-13
Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.
Modularity-like objective function in annotated networks
NASA Astrophysics Data System (ADS)
Xie, Jia-Rong; Wang, Bing-Hong
2017-12-01
We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.
Modular organization and hospital performance.
Kuntz, Ludwig; Vera, Antonio
2007-02-01
The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms.
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Full characterization of modular values for finite-dimensional systems
NASA Astrophysics Data System (ADS)
Ho, Le Bin; Imoto, Nobuyuki
2016-06-01
Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.
Integrating biofiltration with SVE: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesley, M.P.; Rangan, C.R.
1996-12-01
A prototype integrated soil vacuum extraction/biofiltration system has been designed and installed at a gasoline contaminated LUST site in southern Delaware. The prototype system remediates contaminated moisture entrained in the air stream, employs automatic water level controls in the filters, and achieves maximum vapor extraction and VOC destruction efficiency with an optimum power input. In addition, the valving and piping layout allows the direction of air flow through the filters to be reversed at a given time interval, which minimizes biofouling, thereby increasing efficiency by minimizing the need for frequent cleaning. This integrated system achieves constant VOC destruction rates ofmore » 40 to 70% while maintaining optimal VOC removal rates from the subsurface. The modular design allows for easy mobilization, setup and demobilization at state-lead LUST sites throughout Delaware.« less
Walking robot: A design project for undergraduate students
NASA Technical Reports Server (NTRS)
1991-01-01
The objective of the University of Maryland walking robot project was to design, analyze, assemble, and test an intelligent, mobile, and terrain-adaptive system. The robot incorporates existing technologies in novel ways. The legs emulate the walking path of a human by an innovative modification of a crank-and-rocker mechanism. The body consists of two tripod frames connected by a turning mechanism. The two sets of three legs are mounted so as to allow the robot to walk with stability in its own footsteps. The computer uses a modular hardware design and distributed processing. Dual-port RAM is used to allow communication between a supervisory personal computer and seven microcontrollers. The microcontrollers provide low-level control for the motors and relieve the processing burden on the PC.
Stemless shoulder arthroplasty: a literature review
PETRICCIOLI, DARIO; BERTONE, CELESTE; MARCHI, GIACOMO
2015-01-01
The design of humeral implants for shoulder arthroplasty has evolved over the years. The new-generation modular shoulder prostheses have an anatomical humeral stem that replicates the three-dimensional parameters of the proximal humerus. An anatomical reconstruction is the best way to restore stability and mobility of the prosthetic shoulder and improve implant durability. However, a perfect anatomical match is not always possible in, for example, patients with post-traumatic osteoarthritis of the shoulder and deformities in the metaphyseal region. To avoid stem-related complications while retaining the advantages of the fourth generation of shoulder implants, different stemless implants have been developed. The stemless shoulder prosthesis is a new concept in shoulder arthroplasty. The authors review the indications, surgical technique, clinical and radiological midterm results, and complications of these humeral implants. PMID:26151038
Adaptive Oceanographic Sampling in a Coastal Environment Using Autonomous Gliding Vehicles
2003-08-01
cost autonomous vehicles with near-global range and modular sensor payload. Particular emphasis is placed on the development of adaptive sampling...environment. Secondary objectives include continued development of adaptive sampling strategies suitable for large fleets of slow-moving autonomous ... vehicles , and development and implementation of new oceanographic sensors and sampling methodologies. The main task completed was a complete redesign of
ERIC Educational Resources Information Center
Nelson, Douglas Allen, Jr.
2017-01-01
Adoption of simulation in healthcare education has increased tremendously over the past two decades. However, the resources necessary to perform simulation are immense. Simulators are large capital investments and require specialized training for both instructors and simulation support staff to develop curriculum using the simulator and to use the…
Simulating cut-to-length harvesting operations in Appalachian hardwoods
Jingxin Wang; Chris B. LeDoux; Yaoxiang Li
2005-01-01
Cut-to-length (CTL) harvesting systems involving small and large harvesters and a forwarder were simulated using a modular computer simulation model. The two harvesters simulated were a modified John Deere 988 tracked excavator with a single grip sawhead and a Timbco T425 based excavator with a single grip sawhead. The forwarder used in the simulations was a Valmet 524...
Kwon, Young-Min; Khormaee, Sariah; Liow, Ming Han Lincoln; Tsai, Tsung-Yuan; Freiberg, Andrew A; Rubash, Harry E
2016-10-19
Modularity in total hip arthroplasty facilitates intraoperative restoration of patient anatomy. Although dual-taper modular total hip arthroplasty offers potential advantages for optimizing the hip center of rotation, it has been associated with modular taper corrosion. This corrosion has led to adverse local tissue reactions (pseudotumors) at the neck-stem junction and elevated metal-ion levels. However, the occurrence of taper-corrosion-related pseudotumors in patients who remain asymptomatic following total hip arthroplasty with a dual-taper modular femoral stem remains largely unknown. The aims of this study were (1) to determine the prevalence of asymptomatic pseudotumors by utilizing metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) and (2) compare serum metal-ion levels between symptomatic and asymptomatic patients with a dual-taper modular stem total hip replacement. We performed a retrospective cross-sectional study of 97 consecutive patients who had been treated with a dual-taper modular femoral stem total hip arthroplasty. Eighty-three patients were stratified into symptomatic and asymptomatic groups and evaluated with MARS-MRI, measurement of serum metal-ion levels, and the University of California at Los Angeles (UCLA) functional hip score. The prevalence of pseudotumors as determined with MARS-MRI was 15% in our asymptomatic patients and 36% in the overall cohort. The median serum cobalt level and cobalt/chromium ratio were significantly higher in patients with a pseudotumor than in those without a pseudotumor (8.0 versus 2.0 μg/L [p = 0.004] and 10.3 versus 2.4 μg/L [p = 0.012], respectively). However, there was no significant difference in the serum cobalt level or cobalt/chromium ratio between symptomatic patients with a pseudotumor and asymptomatic patients with a pseudotumor (7.6 versus 6.2 μg/L [p = 0.37] and 8.3 versus 10.6 μg/L [p = 0.46], respectively). The UCLA scores of asymptomatic patients with a pseudotumor were similar to those of patients without a pseudotumor (6.7 versus 6.6). The prevalence of asymptomatic taper-corrosion-related pseudotumors on MARS-MRI in this study demonstrated that the absence of symptoms does not exclude the presence of adverse local tissue reactions. Elevated cobalt levels and cobalt/chromium ratios were associated with the presence of pseudotumors in asymptomatic and symptomatic patients. Cross-sectional imaging such as MARS-MRI is indicated for patients with elevated metal-ion levels. A longitudinal study is required to determine whether asymptomatic patients with taper-corrosion-related pseudotumors will develop symptoms with time. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Pulse Shape Discrimination in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Haufe, Christopher; Majorana Collaboration
2017-09-01
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-type point contact detectors totaling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. A large effort is underway to analyze the data currently being taken by the DEMONSTRATOR. Key components of this effort are analysis tools that allow for pulse shape discrimination-techniques that significantly reduce background levels in the neutrinoless double-beta decay region of interest. These tools are able to identify and reject multi-site events from Compton scattering as well as events from alpha particle interactions. This work serves as an overview for these analysis tools and highlights the unique advantages that the HPGe p-type point contact detector provides to pulse shape discrimination. This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao
2016-01-01
Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.
Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter
2008-08-15
The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
Imaging Total Stations - Modular and Integrated Concepts
NASA Astrophysics Data System (ADS)
Hauth, Stefan; Schlüter, Martin
2010-05-01
Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
Usability-driven pruning of large ontologies: the case of SNOMED CT
Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan
2012-01-01
Objectives To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Materials and Methods Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Results Graph-traversal heuristics provided high coverage (71–96% of terms in the test sets of discharge summaries) at the expense of subset size (17–51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24–55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Discussion Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Conclusion Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available. PMID:22268217
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Modular Mayhem? A Case Study of the Development of the A-Level Science Curriculum in England
ERIC Educational Resources Information Center
Hayward, Geoff; McNicholl, Jane
2007-01-01
This article investigates the costs and benefits of the increased use of modular or unitized qualification designs through a case study of the GCE A-level science curriculum in England. Following a brief review of the development of modular A-levels, the various proposed advantages of modularity--short-term goals and regular feedback, flexibility…
Large space erectable structures - building block structures study
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.
1977-01-01
A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.
NASA Astrophysics Data System (ADS)
Chowdhury, Md Mukul
With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.
Present status of recycling waste mobile phones in China: a review.
Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni
2017-07-01
A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.
NASA Technical Reports Server (NTRS)
Buchanan, H. J.
1983-01-01
Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.
2006-01-01
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Modular Knowledge Representation and Reasoning in the Semantic Web
NASA Astrophysics Data System (ADS)
Serafini, Luciano; Homola, Martin
Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.
NASA Astrophysics Data System (ADS)
Makhtar, Siti Noormiza; Senik, Mohd Harizal
2018-02-01
The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.
NASA Technical Reports Server (NTRS)
Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.
2018-01-01
Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.
The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity
Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.
2012-01-01
The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406
OSCAR: A new modular device for the identification and correlation of low energy particles
NASA Astrophysics Data System (ADS)
Dell'Aquila, D.; Lombardo, I.; Verde, G.; Vigilante, M.; Ausanio, G.; Ordine, A.; Miranda, M.; De Luca, M.; Alba, R.; Augey, L.; Barlini, S.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Camaiani, A.; Casini, G.; Chbihi, A.; Cicerchia, M.; Cinausero, M.; Fabris, D.; Faible, Q.; Francalanza, L.; Frankland, J. D.; Grassi, L.; Gramegna, F.; Gruyer, D.; Kordyasz, A. J.; Kozik, T.; LaTorre, R.; Le Neindre, N.; Lopez, O.; Marchi, T.; Morelli, L.; Ottanelli, P.; Parlog, M.; Pastore, G.; Pasquali, G.; Piantelli, S.; Santonocito, D.; Stefanini, A. A.; Tortone, G.; Valdrè, S.; Vient, E.
2018-01-01
A new modular and high versatility hodoscope, OSCAR, has been developed and characterized. The aim of this hodoscope is to work as an ancillary detector of present large acceptance heavy ion detectors in specific angular regions where low thresholds and high granularities are needed. We discuss the capabilities of OSCAR in the ΔE-E identification of very low energy light particles, providing a precise map of the thickness uniformity of the ΔE (SSSSD, 20 μm) stage and showing how the thickness gradient affects the identification of particles. Energy spectra of light identified particles produced in Ca+Ca collisions at 35AMeV are used to investigate isospin transport phenomena involving the emission of low energy particles from the quasi-target (QT) source in semi-peripheral nuclear collisions. The possibility to explore particle-particle correlations are also discussed.
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.