Sample records for large muscle afferents

  1. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  2. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    PubMed

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  3. Classification of longissimus lumborum muscle spindle afferents in the anaesthetized cat

    PubMed Central

    Durbaba, R; Taylor, A; Ellaway, P H; Rawlinson, S

    2006-01-01

    Recordings have been made from 127 single muscle spindle afferents from the longissimus lumborum muscles of anaesthetized cats. They have been characterized by their responses to passive muscle stretch and the effects of succinylcholine (SCh) and by their sensitivity to vibration. The use of SCh permitted the assessment for each afferent of the influence of bag1 (b1) and bag2 (b2) intrafusal muscle fibres. From this, on the assumption that all afferents were affected by chain (c) fibres, they were classified in four groups: b1b2c (41.9%), b2c (51.4%), b1c (1.3%) and c (5.4%). All the afferents with b1 influence were able to respond one to one to vibration at frequencies above 100 Hz and were considered to belong to primary endings. On the basis of the vibration test, 64% of the b2c type afferents appeared to be primaries and 36% secondaries. Of the units classified as primaries, 41% were designated as b2c and would not therefore be able to respond to dynamic fusimotor activity. The significance of this relatively high proportion of b2c-type spindle primary afferents is discussed in relation to the specialized postural function of the back muscles. PMID:16410280

  4. Directional tuning of human forearm muscle afferents during voluntary wrist movements

    PubMed Central

    Jones, Kelvin E; Wessberg, Johan; Vallbo, Åke B

    2001-01-01

    Single unit activity was recorded with the microneurography technique from sixteen spindle afferents and one Golgi tendon organ afferent originating from the forearm extensor muscles. Impulse rates were studied while subjects performed unobstructed aiming movements at the wrist in eight different directions 45 deg apart. In addition, similar imposed movements were performed while the subject was instructed to remain relaxed. Movement amplitudes were about 5 deg and the speed 10–30 deg s−1. Joint movements were translated to movements of a cursor on a monitor to provide visual feedback. Individual spindle afferents modulated their activity over a number of targets, i.e. were broadly tuned, during these aiming movements. The preferred direction for a spindle afferent was the same during both passive and active movements, indicating that the fusimotor effects associated with active contractions had little or no effect on the direction of tuning. The direction of tuning of individual spindle afferents could be predicted from the biomechanically inferred length changes of the parent muscle. Thus spindle afferents responded as stretch receptors, i.e. impulse rates increased with lengthening and decreased with shortening, in active as well as passive movements. Spindles from muscles, which continuously counteracted gravity exhibited a stretch response and directional tuning during the phase of movement alone whereas their position sensitivity was poor. In contrast, spindle afferents from the muscles that had no or minimal antigravity role were directionally tuned during both the dynamic and the static phase of the aiming task and their position sensitivity was substantially higher. In spite of the limited data base from three extensor muscles it could be demonstrated that wrist joint position was remarkably well encoded in the ensemble muscle spindle data. In some cases the ensemble muscle spindle data encoded the instantaneous trajectory of movement as well. PMID

  5. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  6. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  7. Enhanced Muscle Afferent Signals during Motor Learning in Humans.

    PubMed

    Dimitriou, Michael

    2016-04-25

    Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats

    PubMed Central

    Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.

    1981-01-01

    1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only

  9. Central projections and entries of capsaicin-sensitive muscle afferents.

    PubMed

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  10. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons

    PubMed Central

    Li, Jie

    2017-01-01

    It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury. SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic

  11. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    PubMed

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  12. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat

    PubMed Central

    Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O

    1999-01-01

    The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025

  13. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  14. Rat isolated phrenic nerve-diaphragm preparation for pharmacological study of muscle spindle afferent activity: effect of oxotremorine.

    PubMed Central

    Ganguly, D K; Nath, D N; Ross, H G; Vedasiromoni, J R

    1978-01-01

    1. Muscle spindle afferent discharges exhibiting an approximately linear length-frequency relation could be recorded from the phrenic nerve in the isolated phrenic nerve-diaphragm preparation of the rat. 2. Muscle spindle afferent discharges could be identified by their characteristic "spindle pause" during muscle contraction and by their response to succinylcholine. 3. Cholinergic influence on spontaneous and stretch-induced afferent discharges was indicated by the augmentation produced by physostigmine and acetylcholine. (+)-Tubocurarine, but not atropine, prevented this augmentation indicating the presence of curariform cholinoceptors in muscle spindles. 4. Acetylcholine did not appear to be involved in the genesis of spindle afferent discharges as incubation with hemicholinium-3 and (+)-tubocurarine failed to affect the rate of spontaneous and stretch-induced spindle discharges. 5. Oxotremorine markedly increased the rate of spontaneous and stretch-induced spindle afferent discharges and this effect was prevented in the presence of hemicholinium-3 and (+)-tubocurarine. 6. These results with oxotremorine are of interest in connection with the observation that muscle spindle afferents and hyperactive in Parkinsonian patients. PMID:151569

  15. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  16. Ankle joint movements are encoded by both cutaneous and muscle afferents in humans.

    PubMed

    Aimonetti, Jean-Marc; Roll, Jean-Pierre; Hospod, Valérie; Ribot-Ciscar, Edith

    2012-08-01

    We analyzed the cutaneous encoding of two-dimensional movements by investigating the coding of movement velocity for differently oriented straight-line movements and the coding of complex trajectories describing cursive letters. The cutaneous feedback was then compared with that of the underlying muscle afferents previously recorded during the same "writing-like" movements. The unitary activity of 43 type II cutaneous afferents was recorded in the common peroneal nerve in healthy subjects during imposed ankle movements. These movements consisted first of ramp-and-hold movements imposed at two different and close velocities in seven directions and secondly of "writing-like" movements. In both cases, the responses were analyzed using the neuronal population vector model. The results show that movement velocity encoding depended on the direction of the ongoing movement. Discriminating between two velocities therefore involved processing the activity of afferent populations located in the various skin areas surrounding the moving joint, as shown by the statistically significant difference observed in the amplitude of the sum vectors. Secondly, "writing-like" movements induced cutaneous neuronal patterns of activity, which were reproducible and specific to each trajectory. Lastly, the "cutaneous neuronal trajectories," built by adding the sum vectors tip-to-tail, nearly matched both the movement trajectories and the "muscle neuronal trajectories," built from previously recorded muscle afferents. It was concluded that type II cutaneous and the underlying muscle afferents show similar encoding properties of two-dimensional movement parameters. This similarity is discussed in relation to a central gating process that would for instance increase the gain of cutaneous inputs when muscle information is altered by the fusimotor drive.

  17. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.

    PubMed

    Lin, Yi-Wen; Chen, Chih-Cheng

    2015-01-01

    Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (I acid), as well as capsaicin-induced current (I cap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acid-sensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, after-hyperpolarization duration, and all I acid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and I cap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.

  18. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  19. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans

    PubMed Central

    Mangum, Tyler S.; Sidhu, Simranjit K.; Weavil, Joshua C.; Hureau, Thomas J.; Jessop, Jacob E.; Bledsoe, Amber D.; Richardson, Russell S.; Amann, Markus

    2016-01-01

    Key points The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise‐induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle.Lumbar intrathecal fentanyl was used to attenuate the central projection of μ‐opioid receptor‐sensitive locomotor muscle afferents during a 5 km cycling time trial.The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural ‘drive’ to working locomotor muscle and limits the exercise‐induced intramuscular metabolic perturbation.Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. Abstract To investigate the role of metabo‐ and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise‐induced changes in intramuscular metabolites were determined using liquid and gas chromatography‐mass spectrometry. Quadriceps fatigue was quantified by pre‐ to post‐exercise changes in potentiated quadriceps twitch torque (ΔQTsingle) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial

  20. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise

    PubMed Central

    Sidhu, Simranjit K.; Weavil, Joshua C.; Mangum, Tyler S.; Jessop, Jacob E.; Richardson, Russell S.; Morgan, David E.; Amann, Markus

    2017-01-01

    Objective To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Methods Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. Results While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13 ± 3% higher (P < 0.05), resulting in a decrease in MEP/CMEP (P < 0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (−53 ± 3% vs. −39 ± 3%; P < 0.01), the reduction in voluntary muscle activation was smaller (−2 ± 2% vs. −10 ± 2%; P < 0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13 ± 3% and 25 ± 6% in FENT (P < 0.05). Conclusion During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Significance Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. PMID:27866119

  1. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise.

    PubMed

    Sidhu, Simranjit K; Weavil, Joshua C; Mangum, Tyler S; Jessop, Jacob E; Richardson, Russell S; Morgan, David E; Amann, Markus

    2017-01-01

    To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  2. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  3. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    PubMed

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  4. Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pain: A Potential Role in the Recovery of Motor Output.

    PubMed

    Burns, Emma; Chipchase, Lucinda Sian; Schabrun, Siobhan May

    2016-02-13

    . Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. . Observational same subject pre-post test design. . Neurophysiology research laboratory. . Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). . Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. . Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). . These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    PubMed

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Static γ-motoneurones couple group Ia and II afferents of single muscle spindles in anaesthetised and decerebrate cats

    PubMed Central

    Gladden, M H; Matsuzaki, H

    2002-01-01

    Ideas about the functions of static γ-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static γ-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active γ-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of γ-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static γ-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static γ-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of γ-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single γ-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of γ-motoneurones on either the primary or the secondary ending, but not on both together. However, γ-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in α-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents. PMID:12181298

  7. Using vertebral movement and intact paraspinal muscles to determine the distribution of intrafusal fiber innervation of muscle spindle afferents in the anesthetized cat.

    PubMed

    Reed, William R; Cao, Dong-Yuan; Ge, Weiqing; Pickar, Joel G

    2013-03-01

    Increasing our knowledge regarding intrafusal fiber distribution and physiology of paraspinal proprioceptors may provide key insights regarding proprioceptive deficits in trunk control associated with low back pain and lead to more effective clinical intervention. The use of vertebral movement as a means to reliably stretch paraspinal muscles would greatly facilitate physiological study of paraspinal muscle proprioceptors where muscle tendon isolation is either very difficult or impossible. The effects of succinylcholine (SCh) on 194 muscle spindle afferents from lumbar longissimus or multifidus muscles in response to computer-controlled, ramp-and-hold movements of the L(6) vertebra were investigated in anesthetized cats. Paraspinal muscles were stretched by moving the L(6) vertebra 1.5-1.7 mm in the dorsal-ventral direction. Initial frequency (IF), dynamic difference (DD), their changes (∆) following SCh injection (100-400 μg kg(-1)), and post-SCh dynamic difference (SChDD) were measured. Muscle spindle intrafusal fiber terminations were classified as primary or secondary fibers as well as bag(1) (b(1)c), bag(2) (b(2)c), b(1)b(2)c, or chain (c) fibers. Intrafusal fiber subpopulations were distinguished using logarithmic transformation of SChDD and ∆IF distributions as established by previous investigators. Increases in DD indicate strength of b(1)c influence while increases in IF indicate strength of b(2)c influence. Out of 194 afferents, 46.9 % of afferents terminated on b(2)c fibers, 46.4 % on b(1)b(2)c fibers, 1 % on b(1)c fibers, and 5.7 % terminated on c fibers. Based on these intrafusal fiber subpopulation distributions, controlled vertebral movement can effectively substitute for direct tendon stretch and allow further investigation of paraspinal proprioceptors in this anatomically complex body region.

  8. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    PubMed

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  9. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  10. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    PubMed

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due

  11. Bicuculline and strychnine suppress the mesencephalic locomotor region-induced inhibition of group III muscle afferent input to the dorsal horn.

    PubMed

    Degtyarenko, A M; Kaufman, M P

    2003-01-01

    We examined the effect of iontophoretic application of bicuculline methiodide and strychnine hydrochloride on the mesencephalic locomotor region (MLR)-induced inhibition of dorsal horn cells in paralyzed cats. The activity of 60 dorsal horn cells was recorded extracellularly in laminae I, II, V-VII of spinal segments L7-S1. Each of the cells was shown to receive group III muscle afferent input as demonstrated by their responses to electrical stimulation of the tibial nerve (mean latency and threshold of activation: 20.1+/-6.4 ms and 15.2+/-1.4 times motor threshold, respectively). Electrical stimulation of the MLR suppressed transmission in group III muscle afferent pathways to dorsal horn cells. Specifically the average number of impulses generated by the dorsal horn neurons in response to a single pulse applied to the tibial nerve was decreased by 78+/-2.8% (n=60) during the MLR stimulation. Iontophoretic application (10-50 nA) of bicuculline and strychnine (5-10 mM) suppressed the MLR-induced inhibition of transmission of group III afferent input to laminae I and II cells by 69+/-5% (n=10) and 29+/-7% (n=7), respectively. Likewise, bicuculline and strychnine suppressed the MLR-induced inhibition of transmission of group III afferent input to lamina V cells by 59+/-13% (n=14) and 39+/-11% (n=10), respectively. Our findings raise the possibility that GABA and glycine release onto dorsal horn neurons in the spinal cord may play an important role in the suppression by central motor command of thin fiber muscle afferent-reflex pathways.

  12. Somatotopic organization of primary afferent perikarya of the guinea-pig extraocular muscles in the trigeminal ganglion: a post-mortem DiI-tracing study.

    PubMed

    Aigner, M; Robert Lukas, J; Denk, M; Ziya-Ghazvini, F; Kaider, A; Mayr, R

    2000-04-01

    Apart from the somatotopic organization of the trigeminal ganglion (TG) into the ophthalmic, maxillary and mandibular divisions along the mediolateral axis, there exist further somatotopic organizations within these three divisions. According to literature, the cell organization in the TG and the somatotopy in the brainstem develop together, formed by naturally occurring cell death in the TG. Thus, the somatotopy of the primary afferent trigeminal perikarya is of special interest. The aim of this study was to investigate the location of the primary afferent perikarya of the extraocular muscles (EOMs) in the TG of guinea-pig. The primary afferent perikarya were labeled by post-mortem application of the carbocyanine DiI on the oculomotor nerve branches near their entrance into the single EOMs. The DiI-positive perikarya were found musculo-somatically organized in the ipsilateral ophthalmic part of the TG at a wide range along the dorsoventral axis, expressing an overlap of the representation areas. The primary afferent perikarya of the superior rectus and the superior oblique muscles were mainly localized in the dorsal part of the ganglion while those of the inferior rectus and the inferior oblique muscle mainly in ventral part. The lateral and the medial rectus were predominantly represented in between. An organization along the mediolateral axis of the TG was not observed. Although guinea-pigs lack classical EOM proprioceptors, the somatotopic representation of the extraocular muscle primary afferent perikarya in the TG found in this study is in line with findings in species with well known encapsulated proprioceptors within the EOMs.

  13. Allodynia mediated by C-tactile afferents in human hairy skin.

    PubMed

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-08-15

    We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s(−1))--known to excite CT fibres--was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected. Furthermore

  14. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle

    PubMed Central

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity. PMID:26485650

  15. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    PubMed

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  16. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    PubMed Central

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  17. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    PubMed

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  18. Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise.

    PubMed

    Hureau, Thomas J; Weavil, Joshua C; Thurston, Taylor S; Broxterman, Ryan M; Nelson, Ashley D; Bledsoe, Amber D; Jessop, Jacob E; Richardson, Russell S; Wray, D Walter; Amann, Markus

    2018-04-15

    We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit μ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P

  19. Deep tissue afferents, but not cutaneous afferents, mediate transcutaneous electrical nerve stimulation-Induced antihyperalgesia.

    PubMed

    Radhakrishnan, Rajan; Sluka, Kathleen A

    2005-10-01

    In this study we investigated the involvement of cutaneous versus knee joint afferents in the antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) by differentially blocking primary afferents with local anesthetics. Hyperalgesia was induced in rats by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency to heat before and 4 hours after injection. Skin surrounding the inflamed knee joint was anesthetized using an anesthetic cream (EMLA). Low (4 Hz) or high (100 Hz) frequency TENS was then applied to the anesthetized skin. In another group, 2% lidocaine gel was injected into the inflamed knee joint, and low or high frequency TENS was applied. Control experiments were done using vehicles. In control and EMLA groups, both low and high frequency TENS completely reversed hyperalgesia. However, injection of lidocaine into the knee joint prevented antihyperalgesia produced by both low and high frequency TENS. Recordings of cord dorsum potentials showed that both low and high frequency TENS at sensory intensity activates only large diameter afferent fibers. Increasing intensity to twice the motor threshold recruits Adelta afferent fibers. Furthermore, application of EMLA cream to the skin reduces the amplitude of the cord dorsum potential by 40% to 70% for both high and low frequency TENS, confirming a loss of large diameter primary afferent input after EMLA is applied to the skin. Thus, inactivation of joint afferents, but not cutaneous afferents, prevents the antihyperalgesia effects of TENS. We conclude that large diameter primary afferent fibers from deep tissue are required and that activation of cutaneous afferents is not sufficient for TENS-induced antihyperalgesia. Transcutaneous electrical nerve stimulation (TENS) is an accepted clinical modality used for pain relief. It is generally believed that TENS analgesia is caused mainly by cutaneous afferent activation. In this study by

  20. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries

    PubMed Central

    Alvarez, Francisco J.; Bullinger, Katie L.; Titus, Haley E.; Nardelli, Paul; Cope, Timothy C.

    2010-01-01

    After peripheral nerve injuries to a motor nerve the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons. PMID:20536938

  1. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  2. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  3. Active touch and self-motion encoding by Merkel cell-associated afferents

    PubMed Central

    Severson, Kyle S.; Xu, Duo; Van de Loo, Margaret; Bai, Ling; Ginty, David D.; O’Connor, Daniel H.

    2017-01-01

    Summary Touch perception depends on integrating signals from multiple types of peripheral mechanoreceptors. Merkel-cell associated afferents are thought to play a major role in form perception by encoding surface features of touched objects. However, activity of Merkel afferents during active touch has not been directly measured. Here, we show that Merkel and unidentified slowly adapting afferents in the whisker system of behaving mice respond to both self-motion and active touch. Touch responses were dominated by sensitivity to bending moment (torque) at the base of the whisker and its rate of change, and largely explained by a simple mechanical model. Self-motion responses encoded whisker position within a whisk cycle (phase), not absolute whisker angle, and arose from stresses reflecting whisker inertia and activity of specific muscles. Thus, Merkel afferents send to the brain multiplexed information about whisker position and surface features, suggesting that proprioception and touch converge at the earliest neural level. PMID:28434802

  4. Vagal Afferent Innervation of the Lower Esophageal Sphincter

    PubMed Central

    Powley, Terry L.; Baronowsky, Elizabeth A.; Gilbert, Jared M.; Hudson, Cherie N.; Martin, Felecia N.; Mason, Jacqueline K.; McAdams, Jennifer L.; Phillips, Robert J.

    2013-01-01

    To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions. PMID:23583280

  5. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  6. Tonic Investigation Concept of Cervico-vestibular Muscle Afferents

    PubMed Central

    Dorn, Linda Josephine; Lappat, Annabelle; Neuhuber, Winfried; Scherer, Hans; Olze, Heidi; Hölzl, Matthias

    2016-01-01

    Introduction Interdisciplinary research has contributed greatly to an improved understanding of the vestibular system. To date, however, very little research has focused on the vestibular system's somatosensory afferents. To ensure the diagnostic quality of vestibular somatosensory afferent data, especially the extra cranial afferents, stimulation of the vestibular balance system has to be precluded. Objective Sophisticated movements require intra- and extra cranial vestibular receptors. The study's objective is to evaluate an investigation concept for cervico-vestibular afferents with respect to clinical feasibility. Methods A dedicated chair was constructed, permitting three-dimensional trunk excursions, during which the volunteer's head remains fixed. Whether or not a cervicotonic provocation nystagmus (c-PN) can be induced with static trunk excursion is to be evaluated and if this can be influenced by cervical monophasic transcutaneous electrical nerve stimulation (c-TENS) with a randomized test group. 3D-video-oculography (VOG) was used to record any change in cervico-ocular examination parameters. The occurring nystagmuses were evaluated visually due to the small caliber of nystagmus amplitudes in healthy volunteers. Results The results demonstrate: no influence of placebo-controlled c-TENS on the spontaneous nystagmus; a significant increase of the vertical nystagmus on the 3D-trunk-excursion chair in static trunk flexion with cervical provocation in all young healthy volunteers (n = 49); and a significant difference between vertical and horizontal nystagmuses during static trunk excursion after placebo-controlled c-TENS, except for the horizontal nystagmus during trunk torsion. Conclusion We hope this cervicotonic investigation concept on the 3D trunk-excursion chair will contribute to new diagnostic and therapeutic perspectives on cervical pathologies in vestibular head-to-trunk alignment. PMID:28050208

  7. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    PubMed Central

    Grey, Michael J; Ladouceur, Michel; Andersen, Jacob B; Nielsen, Jens Bo; Sinkjær, Thomas

    2001-01-01

    The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h−1 with the left ankle attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (∼8 deg) dorsiflexion perturbations 200 ms after heel contact. Short and medium latency responses were observed with latencies of 55 ± 5 and 78 ± 6 ms, respectively. The short latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). Ischaemia strongly decreased the short latency component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). Two hours after the ingestion of tizanidine, an α2-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P = 0.007), whereas the short latency component was unchanged (P = 0.653). An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. Our results support the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents. PMID:11483721

  8. Afferent Nerve Regulation of Bladder Function in Health and Disease

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2012-01-01

    The afferent innervation of the urinary bladder consists primarily of small myelinated (Aδ) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract. PMID:19655106

  9. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.

    PubMed

    Schalow, G

    1993-12-01

    1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.

  10. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor

    PubMed Central

    Laine, Christopher M.; Nagamori, Akira; Valero-Cuevas, Francisco J.

    2016-01-01

    Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5–9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1–5 or 6–15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough

  11. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2018-04-01

    This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.

  12. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  13. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  14. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  15. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    PubMed

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P < 0.005). Mechanical sensitivities of afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) from non-immunized control guinea-pig airways were unaffected by antigen (n = 13). 4. Antigen did not overtly cause action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in

  16. Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury.

    PubMed

    Vincent, Jacob A; Nardelli, Paul; Gabriel, Hanna M; Deardorff, Adam S; Cope, Timothy C

    2015-08-01

    The health of primary sensory afferents supplying muscle has to be a first consideration in assessing deficits in proprioception and related motor functions. Here we discuss the role of a particular proprioceptor, the IA muscle spindle proprioceptor in causing movement disorders in response to either regeneration of a sectioned peripheral nerve or damage from neurotoxic chemotherapy. For each condition, there is a single preferred and widely repeated explanation for disability of movements associated with proprioceptive function. We present a mix of published and preliminary findings from our laboratory, largely from in vivo electrophysiological study of treated rats to demonstrate newly discovered IA afferent defects that seem likely to make important contributions to movement disorders. First, we argue that reconnection of regenerated IA afferents with inappropriate targets, although often repeated as the reason for lost stretch-reflex contraction, is not a complete explanation. We present evidence that despite successful recovery of stretch-evoked sensory signaling, peripherally regenerated IA afferents retract synapses made with motoneurons in the spinal cord. Second, we point to evidence that movement disability suffered by human subjects months after discontinuation of oxaliplatin (OX) chemotherapy for some is not accompanied by peripheral neuropathy, which is the acknowledged primary cause of disability. Our studies of OX-treated rats suggest a novel additional explanation in showing the loss of sustained repetitive firing of IA afferents during static muscle stretch. Newly extended investigation reproduces this effect in normal rats with drugs that block Na(+) channels apparently involved in encoding static IA afferent firing. Overall, these findings highlight multiplicity in IA afferent deficits that must be taken into account in understanding proprioceptive disability, and that present new avenues and possible advantages for developing effective

  17. A bioinspired flexible organic artificial afferent nerve

    NASA Astrophysics Data System (ADS)

    Kim, Yeongin; Chortos, Alex; Xu, Wentao; Liu, Yuxin; Oh, Jin Young; Son, Donghee; Kang, Jiheong; Foudeh, Amir M.; Zhu, Chenxin; Lee, Yeongjun; Niu, Simiao; Liu, Jia; Pfattner, Raphael; Bao, Zhenan; Lee, Tae-Woo

    2018-06-01

    The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.

  18. Changes in muscle spindle firing in response to length changes of neighboring muscles

    PubMed Central

    Smilde, Hiltsje A.; Vincent, Jake A.; Baan, Guus C.; Nardelli, Paul; Lodder, Johannes C.; Mansvelder, Huibert D.; Cope, Tim C.

    2016-01-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles. PMID:27075540

  19. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  20. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    PubMed

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  1. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  2. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking.

    PubMed

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G; Farina, Dario; Sinkjær, Thomas; Mrachacz-Kersting, Natalie

    2017-01-01

    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors' firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations.

  3. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  4. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    PubMed Central

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211

  5. C-tactile afferent stimulating touch carries a positive affective value.

    PubMed

    Pawling, Ralph; Cannon, Peter R; McGlone, Francis P; Walker, Susannah C

    2017-01-01

    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli

  6. Population Coding of Forelimb Joint Kinematics by Peripheral Afferents in Monkeys

    PubMed Central

    Umeda, Tatsuya; Seki, Kazuhiko; Sato, Masa-aki; Nishimura, Yukio; Kawato, Mitsuo; Isa, Tadashi

    2012-01-01

    Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG) neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR) algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates. PMID:23112841

  7. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  8. Vagal Sensory Innervation of the Gastric Sling Muscle and Antral Wall: Implications for GERD?

    PubMed Central

    Powley, Terry L.; Gilbert, Jared M.; Baronowsky, Elizabeth A.; Billingsley, Cherie N.; Martin, Felecia N.; Phillips, Robert J.

    2012-01-01

    Background The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Methods Sprague Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days post-injection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal were counterstained. Key Results The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with interstitial cells of Cajal. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings (IGLEs), the two types of mechanoreceptors found throughout stomach smooth muscle. Conclusions & Inferences The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. PMID:22925069

  9. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings.

    PubMed

    Banks, R W; Hulliger, M; Saed, H H; Stacey, M J

    2009-06-01

    to be located closer to the main divisions of the nerve. Next, based on a sample of tendon organs from several hind-foot muscles of the cat, we demonstrate the existence in at least a large proportion of tendon organs of a structural substrate to account for multiple spike-initiation sites and pacemaker switching, namely the distribution of sensory terminals supplied by the different first-order branches of the Ib afferent to separate, parallel, tendinous compartments of individual tendon organs. We then show that the numbers of spindles, tendon organs and paciniform corpuscles vary independently in a sample of (mainly) hind-foot muscles of the cat. Grouping muscles by anatomical region in the cat indicated the existence of a gradual proximo-distal decline in the overall average size of the afferent complement of muscle spindles from axial through hind limb to intrinsic foot muscles, but with considerable muscle-specific variability. Finally, we present some comparative data on muscle-spindle afferent complements of rat, rabbit and guinea pig, one particularly notable feature being the high incidence of multiple primary endings in the rat.

  10. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  11. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling.

    PubMed

    Hundza, S R; de Ruiter, Geoff C; Klimstra, M; Zehr, E Paul

    2012-12-01

    Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.

  12. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease?

    PubMed

    Powley, T L; Gilbert, J M; Baronowsky, E A; Billingsley, C N; Martin, F N; Phillips, R J

    2012-10-01

    The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Sprague-Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days postinjection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal (ICC) were counterstained. The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with ICC. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings, the two types of mechanoreceptors found throughout stomach smooth muscle. The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. © 2012 Blackwell Publishing Ltd.

  14. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.

    PubMed

    Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H

    2017-05-01

    Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed

  15. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    PubMed

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  16. Modulation of the masseteric reflex by gastric vagal afferents.

    PubMed

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  17. [Readjustment of the efferent activity of the scratching generator in response to stimulation of muscle afferents of the hindlimb of the decerebrate immobilized cat].

    PubMed

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator activity caused by phasic electrical stimulation of ipsilateral hindlimb muscle nerves during different hindlimb positions were studied in decerebrated immobilized cats. Strong dependence of these rebuildings on the stimulation phase was observed. The character of the "scratch" cycle duration rebuilding was formed by the scratching generator tendency to bring efferent activity into such correlation with the stimulus that the stimulation moment coincided with the moment of efferent activity phase triggering. Phasic altering of the efferent activity intensity rebuilding was observed against a background of "aiming" and "scratching" activity correlation shift in the direction of strengthening activation of muscles innervated by the stimulated nerve. This rebuilding was intensified when the hindlimb deflects from the aimed position in the direction of corresponding muscles stretching. Physiological sense of "rebuilding absence phases" is discussed. It is postulated that absence of the duration and intensity changes can be achieved simultaneously only with definite correlation between phase and intensity of the afferent impulsation burst.

  18. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  19. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs

    PubMed Central

    Canning, Brendan J; Mazzone, Stuart B; Meeker, Sonya N; Mori, Nanako; Reynolds, Sandra M; Undem, Bradley J

    2004-01-01

    We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Aδ- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Aδ-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex. PMID:15004208

  20. The role in masseter muscle activities of functionally elicited periodontal afferents from abutment teeth under overdentures.

    PubMed

    Mushimoto, E

    1981-09-01

    Five overdenture wearers with a small number of remaining natural teeth were selected to evaluate the effect of the afferent input from periodontal mechanoreceptors on masseter activity in man. As a control, a full denture wearer was included. The subjects were instructed to chew a piece of gum, and/or tap their teeth. Surface EmG from the bilateral masseter muscles were recorded and analysed. When functional pressure was applied, during chewing, to the abutment teeth as well as to mucosa through the denture base, masseter activities were encouraged. Following application of anaesthesia to the periodontal membrane of the abutments, masseter activities were reduced. The duration of the silent period (SP) appearing in the EMG burst following tooth tapping was significantly increased with root support compared to mucosal support only. With topical anaesthesia of the periodontal tissues, SP duration decreased significantly. In conclusion, it has become apparent that the pressure sensibility of abutment teeth bearing functional pressure under an overdenture base is capable of facilitating masseter activity, as one of the sources of oral sensory input during mastication.

  1. Response of soleus Ia afferents to vibration in the presence of the tonic vibration reflex in the decerebrate cat.

    PubMed

    Clark, F J; Matthews, P B; Muir, R B

    1981-02-01

    1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor.2. When the amplitude of vibration was 50 mum, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 mum vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut.3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 mum vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 mum vibration; at the same time the reflex tension increased.4. Additional, indirect evidence favouring widespread security of Ia driving by 50 mum vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action.5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general

  2. Response of soleus Ia afferents to vibration in the presence of the tonic vibration reflex in the decerebrate cat

    PubMed Central

    Clark, F. J.; Matthews, P. B. C.; Muir, R. B.

    1981-01-01

    1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor. 2. When the amplitude of vibration was 50 μm, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 μm vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut. 3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 μm vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 μm vibration; at the same time the reflex tension increased. 4. Additional, indirect evidence favouring widespread security of Ia driving by 50 μm vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action. 5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general

  3. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.

  4. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.

    PubMed

    Zhang, Jie; Light, Alan R; Hoppel, Charles L; Campbell, Caitlin; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Hughen, Ronald W; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Fiehn, Oliver; Adams, Sean H

    2017-01-01

    that a weight-loss/fitness intervention alters plasma xenometabolites [i.e. cis-3,4-methylene-heptanoylcarnitine and γ-butyrobetaine (a co-metabolite possibly derived in part from gut bacteria)], suggesting that host metabolic health regulated gut microbe metabolism. Finally, we considered whether acylcarnitine metabolites signal to muscle-innervating afferents; palmitoylcarnitine at concentrations as low as 1-10 μm activated a subset (∼2.5-5%) of these neurons ex vivo. This supports the hypothesis that in addition to tracking exercise-associated shifts in fuel metabolism, muscle acylcarnitines act as signals of exertion to short-loop somatosensory-motor circuits or to the brain. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  5. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.

    PubMed

    Troncoso Brindeiro, Carmen M; Lane, Pascale H; Carmines, Pamela K

    2012-03-01

    Experiments were performed to test the hypothesis that oxidative stress underlies the enhanced tonic dilator impact of inward-rectifier K(+) channels on renal afferent arterioles of rats with streptozotocin-induced diabetes mellitus. Sham and diabetic rats were left untreated or provided Tempol in their drinking water for 26±1 days, after which afferent arteriolar lumen diameter and its responsiveness to K(+) channel blockade were measured using the in vitro blood-perfused juxtamedullary nephron technique. Afferent diameter averaged 19.4±0.8 μm in sham rats and 24.4±0.8 μm in diabetic rats (P<0.05). The decrease in diameter evoked by Ba(2+) (inward-rectifier K(+) channel blocker) was 3 times greater in diabetic rats than in sham rats. Glibenclamide (K(ATP) channel blocker) and tertiapin-Q (Kir1.1/Kir3.x channel blocker) decreased afferent diameter in diabetic rats but had no effect on arterioles from sham rats. Chronic Tempol treatment prevented diabetes mellitus-induced increases in both renal vascular dihydroethidium staining and baseline afferent arteriolar diameter. Moreover, Tempol prevented the exaggeration of afferent arteriolar responses to Ba(2+), tertiapin-Q, and glibenclamide otherwise evident in diabetic rats. Preglomerular microvascular smooth muscle cells expressed mRNA encoding Kir1.1, Kir2.1, and Kir6.1. Neither diabetes mellitus nor Tempol altered Kir1.1, Kir2.1, Kir6.1, or SUR2B protein levels in renal cortical microvessels. To the extent that the effects of Tempol reflect its antioxidant actions, our observations indicate that oxidative stress contributes to the exaggerated impact of Kir1.1, Kir2.1, and K(ATP) channels on afferent arteriolar tone during diabetes mellitus and that this phenomenon involves posttranslational modulation of channel function.

  6. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  8. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  9. Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds

    PubMed Central

    Appenteng, K.; Prochazka, A.; Proske, U.; Wand, P.

    1982-01-01

    1. In barbiturate-anaesthetized cats, the L7 and S1 dorsal and ventral roots were dissected to isolate functionally single afferents identified as primary endings of soleus muscle spindles, and motor filaments which exerted a fusimotor action on the afferents with limited action on extrafusal muscle. Up to seven filaments, with an action on a given primary ending, could be isolated and each was classified as exerting either a predominantly dynamic or static action. 2. Combined stimulation of these filaments, at rates up to 200 impulses/s could maintain afferent firing during muscle shortenings at speeds up to 200 mm/s. 3. Fusimotor stimulation could also maintain afferent firing at a target frequency of 100 impulses/s during muscle shortenings up to 200 mm/s. The timing, in relation to the onset of shortening, and the rates of fusimotor stimulation were found to be critical in achieving the target frequency. 4. Sinusoidal modulation of the frequency of fusimotor stimulation was used to study the conditions required to achieve constant afferent firing in the face of imposed sinusoidal length changes. 5. For given depths of modulation, the phase advance of fusimotor stimulation needed to produce minimum modulation of afferent firing (best compensation) increased with increasing frequency of the sinusoids. The compensation deteriorated with an increase in the frequency of the sinusoids and a change in the mean muscle lengths, although in some cases it could be restored by adjustments to the depth of modulation of fusimotor rate. This suggests that for movements of varying speeds and amplitudes, settings which are appropriate for shortening at a given velocity and mean muscle length, do not apply if either of these two variables are altered. 6. These findings demonstrate that the fusimotor system is potentially capable of eliciting constant afferent firing as envisaged in the `servo-assistance' hypothesis (Matthews, 1964, 1972; Stein, 1974). This, and the fact that

  10. Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans.

    PubMed

    Marchand-Pauvert, V; Nicolas, G; Pierrot-Deseilligny, E

    2000-05-15

    Heteronymous Ia excitatory projections from intrinsic hand muscles to human forearm motoneurones (MNs) were investigated. Changes in firing probability of single motor units (MUs) in the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) were studied after electrical stimuli were applied to the median and ulnar nerve at wrist level and to the corresponding homonymous nerve at elbow level. Homonymous facilitation, occurring at the same latency as the H reflex, and therefore attributed to monosynaptic Ia EPSPs, was found in all the sampled units. In many MUs an early facilitation was also evoked by heteronymous low-threshold afferents from intrinsic hand muscles. The low threshold (between 0.5 and 0.6 times motor threshold (MT)) and the inability of a pure cutaneous stimulation to reproduce this effect indicate that it is due to stimulation of group I muscle afferents. Evidence for a similar central delay (monosynaptic) in heteronymous as in homonymous pathways was accepted when the difference in latencies of the homonymous and heteronymous peaks did not differ from the estimated supplementary afferent conduction time from wrist to elbow level by more than 0.5 ms (conduction velocity in the fastest Ia afferents between wrist and elbow levels being equal to 69 m s-1). A statistically significant heteronymous monosynaptic Ia excitation from intrinsic hand muscles supplied by both median and ulnar nerves was found in MUs belonging to all forearm motor nuclei tested (although not in ECU MUs after ulnar stimulation). It was, however, more often found in flexors than in extensors, in wrist than in finger muscles and in muscles operating in the radial than in the ulnar side. It is argued that the connections of Ia afferents from intrinsic hand muscles to forearm MNs, which are stronger and more widely distributed than in the cat

  11. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the

  12. Cutaneous afferents mediating the cutaneous silent period in the upper limbs: evidences for a role of low-threshold sensory fibres.

    PubMed

    Serrao, M; Parisi, L; Pierelli, F; Rossi, P

    2001-11-01

    To evaluate the contribution of the low-threshold afferents to the production of the cutaneous silent period (CSP) in the upper limbs. The CSP was studied in 10 healthy adults and 4 patients with Friedreich's ataxia. The following neurophysiological aspects were studied: (a) relationship between sensory threshold (ST), sensory action potential (SAP) amplitude and CSP parameters; (b) habituation and recovery cycle of the CSP at different stimulus intensities (2xST and 8xST); (c) pattern of responses in distal and proximal muscles at different stimulus intensities (2xST and 8xST). (a) The CSP occurred at low intensities (1xST and 2xST) and increased abruptly between 3.5xST and 4xST (corresponding to the pain threshold). The SAP amplitude was saturated before CSP saturation. In the patients with Friedreich's ataxia, the CSP appeared only at higher stimulus intensities (6xST-8xST). (b) The CSP evoked at 2xST showed a fast habituation and slow recovery cycle whereas the opposite behaviour was found at 8xST. (c) Low-threshold stimuli induced an inhibitory response restricted to the distal muscles. High-intensity stimulation produced an electromyographic suppression, significantly increasing from proximal to distal muscles. Our findings support the notion that low-threshold afferents participate in the production of the CSP in the upper limbs. The different afferents may activate different central neural networks with separate functional significance.

  13. Wavelet Packet Analysis for Angular Data Extraction from Muscle Afferent Cuff Electrode Signals

    DTIC Science & Technology

    2001-10-25

    from rabbits. In order to estimate ankle flexion/extension angles, we recorded ENG signals from the left Tibial and Peroneal nerves, both during FES...afferent ENG. II. METHODOLOGY A. Experimental Setup Acute experiments were conducted with 2 female New Zealand rabbits. The rabbits were pre-anesthetized...fixating the knee and ankle joints in place (see [3] for more details) . For extracting the ENG signals, tripolar cuff electrodes were implanted onto the

  14. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    PubMed

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  15. Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons.

    PubMed

    Fernandes, Elisabete C; Santos, Ines C; Kokai, Eva; Luz, Liliana L; Szucs, Peter; Safronov, Boris V

    2018-06-21

    and non-nociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. While the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyper- or depolarization. The neurons received monosynaptic inputs from the low-threshold Aβ afferents, Aδ afferents as well as from the high-threshold Aδ and C afferents. When selectively activated, C-fiber-driven mono- and polysynaptic EPSPs were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs, and can function as wide-dynamic-range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.

  16. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the

  17. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  18. Plasticity of gastro-intestinal vagal afferent endings.

    PubMed

    Kentish, Stephen J; Page, Amanda J

    2014-09-01

    Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Heart rate at the onset of muscle contraction and during passive muscle stretch in humans: a role for mechanoreceptors

    PubMed Central

    Gladwell, V F; Coote, J H

    2002-01-01

    Previous evidence suggests that the heart rate (HR) increase observed with isometric exercise is dependent on different afferent mechanisms to those eliciting the increase in blood pressure (BP). Central command and muscle metaboreceptors have been shown to contribute to this differential effect. However, in experimental animals passive stretch of the hindlimb increases HR suggesting that small fibre mechanoreceptors could also have a role. This has not been previously shown in humans and was investigated in this study. Healthy human volunteers were instrumented to record BP, ECG, respiration, EMG of rectus femoris and gastrocnemius and contraction force of triceps surae. Voluntary isometric contraction of triceps surae elicited a significant HR change in the first three respiratory cycles at 40 % of maximum voluntary contraction whereas BP did not change significantly until after 30 s. This suggests that different mechanisms are involved in the initiation of the cardiovascular changes. Sustained passive stretch of triceps surae for 1 min, by dorsiflexion of the foot, caused a significant (P < 0.05) increase in HR (5 ± 2.6 beats min−1) with no significant change in BP. A time domain measure of cardiac vagal activity was reduced significantly during passive stretch from 69.7 ± 12.9 to 49.6 ± 8.9 ms. Rapid rhythmic passive stretch (0.5 Hz for 1 min) was without significant effect suggesting that large muscle proprioreceptors are not involved. We conclude that in man small fibre muscle mechanoreceptors responding to stretch, inhibit cardiac vagal activity and thus increase HR. These afferents could contribute to the initial cardiac acceleration in response to muscle contraction. PMID:11986394

  20. Proteinase-Activated Receptor-2 Sensitivity of Amplified TRPA1 Activity in Skeletal Muscle Afferent Nerves and Exercise Pressor Reflex in Rats with Femoral Artery Occlusion

    PubMed Central

    Xing, Jihong; Li, Jianhua

    2017-01-01

    Background/Aims Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease. PMID:29131007

  1. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  2. Dual-afferent sensory input training for voluntary movement after stroke: A pilot randomized controlled study.

    PubMed

    Bae, Seahyun; Kim, Kyung-Yoon

    2017-01-01

    Stimulation through afferent sensory input is necessary to improve voluntary functional movement in stroke patients. Dual-afferent sensory input, which combines electromyography-triggered functional electric stimulation (ETFES) and action observation, was investigated to determine its effects on voluntary movements in stroke patients. This study was conducted on 18 patients with left hemiplegia diagnosed between 6 and 24 months prior. The 9 subjects in the dual-afferent sensory input (DASI) group underwent ETFES with action observation training for 4 weeks (20 min/d, 5 d/wk), while the 9 control group subjects underwent functional electric stimulation (FES) for the same duration. The outcome measures were the movement-related cortical potential (MRCP), H-reflex, electromyography (EMG), and balance. The control and DASI groups showed significant increases in MRCP, muscle activity, and balance, while H-reflex was significantly decreased. MRCP and balance showed significant differences between DASI and control groups. DASI stimulates voluntary movement in patients, causes rapid activation of the cerebral cortex, and reduces excessive excitation of spinal motor neurons. Therefore, DASI, which stimulates voluntary movement, has a greater effect on brain activation in stroke patients.

  3. [Acute pancreatitis and afferent loop syndrome. Case report].

    PubMed

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  4. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  5. Electrophysiological characterization of human rectal afferents

    PubMed Central

    Ng, Kheng-Seong; Brookes, Simon J.; Montes-Adrian, Noemi A.; Mahns, David A.

    2016-01-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and “inflammatory soup” (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3–25) spikes/s vs. 2 (1–4), P < 0.001] and IS [median 5 (range 2–18) spikes/s vs. 2 (1–4), P < 0.001]. Mechanosensitive “hot spots” were identified in 16 nerves [median threshold 2.0 g (range 1.4–6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4–1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. PMID:27789454

  6. Intracortical circuits, sensorimotor integration and plasticity in human motor cortical projections to muscles of the lower face

    PubMed Central

    Pilurzi, G; Hasan, A; Saifee, T A; Tolu, E; Rothwell, J C; Deriu, F

    2013-01-01

    Previous studies of the cortical control of human facial muscles documented the distribution of corticobulbar projections and the presence of intracortical inhibitory and facilitatory mechanisms. Yet surprisingly, given the importance and precision in control of facial expression, there have been no studies of the afferent modulation of corticobulbar excitability or of the plasticity of synaptic connections in the facial primary motor cortex (face M1). In 25 healthy volunteers, we used standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods to probe motor-evoked potentials (MEPs), short-intracortical inhibition, intracortical facilitation, short-afferent and long-afferent inhibition and paired associative stimulation in relaxed and active depressor anguli oris muscles. Single-pulse TMS evoked bilateral MEPs at rest and during activity that were larger in contralateral muscles, confirming that corticobulbar projection to lower facial muscles is bilateral and asymmetric, with contralateral predominance. Both short-intracortical inhibition and intracortical facilitation were present bilaterally in resting and active conditions. Electrical stimulation of the facial nerve paired with a TMS pulse 5–200 ms later showed no short-afferent inhibition, but long-afferent inhibition was present. Paired associative stimulation tested with an electrical stimulation–TMS interval of 20 ms significantly facilitated MEPs for up to 30 min. The long-term potentiation, evoked for the first time in face M1, demonstrates that excitability of the facial motor cortex is prone to plastic changes after paired associative stimulation. Evaluation of intracortical circuits in both relaxed and active lower facial muscles as well as of plasticity in the facial motor cortex may provide further physiological insight into pathologies affecting the facial motor system. PMID:23297305

  7. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system.

    PubMed

    Budelmann, B U; Young, J Z

    1993-04-29

    Fourteen extraocular eye muscles are described in the decapods Loligo and Sepioteuthis, and thirteen in Sepia; they are supplied by four eye muscle nerves. The main action of most of the muscles is a linear movement of the eyeball, only three muscles produce strong rotations. The arrangement, innervation and action of the decapod eye muscles are compared with those of the seven eye muscles and seven eye muscle nerves in Octopus. The extra muscles in decapods are attached to the anterior and superior faces of the eyes. At least, the anterior muscles, and presumably also the superior muscles, are concerned with convergent eye movements for binocular vision during fixation and capture of prey by the tentacles. The remaining muscles are rather similar in the two cephalopod groups. In decapods, the anterior muscles include conjunctive muscles; these cross the midline and each presumably moves both eyes at the same time during fixation. In the squids Loligo and Sepioteuthis there is an additional superior conjunctive muscle of perhaps similar function. Some of the anterior muscles are associated with a narrow moveable plate, the trochlear cartilage; it is attached to the eyeball by trochlear membranes. Centripetal cobalt fillings showed that all four eye muscle nerves have fibres that originate from somata in the ipsilateral anterior lateral pedal lobe, which is the oculomotor centre. The somata of the individual nerves show different but overlapping distributions. Bundles of small presumably afferent fibres were seen in two of the four nerves. They do not enter the anterior lateral pedal lobe but run to the ventral magnocellular lobe; some afferent fibres enter the brachio-palliovisceral connective and run perhaps as far as the palliovisceral lobe.

  8. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability.

    PubMed

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 ( n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 ( n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.

  9. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    PubMed Central

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  10. Interaction between vestibulosympathetic and skeletal muscle reflexes on sympathetic activity in humans

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    2001-01-01

    Evidence from animals indicates that skeletal muscle afferents activate the vestibular nuclei and that both vestibular and skeletal muscle afferents have inputs to the ventrolateral medulla. The purpose of the present study was to investigate the interaction between the vestibulosympathetic and skeletal muscle reflexes on muscle sympathetic nerve activity (MSNA) and arterial pressure in humans. MSNA, arterial pressure, and heart rate were measured in 17 healthy subjects in the prone position during three experimental trials. The three trials were 2 min of 1) head-down rotation (HDR) to engage the vestibulosympathetic reflex, 2) isometric handgrip (IHG) at 30% maximal voluntary contraction to activate skeletal muscle afferents, and 3) HDR and IHG performed simultaneously. The order of the three trials was randomized. HDR and IHG performed alone increased total MSNA by 46 +/- 16 and 77 +/- 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 +/- 38 units (P < 0.01). This increase was not significantly different from the sum of the individual trials (130 +/- 41 units). This finding was also observed with mean arterial pressure (sum = 21 +/- 2 mmHg and HDR + IHG = 22 +/- 2 mmHg). These findings suggest that there is an additive interaction for MSNA and arterial pressure when the vestibulosympathetic and skeletal muscle reflexes are engaged simultaneously in humans. Therefore, no central modulation exists between these two reflexes with regard to MSNA output in humans.

  11. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.

    PubMed Central

    Hansen, J; Thomas, G D; Harris, S A; Parsons, W J; Victor, R G

    1996-01-01

    Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes. The major new finding is that the ability of reflex-sympathetic activation to decrease muscle oxygenation is abolished when the muscle is exercised at an intensity > 10% of maximal voluntary contraction (MVC). During high intensity handgrip, (45% MVC), contraction-induced decreases in muscle oxygenation remained stable despite progressive metaboreceptor-mediated reflex increases in SNA. During mild to moderate handgrips (20-33% MVC) that do not evoke reflex-sympathetic activation, experimentally induced increases in muscle SNA had no effect on oxygenation in exercising muscles but produced robust decreases in oxygenation in resting muscles. The latter decreases were evident even during maximal metabolic vasodilation accompanying reactive hyperemia. We conclude that in humans sympathetic neural control of skeletal muscle oxygenation is sensitive to modulation by metabolic events in the contracting muscles. These events are different from those involved in either metaboreceptor muscle afferent activation or reactive hyperemia. PMID:8755671

  12. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again

    PubMed Central

    Taylor, Janet L.; Amann, Markus; Duchateau, Jacques; Meeusen, Romain; Rice, Charles L.

    2016-01-01

    During exercise, there is a progressive reduction in the ability to produce muscle forces. Processes within the nervous system, as well as within the muscles contribute to this fatigue. In addition to impaired function of the motor system, sensations associated with fatigue, and impairment of homeostasis can contribute to impairment of performance during exercise. This review discusses some of the neural changes that accompany exercise and the development of fatigue. The role of brain monoaminergic neurotransmitter systems in whole-body endurance performance is discussed, particularly with regard to exercise in hot environments. Next, fatigue-related alterations in the neuromuscular pathway are discussed in terms of changes in motor unit firing, motoneuron excitability and motor cortical excitability. These changes have mostly been investigated during single-limb isometric contractions. Finally, the small-diameter muscle afferents that increase firing with exercise and fatigue are discussed. These afferents have roles in cardiovascular and respiratory responses to exercise, and in impairment of exercise performance through interaction with the motor pathway, as well as providing sensations of muscle discomfort. Thus, changes at all levels of the nervous system including the brain, spinal cord, motor output, sensory input and autonomic function occur during exercise and fatigue. The mix of influences and the importance of their contribution varies with the type of exercise being performed. PMID:27003703

  13. Changes in Afferent Activity After Spinal Cord Injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2010-01-01

    Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033

  14. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    PubMed Central

    Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956

  15. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    PubMed

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  17. Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function.

    PubMed

    Liu, Yang; Wu, Di; Qu, Mei-Yu; He, Jian-Li; Yuan, Mei; Zhao, Miao; Wang, Jian-Xin; He, Jian; Wang, Lu-Qi; Guo, Xin-Jing; Zuo, Meng; Zhao, Shu-Yang; Ma, Mei-Na; Li, Jun-Nan; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2016-10-04

    Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ~15 and ~7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.

  18. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  19. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.

    PubMed

    Canver, C C; Cooler, S D; Saban, R

    1997-09-01

    The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The

  20. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.

    PubMed

    Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José

    2018-06-01

    The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.

  1. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    PubMed

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent

  2. Oligosynaptic inhibition of group Ia afferents from brachioradialis to triceps brachii motor neurons in humans.

    PubMed

    Sato, Toshiaki; Nito, Mitsuhiro; Suzuki, Katsuhiko; Fujii, Hiromi; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2018-01-01

    This study examines effects of low-threshold afferents from the brachioradialis (BR) on excitability of triceps brachii (TB) motor neurons in humans. We evaluated the effects using a post stimulus time histogram (PSTH) and electromyogram averaging (EMG-A) methods in 13 healthy human participants. Electrical conditioning stimulation to the radial nerve branch innervating BR with the intensity below the motor threshold was delivered. In the PSTH study, the stimulation produced a trough (inhibition) in 36/69 TB motor units for all the participants. A cutaneous stimulation never provoked such inhibition. The central latency of the inhibition was 1.5 ± 0.5 ms longer than that of the homonymous facilitation. In the EMG-A study, the stimulation produced inhibition in EMG-A of TB in all participants. The inhibition diminished with a tonic vibration stimulation to BR. These findings suggest that oligosynaptic inhibition mediated by group Ia afferents from BR to TB exists in humans. Muscle Nerve 57: 122-128, 2018. © 2017 Wiley Periodicals, Inc.

  3. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    PubMed

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  4. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2009-12-01

    Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n=12) and two "untufted" capuchins (C. capucinus, n=3; C. albifrons, n=5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P(0)). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P(0). As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have

  5. Cognitive demand does not influence the responsiveness of homonymous Ia afferents pathway during postural dual task in young and elderly adults.

    PubMed

    Baudry, Stéphane; Gaillard, Vinciane

    2014-02-01

    This study was designed to investigate the influence of a cognitive task on the responsiveness of the homonymous Ia afferents pathway during upright standing in young and elderly adults. Twelve young and twelve elderly adults stood upright on a foam surface positioned over a force platform, and performed a colour-naming test (cognitive task) with two cognitive loads: congruent and incongruent colour conditions. The rate of correct response in naming colour (accuracy) and associated reaction time (RT) were recorded for the cognitive task. The excursion of the centre of pressure and surface electromyogramme (EMG) of leg muscles were measured. Modulation in the efficacy of homonymous Ia afferents to discharge spinal motor neurones was assessed by means of the Hoffmann (H) reflex method. The accuracy and RT were similar in the congruent condition between young and elderly adults (p > 0.05), and increased for both age groups in the incongruent condition, but more so for elderly adults (p = 0.014). In contrast, the H reflex amplitude did not change with the cognitive load. The excursions of the centre of pressure in the sagittal plane and muscle EMG did not vary with colour conditions in both groups (p > 0.05). This study indicates a lack of modulation in the efficacy of group Ia afferent to activate soleus motor neurones with the cognitive demand of a concurrent task during upright standing in young and elderly adults.

  6. Edge orientation signals in tactile afferents of macaques

    PubMed Central

    Suresh, Aneesha K.

    2016-01-01

    The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic. PMID:27655968

  7. Mechanisms of reflex bladder activation by pudendal afferents

    PubMed Central

    Woock, John P.; Yoo, Paul B.

    2011-01-01

    Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by −25% to −39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder

  8. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium

    PubMed Central

    Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.

    2008-01-01

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516

  9. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium.

    PubMed

    Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L

    2008-08-18

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

  10. Characteristics of Paraspinal Muscle Spindle Response to Mechanically Assisted Spinal Manipulation: A Preliminary Report.

    PubMed

    Reed, William R; Pickar, Joel G; Sozio, Randall S; Liebschner, Michael A K; Little, Joshua W; Gudavalli, Maruti R

    The purpose of this preliminary study is to determine muscle spindle response characteristics related to the use of 2 solenoid powered clinical mechanically assisted manipulation (MAM) devices. L6 muscle spindle afferents with receptive fields in paraspinal muscles were isolated in 6 cats. Neural recordings were made during L7 MAM thrusts using the Activator V (Activator Methods Int. Ltd., Phoenix, AZ) and/or Pulstar (Sense Technology Inc., Pittsburgh, PA) devices at their 3 lowest force settings. Mechanically assisted manipulation response measures included (a) the time required post-thrust until the first action potential, (b) differences in mean frequency (MF) and mean instantaneous frequency (MIF) 2 seconds before and after MAM, and (c) the time required for muscle spindle discharge (MF and MIF) to return to 95% of baseline after MAM. Depending on device setting, between 44% to 80% (Pulstar) and 11% to 63% (Activator V) of spindle afferents required >6 seconds to return to within 95% of baseline MF values; whereas 66% to 89% (Pulstar) and 75% to 100% (Activator V) of spindle responses returned to within 95% of baseline MIF in <6 seconds after MAM. Nonparametric comparisons between the 22 N and 44 N settings of the Pulstar yielded significant differences for the time required to return to baseline MF and MIF. Short duration (<10 ms) MAM thrusts decrease muscle spindle discharge with a majority of afferents requiring prolonged periods (>6 seconds) to return to baseline MF activity. Physiological consequences and clinical relevance of described MAM mechanoreceptor responses will require additional investigation. Copyright © 2017. Published by Elsevier Inc.

  11. Differential localization of vesicular glutamate transporters and peptides in corneal afferents to trigeminal nucleus caudalis.

    PubMed

    Hegarty, Deborah M; Tonsfeldt, Karen; Hermes, Sam M; Helfand, Helen; Aicher, Sue A

    2010-09-01

    Trigeminal afferents convey nociceptive information from the corneal surface of the eye to the trigeminal subnucleus caudalis (Vc). Trigeminal afferents, like other nociceptors, are thought to use glutamate and neuropeptides as neurotransmitters. The current studies examined whether corneal afferents contain both neuropeptides and vesicular glutamate transporters. Corneal afferents to the Vc were identified by using cholera toxin B (CTb). Corneal afferents project in two clusters to the rostral and caudal borders of the Vc, regions that contain functionally distinct nociceptive neurons. Thus, corneal afferents projecting to these two regions were examined separately. Dual immunocytochemical studies combined CTb with either calcitonin gene-related peptide (CGRP), substance P (SP), vesicular glutamate transporter 1 (VGluT1), or VGluT2. Corneal afferents were more likely to contain CGRP than SP, and corneal afferents projecting to the rostral region were more likely to contain CGRP than afferents projecting caudally. Overall, corneal afferents were equally likely to contain VGluT1 or VGluT2. Together, 61% of corneal afferents contained either VGluT1 or VGluT2, suggesting that some afferents lack a VGluT. Caudal corneal afferents were more likely to contain VGluT2 than VGluT1, whereas rostral corneal afferents were more likely to contain VGluT1 than VGluT2. Triple-labeling studies combining CTb, CGRP, and VGluT2 showed that very few corneal afferents contain both CGRP and VGluT2, caudally (1%) and rostrally (2%). These results suggest that most corneal afferents contain a peptide or a VGluT, but rarely both. Our results are consistent with a growing literature suggesting that glutamatergic and peptidergic sensory afferents may be distinct populations.

  12. Using complementary DNA from MyoD-transduced fibroblasts to sequence large muscle genes.

    PubMed

    Waddell, Leigh B; Monnier, Nicole; Cooper, Sandra T; North, Kathryn N; Clarke, Nigel F

    2011-08-01

    Large muscle genes are often sequenced using complementary DNA (cDNA) made from muscle messenger RNA (mRNA) to reduce the cost and workload associated with sequencing from genomic DNA. Two potential barriers are the availability of a frozen muscle biopsy, and difficulties in detecting nonsense mutations due to nonsense-mediated mRNA decay (NMD). We present patient examples showing that use of MyoD-transduced fibroblasts as a source of muscle-specific mRNA overcomes these potential difficulties in sequencing large muscle-related genes. Copyright © 2011 Wiley Periodicals, Inc.

  13. Common theme for drugs effective in overactive bladder treatment: Inhibition of afferent signaling from the bladder

    PubMed Central

    Hood, Brandy; Andersson, Karl-Erik

    2013-01-01

    The overactive bladder syndrome and detrusor overactivity are conditions that can have major effects on quality of life and social functioning. Antimuscarinic drugs are still first-line treatment. These drugs often have good initial response rates, but adverse effects and decreasing efficacy cause long-term compliance problems, and alternatives are needed. The recognition of the functional contribution of the urothelium/suburothelium, the autonomous detrusor muscle activity during bladder filling and the diversity of nerve transmitters involved has sparked interest in both peripheral and central modulation of overactive bladder syndrome/detrusor overactivity pathophysiology. Three drugs recently approved for treatment of overactive bladder syndrome/detrusor overactivity (mirabegron, tadalafil and onabotulinum toxin A), representing different pharmacological mechanisms; that is, β-adrenoceptor agonism, phosphodiesterase type 5 inhibition, and inhibition of nerve release of efferent and afferent transmitters, all seem to have one effect in common: inhibition of the afferent nervous activity generated by the bladder during filling. In the present review, the different mechanisms forming the pharmacological basis for the use of these drugs are discussed. PMID:23072271

  14. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    PubMed Central

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  15. Vibratory Adaptation of Cutaneous Mechanoreceptive Afferents

    PubMed Central

    Bensmaïa, S. J.; Leung, Y. Y.; Hsiao, S. S.; Johnson, K. O.

    2007-01-01

    The objective of this study was to investigate the effects of extended suprathreshold vibratory stimulation on the sensitivity of slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. To that end, an algorithm was developed to track afferent absolute (I0) and entrainment (I1) thresholds as they change over time. We recorded afferent responses to periliminal vibratory test stimuli, which were interleaved with intense vibratory conditioning stimuli during the adaptation period of each experimental run. From these measurements, the algorithm allowed us to infer changes in the afferents’ sensitivity. We investigated the stimulus parameters that affect adaptation by assessing the degree to which adaptation depends on the amplitude and frequency of the adapting stimulus. For all three afferent types, I0 and I1 increased with increasing adaptation frequency and amplitude. The degree of adaptation seems to be independent of the firing rate evoked in the afferent by the conditioning stimulus. In the analysis, we distinguished between additive adaptation (in which I0 and I1 shift equally) and multiplicative effects (in which the ratio I1/I0 remains constant). RA threshold shifts are almost perfectly additive. SA1 threshold shifts are close to additive and far from multiplicative (I1 threshold shifts are twice the shifts). PC shifts are more difficult to classify. We used an I0 integrate-and-fire model to study the possible neural mechanisms. A change in transducer gain predicts a multiplicative change in I0 and I1 and is thus ruled out as a mechanism underlying SA1 and RA adaptation. A change in the resting action potential threshold predicts equal, additive change in I0 and I1 and thus accounts well for RA adaptation. A change in the degree of refractoriness during the relative refractory period predicts an additional change in I1 such as that observed for SA1 fibers. We infer that adaptation is caused by an increase in spiking thresholds

  16. Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses.

    PubMed

    Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M

    2004-11-02

    The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.

  17. The firing characteristics of foot sole cutaneous mechanoreceptor afferents in response to vibration stimuli.

    PubMed

    Strzalkowski, Nicholas D J; Ali, R Ayesha; Bent, Leah R

    2017-10-01

    Single unit microneurography was used to record the firing characteristics of the four classes of foot sole cutaneous afferents [fast and slowly adapting type I and II (FAI, FAII, SAI, and SAII)] in response to sinusoidal vibratory stimuli. Frequency (3-250 Hz) and amplitude (0.001-2 mm) combinations were applied to afferent receptive fields through a 6-mm diameter probe. The impulses per cycle, defined as the number of action potentials evoked per vibration sine wave, were measured over 1 s of vibration at each frequency-amplitude combination tested. Afferent entrainment threshold (lowest amplitude at which an afferent could entrain 1:1 to the vibration frequency) and afferent firing threshold (minimum amplitude for which impulses per cycle was greater than zero) were then obtained for each frequency. Increases in vibration frequency are generally associated with decreases in expected impulses per cycle ( P < 0.001), but each foot sole afferent class appears uniquely tuned to vibration stimuli. FAII afferents tended to have the lowest entrainment and firing thresholds ( P < 0.001 for both); however, these afferents seem to be sensitive across frequency. In contrast to FAII afferents, SAI and SAII afferents tended to demonstrate optimal entrainment to frequencies below 20 Hz and FAI afferents faithfully encoded frequencies between 8 and 60 Hz. Contrary to the selective activation of distinct afferent classes in the hand, application of class-specific frequencies in the foot sole is confounded due to the high sensitivity of FAII afferents. These findings may aid in the development of sensorimotor control models or the design of balance enhancement interventions. NEW & NOTEWORTHY Our work provides a mechanistic look at the capacity of foot sole cutaneous afferents to respond to vibration of varying frequency and amplitude. We found that foot sole afferent classes are uniquely tuned to vibration stimuli; however, unlike in the hand, they cannot be independently

  18. Novel Afferent Terminal Structure in the Crista Ampullaris of the Goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, Pamela J.; Popper, Arthur N.

    1996-01-01

    Using transmission electron microscopy, we have identified a new type of afferent terminal structure in the crista ampullaris of the goldfish Carassius auratus. In addition to the bouton-type afferent terminals previously described in the ear of this species, the crista also contained enlarged afferent terminals that enveloped a portion of the basolateral hair cell membrane. The hair cell membrane was evaginated and protruded into the afferent terminal in a glove-and-finger configuration. The membranes of the two cells were regularly aligned in the protruded region of the contact and had a distinct symmetrical electron density. The electron-dense profiles of these contacts were easily identified and were present in every crista sampled. In some cases, efferent terminals synapsed onto the afferents at a point where the hair cell protruded into the terminal. The ultrastructural similarities of the goldfish crista afferents to calyx afferents found in amniotes (birds, reptiles, and mammals) are discussed. The results of the study support the hypothesis that structural variation in the vertebrate inner ear may have evolved much earlier in evolution than previously supposed.

  19. Neuroregulation of a chemosensitive afferent system in the canine distal esophagus.

    PubMed

    Sandler, A D; Schlegel, J F; DeSautel, M G; Maher, J W

    1993-10-01

    Systemic and local responses mediated by chemonociceptive receptors located in the mucosa of the canine distal esophagus were examined following stimulation with capsaicin (8-methyl-N-vanillyl-6-nonenamide). The neural pathways and neurotransmitters mediating these sensory responses were also investigated. Topical application of capsaicin solution to the distal esophageal mucosa produced significant increases in lower esophageal sphincter pressure (LESP), mean arterial pressure (MAP), pulse rate (PR), and respiratory rate (RR) (P < 0.01). Pretreatment with tetrodotoxin completely abolished this reflex activity. Following truncal vagotomy and pyloroplasty, topical capsaicin application produced an increase in LESP, but the increases in MAP, PR, and RR were blocked. The initial increase in LESP was blocked by hexamethonium, atropine, and 4-diphenylacetoxy-N-methylpiperidine, but was not inhibited by phentolamine. Excitatory cardiovascular responses were inhibited by hexamethonium. Administration of a Substance P antagonist attenuated both local and systemic responses. These studies suggest that the vagus nerves serve as the primary afferent pathways through which chemonociceptive esophageal stimuli can induce cardiovascular and respiratory reflex excitation. The increase in lower esophageal sphincter pressure in response to mucosal capsaicin stimulation is mediated via an intrinsic neural pathway that functions independently of vagal innervation, but is dependent on both cholinergic ganglionic neurotransmission and muscarinic type 2 smooth muscle receptor excitation. Substance P appears to play a role in primary sensory afferents as a chemonociceptive neurotransmitter in the canine distal esophagus.

  20. Limb congestion enhances the synchronization of sympathetic outflow with muscle contraction

    NASA Technical Reports Server (NTRS)

    Mostoufi-Moab, S.; Herr, M. D.; Silber, D. H.; Gray, K. S.; Leuenberger, U. A.; Sinoway, L. I.

    2000-01-01

    In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.

  1. Mechano- and metabosensitive alterations after injection of botulinum toxin into gastrocnemius muscle.

    PubMed

    Caron, Guillaume; Rouzi, Talifujiang; Grelot, Laurent; Magalon, Guy; Marqueste, Tanguy; Decherchi, Patrick

    2014-07-01

    This study was designed to investigate effects of motor denervation by Clostridium botulinum toxin serotype A (BoNT/A) on the afferent activity of fibers originating from the gastrocnemius muscle of rats. Animals were randomized in two groups, 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle. Locomotor activity was evaluated once per day during 12 days with a test based on footprint measurements of walking rats (sciatic functional index). At the end of the functional assessment period, electrophysiological tests were used to measure muscle properties, metabosensitive afferent fiber responses to chemical (KCl and lactic acid) injections, electrically induced fatigue (EIF), and mechanosensitive responses to tendon vibrations. Additionally, ventilatory response was recorded during repetitive muscle contractions. Then, rats were sacrificed, and the BoNT/A-injected muscles were weighed. Twelve days postinjection we observed a complete motor denervation associated with a significant muscle atrophy and loss of force to direct muscle stimulation. In the BoNT/A group, the metabosensitive responses to KCl injections were unaltered. However, we observed alterations in responses to EIF and to 1 mM of lactic acid (which induces the greatest activation). The ventilatory adjustments during repetitive muscle activation were abolished, and the mechanosensitive fiber responses to tendon vibrations were reduced. These results indicate that BoNT/A alters the sensorimotor loop and may induce insufficient motor and physiological adjustments in patients in whom a motor denervation with BoNT/A was performed. Copyright © 2014 Wiley Periodicals, Inc.

  2. Accumulation of K+ in the synaptic cleft modulates activity by influencing both vestibular hair cell and calyx afferent in the turtle

    PubMed Central

    Contini, Donatella; Price, Steven D.

    2016-01-01

    Key points In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft.High‐fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance.Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion.Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential.With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. Abstract Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch‐clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High‐fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic

  3. Vagal Afferent Innervation of the Airways in Health and Disease

    PubMed Central

    Mazzone, Stuart B.

    2016-01-01

    Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions. PMID:27279650

  4. Stimulation of proteinase-activated receptor 2 excites jejunal afferent nerves in anaesthetised rats

    PubMed Central

    Kirkup, Anthony J; Jiang, Wen; Bunnett, Nigel W; Grundy, David

    2003-01-01

    Proteinase-activated receptor 2 (PAR2) is a receptor for mast cell tryptase and trypsins and might participate in brain-gut communication. However, evidence that PAR2 activation can lead to afferent impulse generation is lacking. To address this issue, we examined the sensitivity of jejunal afferent nerves to a hexapeptide agonist of PAR2, SLIGRL-NH2, and the modulation of the resulting response to treatment with drugs and vagotomy. Multiunit recordings of jejunal afferent activity were made using extracellular recording techniques in anaesthetised male rats. SLIGRL-NH2 (0.001–1 mg kg−1, I.V.) increased jejunal afferent firing and intrajejunal pressure. The reverse peptide sequence (1 mg kg−1, I.V.), which does not stimulate PAR2, was inactive. Naproxen (10 mg kg−1, I.V.), but not a cocktail of ω-conotoxins GVIA and SVIB (each at 25 μg kg−1, I.V.), curtailed both the afferent response and the intrajejunal pressure rise elicited by the PAR2 agonist. Although neither treatment modulated the peak magnitude of the afferent firing, they each altered the intestinal motor response, unmasking an initial inhibitory component. Nifedipine (1 mg kg−1, I.V.) reduced the peak magnitude of the afferent nerve discharge and abolished the initial rise in intrajejunal pressure produced by SLIGRL-NH2. Vagotomy did not significantly influence the magnitude of the afferent response to the PAR2 agonist, which involves a contribution from capsaicin-sensitive fibres. In conclusion, intravenous administration of SLIGRL-NH2 evokes complex activation of predominantly spinally projecting extrinsic intestinal afferent nerves, an effect that involves both direct and indirect mechanisms. PMID:14561839

  5. Enterocyte-afferent nerve interactions in dietary fat sensing.

    PubMed

    Mansouri, A; Langhans, W

    2014-09-01

    The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept. © 2014 John Wiley & Sons Ltd.

  6. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  7. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  8. Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control.

    PubMed

    Pickar, Joel G; Sung, Paul S; Kang, Yu-Ming; Ge, Weiqing

    2007-01-01

    was securely attached to the L6 spinous process via a forceps. As thrust duration became shorter, the discharge of the lumbar paraspinal muscle spindles increased in a curvilinear fashion. A concave-up inflection occurred near the 100-ms duration eliciting both a higher frequency discharge compared with the longer durations and a substantially faster rate of change as thrust duration was shortened. This pattern was evident in paraspinal afferents with receptive fields both close and far from the midline. Paradoxically, spindle afferents were almost twice as sensitive to the 1-mm compared with the 2-mm amplitude thrust (6.2 vs. 3.3 spikes/s/mm/s). This latter finding may be related to the small versus large signal range properties of muscle spindles. The results indicate that the duration and amplitude of a spinal manipulation elicit a pattern of discharge from paraspinal muscle spindles different from slower mechanical inputs. Clinically, these parameters may be important determinants of an HVLA-SM's therapeutic benefit.

  9. Parallel processing of afferent olfactory sensory information

    PubMed Central

    Vaaga, Christopher E.

    2016-01-01

    Key points The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood.One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation.Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons.Compared to external tufted cells, mitral cells have a prolonged afferent‐evoked EPSC, which serves to amplify the synaptic input.The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells.Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. Abstract Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1‐fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5‐fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic

  10. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium.

    PubMed

    Collins, Valerie M; Daly, Donna M; Liaskos, Marina; McKay, Neil G; Sellers, Donna; Chapple, Christopher; Grundy, David

    2013-11-01

    To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium. Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively. OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application. Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures. Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing. After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated. OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release. These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves. © 2013 The Authors. BJU International © 2013 BJU International.

  11. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  12. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors.

    PubMed

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-11-15

    Glutamate acts at central synapses via ionotropic (iGluR--NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.

  13. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    PubMed

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  14. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes

    PubMed Central

    Freundl, Brigitta; Binder, Heinrich; Minassian, Karen

    2018-01-01

    Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord—predominantly primary afferent fibers within multiple posterior roots—by both techniques and add to unraveling the basic mechanisms

  15. Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice

    PubMed Central

    Yakhnitsa, V.

    2013-01-01

    Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers. PMID:23966673

  16. A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus

    PubMed Central

    Bailey, T W; Hermes, S M; Whittier, K L; Aicher, S A; Andresen, M C

    2007-01-01

    The solitary tract nucleus (NTS) conveys visceral information to diverse central networks involved in homeostatic regulation. Although afferent information content arriving at various CNS sites varies substantially, little is known about the contribution of processing within the NTS to these differences. Using retrograde dyes to identify specific NTS projection neurons, we recently reported that solitary tract (ST) afferents directly contact NTS neurons projecting to caudal ventrolateral medulla (CVLM) but largely only indirectly contact neurons projecting to the hypothalamic paraventricular nucleus (PVN). Since intrinsic properties impact information transmission, here we evaluated potassium channel expression and somatodendritic morphology of projection neurons and their relation to afferent information output directed to PVN or CVLM pathways. In slices, tracer-identified projection neurons were classified as directly or indirectly (polysynaptically) coupled to ST afferents by EPSC latency characteristics (directly coupled, jitter < 200 μs). In each neuron, voltage-dependent potassium currents (IK) were evaluated and, in representative neurons, biocytin-filled structures were quantified. Both CVLM- and PVN-projecting neurons had similar, tetraethylammonium-sensitive IK. However, only PVN-projecting NTS neurons displayed large transient, 4aminopyridine-sensitive, A-type currents (IKA). PVN-projecting neurons had larger cell bodies with more elaborate dendritic morphology than CVLM-projecting neurons. ST shocks faithfully (> 75%) triggered action potentials in CVLM-projecting neurons but spike output was uniformly low (< 20%) in PVN-projecting neurons. Pre-conditioning hyperpolarization removed IKA inactivation and attenuated ST-evoked spike generation along PVN but not CVLM pathways. Thus, multiple differences in structure, organization, synaptic transmission and ion channel expression tune the overall fidelity of afferent signals that reach these destinations

  17. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity.

    PubMed

    Mrachacz-Kersting, N; Voigt, M; Stevenson, A J T; Aliakbaryhosseinabadi, S; Jiang, N; Dremstrup, K; Farina, D

    2017-11-01

    A peripherally generated afferent volley that arrives at the peak negative (PN) phase during the movement related cortical potential (MRCP) induces significant plasticity at the cortical level in healthy individuals and chronic stroke patients. Transferring this type of associative brain-computer interface (BCI) intervention into the clinical setting requires that the proprioceptive input is comparable to the techniques implemented during the rehabilitation process. These consist mainly of functional electrical stimulation (FES) and passive movement induced by an actuated orthosis. In this study, we compared these two interventions (BCI FES and BCI passive ) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous electroencephalographic (EEG) data were collected from FP1, Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, and Pz, according to the standard international 10-20 system. MRCPs were extracted and the PN time calculated. Next, participants were asked to imagine the same movement 30 times while either FES (frequency: 20Hz, intensity: 8-35mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCI FES and BCI passive led to significant increases in the excitability of the cortical projections to TA (F (2,22) =4.44, p=0.024) without any concomitant changes at the spinal level. These effects were still present 30min after the cessation of both interventions

  18. Role of vagal afferents in the ventilatory response to naloxone during loaded breathing in the rabbit.

    PubMed

    Delpierre, S; Pugnat, C; Duté, N; Jammes, Y

    1995-02-15

    It was previously shown that inspiratory resistive loading (IRL) increases the cerebrospinal fluid (CSF) level of beta endorphin in awake goats, and also that the slower ventilation induced by injection of this substance into the CSF of anesthetized dogs is suppressed after vagotomy. In the present study, performed on anesthetized rabbits, we evaluated the part played by vagal afferents in the ventilatory response to IRL after opioid receptor blockade by naloxone. During unloaded breathing, naloxone injection did not modify baseline ventilation. Conversely, naloxone partially reversed IRL-induced hypoventilation through an increase in respiratory rate. This effect was abolished after either vagotomy or cold blockade of large vagal fibers, but it persisted after procaine blockade of thin vagal fibers. These results suggest that pulmonary stretch receptors, which are connected to some large vagal afferent fibers, would play a major role in the ventilatory response to IRL under opioid receptor inhibition.

  19. Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque

    PubMed Central

    Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.; Cullen, Kathleen E.

    2009-01-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition. PMID:19091917

  20. Efferent-mediated responses in vestibular nerve afferents of the alert macaque.

    PubMed

    Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E

    2009-02-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.

  1. Undiscovered role of endogenous thromboxane A2 in activation of cardiac sympathetic afferents during ischaemia

    PubMed Central

    Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2008-01-01

    Myocardial ischaemia activates blood platelets, which in turn stimulate cardiac sympathetic afferents, leading to chest pain and sympathoexcitatory reflex cardiovascular responses. Previous studies have shown that activated platelets stimulate ischaemically sensitive cardiac sympathetic afferents, and that thromboxane A2 (TxA2) is one of the mediators released from activated platelets during myocardial ischaemia. The present study tested the hypothesis that endogenous TxA2 stimulates cardiac afferents during ischaemia through direct activation of TxA2 (TP) receptors coupled with the phospholipase C–protein kinase C (PLC–PKC) cellular pathway. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicantes (T2–T5) in anaesthetized cats. Single fields of 39 afferents (conduction velocity = 0.27–3.65 m s−1) were identified in the left or right ventricle initially with mechanical stimulation and confirmed with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 39 cardiac afferents (8 Aδ-, 31 C-fibres) and the responses of these 39 afferents to chemical stimuli were further studied in the following four protocols. In the first protocol, 2.5, 5 and 10 μg of the TxA2 mimetic, U46619, injected into the left atrium (LA), stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BM13,177, a selective TxA2 receptor antagonist, abolished the responses of six afferents to 5 μg of U46619 injected into the left atrium and attenuated the ischaemia-related increase in activity of seven other afferents by 44%. In contrast, cardiac afferents, in the absence of TP receptor blockade responded consistently to repeated administration of U46619 (n = 6) and to recurrent myocardial ischaemia (n = 7). In the fourth protocol, administration of PKC-(19–36), a selective PKC inhibitor, attenuated the responses of six other cardiac afferents to U46619 by 38

  2. The effect of vagal afferent on total vascular compliance in rats.

    PubMed

    Kinoshita, T

    1993-04-01

    This study was designed to investigate the effect of vagal afferent stimulation on total vascular compliance (TVC). Rats were anesthetized with sodium pentobarbital and artificially ventilated, TVC was determined together with stressed and unstressed blood volumes by measuring mean circulatory filling pressure (Pmcf) at three different levels of circulating blood volume. Measurements was repeated with the intact vagus, after vagotomy and during stimulation of vagal afferents. Vagotomy caused no change in TVC, Pmcf, and stressed and unstressed blood volumes. On the other hand, electrical stimulation of the vagal afferents for 30 sec increased TVC from 3.03 +/- 0.51 to 3.39 +/- 0.44 ml.mmHg(-1).kg(-1) (P < 0.05) and decreased Pmcf from 7.83 +/- 1.40 to 7.22 +/- 1.21 mmHg (P < 0.05). Neither stressed nor unstressed blood volume was changed by vagal stimulation. These results indicate that excitation of vagal afferent causes venodilation and increases TVC without changing stressed and unstressed blood volumes.

  3. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  4. Monosynaptic EPSPs elicited by single interneurones and spindle afferents in trigeminal motoneurones of anaesthetized rats.

    PubMed Central

    Grimwood, P D; Appenteng, K; Curtis, J C

    1992-01-01

    1. Our aim has been to quantify the monosynaptic connections of trigeminal interneurones and spindle afferents onto jaw-elevator motoneurones as a step towards identifying common features in organization of monosynaptic inputs onto motoneurones. We have used the intracellular variant of the spike-triggered averaging method to examine the connections of single identified trigeminal interneurones and jaw-elevator muscle spindle afferents onto single jaw-elevator motoneurones. The interneurones examined lay in the region immediately caudal to the trigeminal motor nucleus. The experiments were performed on rats anaesthetized with pentobarbitone, paralysed and artificially ventilated. 2. Ten EPSPs and eight IPSPs were obtained from examining the connections of seventeen interneurones to thirty-six motoneurones, suggesting a functional connectivity of 50% for individual interneurones onto elevator motoneurones. Fourteen EPSPs were obtained from examining the connections of thirteen spindle afferents onto twenty-seven motoneurones, giving a functional connectivity of 52% for individual spindle afferents onto elevator motoneurones. The amplitudes of the EPSPs elicited by interneurones ranged from 7-48 microV (mean = 17, S.D. = 12.5, n = 10) and from 7 to 289 microV (mean = 64, S.D. = 76.0, n = 14) for the spindle-mediated EPSPs; the difference in the two means was not significant (P = 0.07). 3. However, the amplitude of averaged responses obtained by signal averaging methods are dependent on the assumption that the postsynaptic response occurs following every impulse in the presynaptic neurone. We therefore estimated the percentage of sweeps which contained EPSPs triggered by the presynaptic neurone under study. In essence the method used consisted of visual inspection of the individual sweeps comprising an average in order to assess the occurrence of EPSPs within six separate time windows, each of duration +/- 0.3 ms. Five windows were placed at randomly selected times on

  5. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  6. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans.

    PubMed

    Cui, Jian; McQuillan, Patrick M; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2012-08-15

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.

  7. Changes in monkey horizontal semicircular canal afferent responses after spaceflight

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.

    1992-01-01

    Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.

  8. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  9. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells

    PubMed Central

    Siembab, Valerie C.; Gomez-Perez, Laura; Rotterman, Travis M.; Shneider, Neil A.; Alvarez, Francisco J.

    2015-01-01

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, like Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (Er81(−/−) knockout), weakened (Egr3(−/−) knockout) or strengthened (mlcNT3(+/−) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their de-selection and reduces motor axon synaptic density and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356

  10. Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents

    PubMed Central

    Rued, Anna C.; Taiclet, Stefanie N.; Birder, Lori A.; Kullmann, F. Aura

    2017-01-01

    Abstract Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic voiding disorder that presents with pain in the urinary bladder and surrounding pelvic region. A growing body of evidence suggests that an increase in the permeability of the urothelium, the epithelial barrier that lines the interior of the bladder, contributes to the symptoms of IC/BPS. To examine the consequence of increased urothelial permeability on pelvic pain and afferent excitability, we overexpressed in the urothelium claudin 2 (Cldn2), a tight junction (TJ)-associated protein whose message is significantly upregulated in biopsies of IC/BPS patients. Consistent with the presence of bladder-derived pain, rats overexpressing Cldn2 showed hypersensitivity to von Frey filaments applied to the pelvic region. Overexpression of Cldn2 increased the expression of c-Fos and promoted the activation of ERK1/2 in spinal cord segments receiving bladder input, which we conceive is the result of noxious stimulation of afferent pathways. To determine whether the mechanical allodynia observed in rats with reduced urothelial barrier function results from altered afferent activity, we examined the firing of acutely isolated bladder sensory neurons. In patch-clamp recordings, about 30% of the bladder sensory neurons from rats transduced with Cldn2, but not controls transduced with GFP, displayed spontaneous activity. Furthermore, bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials from rats transduced with Cldn2 showed hyperexcitability in response to suprathreshold electrical stimulation. These findings suggest that as a result of a leaky urothelium, the diffusion of urinary solutes through the urothelial barrier sensitizes bladders afferents, promoting voiding at low filling volumes and pain. PMID:28560313

  11. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    PubMed

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effects of prolonged vibration to vastus intermedius muscle on force steadiness of knee extensor muscles during isometric force-matching task.

    PubMed

    Saito, Akira; Ando, Ryosuke; Akima, Hiroshi

    2016-12-01

    Afferent inputs from Ia fibers in muscle spindles are essential for the control of force and prolonged vibration has been applied to muscle-tendon units to manipulate the synaptic input from Ia afferents onto α-motor neurons. The vastus intermedius (VI) reportedly provides the highest contribution to the low-level knee extension torque among the individual synergists of quadriceps femoris (QF). The purpose of the present study was to examine the effect of prolonged vibration to the VI on force steadiness of the QF. Nine healthy men (25.1±4.3years) performed submaximal force-matching task of isometric knee extension for 15s before and after mechanical vibration to the superficial region of VI for 30min. Target forces were 2.5%, 10%, and 30% of maximal voluntary contraction (MVC), and force steadiness was determined by the coefficient of variation (CV) of force. After the prolonged VI vibration, the CV of force at 2.5%MVC was significantly increased, but CVs at 10% and 30%MVCs were not significantly changed. The present study concluded that application of prolonged vibration to the VI increased force fluctuations of the QF during a very low-level force-matching task. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    -selective agonist, acetyl-[Arg6, Sar9, Met (O2)11]-SP(6-11), elicited oesophagus-dependent relaxations of the trachealis that were abolished by oesophagus removal. Furthermore, pretreatment with the NK1-selective antagonists, CP 96345 and CP 99994, or pretreatment with a concentration of SR 48968 that also blocks NK3 receptors, markedly attenuated relaxations elicited by stimulation of the capsaicin-sensitive vagal pathways. 6. The data are consistent with the hypothesis that relaxations elicited by stimulation of capsaicin-sensitive vagal afferents involve tachykinin-mediated activation of peripheral NANC inhibitory neurones that are in some way associated with the oesophagus. The data also indicate that airway smooth muscle tone might be regulated by peripheral reflexes initiated by activation of capsaicin-sensitive afferent fibres. PMID:7869272

  14. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    PubMed

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  15. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    PubMed Central

    Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius

    2013-01-01

    Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295

  16. Effects of omega-conotoxin GVIA on the activation of capsaicin-sensitive afferent sensory nerves in guinea pig airway tissues.

    PubMed

    Morimoto, H; Matsuda, A; Ohori, M; Fujii, T

    1996-06-01

    We examined the effects of Ca2+ channel antagonists on various respiratory reactions induced by the activation of capsaicin-sensitive afferent sensory nerves. Intravenous (i.v.) injection of the N-type Ca2+ channel antagonist omega-conotoxin GVIA (CgTX) (1-20 micrograms/kg) dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, whereas i.v. administration of the L-type antagonist nicardipine (100 micrograms/kg), the P-type antagonist omega-agatoxin IVA (AgaTX) (20 micrograms/kg) or the OPQ family-type antagonist omega-conotoxin MVIIC (CmTX) (20 micrograms/kg) had no effect. However, CgTX (20 micrograms/kg) failed to inhibit substance P-induced guinea pig bronchoconstriction. CgTX (20 micrograms/kg) significantly inhibited cigarette smoke-induced guinea pig tracheal plasma extravasation, but not the substance P-induced reaction. CgTX also reduced electrical field stimulation-induced guinea pig bronchial smooth muscle contraction (0.01-10 microM) and capsaicin-induced substance P-like immunoreactivity release from guinea pig lung (0.14 microM). This evidence suggests that N-type Ca2+ channels modulate tachykinin release from capsaicin-sensitive afferent sensory nerve endings in guinea pig airway tissue.

  17. Effects of long-term bed rest on H-reflex and motor evoked potential in lower leg muscles during standing.

    PubMed

    Yamanaka, K; Yamamoto, S; Nakazawa, K; Yano, H; Suzuki, Y; Fukunaga, T

    1999-07-01

    Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.

  18. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  19. Activation of normal and inflamed fine articular afferent units by serotonin.

    PubMed

    Herbert, M K; Schmidt, R F

    1992-07-01

    In cats anesthetized with alpha-chloralose, extracellular recordings were made from fine afferent units belonging to the medial articular nerve (MAN) of the knee joint. The excitatory and sensitizing effects on articular afferents of serotonin (5-HT) applied intra-arterially close to the joint were examined. The joints were either normal or an experimental arthritis had been induced some hours before the recording session. Bolus injections of 1.35-135 micrograms 5-HT excited about 43% of group III (CV: 2.5-20 m/sec) and 73% of group IV units (CV: less than 2.5 m/sec) from normal joints. The latency was usually between 10 and 30 sec, and the duration and size of the responses were dose-dependent. Fast group III units (CV: greater than 16 m/sec) and group II units (CV: greater than 20 m/sec) were never excited by 5-HT. Repetitive administration led to pronounced tachyphylaxis of the 5-HT response. Inflammation induced an enhanced sensitivity of group III articular afferent units to close intra-arterial application of 5-HT. In particular the total duration of each response was considerably prolonged (4-10 min against 1-2 min under normal conditions). At the same time the tachyphylaxis seen under normal conditions was greatly reduced. In contrast, group IV articular afferent units did not become sensitized to 5-HT in the course of inflammation. In normal joints 5-HT did not sensitize fine afferent units for movement-induced responses. However, after inflammation, a distinct sensitization to such movements by 5-HT application could be observed both in group III and group IV fiber ranges. The sensitization had a short time course not exceeding 7 min. The tonic component of the movement-induced response was more enhanced than the phasic one. The bolus application of 5-HT led to temporary vasoconstriction of the knee joint vessels. This vasoconstriction was especially pronounced in inflamed joints and impeded the access of subsequently applied substances to the terminal

  20. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  1. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  2. Acute effects of muscle vibration on sensorimotor integration.

    PubMed

    Lapole, Thomas; Tindel, Jérémy

    2015-02-05

    Projections from the somesthetic cortex are believed to be involved in the modulation of motor cortical excitability by muscle vibration. The aim of the present pilot study was to analyse the effects of a vibration intervention on short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and afferent facilitation (AF), three intracortical mechanisms reflecting sensorimotor integration. Abductor pollicis brevis (APB) SAI, AF and LAI were investigated on 10 subjects by conditioning test transcranial magnetic stimulation pulses with median nerve electrical stimulation at inter-stimuli intervals in the range 15-25 ms, 25-60 ms, and 100-200 ms, respectively. Test motor evoked potentials (MEPs) were compared to unconditioned MEPs. Measurements were performed before and just after 15 min of vibration applied to the muscle belly of APB at a frequency of 80 Hz. SAI and LAI responses were significantly reduced compared to unconditioned test MEPs (P=0.039 and P<0.001, respectively). AF MEP amplitude was greater than SAI and LAI one (P=0.009 and P=0.004, respectively), but not different from test MEP (P=0.511). There was no significant main effect of vibration (P=0.905). However, 4 subjects were clearly identified as responders. Their mean vibration-induced increase was 324 ± 195% in APB SAI MEP amplitude, and 158 ± 53% and 319 ± 80% in AF and LAI, respectively. Significant differences in SAI, AF and LAI vibration-induced changes were found for responders when compared to non-responders (P=0.019, P=0.038, and P=0.01, respectively). A single session of APB vibration may increase sensorimotor integration, via decreased inhibition and increased facilitation. However, such results were not observed for all subjects, suggesting that other factors (such as attention to the sensory inputs) may have played a role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs

    PubMed Central

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-01-01

    We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  4. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    PubMed

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  5. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  6. Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy.

    PubMed

    Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong

    2016-01-01

    The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.

  7. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  8. The Effect of Paired Muscle Stimulation on Preparation for Movement.

    PubMed

    Brownjohn, Philip W; Blakemore, Rebekah L; Fox, Jonathan A; Shemmell, Jonathan

    2018-06-07

    Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement. We validated a measure of muscle-specific changes in corticomotor excitability prior to movement. We used this measure to examine the preparation of the first dorsal interosseous (FDI), abductor digiti minimi (ADM), abductor pollicis brevis (APB) muscles prior to voluntary muscle contractions before and after paired muscle stimulation at four interstimulus intervals (0, 5, 10, and 75 ms). Paired muscle stimulation increased premovement excitability in the stimulated FDI, but not in the ADM muscle. Interstimulus interval was not a significant factor in determining efficacy of the protocol. Paired stimulation, therefore, did not result in a functional association being formed between the stimulated muscles. Somatosensory potentials evoked by the muscle stimuli were small compared to those commonly elicited by stimulation of peripheral nerves, suggesting that the lack of functional association formation between muscles may be due to the small magnitude of afferent volleys from the stimulated muscles, particularly the ADM, reaching the cortex.

  9. Effects of stimulation of muscarinic receptors on bladder afferent nerves in the in vitro bladder-pelvic afferent nerve preparation of the rat.

    PubMed

    Yu, Yongbei; de Groat, William C

    2010-11-18

    Effects of a muscarinic receptor agonist oxotremorine-M (oxo-M) on bladder afferent nerve (BAN) activity were studied in an in vitro bladder-pelvic nerve preparation. Distension of the bladder induced rhythmic bladder contractions that were accompanied by multiunit afferent firing. Intravesical administration of 25 and 50 μM oxo-M significantly increased afferent firing from 41 ± 2 spikes/s to 51 ± 4 spikes/s and 60.5 ± 5 spikes/s, respectively, but did not change the maximum amplitude of spontaneous bladder contractions. The afferent nerve firing induced by isotonic distension of the bladder (10-40 cmH(2)O) was increased 22-100% by intravesical administration of 50 μM oxo-M. Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Oxo-M significantly decreased the voltage threshold by 40% (p<0.05) and increased by 157% (p<0.05) the area of the AP evoked at a submaximal stimulus intensity. These effects were blocked by intravesical injection of 5 μM atropine methyl nitrate (AMN). Intravesical administration of 5 μM AMN alone did not alter BAN firing or the amplitude of bladder contractions. The facilitatory effects induced by oxo-M on BAN activity were also suppressed (p<0.05) by intravesical administration of 2',3'-0-trinitrophenyl-ATP (TNP-ATP) (30 μM). In preparations pretreated with capsaicin (125 mg/kg, s.c.) the facilitatory effects of 50 μM oxo-M on BAN activity were absent. These results suggest that activation of muscarinic receptors facilitates mechano-sensitive, capsaicin-sensitive BAN activity in part by mechanisms involving purinergic receptors located near the luminal surface of the bladder and ATP release which presumably occurs in the urothelium. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    PubMed

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  11. Within-step modulation of leg muscle activity by afferent feedback in human walking

    PubMed Central

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan; Sinkjaer, Thomas; Grey, Michael J

    2008-01-01

    To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae muscle activation was assessed during stance as the platform was set to different inclinations (±3 deg, ±2 deg and 0 deg rotation in a parasagittal plane about the ankle). Normalized triceps surae muscle activity was significantly increased when the platform was inclined (2 deg: 0.153 ± 0.051; 3 deg: 0.156 ± 0.053) and significantly decreased when the platform was declined (−3 deg: 0.133 ± 0.048; −2 deg: 0.132 ± 0.049) compared with level walking (0.141 ± 0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception and touch sensation from the neck down. In contrast with healthy subjects, no muscle activation changes were observed in the deafferented subject. Our results demonstrate that the ability to compensate for small irregularities in the ground surface relies on automatic within-step sensory feedback regulation rather than conscious predictive control. PMID:18669536

  12. Implications for bidirectional signaling between afferent nerves and urothelial cells-ICI-RS 2014.

    PubMed

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-02-01

    To present a synopsis of the presentations and discussions from Think Tank I, "Implications for afferent-urothelial bidirectional communication" of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. The participants presented what is new, currently understood or still unknown on afferent-urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. It is clear that afferent-urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca(2+) sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial-neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. © 2016 Wiley Periodicals, Inc.

  13. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.

  14. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  15. Comparison of the large muscle group widths of the pelvic limb in seven breeds of dogs.

    PubMed

    Sabanci, Seyyid Said; Ocal, Mehmet Kamil

    2018-05-14

    Orthopaedic diseases are common in the pelvic limbs of dogs, and reference values for large muscle groups of the pelvic limb may aid in diagnosis such diseases. As such, the objective of this study was to compare the large muscle groups of the pelvic limb in seven breeds of dogs. A total of 126 dogs from different breeds were included, and the widths of the quadriceps, hamstring and gastrocnemius muscles were measured from images of the lateral radiographies. The width of the quadriceps was not different between the breeds, but the widths of the hamstring and gastrocnemius muscles were significantly different between the breeds. The widest hamstring and gastrocnemius muscles were seen in the Rottweilers and the Boxers, respectively. The narrowest hamstring and gastrocnemius muscles were seen in the Belgian Malinois and the Golden retrievers, respectively. All ratios between the measured muscles differed significantly between the breeds. Doberman pinschers and Belgian Malinois had the highest ratio of gastrocnemius width:hamstring width. Doberman pinschers had also the highest ratio of quadriceps width:hamstring width. German shepherds had the highest ratio of gastrocnemius width:quadriceps width. The lowest ratios of quadriceps width:hamstring width were determined in the German shepherds. The ratios of the muscle widths may be used as reference values to assess muscular atrophy or hypertrophy in cases of bilateral or unilateral orthopaedic diseases of the pelvic limbs. Further studies are required to determine the widths and ratios of the large muscle groups of the pelvic limbs in other dog breeds. © 2018 Blackwell Verlag GmbH.

  16. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  17. Hydrogen peroxide preferentially activates capsaicin‐sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder

    PubMed Central

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J

    2016-01-01

    Background and Purpose There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. Experimental Approach ‘Close‐to‐target’ single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. Key Results H2O2 (300–1000 μM) preferentially and potently activated capsaicin‐sensitive high threshold afferents but not low threshold stretch‐sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin‐sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC‐030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N‐(2‐aminoethyl)‐N‐[[3‐methoxy‐4‐(phenylmethoxy)phenyl]methyl]thiophene‐2‐carboxamide, significantly inhibited the H2O2‐induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2O2 on high threshold afferents. Conclusions and Implications The findings show that H2O2, in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long‐lasting activation of the majority of capsaicin‐sensitive high threshold afferents, but not low threshold stretch‐sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin‐sensitive afferent fibres are probable targets of ROS released during oxidative stress. PMID:27792844

  18. Vibration-evoked reciprocal inhibition between human wrist muscles.

    PubMed

    Cody, F W; Plant, T

    1989-01-01

    Reciprocal inhibition of the voluntarily contracting wrist extensor (extensor carpi radialis, ECR) evoked by proprioceptive afferent input from the flexor (flexor carpi radialis, FCR), was studied in healthy human subjects. Vibration of the FCR tendon was used to elicit Ia-dominated afferent discharge whilst inhibition of ECR was assessed as the reduction in asynchronous, on-going EMG. A small early phase of inhibition (I1) was evident in 25% of trials. The latency (ca. 25 ms) of this component suggested that it was mediated by an Ia oligosynaptic. possibly 'classical' disynaptic, inhibitory pathway. A later and apparently separate phase of reduced activity (I2, ca. 40 ms) was, however, far more consistently observed (96% of trials) and of greater magnitude. The I2 component was usually followed, some 20 ms later, by a phase of elevated activity (E1, 72% trials). Reductions in simultaneously recorded net extensor torque commenced at about 60 ms following the onset of flexor tendon vibration, i.e. some 20 ms after the main I2 EMG component. These mechanical responses must have almost exclusively resulted from reciprocal inhibition of extensor EMG since vibration of the relaxed FCR evoked minimal excitatory flexor activity. The reflex pattern, in any individual subject, was relatively unaffected by altering the duration of the vibration train between one and nineteen cycles (125 Hz). This suggests that the entire response complex resulted largely from the initial afferent volley. The sizes of both the I1 and I2 reductions in ECR activity increased with increasing voluntary extensor contraction so that their depths remained constant proportions of background EMG. Very similar results were obtained when reciprocal inhibition of FCR was produced by vibration of the belly of ECR. Thus, reciprocal inhibition between wrist muscles is mainly expressed as a rather stereotyped, short duration reduction in EMG whose depth is determined by the pre-existing level of motor

  19. Cutaneous reflexes in small muscles of the hand

    PubMed Central

    Caccia, M. R.; McComas, A. J.; Upton, A. R. M.; Blogg, T.

    1973-01-01

    A study has been made of the responses of motoneurones innervating small muscles of the hand to electrical and mechanical stimulation of the skin. Both excitatory and inhibitory effects could be observed in the same muscle after a single stimulus to a given area of skin. The earliest excitatory and inhibitory responses are probably mediated by group III and the smaller group II afferent nerve fibres. A later inhibition results from activity in the larger group II fibres which are connected to cutaneous mechanoreceptors, especially those in the tips of the fingers and thumb. This late inhibitory reflex may operate through the fusimotor system. The possible roles of these reflexes are discussed in relation to previous investigations in man and the cat. PMID:4272546

  20. Inhibition of Repulsive Guidance Molecule, RGMa, Increases Afferent Synapse Formation with Auditory Hair Cells

    PubMed Central

    Brugeaud, Aurore; Tong, Mingjie; Luo, Li; Edge, Albert S.B.

    2017-01-01

    The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells. PMID:24123853

  1. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    PubMed

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  3. Role of TRPV1 in high-threshold rat colonic splanchnic afferents is revealed by inflammation.

    PubMed

    Phillis, Benjamin D; Martin, Chris M; Kang, Daiwu; Larsson, Håkan; Lindström, Erik A; Martinez, Vicente; Blackshaw, L Ashley

    2009-08-07

    The vanilloid-1 receptor TRPV1 is known to play a role in extrinsic gastrointestinal afferent function. We investigated the role of TRPV1 in mechanosensitivity in afferents from normal and inflamed tissue. Colonic mechanosensitivity was determined in an in vitro rat colon preparation by recording from attached splanchnic nerves. Recordings were made from serosal/mesenteric afferents responding only at high thresholds to graded mechanical stimulation with von Frey probes. Colonic inflammation was induced by adding 5% dextran sulphate sodium (DSS) to the drinking water for 5 days, and was confirmed by histopathology. The selective TRPV1 antagonist, SB-750364 (10(-8) to 10(-6)M), was tested on mechanosensory stimulus response functions of afferents from normal and inflamed preparations (N=7 each). Mechanosensory responses had thresholds of 1-2g, and maximal responses were observed at 12 g. The stimulus response function was not affected by DSS-induced colitis. SB-750364 had no effect on stimulus response functions in normal preparations, but reduced (up to 60%) in a concentration-dependent manner those in inflammation (2-way ANOVA, p<0.05). Moreover, in inflamed tissue, spontaneous afferent activity showed a dose-dependent trend toward reduction with SB-750364. We conclude that mechanosensitivity of high-threshold serosal colonic splanchnic afferents to graded stimuli is unaffected during DSS colitis. However, there is a positive influence of TRPV1 in mechanosensitivity in inflammation, suggesting up-regulation of excitatory TRPV1-mediated mechanisms.

  4. Ultrastructure of the central subnucleus of the nucleus tractus solitarii and the esophageal afferent terminals in the rat.

    PubMed

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2003-03-01

    The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.

  5. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  6. The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat.

    PubMed

    Pérez, C; Limón, A; Vega, R; Soto, E

    2009-02-18

    There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation.

  7. On the nature of the afferent fibers of oculomotor nerve.

    PubMed

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  8. Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat

    PubMed Central

    Powley, Terry L.; Hudson, Cherie N.; McAdams, Jennifer L.; Baronowsky, Elizabeth A.; Phillips, Robert J.

    2016-01-01

    The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin–biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 μm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm3. Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents. PMID:26355387

  9. Contributions of Central Command and Muscle Feedback to Sympathetic Nerve Activity in Contracting Human Skeletal Muscle.

    PubMed

    Boulton, Daniel; Taylor, Chloe E; Macefield, Vaughan G; Green, Simon

    2016-01-01

    During voluntary contractions, muscle sympathetic nerve activity (MSNA) to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-min isometric dorsiflexion contractions (left leg) separated by 2-min rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10% of maximum). MSNA was recorded continuously (microneurography) from the left peroneal nerve and quantified from cardiac-synchronized, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34% (P < 0.01) during voluntary contractions but did not change significantly during electrically-evoked contractions (-8 ± 12%, P > 0.05). MSNA analyzed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01), remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  10. Plasticity of gastrointestinal vagal afferent satiety signals.

    PubMed

    Page, A J; Kentish, S J

    2017-05-01

    The vagal link between the gastrointestinal tract and the central nervous system (CNS) has numerous vital functions for maintaining homeostasis. The regulation of energy balance is one which is attracting more and more attention due to the potential for exploiting peripheral hormonal targets as treatments for conditions such as obesity. While physiologically, this system is well tuned and demonstrated to be effective in the regulation of both local function and promoting/terminating food intake the neural connection represents a susceptible pathway for disruption in various disease states. Numerous studies have revealed that obesity in particularly is associated with an array of modifications in vagal afferent function from changes in expression of signaling molecules to altered activation mechanics. In general, these changes in vagal afferent function in obesity further promote food intake instead of the more desirable reduction in food intake. It is essential to gain a comprehensive understanding of the mechanisms responsible for these detrimental effects before we can establish more effective pharmacotherapies or lifestyle strategies for the treatment of obesity and the maintenance of weight loss. © 2016 John Wiley & Sons Ltd.

  11. Effect of sympathetic nervous system activation on the tonic vibration reflex in rabbit jaw closing muscles.

    PubMed

    Grassi, C; Deriu, F; Passatore, M

    1993-09-01

    1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced

  12. The visceromotor and somatic afferent nerves of the penis.

    PubMed

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  13. Silent Damage of Noise on Cochlear Afferent Innervation in Guinea Pigs and the Impact on Temporal Processing

    PubMed Central

    He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian

    2012-01-01

    Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359

  14. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans.

    PubMed

    Vianna, Lauro C; Fernandes, Igor A; Barbosa, Thales C; Teixeira, André L; Claudio Lucas da Nóbrega, Antonio

    2018-04-26

    The exercise pressor reflex (EPR) is comprised from group III and IV skeletal muscle afferents and is one of the principal mediators of the cardiovascular response to exercise. In animals, capsaicin-based analgesic balm (CAP) attenuates the pressor response to muscle contraction, indicating the transient receptor potential vanilloid 1 (TRPv1) receptor (localized on the group IV afferent neuron) as an important mediator of the EPR. However, whether these findings can be extrapolated to humans remain unknown. Here, we tested the hypothesis that CAP attenuates blood pressure (BP) and muscle sympathetic nerve activity (MSNA) responses to isolated muscle metaboreflex activation in healthy men. MSNA (microneurography) and beat-to-beat heart hate (HR - electrography) and BP (finger photoplethysmography) were continuously measured in eight healthy males (23{plus minus}5 y) at rest, during isometric handgrip exercise and during post-exercise ischemia (PEI). Trials were performed before, 30 and 60 min after the topical application of CAP (0.1%, CAPZASIN-HP) over the volar forearm of the subject's exercising arm. Isometric exercise evoked increases in mean BP (∆32{plus minus}4 mmHg) and MSNA (∆26{plus minus}5 bursts/min; ∆19{plus minus}5 bursts/100 heart beats). The increases in BP during handgrip were not affected by CAP, but the increase in MSNA was lower after 60-min of CAP application. During PEI, the increases in BP and MSNA were all significantly less than those before CAP (all P<0.05). In conclusion, CAP attenuated BP and sympathetic responses evoked by PEI in humans. These data provide evidence that TRPv1 receptors potentially contribute to the EPR in humans, via its metabolic component.

  15. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    PubMed

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  16. Afferent projections to the deep mesencephalic nucleus in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medialmore » and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.« less

  17. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint

    PubMed Central

    Tsay, A; Savage, G; Allen, T J; Proske, U

    2014-01-01

    These experiments on the human forearm are based on the hypothesis that drift in the perceived position of a limb over time can be explained by receptor adaptation. Limb position sense was measured in 39 blindfolded subjects using a forearm-matching task. A property of muscle, its thixotropy, a contraction history-dependent passive stiffness, was exploited to place muscle receptors of elbow muscles in a defined state. After the arm had been held flexed and elbow flexors contracted, we observed time-dependent changes in the perceived position of the reference arm by an average of 2.8° in the direction of elbow flexion over 30 s (Experiment 1). The direction of the drift reversed after the arm had been extended and elbow extensors contracted, with a mean shift of 3.5° over 30 s in the direction of elbow extension (Experiment 2). The time-dependent changes could be abolished by conditioning elbow flexors and extensors in the reference arm at the test angle, although this led to large position errors during matching (±10°), depending on how the indicator arm had been conditioned (Experiments 3 and 4). When slack was introduced in the elbow muscles of both arms, by shortening muscles after the conditioning contraction, matching errors became small and there was no drift in position sense (Experiments 5 and 6). These experiments argue for a receptor-based mechanism for proprioceptive drift and suggest that to align the two forearms, the brain monitors the difference between the afferent signals from the two arms. PMID:24665096

  18. Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle.

    PubMed Central

    Herbert, R D; Gandevia, S C

    1995-01-01

    1. Estimates of pennation in human muscles are usually obtained from cadavers. In this study, pennation of human brachialis was measured in vivo using sonography. Effects of static and dynamic changes in elbow angle and torque were investigated. 2. Pennation was measured in eight subjects using an 80 mm, 5 MHz, linear-array ultrasound transducer to generate sagittal images of the brachialis during maximal and submaximal isometric contractions at various elbow angles. It was shown that estimates of pennation were reproducible, representative of measurements made throughout the belly of the muscle and not distorted by compression of the muscle with the transducer or rotation of the muscle out of the plane of the transducer. 3. Mean resting pennation was 9.0 +/- 2.0 deg (S.D., range 6.5-12.9 deg). When the muscle was relaxed there was no effect of elbow angle on pennation. However, during a maximal isometric contraction (MVC), with the elbow flexed to 90 deg, pennation increased non-linearly with elbow torque to between 22 and 30 deg (mean 24.7 +/- 2.4 deg). The effect of increasing torque was small when the elbow was fully extended. The relationship between elbow angle, elbow torque and brachialis pennation suggests that the relaxed brachialis muscle is slack over much of its physiological range of lengths. 4. There was no hysteresis in the relationship between torque and pennation during slow isometric contractions (0.2 MVC s-1), and the relationship between elbow angle and pennation was similar during slow shortening and lengthening contractions. 5. Two consequences follow from these findings. Firstly, intramuscular mechanics are complex and simple planar models of muscles underestimate the increases in pennation which occur during muscle contraction. Second, spindle afferents from relaxed muscles may not encode joint angle over the full range of movement. Images Figure 2 PMID:7602542

  19. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.

    PubMed

    Rossman, Matthew J; Garten, Ryan S; Venturelli, Massimo; Amann, Markus; Richardson, Russell S

    2014-06-15

    Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.

  20. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice.

    PubMed

    Whitmore, Charlotte; Fernandez-Fuente, Marta; Booler, Helen; Parr, Callum; Kavishwar, Manoli; Ashraf, Attia; Lacey, Erica; Kim, Jihee; Terry, Rebecca; Ackroyd, Mark R; Wells, Kim E; Muntoni, Francesco; Wells, Dominic J; Brown, Susan C

    2014-04-01

    Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy spectrum but died perinatally precluding its full phenotyping and use in testing potential therapies. We have now overcome this by crossing FKRP(KD) mice with those expressing Cre recombinase under the Sox1 promoter. Owing to our original targeting strategy, this has resulted in the restoration of Fkrp levels in the central nervous system but not the muscle, thereby generating a new model (FKRP(MD)) which develops a progressive muscular dystrophy resembling what is observed in limb girdle muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) is a bifunctional glycosyltransferase previously shown to hyperglycosylate α-DG. To investigate the therapeutic potential of LARGE up-regulation, we have now crossed the FKRP(MD) line with one overexpressing LARGE and show that, contrary to expectation, this results in a worsening of the muscle pathology implying that any future strategies based upon LARGE up-regulation require careful management.

  1. Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.

    PubMed

    Fay, R R

    1995-01-01

    Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.

  2. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats.

    PubMed

    Shanks, Julia; Xia, Zhiqiu; Lisco, Steven J; Rozanski, George J; Schultz, Harold D; Zucker, Irving H; Wang, Han-Jun

    2018-06-01

    The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory

  3. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    PubMed

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  4. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    PubMed Central

    Goh, Jinzhong J.; Manahan-Vaughan, Denise

    2012-01-01

    Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions. PMID:23355815

  6. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  7. Large-scale models reveal the two-component mechanics of striated muscle.

    PubMed

    Jarosch, Robert

    2008-12-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and alpha-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical "two-component model" of active muscle differentiated a "contractile component" which stretches the "series elastic component" during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic alpha-actinin Z-filaments (provided with force-regulating sites for Ca(2+) binding), the thin filament rotations change the torsional twist of the four Z-filaments as the "series elastic components". Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  8. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins

    PubMed Central

    Prasad, Tuhina; Weiner, Joshua A.

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs. PMID:22275881

  9. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  10. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts

  11. The afferent pathways of discogenic low-back pain. Evaluation of L2 spinal nerve infiltration.

    PubMed

    Nakamura, S I; Takahashi, K; Takahashi, Y; Yamagata, M; Moriya, H

    1996-07-01

    The afferent pathways of discogenic low-back pain have not been fully investigated. We hypothesised that this pain was transmitted mainly by sympathetic afferent fibres in the L2 nerve root, and in 33 patients we used selective local anaesthesia of this nerve. Low-back pain disappeared or significantly decreased in all patients after the injection. Needle insertion provoked pain which radiated to the low back in 23 patients and the area of skin hypoalgesia produced included the area of pre-existing pain in all but one. None of the nine patients with related sciatica had relief of that component of their symptoms. Our findings show that the main afferent pathways of pain from the lower intervertebral discs are through the L2 spinal nerve root, presumably via sympathetic afferents from the sinuvertebral nerves. Discogenic low-back pain should be regarded as a visceral pain in respect of its neural pathways. Infiltration of the L2 nerve is a useful diagnostic test and also has some therapeutic value.

  12. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    PubMed Central

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  13. Decreased afferent excitability contributes to synaptic depression during high-frequency stimulation in hippocampal area CA1

    PubMed Central

    Kim, Eunyoung; Owen, Benjamin; Holmes, William R.

    2012-01-01

    Long-term potentiation (LTP) is often induced experimentally by continuous high-frequency afferent stimulation (HFS), typically at 100 Hz for 1 s. Induction of LTP requires postsynaptic depolarization and voltage-dependent calcium influx. Induction is more effective if the same number of stimuli are given as a series of short bursts rather than as continuous HFS, in part because excitatory postsynaptic potentials (EPSPs) become strongly depressed during HFS, reducing postsynaptic depolarization. In this study, we examined mechanisms of EPSP depression during HFS in area CA1 of rat hippocampal brain slices. We tested for presynaptic terminal vesicle depletion by examining minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) during 100-Hz HFS. While transmission failures increased, consistent with vesicle depletion, EPSC latencies also increased during HFS, suggesting a decrease in afferent excitability. Extracellular recordings of Schaffer collateral fiber volleys confirmed a decrease in afferent excitability, with decreased fiber volley amplitudes and increased latencies during HFS. To determine the mechanism responsible for fiber volley changes, we recorded antidromic action potentials in single CA3 pyramidal neurons evoked by stimulating Schaffer collateral axons. During HFS, individual action potentials decreased in amplitude and increased in latency, and these changes were accompanied by a large increase in the probability of action potential failure. Time derivative and phase-plane analyses indicated decreases in both axon initial segment and somato-dendritic components of CA3 neuron action potentials. Our results indicate that decreased presynaptic axon excitability contributes to depression of excitatory synaptic transmission during HFS at synapses between Schaffer collaterals and CA1 pyramidal neurons. PMID:22773781

  14. Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network.

    PubMed

    Sauer, A E; Büschges, A; Stein, W

    1997-04-01

    The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an average resting potential of -71.9 +/- 3.72 mV (n = 10), the reversal potential of these potentials is on average -62.8 +/- 2.3 mV (n = 5). These synaptic potentials occur either spontaneously or are related to movements at the fCO. They are thus induced by signals from other fCO afferents. Therefore, the synaptic inputs to fCO afferents are specific and depend on the sensitivity of the individual afferent affected. These potentials reduce the amplitude of concurrent afferent action potentials. Bath application of picrotoxin, a noncompetitive blocker of chloride ion channels, blocks these potentials, which indicates that they are mediated by chloride ions. From these results, it is concluded that these are inhibitory synaptic potentials generated in the central terminals of fCO afferents. Pharmacologic removal of these potentials affects the tuning of the complete FT control system. Following removal, the dependence of the FT control loop on the tibia position increases relative to the dependency on the velocity of tibia movements. This is due to changes in the relative weighting of the position and velocity signals in the parallel interneuronal pathways from the fCO onto tibial motoneurons. Consequently, the FT joint is no longer able to perform twig mimesis (i.e., catalepsy), which is known to rely on a low position compared to the high-velocity dependency of the FT control system.

  15. Antigraviceptive neck muscle responses to "moving up and moving down" in human.

    PubMed

    Aoki, M; Han, X Y; Yamada, H; Muto, T; Satake, H; Ito, Y; Matsunami, K

    2000-07-01

    The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.

  16. Antigraviceptive neck muscle responses to "moving up and moving down" in human

    NASA Technical Reports Server (NTRS)

    Aoki, M.; Han, X. Y.; Yamada, H.; Muto, T.; Satake, H.; Ito, Y.; Matsunami, K.

    2000-01-01

    The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.

  17. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    PubMed Central

    Groth, Michael; Helbig, Tanja; Grau, Veronika; Kummer, Wolfgang; Haberberger, Rainer V

    2006-01-01

    Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli. PMID:16813657

  18. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    PubMed

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  19. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    PubMed Central

    Jarosch, Robert

    2008-01-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. PMID:19330099

  20. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  1. Plane of vertebral movement eliciting muscle lengthening history in the low back influences the decrease in muscle spindle responsiveness of the cat

    PubMed Central

    Ge, Weiqing; Cao, Dong-Yuan; Long, Cynthia R.

    2011-01-01

    Proprioceptive feedback is thought to play a significant role in controlling both lumbopelvic and intervertebral orientations. In the lumbar spine, a vertebra's positional history along the dorsal-ventral axis has been shown to alter the position, movement, and velocity sensitivity of muscle spindles in the multifidus and longissimus muscles. These effects appear due to muscle history. Because spinal motion segments have up to 6 degrees of freedom for movement, we were interested in whether the axis along which the history is applied differentially affects paraspinal muscle spindles. We tested the null hypothesis that the loading axis, which creates a vertebra's positional history, has no effect on a lumbar muscle spindle's subsequent response to vertebral position or movement. Identical displacements were applied along three orthogonal axes directly at the L6 spinous process using a feedback motor system under displacement control. Single-unit nerve activity was recorded from 60 muscle spindle afferents in teased filaments from L6 dorsal rootlets innervating intact longissimus or multifidus muscles of deeply anesthetized cats. Muscle lengthening histories along the caudal-cranial and dorsal-ventral axis, compared with the left-right axis, produced significantly greater reductions in spindle responses to vertebral position and movement. The spinal anatomy suggested that the effect of a lengthening history is greatest when that history had occurred along an axis lying within the anatomical plane of the facet joint. Speculation is made that the interaction between normal spinal mechanics and the inherent thixotropic property of muscle spindles poses a challenge for feedback and feedforward motor control of the lumbar spine. PMID:21960662

  2. The scalene reflex: relationship between increased median or ulnar nerve pressure and scalene muscle activity.

    PubMed

    Monsivais, J J; Sun, Y; Rajashekhar, T P

    1995-07-01

    Neck pain, headaches, upper thoracic pain, and dystonic scalene muscles are common findings in patients who have severe entrapment neuropathies of the upper extremities. This problem was taken to the laboratory in an attempt to discover the correlation between distal entrapment neuropathies, brachial plexus entrapments, and prominent scalenus muscles. When increased pressure (over 40 mmHg) was applied to the median and ulnar nerves in the forelimbs of eight goats, increased electromyographic activity was noted in the ipsilateral scalenus muscle. Pressures ranging from 100 to 150 mmHg caused increased electromyographic activity on the contralateral scalene muscle, and the authors postulate that it is mediated by the gamma afferent and efferent system. This relationship may explain the commonly found neck pain and muscle spasm in patients with peripheral neuropathies, and it represents a link between the somatic efferent nerves and the gamma motor neuron system. At present, the same phenomenon has been documented in 30 humans with the diagnosis of brachial plexus entrapment.

  3. Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Falla, Deborah; Farina, Dario

    2015-08-01

    It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5-13 Hz) and with descending cortical input (beta band, 15-30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5-13 Hz) between the baseline and hypertonic (painful) conditions for both muscles (P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower (P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain. Copyright © 2015 the American Physiological Society.

  4. Electrically evoked local muscle contractions cause an increase in hippocampal BDNF.

    PubMed

    Maekawa, Takahiro; Ogasawara, Riki; Tsutaki, Arata; Lee, Kihyuk; Nakada, Satoshi; Nakazato, Koichi; Ishii, Naokata

    2018-05-01

    High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.

  5. The modulation of visceral functions by somatic afferent activity.

    PubMed

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  6. Directional selectivity of afferent neurons in zebrafish neuromasts is regulated by Emx2 in presynaptic hair cells

    PubMed Central

    Ji, Young Rae; Warrier, Sunita; Jiang, Tao

    2018-01-01

    The orientation of hair bundles on top of sensory hair cells (HCs) in neuromasts of the lateral line system allows fish to detect direction of water flow. Each neuromast shows hair bundles arranged in two opposing directions and each afferent neuron innervates only HCs of the same orientation. Previously, we showed that this opposition is established by expression of Emx2 in half of the HCs, where it mediates hair bundle reversal (Jiang et al., 2017). Here, we show that Emx2 also regulates neuronal selection: afferent neurons innervate either Emx2-positive or negative HCs. In emx2 knockout and gain-of-function neuromasts, all HCs are unidirectional and the innervation patterns and physiological responses of the afferent neurons are dependent on the presence or absence of Emx2. Our results indicate that Emx2 mediates the directional selectivity of neuromasts by two distinct processes: regulating hair bundle orientation in HCs and selecting afferent neuronal targets. PMID:29671737

  7. Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy.

    PubMed

    Sadeghi, Soroush G; Minor, Lloyd B; Cullen, Kathleen E

    2007-02-01

    We investigated the possible contribution of signals carried by vestibular-nerve afferents to long-term processes of vestibular compensation after unilateral labyrinthectomy. Semicircular canal afferents were recorded from the contralesional nerve in three macaque monkeys before [horizontal (HC) = 67, anterior (AC) = 66, posterior (PC) = 50] and 1-12 mo after (HC = 192, AC = 86, PC = 57) lesion. Vestibular responses were evaluated using passive sinusoidal rotations with frequencies of 0.5-15 Hz (20-80 degrees /s) and fast whole-body rotations reaching velocities of 500 degrees /s. Sensitivities to nonvestibular inputs were tested by: 1) comparing responses during active and passive head movements, 2) rotating the body with the head held stationary to activate neck proprioceptors, and 3) encouraging head-restrained animals to attempt to make head movements that resulted in the production of neck torques of < or =2 Nm. Mean resting discharge rate before and after the lesion did not differ for the regular, D (dimorphic)-irregular, or C (calyx)-irregular afferents. In response to passive rotations, afferents showed no change in sensitivity and phase, inhibitory cutoff, and excitatory saturation after unilateral labyrinthectomy. Moreover, head sensitivities were similar during voluntary and passive head rotations and responses were not altered by neck proprioceptive or efference copy signals before or after the lesion. The only significant change was an increase in the proportion of C-irregular units postlesion, accompanied by a decrease in the proportion of regular afferents. Taken together, our findings show that changes in response properties of the vestibular afferent population are not likely to play a major role in the long-term changes associated with compensation after unilateral labyrinthectomy.

  8. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  9. Measurement of the relative afferent pupillary defect in retinal detachment.

    PubMed

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  10. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses

    PubMed Central

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T.; Wangsawihardja, Felix; Ricci, Anthony J.; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1dw) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1dw mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1dw IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1dw IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1dw IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. PMID:26386265

  11. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    PubMed

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  12. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses

    NASA Astrophysics Data System (ADS)

    Clites, Tyler R.; Carty, Matthew J.; Srinivasan, Shriya; Zorzos, Anthony N.; Herr, Hugh M.

    2017-06-01

    Objective. Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. Approach. (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. Main results. Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. Significance. These results indicate that the AMI has the potential to communicate meaningful kinesthetic

  13. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

    PubMed Central

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  14. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  15. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.

    PubMed Central

    Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J

    1996-01-01

    1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234

  16. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  17. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  18. Retrograde double-labeling demonstrates convergent afferent innervation of the prostate and bladder.

    PubMed

    Lee, Sanghee; Yang, Guang; Xiang, William; Bushman, Wade

    2016-06-01

    Prostatic inflammation is a common histologic finding in men with lower urinary tract symptoms (LUTS). It has been postulated that prostatic inflammation could sensitize afferent neurons innervating the bladder and thereby produce changes in voiding behavior. In support of this, we demonstrate an anatomic basis for pelvic cross-talk involving the prostate and bladder. Retrograde labeling was performed by an application of a neuro-tracer Fast Blue (FB) to one side of either the anterior prostate (AP), dorsal lateral prostate (DLP)/ventral prostate (VP), bladder, or seminal vesicle (SV). Examination of dorsal root ganglion (DRG) neuron labeling revealed shared afferent innervation of the prostate and bladder at spinal segments of T13, L1, L2, L6, and S1. Dual labeling was performed by an application of FB and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyaine perchlorate (DiI) to the AP and bladder, respectively. We observed double-labeled DRG neurons at T13, L1, L2, L6, and S1--a finding that proves convergent innervation of prostate and bladder. Our observations demonstrate the potential for neural cross-talk between the prostate and bladder and support a postulated mechanism that prostatic inflammation may induce hyper-sensitization of bladder afferents and produce irritative LUTS. © 2016 Wiley Periodicals, Inc.

  19. The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents.

    PubMed

    Guillery, R W; Ombrellaro, M; LaMantia, A L

    1985-06-01

    The fine structure and cortical connections of the dorsal lateral geniculate nucleus have been studied in postnatal (3.5-14-month-old) ferrets in which all retinal afferents had been removed prenatally at the time these fibers are first starting to invade the nucleus. The synaptic profiles in the mature nucleus show the cytological characteristics and arrangements that would remain if the retinal afferents were removed, with no significant compensatory ingrowth of foreign specific afferents. The nucleus is reduced in overall volume, but the geniculocortical and corticogeniculate interconnections show an essentially normal topography. Although in these experiments the geniculocortical projections can establish a normal topographic pattern in the absence of retinal afferents an accompanying paper shows that this topographic pattern can also be modified in the presence of abnormal retinogeniculate inputs. We conclude that two separate mechanisms contribute to the formation of retinal maps within the geniculocortical pathways and that different interactions between these two mechanisms produce the different patterns of abnormal geniculocortical pathways that have been described in pigment-deficient cats, mink and ferrets.

  20. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing.

    PubMed

    Watkins, Roger H; Wessberg, Johan; Backlund Wasling, Helena; Dunham, James P; Olausson, Håkan; Johnson, Richard D; Ackerley, Rochelle

    2017-04-01

    C-mechanoreceptors in humans comprise a population of unmyelinated afferents exhibiting a wide range of mechanical sensitivities. C-mechanoreceptors are putatively divided into those signaling gentle touch (C-tactile afferents, CTs) and nociception (C-mechanosensitive nociceptors, CMs), giving rise to positive and negative affect, respectively. We sought to distinguish, compare, and contrast the properties of a population of human C-mechanoreceptors to see how fundamental the divisions between these putative subpopulations are. We used microneurography to record from individual afferents in humans and applied electrical and mechanical stimulation to their receptive fields. We show that C-mechanoreceptors can be distinguished unequivocally into two putative populations, comprising CTs and CMs, by electrically evoked spike latency changes (slowing). After both natural mechanical stimulation and repetitive electrical stimulation there was markedly less latency slowing in CTs compared with CMs. Electrical receptive field stimulation, which bypasses the receptor end organ, was most effective in classifying C-mechanoreceptors, as responses to mechanical receptive field stimulation overlapped somewhat, which may lead to misclassification. Furthermore, we report a subclass of low-threshold CM responding to gentle mechanical stimulation and a potential subclass of CT afferent displaying burst firing. We show that substantial differences exist in the mechanisms governing axonal conduction between CTs and CMs. We provide clear electrophysiological "signatures" (extent of latency slowing) that can be used in unequivocally identifying populations of C-mechanoreceptors in single-unit and multiunit microneurography studies and in translational animal research into affective touch. Additionally, these differential mechanisms may be pharmacologically targetable for separate modulation of positive and negative affective touch information. NEW & NOTEWORTHY Human skin encodes a

  2. ACTIVATION OF TRPA1 ON DURAL AFFERENTS: A POTENTIAL MECHANISM OF HEADACHE PAIN

    PubMed Central

    Edelmayer, Rebecca M.; Le, Larry N.; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W.; Vanderah, Todd W.; Porreca, Frank; Dussor, Gregory

    2012-01-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache but this channel may also contribute to other forms of headache such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro using two TRPA1 agonists, mustard oil (MO) and the environmental irritant umbellulone (UMB), on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. Using an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hindpaw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura and exploratory activity was monitored for 30 minutes using an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective anti-migraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents and activation of meningeal TRPA1 produces behaviors consistent with those seen in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache. PMID:22809691

  3. A quantitative study of skeletofusimotor innervation in the cat peroneus tertius muscle.

    PubMed Central

    Jami, L; Murthy, K S; Petit, J

    1982-01-01

    1. Physiological tests were used to identify skeletofusimotor or beta axons to the cat peroneus tertius muscle in order to assess the proportion of beta axons in the motor supply to this muscle. 2. Static beta axons (beta S) were identified by: (a) observation of a delay between the complete block of extrafusal contraction and the failure of spindle activation upon prolonged stimulation, (b) increase of spindle excitation with stimulation frequencies above that eliciting maximal extrafusal contraction, (c) observation of 'unfused' frequencygram of spindle primary afferent discharge during stimulation of the axon at frequencies above that eliciting complete fusion of extrafusal contraction and (d) static action exerted on the response of the spindle afferent to ramp stretch. 3. Dynamic beta axons (beta D) were identified by the persistence of spindle activation after selective block of extrafusal neuromuscular junctions and by their dynamic action on spindle primary endings. 4. The actions of 116 motor axons (conduction velocity 56-104 m/sec) on ninety-five spindle afferents (fifty-seven from primary and thirty-eight from secondary endings) were examined in ten experiments. Thirty-six beta axons (31% of the total sample) were identified: twenty-four beta S (conduction velocity 69-104 m/sec) and twelve beta D (conduction velocity 56-91 m/sec). 5. Twenty (35%) primary endings were activated by a beta S and sixteen (28%) by a beta D axon. Nineteen (45%) secondary endings were activated by a beta S and five (13%) by a beta D axon. Convergence of beta D and beta S axons on the same spindle occurred in 10% of instances. beta-innervated spindles were also supplied by gamma axons. 6. Most of the beta S motor units were of the fast-fatigue resistant (FR) type, with a few units of the fast-fatigable (FF) type, and nearly all the beta D motor units were of the slow (S) type. PMID:6213764

  4. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted

  5. Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 α-subunit in rats with spinal cord injury.

    PubMed

    Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki

    2013-12-01

    To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    PubMed

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  7. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.

    1992-01-01

    1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor

    PubMed Central

    Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario

    2017-01-01

    Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958

  9. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

    PubMed

    Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko

    2015-03-01

    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. Copyright © 2015 the American Physiological Society.

  11. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats

    PubMed Central

    De Schepper, H U; De Winter, B Y; Van Nassauw, L; Timmermans, J-P; Herman, A G; Pelckmans, P A; De Man, J G

    2008-01-01

    Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25–5 mg kg−1) or its vehicle (hydroxypropyl-β-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6–S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Aδ-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Aδ-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition. PMID:18755744

  12. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    PubMed

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  13. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    PubMed

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  14. Interleukin-4 activates large-conductance, calciumactivated potassium (BKCa) channels in human airway smooth muscle cells

    PubMed Central

    Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark

    2014-01-01

    Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443

  15. Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro.

    PubMed

    Hotta, Norio; Kubo, Asako; Mizumura, Kazue

    2015-03-01

    Strong exercise makes muscle acidic, and painful. The stimulus that activates muscle nociceptors in such instance may be protons. Reportedly, however, not many afferents are excited by protons alone. We, therefore, posited that protons sensitize muscular nociceptors to mechanical stimuli. We examined effects of protons on mechanical sensitivity of muscle nociceptors by single-fiber recording from rat muscle-nerve preparations in vitro and by whole cell patch-clamp recording of mechanically activated (MA) currents from cultured rat dorsal root ganglion neurons. We recorded 38 Aδ- and C-fibers. Their response magnitude was increased by both pH 6.2 and pH 6.8; in addition the mechanical threshold was lowered by pH 6.2. Decrease in the threshold by pH6.2 was also observed in MA currents. Presently observed sensitization by protons could be involved in several types of ischemic muscle pain, and may also be involved in cardiovascular and respiratory controls during exercise. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the "hairy" skin of newborn mice: early maturation of hair follicle afferents.

    PubMed

    Woodbury, C J; Ritter, A M; Koerber, H R

    2001-07-30

    Adult skin sensory neurons exhibit characteristic projection patterns in the dorsal horn of the spinal gray matter that are tightly correlated with modality. However, little is known about how these patterns come about during the ontogeny of the distinct subclasses of skin sensory neurons. To this end, we have developed an intact ex vivo somatosensory system preparation in neonatal mice, allowing single, physiologically identified cutaneous afferents to be iontophoretically injected with Neurobiotin for subsequent histological analyses. The present report, centered on rapidly adapting mechanoreceptors, represents the first study of the central projections of identified skin sensory neurons in neonatal animals. Cutaneous afferents exhibiting rapidly adapting responses to sustained natural stimuli were encountered as early as recordings were made. Well-stained representatives of coarse (tylotrich and guard) and fine-diameter (down) hair follicle afferents, along with a putative Pacinian corpuscle afferent, were recovered from 2-7-day-old neonates. All were characterized by narrow, uninflected somal action potentials and generally low mechanical thresholds, and many could be activated via deflection of recently erupted hairs. The central collaterals of hair follicle afferents formed recurrent, flame-shaped arbors that were essentially miniaturized replicas of their adult counterparts, with identical laminar terminations. The terminal arbors of down hair afferents, previously undescribed in rodents, were distinct and consistently occupied a more superficial position than tylotrich and guard hair afferents. Nevertheless, the former extended no higher than the middle of the incipient substantia gelatinosa, leaving a clear gap more dorsally. In all major respects, therefore, hair follicle afferents display the same laminar specificity in neonates as they do in adults. The widely held misperception that their collaterals extend exuberant projections into pain

  17. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat

    PubMed Central

    Nishi, K.; Sakanashi, M.; Takenaka, F.

    1974-01-01

    1. Afferent discharges were recorded from the left cardiac sympathetic nerve or the third sympathetic ramus communicans of anaesthetized cats. Twenty-one single units with baroreceptor activity were obtained. 2. The receptors of each unit were localized to the extrapulmonary part of the pulmonary artery, determined by direct mechanical probing of the wall of the pulmonary artery after death of the animals. Conduction velocity of the fibres ranged from 2·5 to 15·7 m/sec. 3. Afferent discharges occurred irregularly under artificial ventilation. The impulse activity was increased when pulmonary arterial pressure was raised by an intravenous infusion of Locke solution, or by occlusion of lung roots, and decreased by bleeding the animal from the femoral artery. 4. Above a threshold pressure, discharges occurred synchronously with the systolic pressure pulse in the pulmonary artery. A progressive further rise in pressure did not produce an increase in the number of impulses per heart beat. Occlusion of lung roots initially elicited a burst of discharges but the number of impulses for each cardiac cycle gradually decreased. 5. The receptors responded to repetitive mechanical stimuli up to a frequency of 10/sec, but failed to respond to stimuli delivered at 20/sec. 6. The results provide further evidence for the presence of afferent fibres in the cardiac sympathetic nerve. These afferent fibres are likely to provide the spinal cord with specific information only on transient changes in pulmonary arterial pressure. PMID:4850456

  18. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  19. Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey.

    PubMed

    Giolli, R A; Gregory, K M; Suzuki, D A; Blanks, R H; Lui, F; Betelak, K F

    2001-01-01

    Anatomical findings are presented that identify cortical and subcortical sources of afferents to the nucleus reticularis tegmenti pontis (NRTP) and basal pontine nuclei. Projections from the middle temporal visual area (MT), medial superior temporal visual area (MST), lateral intraparietal area (LIP), and areas 7a and 7b to the basal pontine nuclei were studied using 3H-leucine autoradiography. The results complemented a parallel study of retrograde neuronal labeling attributable to injecting WGA-HRP into NRTP and neighboring pontine nuclei. Small 3H-leucine injections confined to MT, MST, LIP, area 7a, or area 7b, produced multiple patches of pontine terminal label distributed as follows: (1) An injection within MT produced terminal label limited to the dorsolateral and lateral pontine nuclei. (2) Injections restricted to MST or LIP showed patches of terminal label in the dorsal, dorsolateral, lateral, and peduncular pontine nuclei. (3) Area 7a targets the dorsal, dorsolateral, lateral, peduncular, and ventral pontine nuclei, whereas area 7b projects, additionally, to the dorsomedial and paramedian pontine nuclei. Notably, no projections were seen to NRTP from any of these cortical areas. In contrast, injections made by other investigators into cortical areas anterior to the central sulcus revealed cerebrocortical afferents to NRTP, in addition to nuclei of the basal pontine gray. With our pontine WGA-HRP injections, retrograde neuronal labeling was observed over a large extent of the frontal cortex continuing onto the medial surface which included the lining of the cingulate sulcus and cingulate gyrus. Significant subcortical sources for afferents to the NRTP and basal pontine nuclei were the zona incerta, ventral mesencephalic tegmentum, dorsomedial hypothalamic area, rostral interstitial nucleus of the medial longitudinal fasciculus, red nucleus, and subthalamic nucleus. The combined anterograde and retrograde labeling data indicated that visuo-motor cortico

  20. Superior ophthalmic vein enlargement and increased muscle index in dysthyroid optic neuropathy.

    PubMed

    Lima, Breno da Rocha; Perry, Julian D

    2013-01-01

    To compare superior ophthalmic vein diameter and extraocular muscle index in patients with thyroid eye disease with or without optic neuropathy. High-resolution CT scan images of 40 orbits of 20 patients with history of thyroid eye disease (with or without optic neuropathy), who underwent orbital decompression surgery from January 2007 to November 2009, were retrospectively reviewed. Superior ophthalmic vein diameter was measured in coronal and axial planes. Extraocular muscle index was calculated according to the method proposed by Barrett et al. The clinical diagnosis of optic neuropathy was based on characteristic signs that included afferent pupillary defect, decreased visual acuity, visual field defects, and dyschromatopsia. Orbits were divided in 2 groups based on presence or absence of optic neuropathy. Superior ophthalmic vein diameter was significantly higher in orbits with concomitant optic neuropathy (mean 2.4 ± 0.4mm, p < 0.0001). Increased muscle index was also related to optic neuropathy (mean 57.9% ± 5.7%, p = 0.0002). Muscle index greater than 50% was present in all patients with dysthyroid optic neuropathy. This study suggests that patients with thyroid eye disease with enlarged superior ophthalmic vein and increased extraocular muscle index are more likely to have concomitant optic neuropathy.

  1. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones

    PubMed Central

    Li, Y; Wu, X Y; Owyang, C

    2004-01-01

    Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ganglia. Two groups of nodose ganglia neurones were identified: group A neurones responded to intra-arterial injection of low doses of cholecystokinin octapeptide (CCK-8; 10–60 pmol); group B neurones responded only to high doses of CCK-8 (120–240 pmol), and were also activated by duodenal distention. CCK-JMV-180, which acts as an agonist in high-affinity states and as an antagonist in low-affinity states, dose dependently stimulated group A neurones, but inhibited the effect of the high doses of CCK-8 on group B neurones. Duodenal perfusion of 5-HT evoked dose-dependent increases in nodose neuronal discharges. Some neurones that responded to 5-HT showed no response to either high or low doses of CCK-8. A separate group of nodose neurones that possessed high-affinity CCK type A (CCK-A) receptors also responded to luminal infusion of 5-HT. Further, a subthreshold dose of CCK-8 (i.e. 5 pmol) produced no measurable electrophysiological effects but it augmented the neuronal responses to 5-HT. This potentiation effect of CCK-8 was eliminated by CR 1409. From these results we concluded that the vagal nodose ganglion contains neurones that may possess only high- or low-affinity CCK-A receptors or 5-HT3 receptors. Some neurones that express high-affinity CCK-A receptors also express 5-HT3 receptors. Pre-exposure to luminal 5-HT may augment the subsequent response to a subthreshold dose of CCK. PMID:15235095

  2. Sensory Afferents Use Different Coding Strategies for Heat and Cold.

    PubMed

    Wang, Feng; Bélanger, Erik; Côté, Sylvain L; Desrosiers, Patrick; Prescott, Steven A; Côté, Daniel C; De Koninck, Yves

    2018-05-15

    Primary afferents transduce environmental stimuli into electrical activity that is transmitted centrally to be decoded into corresponding sensations. However, it remains unknown how afferent populations encode different somatosensory inputs. To address this, we performed two-photon Ca 2+ imaging from thousands of dorsal root ganglion (DRG) neurons in anesthetized mice while applying mechanical and thermal stimuli to hind paws. We found that approximately half of all neurons are polymodal and that heat and cold are encoded very differently. As temperature increases, more heating-sensitive neurons are activated, and most individual neurons respond more strongly, consistent with graded coding at population and single-neuron levels, respectively. In contrast, most cooling-sensitive neurons respond in an ungraded fashion, inconsistent with graded coding and suggesting combinatorial coding, based on which neurons are co-activated. Although individual neurons may respond to multiple stimuli, our results show that different stimuli activate distinct combinations of diversely tuned neurons, enabling rich population-level coding. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    PubMed Central

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  4. Reflexes in cat ankle muscles after landing from falls.

    PubMed Central

    Prochazka, A; Schofield, P; Westerman, R A; Ziccone, S P

    1977-01-01

    1. Electrical activity and length of ankle muscles were recorded by telemetry during free fall and landing in cats. 2. After foot contact, there was a delay in onset of stretch of ankle extensors of between 8 and 11 ms. High-speed cinematography showed the delay to be associated with rapid initial dorsiflexion of the toes. 3. Electromyograms (e.m.g.) from lateral gastrocnemius increased in amplitude prior to landing. An early depression of lateral gastrocnemius e.m.g. commenced at 8 ms after foot contact, and was followed by a large peak of activity commencing some 8 ms after the first increase in lateral gastrocnemius length. 4. Local anaesthesia of the plantar cushion did not alter this pattern of response. 5. The early inhibition of lateral gastrocnemius was attributed to the action on lateral gastrocnemius motoneurones of non-cutaneous afferents responding to the initial toe dorsiflexion. Additional autogenetic inhibition may also have contributed. 6. The subsequent peak of e.m.g. was at a latenty consistent with a rapid stretch reflex, and occurred soon enough for the resulting active tension to contribute significantly to the extensor force during body deceleration. PMID:592210

  5. Lack of Hypertonia in Thumb Muscles After Stroke

    PubMed Central

    Kamper, Derek G.; Rymer, William Z.

    2010-01-01

    Despite the importance of the thumb to hand function, little is known about the origins of thumb impairment poststroke. Accordingly, the primary purpose of this study was to assess whether thumb flexors have heightened stretch reflexes (SRs) following stroke-induced hand impairment. The secondary purpose was to compare SR characteristics of thumb flexors in relation to those of finger flexors since it is unclear whether SR properties of both muscle groups are similarly affected poststroke. Stretch reflexes in thumb and finger flexors were assessed at rest on the paretic side in each of 12 individuals with chronic, severe, stroke-induced hand impairment and in the dominant thumb in each of eight control subjects also at rest. Muscle activity and passive joint flexion torques were measured during imposed slow (SS) and fast stretches (FS) of the flexors that span the metacarpophalangeal joints. Putative spasticity was then quantified in terms of the peak difference between FS and SS joint torques and electromyographic changes. For both the hemiparetic and control groups, the mean normalized peak torque differences (PTDs) measured in thumb flexors were statistically indistinguishable (P = 0.57). In both groups, flexor muscles were primarily unresponsive to rapid stretching. For 10 of 12 hemiparetic subjects, PTDs in thumb flexors were less than those in finger flexors (P = 0.03). Paretic finger flexor muscle reflex activity was consistently elicited during rapid stretching. These results may reflect an important difference between thumb and finger flexors relating to properties of the involved muscle afferents and spinal motoneurons. PMID:20668270

  6. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    PubMed

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  7. The decreased responsiveness of lumbar muscle spindles to a prior history of spinal muscle lengthening is graded with the magnitude of change in vertebral position

    PubMed Central

    Ge, Weiqing; Pickar, Joel G.

    2013-01-01

    In the lumbar spine, muscle spindle responsiveness is affected by the duration and direction of a lumbar vertebra’s positional history. The purpose of the present study was to determine the relationship between changes in the magnitude of a lumbar vertebra’s positional history and the responsiveness of lumbar muscle spindles to a subsequent vertebral position and subsequent vertebral movement. Neural activity from multifidus and longissimus muscle spindle afferents in deeply anesthetized cats was recorded while creating positional histories of the L6 vertebra. History was induced using a displacement-controlled feedback motor. It held the L6 vertebra for 4 seconds at an intermediate position (hold-intermediate at 0mm) and at 7 positions from 0.07 to 1.55mm more ventralward and dorsalward which lengthened (hold-long) and shortened (hold-short) the lumbar muscles. Following the conditioning hold positions, L6 was returned to the intermediate position. Muscle spindle discharge at this position and during a lengthening movement was compared between hold-intermediate and hold-short conditionings and between hold-intermediate and hold-short conditionings. We found that regardless of conditioning magnitude, the 7 shortening magnitudes similarly increased muscle spindle responsiveness to both vertebral position and movement. In contrast, the 7 lengthening magnitudes produced a graded decrease in responsiveness to both position and movement. The decrease to position became maximal following conditioning magnitudes of ~0.75 mm. The decrease to movement did not reach a maximum even with conditioning magnitudes of ~1.55 mm. The data suggest that the fidelity of proprioceptive information from muscle spindles in the low back is influenced by small changes in the previous length history of lumbar muscles. PMID:22721784

  8. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    PubMed

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  10. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  11. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    PubMed Central

    Solomon, Vered; Baracos, Vickie; Sarraf, Pasha; Goldberg, Alfred L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin–proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3α, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3α-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway. PMID:9770532

  12. What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?

    PubMed

    König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.

  13. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    PubMed Central

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  14. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    PubMed

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited.

    PubMed

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Camiré-Bernier, Samuel; Ribot-Ciscar, Édith; Schneider, Cyril

    2017-09-01

    This study tested the after-effects of neuromuscular electrical stimulation (NMES), repetitive peripheral magnetic stimulation (rPMS) and muscle tendon vibration (VIB) on brain plasticity and sensorimotor impairments in chronic stroke to investigate whether different results could depend on the nature of afferents recruited by each technique. Fifteen people with chronic stroke participated in five sessions (one per week). Baseline measures were collected in session one, then, each participant received 4 randomly ordered interventions (NMES, rPMS, VIB and a 'control' intervention of exercises). Interventions were applied to the paretic ankle muscles and parameters of application were matched as closely as possible. Standardized clinical measures of the ankle function on the paretic side and transcranial magnetic stimulation (TMS) outcomes of both primary motor cortices (M1) were collected at pre- and post-application of each intervention. The ankle muscle strength was significantly improved by rPMS and VIB (P≤0.02). rPMS influenced M1 excitability (increase in the contralesional hemisphere, P=0.03) and inhibition (decrease in both hemispheres, P≤0.04). The group mean of a few clinical outcomes improved across sessions, i.e. independently of the order of interventions. Some TMS outcomes at baseline could predict the responsiveness to rPMS and VIB. This original study suggests that rPMS and VIB were efficient to drive M1 plasticity and sensorimotor improvements, likely via massive inflows of 'pure' proprioceptive information generated. Usefulness of some TMS outcomes to predict which intervention a patient could be more responsive to should be further tested in future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs.

    PubMed

    Snively, Eric; Russell, Anthony P

    2007-08-01

    Reconstructed neck muscles of large theropod dinosaurs suggest influences on feeding style that paralleled variation in skull mechanics. In all examined theropods, the head dorsiflexor m. transversospinalis capitis probably filled in the posterior dorsal concavity of the neck, for a more crocodilian- than avian-like profile in this region. The tyrannosaurine tyrannosaurids Daspletosaurus and Tyrannosaurus had relatively larger moment arms for latero-flexion by m. longissimus capitis superficialis and m. complexus than albertosaurine tyrannosaurids, and longer dorsiflexive moment arms for m. complexus. Areas of dorsiflexor origination are significantly larger relative to neck length in adult Tyrannosaurus rex than in other tyrannosaurids, suggesting relatively large muscle cross-sections and forces. Tyrannosaurids were not particularly specialized for neck ventro-flexion. In contrast, the hypothesis that Allosaurus co-opted m. longissimus capitis superficialis for ventro-flexion is strongly corroborated. Ceratosaurus had robust insertions for the ventro-flexors m. longissimus capitis profundus and m. rectus capitis ventralis. Neck muscle morphology is consistent with puncture-and-pull and powerful shake feeding in tyrannosaurids, relatively rapid strikes in Allosaurus and Ceratosaurus, and ventroflexive augmentation of weaker jaw muscle forces in the non tyrannosaurids. (c) 2007 Wiley-Liss, Inc.

  17. Activation of colo-rectal high-threshold afferent nerves by Interleukin-2 is tetrodotoxin-sensitive and upregulated in a mouse model of chronic visceral hypersensitivity.

    PubMed

    Campaniello, M A; Harrington, A M; Martin, C M; Ashley Blackshaw, L; Brierley, S M; Hughes, P A

    2016-01-01

    Chronic visceral pain is a defining feature of irritable bowel syndrome (IBS). IBS patients often show alterations in innate and adaptive immune function which may contribute to symptoms. Immune mediators are known to modulate the activity of viscero-sensory afferent nerves, but the focus has been on the innate immune system. Interleukin-2 (IL-2) is primarily associated with adaptive immune responses but its effects on colo-rectal afferent function in health or disease are unknown. Myeloperoxidase (MPO) activity determined the extent of inflammation in health, acute trinitrobenzene-sulfonic acid (TNBS) colitis, and in our post-TNBS colitis model of chronic visceral hypersensitivity (CVH). The functional effects of IL-2 on high-threshold colo-rectal afferents and the expression of IL-2R and NaV 1.7 mRNA in colo-rectal dorsal root ganglia (DRG) neurons were compared between healthy and CVH mice. MPO activity was increased during acute colitis, but subsided to levels comparable to health in CVH mice. IL-2 caused direct excitation of colo-rectal afferents that was blocked by tetrodotoxin. IL-2 did not affect afferent mechanosensitivity in health or CVH. However, an increased proportion of afferents responded directly to IL-2 in CVH mice compared with controls (73% vs 33%; p < 0.05), and the abundance of IL-2R and NaV 1.7 mRNA was increased 3.5- and 2-fold (p < 0.001 for both) in colo-rectal DRG neurons. IL-2, an immune mediator from the adaptive arm of the immune response, affects colo-rectal afferent function, indicating these effects are not restricted to innate immune mediators. Colo-rectal afferent sensitivity to IL-2 is increased long after healing from inflammation. © 2015 John Wiley & Sons Ltd.

  18. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed Central

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-01-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  19. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-03-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  20. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  1. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  2. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    PubMed

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  3. F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.

    PubMed

    García, H A; Fisher, M A

    1977-01-01

    Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.

  4. The Effect of Functional Mandibular Shift on the Muscle Spindle Systems in Head-Neck Muscles and the Related Neurotransmitter Histamine.

    PubMed

    Du, Bing-Li; Li, Jiang-Ning; Guo, Hong-Ming; Li, Song; Liu, Biao

    2017-09-01

    The aim of this study is to explore the effects of abnormal occlusion and functional recovery caused by functional mandible deviation on the head and neck muscles and muscle spindle sensory-motor system by electrophysiological response and endogenous monoamine neurotransmitters' distribution in the nucleus of the spinal tract. Seven-week-old male Wistar rats were randomly divided into 7 groups: normal control group, 2W experimental control group, 2W functional mandible deviation group, 2W functional mandible deviation recovery group, 4W experimental control group, 4W functional mandible deviation group, 4W functional mandible deviation recovery group. Chewing muscles, digastric muscle, splenius, and trapezius muscle spindles electrophysiological response activities at the opening and closing state were recorded. And then the chewing muscles, digastric, splenius, trapezius, and neck trigeminal nucleus were taken for histidine decarboxylase (HDC) detection by high performance liquid chromatography (HPLC), immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR). Histamine receptor proteins in the neck nucleus of the spinal tract were also examined by immunofluorescence and RT-PCR. Electromyography activity of chewing muscles, digastric, and splenius muscle was significantly asymmetric; the abnormal muscle electromyography activity was mainly detected at the ipsilateral side. After functional mandibular deviation, muscle sensitivity on the ipsilateral sides of the chewing muscle and splenius decreased, muscle excitement weakened, modulation depth decreased, and the muscle spindle afferent impulses of excitation transmission speed slowed down. Changes for digastric muscle electrical activity were contrary. The functions recovered at different extents after removing the deflector. However, trapezius in all the experimental groups and recovery groups exhibited bilateral symmetry electrophysiological responses, and no significant difference

  5. EFFECTS OF METHYLMERCURY ON SPINAL CORD AFFERENTS AND EFFERENTS—A REVIEW

    PubMed Central

    Colón-Rodríguez, Alexandra; Hannon, Heidi E.; Atchison, William D.

    2017-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRPs, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels. PMID:28041893

  6. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].

    PubMed

    David, O F

    1978-01-01

    Studies have been made on the electrical activity of the segmentary nerves and connectives of the abdominal nervous chain in the earthworm and leech. It was shown that the electrical activity of the isolated piece of the abdominal chain of the leech is manifested of periodic outbursts of impulsation. Presumably this central periodicity accounts for the discharge-like pattern of muscle rhythmic activity which was revealed in our earlier investigations. The electrical activity in the central nervous system of the earthworm depends on afferent influences which pass to the ganglia from the peripheral sensory nervous cells. Stimulation of the abdominal nervous chain did not result in extra discharges of muscle activity, but only affected some of the parameters of the latter.

  7. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans.

    PubMed

    Mano, Tadaaki; Iwase, Satoshi; Toma, Shinobu

    2006-11-01

    Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be

  8. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  9. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.

    PubMed

    Murtada, Sae-Il; Holzapfel, Gerhard A

    2014-10-07

    Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear

  10. Control of complex motor gestures: orofacial muscle responses to load perturbations of lip during speech.

    PubMed

    Abbs, J H; Gracco, V L

    1984-04-01

    The contribution of ascending afferents to the control of speech movement was evaluated by applying unanticipated loads to the lower lip during the generation of combined upper lip-lower lip speech gestures. To eliminate potential contamination due to anticipation or adaptation, loads were applied randomly on only 10-15% of the trials. Physical characteristics of the perturbations were within the normal range of forces and movements involved in natural lip actions for speech. Compensatory responses in multiple facial muscles and lip movements were observed the first time a load was introduced, and achievement of the multimovement speech goals was never disrupted by these perturbations. Muscle responses were seen in the lower lip muscles, implicating corrective, feedback processes. Additionally, compensatory responses to these lower lip loads were also observed in the independently controlled muscles of the upper lip, reflecting the parallel operation of open-loop, sensorimotor mechanisms. Compensatory responses from both the upper and lower lip muscles were observed with small (1 mm) as well as large (15 mm) perturbations. The latencies of these compensatory responses were not discernible by conventional ensemble averaging. Moreover, responses at latencies of lower brain stem-mediated reflexes (i.e., 10-18 ms) were not apparent with inspection of individual records. Response latencies were determined on individual loaded trials through the use of a computer algorithm that took into account the variability of electromyograms (EMG) among the control trials. These latency measures confirmed the absence of brain stem-mediated responses and yielded response latencies that ranged from 22 to 75 ms. Response latencies appeared to be influenced by the time relation between load onset and the initiation of muscle activation. Examination of muscle activity changes for individual loaded trials revealed complementary variations in the magnitude of responses among multiple

  11. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  12. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  13. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  14. Muscle Spindle Traffic in Functionally Unstable Ankles During Ligamentous Stress

    PubMed Central

    Needle, Alan R.; Charles B. (Buz), Swanik; Farquhar, William B.; Thomas, Stephen J.; Rose, William C.; Kaminski, Thomas W.

    2013-01-01

    Context: Ankle sprains are common in athletes, with functional ankle instability (FAI) developing in approximately half of cases. The relationship between laxity and FAI has been inconclusive, suggesting that instability may be caused by insufficient sensorimotor function and dynamic restraint. Research has suggested that deafferentation of peripheral mechanoreceptors potentially causes FAI; however, direct evidence confirming peripheral sensory deficits has been elusive because previous investigators relied upon subjective proprioceptive tests. Objective: To develop a method for simultaneously recording peripheral sensory traffic, joint forces, and laxity and to quantify differences between healthy ankles and those with reported instability. Design: Case-control study. Setting: University laboratory. Patients or Other Participants: A total of 29 participants (age = 20.9 ± 2.2 years, height = 173.1 ± 8.9 cm, mass = 74.5 ± 12.7 kg) stratified as having healthy (HA, n = 19) or unstable ankles (UA, n = 10). Intervention(s): Sensory traffic from muscle spindle afferents in the peroneal nerve was recorded with microneurography while anterior (AP) and inversion (IE) stress was applied to ligamentous structures using an ankle arthrometer under test and sham conditions. Main Outcome Measure(s): Laxity (millimeters or degrees) and amplitude of sensory traffic (percentage) were determined at 0, 30, 60, 90, and 125 N of AP force and at 0, 1, 2, 3, and 4 Nm of IE torque. Two-factor repeated-measures analyses of variance were used to determine differences between groups and conditions. Results: No differences in laxity were observed between groups (P > .05). Afferent traffic increased with increased force and torque in test trials (P < .001). The UA group displayed decreased afferent activity at 30 N of AP force compared with the HA group (HA: 30.2% ± 9.9%, UA: 17.1% ± 16.1%, P < .05). Conclusions: The amplitude of sensory traffic increased simultaneously with greater

  15. New Types of Artificial Muscles for Large Stroke and High Force Applications

    DTIC Science & Technology

    2012-10-10

    University of Texas at Dallas and include Aerogel Muscles, Torsional and Tensile Yarn Muscles, Artificial Muscles Based on Polypyrrole Laminates and...Stroke, Superelastic Carbon Nanotube Aerogel Muscles 3. Torsional and Tensile Carbon Nanotube Yarn Muscles 4. Artificial Muscles Based on...in numerous press releases and TV programs. As we reported in Science 2009, carbon nanotube aerogel sheets are the sole component of new artificial

  16. Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain.

    PubMed

    Severino, Amie; Chen, Wenling; Hakimian, Joshua K; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire; Walwyn, Wendy; Marvizon, Juan Carlos

    2018-04-17

    The latent sensitization model of chronic pain reveals that recovery from some types of long-term hyperalgesia is an altered state in which nociceptive sensitization persists but is suppressed by the ongoing activity of analgesic receptors such as µ-opioid receptors (MORs). To determine whether these MORs are the ones present in nociceptive afferents, we bred mice expressing Cre-recombinase under the Nav1.8 channel promoter (Nav1.8cre) with MOR-floxed mice (flMOR). These Nav1.8cre/flMOR mice had reduced MOR expression in primary afferents, as revealed by quantitative PCR, in situ hybridization and immunofluorescence colocalization with the neuropeptide CGRP. We then studied the recovery from chronic pain of these mice and their flMOR littermates. When Nav1.8cre/flMOR mice were injected in the paw with complete Freund's adjuvant they developed mechanical hyperalgesia that persisted for over two months, whereas the responses of flMOR mice returned to baseline after three weeks. We then used the inverse agonist naltrexone to assess ongoing MOR activity. Naltrexone produced a robust reinstatement of hyperalgesia in control flMOR mice, but produced no effect in the Nav1.8/flMOR males and a weak reinstatement of hyperalgesia in Nav1.8/flMOR females. Naltrexone also reinstated swelling of the hind paw in flMOR mice and female Nav1.8cre/flMOR mice, but not male Nav1.8cre/flMOR mice. The MOR agonist DAMGO inhibited substance P release in flMOR mice but not Nav1.8cre/flMOR mice, demonstrating a loss of MOR function at the central terminals of primary afferents. We conclude that MORs in nociceptive afferents mediate an ongoing suppression of hyperalgesia to produce remission from chronic pain.

  17. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    PubMed

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  18. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    PubMed

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  19. Neuromorphic meets neuromechanics, part I: the methodology and implementation

    NASA Astrophysics Data System (ADS)

    Niu, Chuanxin M.; Jalaleddini, Kian; Sohn, Won Joon; Rocamora, John; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective: One goal of neuromorphic engineering is to create ‘realistic’ robotic systems that interact with the physical world by adopting neuromechanical principles from biology. Critical to this is the methodology to implement the spinal circuitry responsible for the behavior of afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, and muscle fibers to enable useful behaviors. Approach. We used programmable very- large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-scale system of populations of spiking neurons emulated the physiological properties of a pair of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-motoneurones) acting on a joint via long tendons. Main results. This integrated system was able to maintain a joint angle, and reproduced stretch reflex responses even when driving the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us to explore numerous values and combinations of gamma-static and gamma-dynamic gains when driving a robotic finger, some of which replicated some human pathological conditions. Lastly, we explored the behavioral consequences of adopting three alternative models of isometric muscle force production. We found that the dynamic responses to rate-coded spike trains produce force ramps that can be very sensitive to tendon elasticity, especially at high force output. Significance. Our methodology produced, to our knowledge, the first example of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating realistic reflex behavior in cadaveric fingers. This research platform allows us to explore

  20. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults.

    PubMed

    Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V

    2016-08-01

    The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

  1. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was oftenmore » reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal

  2. Trunk isometric force production parameters during erector spinae muscle vibration at different frequencies

    PubMed Central

    2013-01-01

    Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578

  3. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation.

    PubMed

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D

    2012-06-01

    Previous vagus nerve stimulation (VNS) studies have demonstrated antinociceptive effects, and recent noninvasive approaches, termed transcutaneous-vagus nerve stimulation (t-VNS), have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Counterbalanced, crossover study. Patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. INTERVENTIONS/OUTCOMES: We evaluated evoked pain analgesia for respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) compared with nonvagal auricular stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least 1 week apart. Outcome measures included deep-tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N = 15 CPP patients, compared with NVAS, with moderate to large effect sizes (η(2) > 0.2). Chronic pain disorders such as CPP are in great need of effective, nonpharmacological options for treatment. RAVANS produced promising antinociceptive effects for quantitative sensory testing (QST) outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. Wiley Periodicals, Inc.

  4. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    PubMed

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  5. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    PubMed

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats

    PubMed Central

    Park, Jennifer; Asgar, Jamila; Ro, Jin Y.

    2016-01-01

    Background Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes in trigeminal ganglia, which is associated with muscle hyperalgesia. However, overall transcriptional profiles within trigeminal ganglia following masseter inflammation have not yet been determined. In the present study, we performed RNA sequencing assay in rat trigeminal ganglia to identify transcriptome profiles of genes relevant to hyperalgesia following inflammation of the rat masseter muscle. Results Masseter inflammation differentially regulated >3500 genes in trigeminal ganglia. Predominant biological pathways were predicted to be related with activation of resident non-neuronal cells within trigeminal ganglia or recruitment of immune cells. To focus our analysis on the genes more relevant to nociceptors, we selected genes implicated in pain mechanisms, genes enriched in small- to medium-sized sensory neurons, and genes enriched in TRPV1-lineage nociceptors. Among the 2320 candidate genes, 622 genes showed differential expression following masseter inflammation. When the analysis was limited to these candidate genes, pathways related with G protein-coupled signaling and synaptic plasticity were predicted to be enriched. Inspection of individual gene expression changes confirmed the transcriptional changes of multiple nociceptor genes associated with masseter hyperalgesia (e.g., Trpv1, Trpa1, P2rx3, Tac1, and Bdnf) and also suggested a number of novel probable contributors (e.g., Piezo2, Tmem100, and Hdac9). Conclusion These findings should further advance our understanding of peripheral mechanisms involved in persistent craniofacial muscle pain conditions and provide a

  7. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    PubMed Central

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  8. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  9. Breathlessness, fatigue and the respiratory muscles.

    PubMed

    Mioxham, John; Jolley, Caroline

    2009-10-01

    Breathlessness is a common symptom in respiratory, cardiovascular and malignant disease. It reduces exercise tolerance and mobility, and is an important determinant of quality of life. The multifactorial nature of the symptom often presents difficulties in understanding why individual patients are breathless, and how breathlessness should best be palliated, especially in advanced disease. However, insights into the neurophysiological factors underlying the symptom can be gained by considering the balance between the load on, and capacity of, the respiratory muscles and increased neural respiratory drive, reflecting increased respiratory effort. Mismatch between efferent neural respiratory drive and afferent feedback, reflecting the degree of neuromechanical dissociation, is also important. This paper describes mechanisms by which ventilatory load, capacity and drive may be affected by disease, and how these can be measured physiologically. The schema presented also provides a framework for understanding the mechanisms by which interventions that relieve breathlessness may have their effect.

  10. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    PubMed

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  11. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats

    PubMed Central

    Philyppov, Igor B.; Paduraru, Oksana N.; Gulak, Kseniya L.; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M.

    2016-01-01

    TRPA1 is a Ca2+-permeable cation channel that is activated by painful low temperatures (˂17 °C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation. PMID:26935999

  12. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats.

    PubMed

    Philyppov, Igor B; Paduraru, Oksana N; Gulak, Kseniya L; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M

    2016-01-01

    TRPA1 is a Ca(2+)-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors - tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.

  13. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    PubMed

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  14. Optimization of Large Gel 2D Electrophoresis for Proteomic Studies of Skeletal Muscle

    PubMed Central

    Reed, Patrick W.; Densmore, Allison; Bloch, Robert J.

    2013-01-01

    We describe improved methods for large format, 2-dimensional gel electrophoresis (2-DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7M urea + 2 M thiourea, instead of 9M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2D-GE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes. PMID:22589104

  15. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  16. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  17. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    PubMed

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P < 0.0001) and additional signs of sympathetic activation, including tachycardia, diaphoresis and flushing of the skin. Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube

  18. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice.

    PubMed

    Kadekawa, Katsumi; Majima, Tsuyoshi; Shimizu, Takahiro; Wada, Naoki; de Groat, William C; Kanai, Anthony J; Goto, Momokazu; Yoshiyama, Mitsuharu; Sugaya, Kimio; Yoshimura, Naoki

    2017-09-01

    We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1 ) spinal intact (SI)-control, 2 ) SI-capsaicin pretreatment (Cap), 3 ) SCI-control, and 4 ) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice. Copyright © 2017 the American Physiological Society.

  19. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension

    PubMed Central

    Foss, Jason D.; Fink, Gregory D.

    2015-01-01

    Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼170 mmHg. RDNX reduced MAP ∼10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves. PMID:26661098

  20. A Contractile Network of Interstitial Cells of Cajal in the Supratarsal Mueller's Smooth Muscle Fibers With Sparse Sympathetic Innervation

    PubMed Central

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji

    2012-01-01

    Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine administration into the upper fornix in contraction of Mueller's smooth muscle fibers and how intraoperative stretching of Mueller's muscle alters the degree of eyelid retraction in 20 patients with aponeurotic blepharoptosis. In addition, we stained Mueller's muscle in 7 cadavers with antibodies against α-smooth muscle actin, S100, tyrosine hydroxylase, c-kit, and connexin 43. Results: Maximal eyelid retraction occurred approximately 3.8 minutes after administration of phenylephrine and prolonged eyelid retraction for at least 20 minutes after administration. Intraoperative stretching of Mueller's muscle increased eyelid retraction due to its reflexive contraction. The tyrosine hydroxylase antibody sparsely stained postganglionic sympathetic nerve fibers, whereas the S100 and c-kit antibodies densely stained the interstitial cells of Cajal (ICCs) among Mueller's smooth muscle fibers. A connexin 43 antibody failed to stain Mueller's muscle. Conclusions: A contractile network of ICCs may mediate neurotransmission within Mueller's multiunit smooth muscle fibers that are sparsely innervated by postganglionic sympathetic fibers. Interstitial cells of Cajal may also serve as mechanoreceptors that reflexively contract Mueller's smooth muscle fibers, forming intimate associations with intramuscular trigeminal proprioceptive fibers to induce reflexive contraction of the levator and frontalis muscles. PMID:22359687

  1. Susceptibility to Exercise-Induced Muscle Damage: a Cluster Analysis with a Large Sample.

    PubMed

    Damas, F; Nosaka, K; Libardi, C A; Chen, T C; Ugrinowitsch, C

    2016-07-01

    We investigated the responses of indirect markers of exercise-induced muscle damage (EIMD) among a large number of young men (N=286) stratified in clusters based on the largest decrease in maximal voluntary contraction torque (MVC) after an unaccustomed maximal eccentric exercise bout of the elbow flexors. Changes in MVC, muscle soreness (SOR), creatine kinase (CK) activity, range of motion (ROM) and upper-arm circumference (CIR) before and for several days after exercise were compared between 3 clusters established based on MVC decrease (low, moderate, and high responders; LR, MR and HR). Participants were allocated to LR (n=61), MR (n=152) and HR (n=73) clusters, which depicted significantly different cluster centers of 82%, 61% and 42% of baseline MVC, respectively. Once stratified by MVC decrease, all muscle damage markers were significantly different between clusters following the same pattern: small changes for LR, larger changes for MR, and the largest changes for HR. Stratification of individuals based on the magnitude of MVC decrease post-exercise greatly increases the precision in estimating changes in EIMD by proxy markers such as SOR, CK activity, ROM and CIR. This indicates that the most commonly used markers are valid and MVC orchestrates their responses, consolidating the role of MVC as the best EIMD indirect marker. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Complex regional pain syndrome type I (RSD): pathology of skeletal muscle and peripheral nerve.

    PubMed

    van der Laan, L; ter Laak, H J; Gabreëls-Festen, A; Gabreëls, F; Goris, R J

    1998-07-01

    Reflex sympathetic dystrophy (RSD) (recently reclassified as complex regional pain syndrome type I) is a syndrome occurring in extremities and, when chronic, results in severe disability and untractable pain. RSD may be accompanied by neurologic symptoms even when there is no previous neurologic lesion. There is no consensus as to the pathogenic mechanism involved in RSD. To gain insight into the pathophysiology of RSD, we studied histopathology of skeletal muscle and peripheral nerve from patients with chronic RSD in a lower extremity. In eight patients with chronic RSD, an above-the-knee amputation was performed because of a nonfunctional limb. Specimens of sural nerves, tibial nerves, common peroneal nerves, gastrocnemius muscles, and soleus muscles were obtained from the amputated legs and analyzed by light and electron microscopy. In all patients, the affected leg showed similar neurologic symptoms such as spontaneous pain, hyperpathy, allodynia, paresis, and anesthesia dolorosa. The nerves showed no consistent abnormalities of myelinated fibers. In four patients, the C-fibers showed electron microscopic pathology. In all patients, the gastrocnemius and soleus muscle specimens showed a decrease of type I fibers, an increase of lipofuscin pigment, atrophic fibers, and severely thickened basal membrane layers of the capillaries. In chronic RSD, efferent nerve fibers were histologically unaffected; from afferent fibers, only C-fibers showed histopathologic abnormalities. Skeletal muscle showed a variety of histopathologic findings, which are similar to the histologic abnormalities found in muscles of patients with diabetes.

  3. Transcriptomics Analysis on Excellent Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Min Pig Compared with the Large White Breed

    PubMed Central

    Liu, Yingzi; Yang, Xiuqin; Jing, Xiaoyan; He, Xinmiao; Wang, Liang; Liu, Yang; Liu, Di

    2017-01-01

    The Min pig (Sus scrofa) is a well-known indigenous breed in China. One of its main advantages over European breeds is its high meat quality. Additionally, different cuts of pig also show some different traits of meat quality. To explore the underlying mechanism responsible for the differences of meat quality between different breeds or cuts, the longissimus dorsi muscle (LM) and the biceps femoris muscle (BF) from Min and Large White pigs were investigated using transcriptome analysis. The gene expression profiling identified 1371 differentially expressed genes (DEGs) between LM muscles from Min and Large White pigs, and 114 DEGs between LM and BF muscles from the same Min pigs. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the IRS1/Akt/FoxO1 signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) cascade effects, lipid metabolism and amino acid metabolism pathway. Such pathways contributed to fatty acid metabolism, intramuscular fat deposition, and skeletal muscle growth in Min pig. These results give an insight into the mechanisms underlying the formation of skeletal muscle and provide candidate genes for improving meat quality. It will contribute to improving meat quality of pigs through molecular breeding. PMID:29271915

  4. Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats.

    PubMed

    Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland

    2006-11-10

    The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant

  5. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    PubMed

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  6. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms.

    PubMed

    Gaboyard-Niay, Sophie; Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian

    2016-10-01

    Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. © 2016. Published by The Company of Biologists Ltd.

  7. Osmoregulatory processes and skeletal muscle metabolism

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  8. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  9. The effect of muscle contraction level on the cervical vestibular evoked myogenic potential (cVEMP): usefulness of amplitude normalization.

    PubMed

    Bogle, Jamie M; Zapala, David A; Criter, Robin; Burkard, Robert

    2013-02-01

    The cervical vestibular evoked myogenic potential (cVEMP) is a reflexive change in sternocleidomastoid (SCM) muscle contraction activity thought to be mediated by a saccular vestibulo-collic reflex. CVEMP amplitude varies with the state of the afferent (vestibular) limb of the vestibulo-collic reflex pathway, as well as with the level of SCM muscle contraction. It follows that in order for cVEMP amplitude to reflect the status of the afferent portion of the reflex pathway, muscle contraction level must be controlled. Historically, this has been accomplished by volitionally controlling muscle contraction level either with the aid of a biofeedback method, or by an a posteriori method that normalizes cVEMP amplitude by the level of muscle contraction. A posteriori normalization methods make the implicit assumption that mathematical normalization precisely removes the influence of the efferent limb of the vestibulo-collic pathway. With the cVEMP, however, we are violating basic assumptions of signal averaging: specifically, the background noise and the response are not independent. The influence of this signal-averaging violation on our ability to normalize cVEMP amplitude using a posteriori methods is not well understood. The aims of this investigation were to describe the effect of muscle contraction, as measured by a prestimulus electromyogenic estimate, on cVEMP amplitude and interaural amplitude asymmetry ratio, and to evaluate the benefit of using a commonly advocated a posteriori normalization method on cVEMP amplitude and asymmetry ratio variability. Prospective, repeated-measures design using a convenience sample. Ten healthy adult participants between 25 and 61 yr of age. cVEMP responses to 500 Hz tone bursts (120 dB pSPL) for three conditions describing maximum, moderate, and minimal muscle contraction. Mean (standard deviation) cVEMP amplitude and asymmetry ratios were calculated for each muscle-contraction condition. Repeated measures analysis of variance

  10. Evoked Pain Analgesia in Chronic Pelvic Pain Patients using Respiratory-gated Auricular Vagal Afferent Nerve Stimulation

    PubMed Central

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D.

    2012-01-01

    Objective Previous Vagus Nerve Stimulation (VNS) studies have demonstrated anti-nociceptive effects, and recent non-invasive approaches; termed transcutaneous-VNS, or t-VNS, have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Design counterbalanced, crossover study. Patients patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. Interventions/Outcomes We evaluated evoked pain analgesia for Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) compared with Non-Vagal Auricular Stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least one week apart. Outcome measures included deep tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. Results RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N=15 CPP patients, compared to NVAS, with moderate to large effect sizes (eta2>0.2). Conclusion Chronic pain disorders such as CPP are in great need of effective, non-pharmacological options for treatment. RAVANS produced promising anti-nociceptive effects for QST outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. PMID:22568773

  11. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse

    PubMed Central

    Becker, Lars; Schnee, Michael E; Niwa, Mamiko; Sun, Willy; Maxeiner, Stephan; Talaei, Sara; Kachar, Bechara; Rutherford, Mark A

    2018-01-01

    The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles. PMID:29328021

  12. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat

    PubMed Central

    Zhou, Shi-Yi; Lu, Yuan-Xu; Owyang, Chung

    2011-01-01

    Hyperglycemia has a profound effect on gastric motility. However, little is known about site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of glucose, intracisternal injection of glucose at 250 and 500 mg dL−1 had little effect on intragastric pressure. Pretreatment with hexamethonium, as well as truncal vagotomy, abolished the gastric motor responses to hyperglycemia (250 mg dL−1), and perivagal and gastroduodenal applications of capsaicin significantly reduced the gastric responses to hyperglycemia. In contrast, hyperglycemia had no effect on the gastric contraction induced by electrical field stimulation or carbachol (10−5 M). To rule out involvement of serotonergic pathways, we showed that neither granisetron (5-HT3 antagonist, 0.5 g kg−1) nor pharmacological depletion of 5-HT using p-chlorophenylalanine (5-HT synthesis inhibitor) affected gastric relaxation induced by hyperglycemia. Lastly, NG-nitro-L-arginine methyl ester (l-NAME) and a VIP antagonist each partially reduced gastric relaxation induced by hyperglycemia, and in combination, completely abolished gastric responses. In conclusion, hyperglycemia inhibits gastric motility through a capsaicin-sensitive vagal afferent pathway originating from the gastroduodenal mucosa. Hyperglycemia stimulates vagal afferents, which, in turn, activate vagal efferent cholinergic pathways synapsing with intragastric nitric oxide- and VIP-containing neurons to mediate gastric relaxation. PMID:18356537

  13. Neuropeotide Y changes the excitability of fine afferent units in the rat knee joint

    PubMed Central

    Just, Stefan; Heppelmann, Bernd

    2001-01-01

    The aim of the present study was to examine the effects of the sympathetic co-transmitter Neuropeotide Y on primary afferent nerve fibres of the rat knee joint. The responses to passive joint rotations at defined torque were recorded from 41 slowly conducting afferent nerve fibres (0.9 – 18.8 m s−1) innervating the knee joint capsule. About 70% of the joint afferents were significantly affected in their mechanosensitivity by topical application of Neuropeptide Y. Significant effects occurred at a concentration of 10 nM. Decreased mechanosensitivity was observed in about 40% of nerve fibres, whereas 30% of the units increased the mechanosensitivity. In addition, in about 35% of the fibres resting activity was induced or increased. Neither the conduction velocity nor the mechanical threshold of the units correlated with the described effects of Neuropeptide Y. NPY(13 – 36), a specific Y2-receptor agonist, only modulated the mechanosensitivity, with no effect on the resting activity. The effects on the mechanosensitivity were similar to Neuropeptide Y, i.e. increase and decrease of the response. Studies with the Y1-agonist (Leu31, Pro34)-NPY showed that activation of the Y1-receptor predominantly resulted in an enhanced mechanosensitivity and an induction or increase of a resting activity. The opposite effect was observed by application of BIBP 3226 BS, a Y1-receptor antagonist. In conclusion, these data indicate that Neuropeptide Y affects the excitability of sensory nerve fibre endings. PMID:11159723

  14. Your Muscles

    MedlinePlus

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  15. Afferent Neural Feedback Overrides the Modulating Effects of Arousal, Hypercapnia and Hypoxemia on Neonatal Cardio-respiratory Control.

    PubMed

    Lumb, Kathleen J; Schneider, Jennifer M; Ibrahim, Thowfique; Rigaux, Anita; Hasan, Shabih U

    2018-04-20

    Evidence at whole animal, organ-system, and cellular and molecular levels suggests that afferent volume feedback is critical for establishment of adequate ventilation at birth. Due to the irreversible nature of vagal ablation studies to date, it was difficult to quantify the roles of afferent volume input, arousal and changes in blood gas tensions on neonatal respiratory control. During reversible perineural vagal block, profound apneas, and hypoxemia and hypercarbia were observed necessitating termination of perineural blockade. Respiratory depression and apneas were independent of the sleep states. We demonstrate that profound apneas and life-threatening respiratory failure in vagally denervated animals do not result from lack of arousal or hypoxemia. Change in sleep state and concomitant respiratory depression result from lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period. Afferent volume feedback plays a vital role in neonatal respiratory control. Mechanisms for the profound respiratory depression and life-threatening apneas observed in vagally denervated neonatal animals remain unclear. We investigated the roles of sleep states, hypoxic-hypercapnia and afferent volume feedback on respiratory depression using reversible perineural vagal block during early postnatal period. Seven lambs were instrumented during the first 48h of life to record/analyze sleep states, diaphragmatic electromyograph, arterial blood gas tensions, systemic arterial blood pressure and rectal temperature. Perineural cuffs were placed around the vagi to attain reversible blockade. Post-operatively, during the awake state, both vagi were blocked using 2% xylocaine for up to 30 minutes. Compared with baseline values, pHa, PaO 2 and SaO 2 decreased and PaCO 2 increased during perineural blockade (P < 0.05). Four of seven animals exhibited apneas of ≥20 sec requiring

  16. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II.

    PubMed

    Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo

    2013-01-01

    Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.

  17. The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon

    PubMed Central

    Matthews, P. B. C.

    1966-01-01

    1. Vibration was applied longitudinally to the fully innervated soleus muscle of the decerebrate cat by attaching its tendon to a vibrator. Vibration at frequencies of 50-500/sec with amplitudes of 10 μ upwards caused the muscle to contract reflexly for as long as the vibration was maintained. The response was recorded myographically by a myograph mounted upon the vibrator, and electromyographically by gross `belly-tendon' leads. The reflex contraction produced several hundred g wt. of tension and involved too many motor units for their discharges to be separable. The maintained reflex was abolished by making the preparation spinal or by anaesthetizing it with pentobarbitone, but it persisted after removing the cerebellum. 2. The minimum latency for the appearance of the reflex response at the beginning of a period of vibration was about 10 msec. The latency of cessation of the response at the end of vibration was similarly short. 3. On increasing the amplitude of vibration at any particular frequency in the range 100-300/sec the resulting reflex tension increased to an approximate plateau for amplitudes of vibration of 100-200 μ. Further increase in the amplitude decreased the size of the contraction, though there was no such reduction in records of the `integrated' electromyogram. 4. Such large amplitudes of vibration also reduced the tension, and shortened the duration, of a twitch contraction of the muscle elicited by stimulating its nerve. The strength of a tetanic contraction was much less affected by vibration than was that of the twitch contraction, and the muscle action potential elicited by stimulation of the nerve was unaffected. Thus, large-amplitude vibration influenced the contractile mechanism of the muscle (cf. Buchtal & Kaiser, 1951). 5. Increasing the frequency of vibration increased the value of the plateau tension reached on increasing the amplitude. The effect was, however, relatively small and the largest increase seen was 3 g wt. of

  18. Developmental Programming: Reproductive Endocrinopathies in the Adult Female Sheep After Prenatal Testosterone Treatment Are Reflected in Altered Ontogeny of GnRH Afferents

    PubMed Central

    Hershey, John; Mytinger, Andrea; Foster, Douglas L.; Padmanabhan, Vasantha

    2011-01-01

    The GnRH system represents a useful model of long-term neural plasticity. An unexplored facet of this plasticity relates to the ontogeny of GnRH neural afferents during critical periods when the hypothalamic-pituitary-gonadal axis is highly susceptible to perturbation by sex steroids. Sheep treated with testosterone (T) in utero exhibit profound reproductive neuroendocrine dysfunctions during their lifespan. The current study tested the hypothesis that these changes are associated with alterations in the normal ontogeny of GnRH afferents and glial associations. Adult pregnant sheep (n = 50) were treated with vehicle [control (CONT)] or T daily from gestational day (GD)30 to GD90. CONT and T fetuses (n = 4–6/treatment per age group) were removed by cesarean section on GD90 and GD140 and the brains frozen at −80°C. Brains were also collected from CONT and T females at 20–23 wk (prepubertal), 10 months (normal onset of puberty and oligo-anovulation), and 21 months (oligo-anovulation in T females). Tissue was analyzed for GnRH immunoreactivity (ir), total GnRH afferents (Synapsin-I ir), glutamate [vesicular glutamate transporter-2 (VGLUT2)-ir], and γ-aminobutyric acid [GABA, vesicular GABA transporter (VGAT)-ir] afferents and glial associations (glial fibrillary acidic protein-ir) with GnRH neurons using optical sectioning techniques. The results revealed that: 1) GnRH soma size was slightly reduced by T, 2) the total (Synapsin-I) GnRH afferents onto both somas and dendrites increased significantly with age and was reduced by T, 3) numbers of both VGAT and VGLUT inputs increased significantly with age and were also reduced by T, and 4) glial associations with GnRH neurons were reduced (<10%) by T. Together, these findings reveal a previously unknown developmental plasticity in the GnRH system of the sheep. The altered developmental trajectory of GnRH afferents after T reinforces the notion that prenatal programming plays an important role in the normal

  19. Effect of neuromuscular electrical stimulation on motor cortex excitability upon release of tonic muscle contraction.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio

    The aim of the present study was to investigate the neurophysiological triggers underlying muscle relaxation from the contracted state, and to examine the mechanisms involved in this process and their subsequent modification by neuromuscular electrical stimulation (NMES). Single-pulse transcranial magnetic stimulation (TMS) was used to produce motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in 23 healthy participants, wherein motor cortex excitability was examined at the onset of voluntary muscle relaxation following a period of voluntary tonic muscle contraction. In addition, the effects of afferent input on motor cortex excitability, as produced by NMES during muscle contraction, were examined. In particular, two NMES intensities were used for analysis: 1.2 times the sensory threshold and 1.2 times the motor threshold (MT). Participants were directed to execute constant wrist extensions and to release muscle contraction in response to an auditory "GO" signal. MEPs were recorded from the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles, and TMS was applied at three different time intervals (30, 60, and 90 ms) after the "GO" signal. Motor cortex excitability was greater during voluntary ECR and FCR relaxation using high-intensity NMES, and relaxation time was decreased. Each parameter differed significantly between 30 and 60 ms. Moreover, in both muscles, SICI was larger in the presence than in the absence of NMES. Therefore, the present findings suggest that terminating a muscle contraction triggers transient neurophysiological mechanisms that facilitate the NMES-induced modulation of cortical motor excitability in the period prior to muscle relaxation. High-intensity NMES might facilitate motor cortical excitability as a function of increased inhibitory intracortical activity, and therefore serve as a transient trigger for the relaxation of prime mover muscles in a therapeutic context.

  20. Influence of temperature on muscle recruitment and muscle function in vivo.

    PubMed

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  1. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles - Vibratory myesthetic illusions

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Levine, M. S.

    1979-01-01

    Human experiments are carried out which support the observation of Goodwin (1973) and Goodwin et al. (1972) that vibration of skeletal muscles can elicit illusory limb motion. These experiments extend the class of possible myesthetic illusions by showing that vibration of the appropriate muscles can produce illusory body motion in nearly any desired direction. Such illusory changes in posture occur only when visual information about body orientation is absent; these changes in apparent posture are sometimes accompanied by a slow-phase nystagmus that compensates for the direction of apparent body motion. During illusory body motion a stationary target light that is fixated will appear to move with the body at the same apparent velocity. However, this pattern of apparent body motion and conjoint visual - defined as propriogyral illusion - is suppressed if the subject is in a fully illuminated environment providing cues about true body orientation. Persuasive evidence is thus provided for the contribution of both muscle afferent and touch-pressure information to the supraspinal mechanisms that determine apparent orientation on the basis of ongoing patterns of interoceptive and exteroceptive activity.

  2. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    PubMed

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    PubMed

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  4. Histamine excites groups III and IV afferents from the cat knee joint depending on their resting activity.

    PubMed

    Herbert, M K; Just, H; Schmidt, R F

    2001-06-08

    The effect of histamine on the sensory activity of primary afferents was studied in normal and acutely inflamed cat knee joints. A subpopulation of groups III and IV articular afferents could be activated by close-arterial bolus injections of histamine: units with a high resting activity (about 100/min) were particular sensitive to histamine and were excited even by 3.3 fg histamine. The lower the resting discharges of groups III and IV units both from normal and acutely inflamed joints, the higher the dose of histamine (up to 3.3 or 33 microg) necessary to excite the nerve fibres. Thirty-seven of 39 units without any resting activity were completely insensitive to histamine. In contrast to its clear excitatory effect, histamine caused only minor changes in the responses to joint movements. Movement-evoked activity remained unchanged in 22 of 28 units, 1 unit was sensitized and 5 units showed reduced activity after histamine (3.3 microg). The present results support the notion that histamine may participate in the mediation of pain from injured or inflamed tissue. It is remarkable that histamine has a profound excitatory action on a proportion of both groups III and IV articular afferents without changing their sensitivity to joint movements.

  5. Two years of Functional Electrical Stimulation by large surface electrodes for denervated muscles improve skin epidermis in SCI

    PubMed Central

    Albertin, Giovanna; Kern, Helmut; Hofer, Christian; Guidolin, Diego; Porzionato, Andrea; Rambaldo, Anna; Caro, Raffaele De; Piccione, Francesco; Marcante, Andrea; Zampieri, Sandra

    2018-01-01

    Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES. PMID:29686823

  6. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    PubMed

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.

    PubMed

    Holt, Joseph C; Xue, Jin-Tang; Brichta, Alan M; Goldberg, Jay M

    2006-01-01

    Synaptic activity was recorded with sharp microelectrodes during rest and during 0.3-Hz sinusoidal stimulation from bouton afferents identified by their efferent-mediated inhibitory responses. A glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased quantal size (qsize) while lowering external Ca(2+) decreased quantal rate (qrate). Miniature excitatory postsynaptic potentials (mEPSPs) had effective durations (qdur) of 3.5-5 ms. Their timing was consistent with Poisson statistics. Mean qsizes ranged in different units from 0.25 to 0.73 mV and mean qrates from 200 to 1,500/s; there was an inverse relation across the afferent population between qrate and qsize. qsize distributions were consistent with the independent release of variable-sized quanta. Channel noise, measured during AMPA-induced depolarizations, was small compared with quantal noise. Excitatory responses were larger than inhibitory responses. Peak qrates, which could approach 3,000/s, led peak excitatory mechanical stimulation by 40 degrees . Quantal parameters varied with stimulation phase with qdur and qsize being maximal during inhibitory stimulation. Voltage modulation (vmod) was in phase with qrate and had a peak depolarization of 1.5-3 mV. On average, 80% of vmod was accounted for by quantal activity; the remaining 20% was a nonquantal component that persisted in the absence of quantal activity. The extracellular accumulation of glutamate and K(+) are potential sources of nonquantal transmission and may provide a basis for the inverse relation between qrate and qsize. Comparison of the phases of synaptic and spike activity suggests that both presynaptic and postsynaptic mechanisms contribute to variations across afferents in the timing of spikes during sinusoidal stimulation.

  8. Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs

    PubMed Central

    Mazzone, Stuart B; Mori, Nanako; Canning, Brendan J

    2005-01-01

    Cough initiated from the trachea and larynx in anaesthetized guinea-pigs is mediated by capsaicin-insensitive, mechanically sensitive vagal afferent neurones. Tachykinin-containing, capsaicin-sensitive C-fibres also innervate the airways and have been implicated in the cough reflex. Capsaicin-sensitive nerves act centrally and synergistically to modify reflex bronchospasm initiated by airway mechanoreceptor stimulation. The hypothesis that polymodal mechanoreceptors and capsaicin-sensitive afferent nerves similarly interact centrally to regulate coughing was addressed in this study. Cough was evoked from the tracheal mucosa either electrically (16 Hz, 10 s trains, 1–10 V) or by citric acid (0.001–2 m). Neither capsaicin nor bradykinin evoked a cough when applied to the trachea of anaesthetized guinea-pigs, but they substantially reduced the electrical threshold for initiating the cough reflex. The TRPV1 receptor antagonist capsazepine prevented the increased cough sensitivity induced by capsaicin. These effects of topically applied capsaicin and bradykinin were not due to interactions between afferent nerve subtypes within the tracheal wall or a direct effect on the cough receptors, as they were mimicked by nebulizing 1 mg ml−1 bradykinin into the lower airways and by microinjecting 0.5 nmol capsaicin into nucleus of the solitary tract (nTS). Citric acid-induced coughing was also potentiated by inhalation of bradykinin. The effects of tracheal capsaicin challenge on cough were mimicked by microinjecting substance P (0.5–5 nmol) into the nTS and prevented by intracerebroventricular administration (20 nmol h−1) of the neurokinin receptor antagonists CP99994 or SB223412. Tracheal application of these antagonists was without effect. C-fibre activation may thus sensitize the cough reflex via central mechanisms. PMID:16051625

  9. Restoring Function after Volumetric Muscle Loss: Extracellular Matrix Allograft or Minced Muscle Autograft

    DTIC Science & Technology

    2017-10-01

    at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle autograft (MMA), by virtue of...minced and placed intramuscularly at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle...significant delay in the project initiation. First, a large animal study at the ISR indicated some concerns with the extra cellular matrix allograft that

  10. Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration.

    PubMed Central

    Cody, F W; Schwartz, M P; Smit, G P

    1990-01-01

    1. The alterations in voluntary wrist extension and flexion movement trajectories induced by application of vibration to the tendon of flexor carpi radialis throughout the course of the movement, together with the associated EMG patterns, have been studied in normal human subjects. Both extension and flexion movements were routinely of a target amplitude of 30 deg and made against a torque load of 0.32 N m. Flexor tendon vibration consistently produced undershooting of voluntary extension movements. In contrast, voluntary flexion movements were relatively unaffected. 2. The degree of vibration-induced undershooting of 1 s voluntary extension movements was graded according to the amplitude (0.75, 1.0 and 1.5 mm) of flexor tendon vibration. 3. As flexor vibration was initiated progressively later (at greater angular thresholds) during the course of 1 s voluntary extension movements, and the period of vibration was proportionately reduced, so the degree of vibration-induced undershooting showed a corresponding decline. 4. Varying the torque loads (0.32, 0.65 and 0.97 N m) against which 1 s extension movements were made, and thereby the strength of voluntary extensor contraction, produced no systematic changes in the degree of flexor vibration-induced undershooting. 5. Analysis of EMG patterns recorded from wrist flexor and extensor muscles indicated that vibration-induced undershooting of extension movements resulted largely from a reduction in activity in the prime-mover rather than increased antagonist activity. The earliest reductions in extensor EMG commenced some 40 ms after the onset of vibration, i.e. well before voluntary reaction time; these initial responses were considered to be 'automatic' in nature. 6. These results support the view that the central nervous system utilizes proprioceptive information in the continuous regulation of moderately slow voluntary wrist movements. Proprioceptive sensory input from the passively lengthening antagonist muscle

  11. Presynaptic Inhibition of Diverse Afferents to the Locus Coeruleus by Kappa Opiate Receptors: a Novel Mechanism for Regulating the Central Norepinephrine System

    PubMed Central

    Kreibich, Arati S.; Reyes, Beverly A. S.; Curtis, Andre L.; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J.; Valentino, Rita J.

    2008-01-01

    The norepinephrine nucleus, locus coeruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAA), corticotropin-releasing factor (CRF) and endogenous opioids acting at μ-opiate receptors. As the LC is also innervated by the endogenous κ-opiate receptor (κ-OR) ligand, dynorphin, and expresses κ-ORs, this study investigated κ-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of κ-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the κ-OR agonist, U50488, into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the κ-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that κ-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-NE system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate κ-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders or disorders characterized by abnormal sensory responses, such as autism. PMID:18562623

  12. Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system.

    PubMed

    Kreibich, Arati; Reyes, Beverly A S; Curtis, Andre L; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2008-06-18

    The norepinephrine nucleus, locus ceruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAAs), corticotropin-releasing factor (CRF), and endogenous opioids acting at mu-opiate receptors. Because the LC is also innervated by the endogenous kappa-opiate receptor (kappa-OR) ligand dynorphin and expresses kappa-ORs, this study investigated kappa-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of kappa-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the kappa-OR agonist (trans)-3,4-dichloro-N-methyl-N-[2-1-pyrrolidinyl)-cyclo-hexyl] benzeneacetamide (U50488) into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the kappa-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that kappa-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-norepinephrine system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate kappa-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders, or disorders characterized by abnormal sensory responses, such as autism.

  13. The cremasteric reflex and its muscle - a paragon of ongoing scientific discussion: A systematic review.

    PubMed

    Schwarz, Gilbert M; Hirtler, Lena

    2017-05-01

    The technique of triggering the cremasteric reflex and its respective signaling pathway is not described uniformly throughout the literature. As this reflex is a useful sign in diagnosing testicular torsion, orchitis, varicocele, and undescended testis, it seems desirable to identify and define the correct mechanism. Our aim was to investigate how the cremasteric reflex and its signaling pathway are described in the current literature and how the variability of the innervation of the inguinal region could affect the frequency of this reflex. Thirty-five original articles and 18 current textbooks were included after searching PubMed (MEDLINE) and Scopus for the terms "cremaster muscle," "cremasteric reflex," and "genitofemoral nerve" and after applying all exclusion criteria. This systematic review was performed according to the PRISMA Statement Rules. Eliciting the cremasteric reflex was defined either as "rubbing of the upper inner thigh" or "rubbing of the skin under the inguinal ligament." Four different afferent pathways among studies and three different pathways among textbooks were described and the frequency of an intact reflex ranged between 42.7 and 92.5% in newborns and between 61.7 and 100% in boys between 24 months and 12 years. Owing to the huge differences among the studies investigated and the lack of convincing results, it is not possible to define the correct way to elicit the cremasteric reflex. Four hypotheses about the afferent pathway are proposed on the basis of the literature. Further studies should be performed, concentrating on the afferent pathway(s) with respect to the individual innervation of the inguinal region. Clin. Anat. 30:498-507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli

    PubMed Central

    2012-01-01

    Background The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. Methods This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Results Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent

  15. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature

    PubMed Central

    Eisenach, James C.; Ririe, Douglas G.

    2015-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  16. In-series compliance of gastrocnemius muscle in cat step cycle: do spindles signal origin-to-insertion length?

    PubMed Central

    Elek, J; Prochazka, A; Hulliger, M; Vincent, S

    1990-01-01

    1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our

  17. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs

    PubMed Central

    Ulrich, Beverly D.; Martin, Bernard

    2015-01-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  18. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

    PubMed

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-01-01

    The olfactostriatum, a portion of the striatal complex of snakes, is the major tertiary vomeronasal structure in the ophidian brain, receiving substantial afferents from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. In the present study, we have characterized the olfactostriatum of garter snakes (Thamnophis sirtalis) on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent connections). The olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and shows moderate-to-weak immunoreactivity for tyrosine hydroxylase. In addition to afferents from the nucleus sphericus, the olfactostriatum receives inputs from the dorsal and lateral cortices, nucleus of the accessory olfactory tract, external and dorsolateral amygdalae, dorsomedial thalamic nucleus, ventral tegmental area and raphe nuclei. Double labeling experiments demonstrated that the distribution of serotonin and neuropeptide Y in this area almost completely overlaps the terminal field of projections from the nucleus sphericus. Also, serotonergic and dopaminergic innervation of the olfactostriatum likely arise, respectively, from the raphe nuclei and the ventral tegmental area, whereas local circuit neurons originate the neuropeptide Y immunoreactivity. These results indicate that the olfactostriatum of snakes could be a portion of the nucleus accumbens, with features characteristic of the accumbens shell, devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the ventral striatum of amphibians and mammals.

  19. The Increased Sensitivity of Irregular Peripheral Canal and Otolith Vestibular Afferents Optimizes their Encoding of Natural Stimuli

    PubMed Central

    Schneider, Adam D.; Jamali, Mohsen; Carriot, Jerome; Chacron, Maurice J.

    2015-01-01

    Efficient processing of incoming sensory input is essential for an organism's survival. A growing body of evidence suggests that sensory systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g., walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation, which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear–nonlinear cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli. PMID:25855169

  20. Effects of ruthenium ions on the sensory terminal discharges of the frog muscle spindle.

    PubMed

    Ito, F; Fujitsuka, N; Komatsu, Y

    1983-10-16

    The presence of a mixed Na+-Ca2+ spike along the sensory terminal of the frog muscle spindle was verified. When the terminal was perfused with Ringer's solution containing 0.1-0.5 mM ruthenium red (RuR), the amplitude and duration of the spike were increased, occurring as a prolonged or a long-lasting depolarization of up to 20-30 s duration following individual afferent spikes evoked spontaneously or antidromically by electrical stimulation. In an isotonic TEA solution, the amplitude and duration of the afferent spikes were increased; however, no prolonged depolarization occurred. Adding 0.2 mM RuR to the TEA solution produced the prolonged and long-lasting depolarization. All responses disappeared in the presence of 3 microM TTX or Na+-free Ringer's solution. An impedance decrease along the terminal was observed during the prolonged or long-lasting depolarization. The prolonged depolarization was blocked by the addition of Ca2+-blockers; the afferent spikes remained. In preparations preincubated with 0.1 mM RuR, increasing CaCl2 in Ringer's solution from 0.2 mM, resulted in shortening of the duration of individual spikes with prolonged depolarization and in increase in the maximum rate of rise (MRR) of the spikes. Preincubation with higher concentrations of RuR produced higher sensitivities in the modifications of the duration and MRR to the change in [Ca2+]O. The responses were retained by adding RuR or RuCl3 to Ca2+-free Ringer's solution containing 0.1-5 mM EGTA, although all responses disappeared in Ca2+-free EGTA Ringer's solution. It is concluded that the RuR-induced prolonged response is produced by an influx of Na+.

  1. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    PubMed

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all P<0.05), but revealed no time*group effect. Pressure pain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain

  2. Subdiaphragmatic vagotomy increases the sensitivity of lumbar Aδ primary afferent neurons along with voltage-dependent potassium channels in rats.

    PubMed

    Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2012-02-01

    Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.

  3. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  4. Physiological regulation of magnocellular neurosecretory cell activity: Integration of intrinsic, local and afferent mechanisms

    PubMed Central

    Brown, Colin H.; Bains, Jaideep S.; Ludwig, Mike; Stern, Javier E.

    2013-01-01

    The hypothalamic supraoptic and paraventricular nucleus contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the anti-diuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. While it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity. PMID:23701531

  5. Spatial factors and muscle spindle input influence the generation of neuromuscular responses to stimulation of the human foot

    NASA Astrophysics Data System (ADS)

    Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.

    2005-05-01

    Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.

  6. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance

    PubMed Central

    Baudry, Stéphane; Duchateau, Jacques

    2012-01-01

    This study investigated the modulation of Ia afferent input in young and elderly adults during quiet upright stance in normal and modified visual and proprioceptive conditions. The surface EMG of leg muscles, recruitment curve of the soleus (SOL) Hoffmann (H) reflex and presynaptic inhibition of Ia afferents from SOL, assessed with the D1 inhibition and single motor unit methods, were recorded when young and elderly adults stood with eyes open or closed on two surfaces (rigid vs. foam) placed over a force platform. The results showed that elderly adults had a longer path length for the centre of pressure and larger antero-posterior body sway across balance conditions (P < 0.05). Muscle EMG activities were greater in elderly compared with young adults (P < 0.05), whereas the Hmax expressed as a percentage of the Hmax was lower (P = 0.048) in elderly (38 ± 16%) than young adults (58 ± 16%). The conditioned H reflex/test H reflex ratio (D1 inhibition method) increased with eye closure and when standing on foam (P < 0.05), with greater increases for elderly adults (P = 0.019). These changes were accompanied by a reduced peak motor unit discharge probability when standing on rigid and foam surfaces (P ≤ 0.001), with a greater effect for elderly adults (P = 0.026). Based on these latter results, the increased conditioned H reflex/test H reflex ratio in similar sensory conditions is likely to reflect occlusion at the level of presynaptic inhibitory interneurones. Together, these findings indicate that elderly adults exhibit greater modulation of Ia presynaptic inhibition than young adults with variation in the sensory conditions during upright standing. PMID:22946095

  7. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat

    NASA Technical Reports Server (NTRS)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  8. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. Copyright © 2016 the American Physiological Society.

  9. [Types of apraxia of the articulation apparatus in afferent motor aphasia].

    PubMed

    Shokhor-Trotskaia, M K

    1977-01-01

    On the basis of the comparative data on physiology and psychology of speech, as well as applied and comparative linguistics, it is known that apraxia of articulation apparatus in patients with afferent motor aphasia is heterogenous. The study of 3 groups of patients with primary apraxia of either a tongue, lips, or pharynx and larynx allowed one to find that in persons whose native language is Russian, written speech, reading and understanding is disturbed to a lesser degree in primary apraxia of glotis and larynx that are not initial phonemoformation organs in the Russian language.

  10. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea.

    PubMed

    Drescher, M J; Drescher, D G; Khan, K M; Hatfield, J S; Ramakrishnan, N A; Abu-Hamdan, M D; Lemonnier, L A

    2006-09-29

    Pituitary adenylyl cyclase-activating polypeptide (PACAP), via its specific receptor pituitary adenylyl cyclase-activating polypeptide receptor 1 (PAC1-R), is known to have roles in neuromodulation and neuroprotection associated with glutamatergic and cholinergic neurotransmission, which, respectively, are believed to form the primary basis for afferent and efferent signaling in the organ of Corti. Previously, we identified transcripts for PACAP preprotein and multiple splice variants of its receptor, PAC1-R, in microdissected cochlear subfractions. In the present work, neural localizations of PACAP and PAC1-R within the organ of Corti and spiral ganglion were examined, defining sites of PACAP action. Immunolocalization of PACAP and PAC1-R in the organ of Corti and spiral ganglion was compared with immunolocalization of choline acetyltransferase (ChAT) and synaptophysin as efferent neuronal markers, and glutamate receptor 2/3 (GluR2/3) and neurofilament 200 as afferent neuronal markers, for each of the three cochlear turns. Brightfield microscopy giving morphological detail for individual immunolocalizations was followed by immunofluorescence detection of co-localizations. PACAP was found to be co-localized with ChAT in nerve fibers of the intraganglionic spiral bundle and beneath the inner and outer hair cells within the organ of Corti. Further, evidence was obtained that PACAP is expressed in type I afferent axons leaving the spiral ganglion en route to the auditory nerve, potentially serving as a neuromodulator in axonal terminals. In contrast to the efferent localization of PACAP within the organ of Corti, PAC1-R immunoreactivity was co-localized with afferent dendritic neuronal marker GluR2/3 in nerve fibers passing beneath and lateral to the inner hair cell and in fibers at supranuclear and basal sites on outer hair cells. Given the known association of PACAP with catecholaminergic neurotransmission in sympathoadrenal function, we also re-examined the issue

  11. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  12. Renal vascular responses to static handgrip: role of muscle mechanoreflex

    NASA Technical Reports Server (NTRS)

    Momen, Afsana; Leuenberger, Urs A.; Ray, Chester A.; Cha, Susan; Handly, Brian; Sinoway, Lawrence I.

    2003-01-01

    During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 +/- 0.2 vs. 2.8 +/- 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.

  13. Experiment K-7-31: Studies of Vestibular Primary Afferents and Eye Movements in Normal, Hypergravity and Hypogravity - Axon Cosmos Flight 2044

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Beloozerova, I. N.

    1994-01-01

    Fourteen days of active head movements in microgravity appear to modify the gain and neural adaptation properties of the horizontal semicircular canals in the rhesus monkey. This is the first demonstration of adaptive plasticity in the sensory receptor. Reversing prisms, for example, do not modify the gain of the primary afferent response. Pulse yaw rotation, sinusoidal rotation, and sum of sinusoidal rotation testing during the first day following recovery revealed that the gain of a sample of afferents was significantly greater than the gain derived from afferent responses obtained during pre-flight and control monkey testing. There was no strong evidence of tilt sensitivity in the sample of afferents that we tested either during the pre-flight or control tests or during the first day post-flight. Two irregular afferents tested on postflight day 2 showed changes with tilt but the responses were not systematic. The spontaneous discharge did not change following flight. Mean firing rate and coefficient of variation remained constant during the post flight tests and was near the value measured during pre flight tests. The change in gain of horizontal canal afferents might be adaptive. The animals were required to look at a target for food. This required active head and eye movements. Active head movements have been shown to be hypometric and eye movements have been shown to be hypermetric during the first few days of past Cosmos flights (see introduction). It might be that the increased gain in the horizontal semicircular canals permit accurate target acquisition during hypometric head movements by driving the eyes to greater angles for smaller angles of head movement. The mechanism by which the semicircular canals recalibrate (increase their gain) is unknown. The efferent vestibular system is a logical candidate. Horizontal nystagmus during rotation about an earth vertical axis with the horizontal semicircular canals in the plane of rotation produced the same

  14. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage.

    PubMed

    Prior, Steven J; Roth, Stephen M; Wang, Xiaojing; Kammerer, Candace; Miljkovic-Gacic, Iva; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2007-10-01

    The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.

  15. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    PubMed

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  16. Large vasodilatations in skeletal muscle of resting conscious dogs and their contribution to blood pressure variability

    PubMed Central

    Just, Armin; Schneider, Christian; Ehmke, Heimo; Kirchheim, Hartmut R

    2000-01-01

    Large (up to +400 %) transient (∼20 s) increases of blood flow were observed in the external iliac arteries of resting conscious dogs (n = 10) in the absence of major alerting or muscular activity. At the same time arterial pressure (AP) fellslightly while heart rate (HR) rose. The vasodilatations were resistant to atropine, ganglionic, β-adrenergic and NO-synthase inhibition, but were suppressed by spinal or general anaesthesia. Vasodilatations of similar appearance were elicited by an alerting sound; these were abolished by atropine. The spontaneous vasodilatations occurred simultaneously and their magnitudes were well correlated between both legs, but were not correlated to the amount of concomitant activation of the surface electromyogram. The duration of this activation almost never outlasted 10 s. The reactive hyperaemia observed after a total occlusion of the artery even for 16 s was not large enough to explain the size of the spontaneous vasodilatations. Occlusion during peak flow of the vasodilatations did not affect the size of the reactive hyperaemia. Spectral analysis made separately for data segments with and without vasodilatation revealed that the vasodilatations substantially enhanced the variability of AP and HR at frequencies below ∼0.1 Hz. In conclusion, large coordinated skeletal muscle vasodilatations were identified in resting conscious dogs, which are initiated neurally, but not by sympathetic-cholinergic or nitroxidergic fibres and which do not show any clear correlation to muscular contraction. The vasodilatations substantially affect the regulation of skeletal muscle blood flow and explain a significant portion of AP and HR variability. PMID:10990545

  17. NEUROTROPHIN SELECTIVITY IN ORGANIZING TOPOGRAPHIC REGENERATION OF NOCICEPTIVE AFFERENTS

    PubMed Central

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M.

    2015-01-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP+) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4+ non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFR-α3, which only promoted mistargeted regeneration. PMID:26054884

  18. Neurotrophin selectivity in organizing topographic regeneration of nociceptive afferents.

    PubMed

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M

    2015-09-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP(+)) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4(+) non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFRα3, which only promoted mistargeted regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  20. The Medial Paralemniscal Nucleus and Its Afferent Neuronal Connections in Rat

    PubMed Central

    VARGA, TAMÁS; PALKOVITS, MIKLÓS; USDIN, TED BJÖRN; DOBOLYI, ARPÁD

    2009-01-01

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. PMID:18770870

  1. The medial paralemniscal nucleus and its afferent neuronal connections in rat.

    PubMed

    Varga, Tamás; Palkovits, Miklós; Usdin, Ted Björn; Dobolyi, Arpád

    2008-11-10

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. (c) 2008 Wiley-Liss, Inc.

  2. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  3. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  4. A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Reisine, H.; Simpson, J. I.; Henn, V.

    1988-01-01

    Experiments were carried out to determine anatomically the planes of the semicircular canals of two juvenile rhesus monkeys, using plastic casts of the semicircular canals, and the anatomical measurements were related to the directional coding of neural signals transmitted by primary afferents innervating the same simicircular canals. In the experiments, animals were prepared for monitoring the eye position by the implantation of silver-silver chloride electrodes into the bony orbit. Following the recording of semicircular canal afferent activity, the animals were sacrificed; plastic casting resin was injected into the bony canals; and, when the temporal bone was demineralized and removed, the coordinates of points spaced along the circumference of the canal casts were measured. A comparison of the sensitivity vectors determined in these experiments and the anatomical measures showed that the average difference between a sensitivity vector and its respective normal vector was 6.3 deg.

  5. Human skeletal muscle biochemical diversity.

    PubMed

    Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.

  6. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    PubMed Central

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  7. Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-08-01

    To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus

  8. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    PubMed

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p < 0.005) and BF (PM < AM, p = 0.008) activity was observed in control participants. Conversely no circadian variation was seen in any muscles in the RLS patients. RLS patients had an increased TA and GL activity (RLS > Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Differential Role of Inhibition in Habituation of Two Independent Afferent Pathways to a Common Motor Output

    ERIC Educational Resources Information Center

    Bristol, Adam S.; Carew, Thomas J.

    2005-01-01

    Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk "Aplysia," the prevailing view is that homosynaptic depression of primary sensory afferents underlies…

  10. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  11. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.

    PubMed

    Makadia, Payal A; Najjar, Sarah A; Saloman, Jami L; Adelman, Peter; Feng, Bin; Margiotta, Joseph F; Albers, Kathryn M; Davis, Brian M

    2018-06-20

    Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses. SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be

  12. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles

    PubMed Central

    Banks, R W

    2006-01-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g−1 of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  13. Bridging extra large defects of peripheral nerves: possibilities and limitations of alternative biological grafts from acellular muscle and Schwann cells.

    PubMed

    Keilhoff, Gerburg; Prätsch, Florian; Wolf, Gerald; Fansa, Hisham

    2005-01-01

    Defects of peripheral nerves are bridged with autologous nerve grafts. Tissue-engineered nerve grafts offer a laboratory-based alternative to overcome limited donor nerve availability. Our objective was to evaluate whether a graft made from acellular muscle enriched with cultivated Schwann cells can bridge extra large gaps where conventional conduits usually fail. Our well-established rat sciatic nerve model was used with an increased gap length of 50 mm. The conduits consisted of freeze-thawed or chemically extracted homologous acellular rat rectus muscles and implanted Schwann cells. Autologous nerve grafts were used for control purposes. Biocompatibility of the grafts was demonstrated by Schwann cell settlement, revascularization, and macrophage recruitment. After 12 weeks regeneration was assessed clinically, histologically, and morphometrically. The control group showed superior results regarding axon counts, histologic appearance, and functional recovery compared with the muscle grafts. The chemically extracted conduits completely failed to support nerve regeneration. They were not stable enough to bridge longer nerve gaps with an expanded regeneration time. On the basis of morphological parameters freeze-thawed muscle grafts were, however, able to support peripheral nerve regeneration even over the extralong distance of 50 mm, and therefore are of potential benefit for new therapeutic strategies.

  14. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion.

    PubMed

    Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.

  16. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion

    PubMed Central

    Marasco, Paul D.; Bourbeau, Dennis J.; Shell, Courtney E.; Granja-Vazquez, Rafael; Ina, Jason G.

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing. PMID:29182648

  17. Proprioceptive role for palisade endings in extraocular muscles: evidence from the Jendrassik Maneuver.

    PubMed

    Niechwiej-Szwedo, E; González, E; Bega, S; Verrier, M C; Wong, A M; Steinbach, M J

    2006-07-01

    A proprioceptive hypothesis for the control of eye movements has been recently proposed based on neuroanatomical tracing studies. It has been suggested that the non-twitch motoneurons could be involved in modulating the gain of sensory feedback from the eye muscles analogous to the gamma (gamma) motoneurons which control the gain of proprioceptive feedback in skeletal muscles. We conducted behavioral and psychophysical experiments to test the above hypothesis using the Jendrassik Maneuver (JM) to alter the activity of gamma motoneurons. It was hypothesized that the JM would alter the proprioceptive feedback from the eye muscles which would result in misregistration of eye position and mislocalization of targets. In the first experiment, vergence eye movements and pointing responses were examined. Data showed that the JM affected the localization responses but not the actual eye position. Perceptual judgments were tested in the second experiment, and the results showed that targets were perceived as farther when the afferent feedback was altered by the JM. Overall, the results from the two experiments showed that eye position was perceived as more divergent with the JM, but the actual eye movements were not affected. We tested this further in Experiment 3 by examining the effect of JM on the amplitude and velocity of saccadic eye movements. As expected, there were no significant differences in saccadic parameters between the control and experimental conditions. Overall, the present study provides novel insight into the mechanism which may be involved in the use of sensory feedback from the eye muscles. Data from the first two experiments support the hypothesis that the JM alters the registered eye position, as evidenced by the localization errors. We propose that the altered eye position signal is due to the effect of the JM which changes the gain of the sensory feedback from the eye muscles, possibly via the activity of non-twitch motoneurons.

  18. TIME COURSE FOR THE DEVELOPMENT OF MUSCLE HISTORY IN LUMBAR PARASPINAL MUSCLE SPINDLES ARISING FROM CHANGES IN VERTEBRAL POSITION

    PubMed Central

    Pickar, Joel G.; Ge, Weiqing

    2008-01-01

    Background Context In neutral spinal postures with low loading moments the lumbar spine is not inherently stable. Small compromises in paraspinal muscle activity may affect lumbar spinal biomechanics. Proprioceptive feedback from muscle spindles is considered important for control of muscle activity. Because skeletal muscle and muscle spindles are thixotropic, their length history changes their physical properties. The present study explores a mechanism that can affect the responsiveness of paraspinal muscle spindles in the lumbar spine. Purpose This study had two aims: to extend our previous findings demonstrating the history dependent effects of vertebral position on the responsiveness of lumbar paraspinal muscle spindles; and to determine the time course for these effects. Based upon previous studies, if a crossbridge mechanism underlies these thixotropic effects, then the relationship between the magnitude of spindle discharge and the duration of the vertebral position will be one of exponential decay or growth. Study Design/Setting A neurophysiological study using the lumbar spine of a feline model. Methods The discharge from individual muscle spindles afferents innervating lumbar paraspinal muscles in response to the duration and direction of vertebral position were obtained from teased filaments in the L6 dorsal roots of 30 Nembutal-anesthetized cats. The L6 vertebra was controlled using a displacement-controlled feedback motor and was held in each of 3 different conditioning positions for durations of 0, 0.5, 1, 1.5, and 2 seconds. Two of the conditioning positions stretched or shortened the lumbar muscles relative to an intermediate conditioning position. Conditioning positions for all cats ranged from 0.9 – 2.0 mm dorsal and ventralward relative to the intermediate position. These magnitudes were determined based upon the displacement that loaded the L6 vertebra to 50–60% of the cat’s body weight. Conditioning was thought to simulate a motion

  19. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  20. Human skeletal muscle biochemical diversity

    PubMed Central

    Tirrell, Timothy F.; Cook, Mark S.; Carr, J. Austin; Lin, Evie; Ward, Samuel R.; Lieber, Richard L.

    2012-01-01

    SUMMARY The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy – titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to ‘tune’ the protein's mechanotransduction capability. PMID:22786631

  1. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats.

    PubMed

    Cabaj, Anna M; Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F; Stecina, Katinka; Sławińska, Urszula; Jordan, Larry M

    2017-01-01

    Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT 7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT 7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT 7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT 7 ) receptor agonists and antagonists and 5-HT 7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT 7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT 7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT 7 antagonist SB269970 in adult intact rats suppressed locomotion by

  2. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.

    PubMed

    Wada, Naomi; Akatani, Junko; Miyajima, Noriko; Shimojo, Kengo; Kanda, Kenro

    2006-05-23

    To gain insight into the neural mechanisms controlling vertebral column movement and its role in walking, we performed kinematic and electromyographic (EMG) studies on cats during level and upslope treadmill walking. Kinematic data of the limbs and vertebral column were obtained with a high-speed camera synchronized with EMG recordings from levels T10, L1, and L5 of m. longissimus dorsi (Long). During a single-step cycle at all upslope angles, vertebral movement in the lateral (left-right), cranial-caudal (forward-backward), and dorsal-ventral (upward-downward) directions was observed. Lateral movements were produced by forelimb take-off and hindlimb landing, and forward and upward movements were produced by hindlimb extension. During the single-step cycle, each of the three epaxial muscles, m. multifidus, m. iliocostalis, and Long, showed two bilateral EMG bursts. The onset of the EMG bursts coincided with the left-right movements, suggesting that epaxial muscle activity depresses lateral movement. The termination of the EMG bursts correlated with the forward and downward phase of the step cycle, suggesting that contraction of the epaxial muscles produces forward and downward movements. EMG bursts of the epaxial muscles increase the stiffness and produce inwardly movements to decrease the lateral movements of the vertebral column and the termination of EMG bursts control the movements into cranial and ventral direction of the vertebral column. The results suggest that the rhythmic EMG bursts in the epaxial muscles are produced by pattern generators, and the timing of EMG bursts among the different levels of the epaxial muscles are altered by walking condition input via peripheral afferents and descending pathways.

  3. Thresholds of cortical activation of muscle spindles and α motoneurones of the baboon's hand

    PubMed Central

    Koeze, T. H.; Phillips, C. G.; Sheridan, J. D.

    1968-01-01

    1. Much current thinking about voluntary movement assumes that the segmental γ loops can function as a servomechanism operated by the brain. However, the α motoneurones of the baboon's hand receive a powerful monosynaptic (CM) projection from the precentral gyrus. If servo-driving from the same cortical area is to be possible, it must project independently to the fusimotor neurones and have sufficient power to increase the afferent signalling from the muscle spindles. The cortical thresholds for contraction of m. extensor digitorum communis and for acceleration of the discharges of its muscle spindles have therefore been compared. 2. Significant results in this context require that the spindles studied be coupled in parallel with the responding extrafusal muscle fibres. Many spindles were not unloaded by the submaximal contractions evoked by cortical stimulation, although all so tested were unloaded by maximal motor nerve twitches. Reasons are given for thinking that such apparent lack of parallel coupling is an artifact of complex intramuscular anatomy and limitation of shortening by `isometric' myography. 3. A brief burst of corticospinal volleys at 500/sec, which is specially effective in exciting α motoneurones over the CM projection, failed to excite spindle afferents at or below the threshold for a cortical `twitch'. 4. In a few epileptiform discharges, bursts of spindle acceleration occurred independently of the clonic contractions. A relatively direct and independent cortico-fusimotor (CF) projection may therefore exist. 5. Prolonged near-threshold stimulation at 50-100/sec, which allows time for temporal summation in the less direct projections (e.g. cortico-interneuronal, cortico-rubro-spinal) and does not cause frequency-potentiation at CM synapses, gives abundant evidence of independent α and fusimotor projections, whose actions hardly outlast the stimulation period. 6. Although independent CF projections would permit servo-driving in natural

  4. Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects

    PubMed Central

    Vallbo, Å. B.

    1971-01-01

    1. Impulses in single muscle afferents were recorded from the median nerves of waking human subjects with percutaneously inserted tungsten needle electrodes. During isometric voluntary contractions, unitary discharges were analysed from muscle spindle endings in the wrist and finger flexor muscles and the electromyographic activity from these muscles was recorded simultaneously. 2. When the subject activated the muscle portion in which a spindle was located, the afferent discharge increased in spite of the mechanical unloading effects of the skeletomotor contraction indicating a concomitant fusimotor activation. This was valid for slowly rising contractions as well as small fast rising twitches. 3. The time of onset of spindle acceleration was determined in relation to the time of onset of the electromyographic activity for thirty-one units studied altogether in more than seven hundred contractions. It was found that spindle acceleration regularly occurred after the onset of the electromyographic activity. 4. There was a considerable variation from one test to the other, for the individual units, with regard to the exact time of onset of spindle acceleration, although spindle acceleration occurred mostly within 0·5 sec after the onset of the electromyographic activity in sustained contractions and within 0·1 sec in small fast rising twitches. It was not possible to assess to what extent this variation was accounted for by variations in the mechanical unloading effects of the skeletomotor contraction or variations in the timing of the fusimotor outflow. 5. For many units, spindle acceleration did not occur until 10-50 msec after the onset of the skeletomotor contraction. This time is of the same order of magnitude as the time difference in latency from the spinal cord to the recording points in the two systems, as estimated from reasonable assumptions. 6. It was concluded that the fusimotor system does not participate in the initiation of voluntary contractions in

  5. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    PubMed

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  6. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles

    PubMed Central

    Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201

  7. Specific muscle EMG biofeedback for hand dystonia.

    PubMed

    Deepak, K K; Behari, M

    1999-12-01

    Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.

  8. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish

    PubMed Central

    Haehnel-Taguchi, Melanie; Akanyeti, Otar

    2014-01-01

    The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296

  9. [Two cases of afferent loop syndrome caused by obstruction at the jejuno-jejunostomy site in the Roux-en-Y loop that were successfully treated by endoscopic balloon dilatation].

    PubMed

    Yasuda, Atsushi; Imamoto, Haruhiko; Furukawa, Hiroshi; Imano, Motohiro; Yasuda, Takushi; Okuno, Kiyokata

    2014-11-01

    We report 2 rare cases of afferent loop syndrome caused by obstruction at the jejuno-jejunostomy site in the Roux-en-Y loop after total gastrectomy, which was successfully treated by endoscopic balloon dilatation of the anastomotic stenosis. Case 1: A 62-year-old woman presented with malaise and lower abdominal distension 6 months after laparoscopy-assisted total gastrectomy with Roux-en-Y reconstruction. She was diagnosed with afferent loop syndrome; CT imaging indicated marked dilatation of the afferent loop, with membranous obstruction at the jejuno-jejunostomy site in the Roux-en-Y loop. Although almost complete occlusion was noted at the jejuno-jejunostomy site, the obstruction was successfully relieved by endoscopic balloon dilation using TandemTM XL Triple Lumen ERCP Cannula (Boston Scientific)®. Case 2: A 70-year-old man presented with malaise and lower abdominal distension 3 years after laparoscopy-assisted total gastrectomy with Roux-en-Y reconstruction. He was diagnosed with afferent loop syndrome; CT imaging indicated complete obstruction at the jejuno-jejunostomy site in the Roux-en-Y loop. As in case 1, the obstruction was successfully treated by endoscopic balloon dilatation of the occluded anastomosis.

  10. Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P.

    PubMed

    Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L

    2008-03-03

    Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.

  11. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity

    PubMed Central

    Hanai, Jun-ichi; Cao, Peirang; Tanksale, Preeti; Imamura, Shintaro; Koshimizu, Eriko; Zhao, Jinghui; Kishi, Shuji; Yamashita, Michiaki; Phillips, Paul S.; Sukhatme, Vikas P.; Lecker, Stewart H.

    2007-01-01

    Statins inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis, and are widely used to treat hypercholesterolemia. These drugs can lead to a number of side effects in muscle, including muscle fiber breakdown; however, the mechanisms of muscle injury by statins are poorly understood. We report that lovastatin induced the expression of atrogin-1, a key gene involved in skeletal muscle atrophy, in humans with statin myopathy, in zebrafish embryos, and in vitro in murine skeletal muscle cells. In cultured mouse myotubes, atrogin-1 induction following lovastatin treatment was accompanied by distinct morphological changes, largely absent in atrogin-1 null cells. In zebrafish embryos, lovastatin promoted muscle fiber damage, an effect that was closely mimicked by knockdown of zebrafish HMG-CoA reductase. Moreover, atrogin-1 knockdown in zebrafish embryos prevented lovastatin-induced muscle injury. Finally, overexpression of PGC-1α, a transcriptional coactivator that induces mitochondrial biogenesis and protects against the development of muscle atrophy, dramatically prevented lovastatin-induced muscle damage and abrogated atrogin-1 induction both in fish and in cultured mouse myotubes. Collectively, our human, animal, and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be a critical mediator of the muscle damage induced by statins. PMID:17992259

  12. Effects of adding Braun jejunojejunostomy to standard Whipple procedure on reduction of afferent loop syndrome - a randomized clinical trial.

    PubMed

    Kakaei, Farzad; Beheshtirouy, Samad; Nejatollahi, Seyed Moahammad Reza; Rashidi, Iqbal; Asvadi, Touraj; Habibzadeh, Afshin; Oliaei-Motlagh, Mohammad

    2015-12-01

    Whipple surgery (pancreaticodeudenectomy) has a high complication rate. We aimed to evaluate whether adding Braun jejunojejunostomy (side-to-side anastomosis of afferent and efferent loops distal to the gastrojejunostomy site) to a standard Whipple procedure would reduce postoperative complications. We conducted a randomized clinical trial comparing patients who underwent standard Whipple surgery (standard group) and patients who underwent standard Whipple surgery with Braun jejunojejunostomy (Braun group). Patients were followed for 1 month after the procedure and postoperative complications were recorded. Our study included 30 patients: 15 in the Braun and 15 in the standard group. In the Braun group, 4 (26.7%) patients experienced 6 complications, whereas in the standard group, 7 (46.7%) patients experienced 11 complications (p = 0.14). Complications in the Braun group were gastrointestinal bleeding and wound infection (n = 1 each) and delayed gastric emptying and pulmonary infection (n = 2 each). Complications in the standard group were death, pancreatic anastomosis leak and biliary anastomosis leak (n = 1 each); gastrointestinal bleeding (n = 2); and afferent loop syndrome and delayed gastric emptying (n = 3 each). There was no significant difference between groups in the subtypes of complications. Our results showed that adding Braun jejunojejunostomy to standard Whipple procedure was associated with lower rates of afferent loop syndrome and delayed gastric emptying. However, more studies are needed to define the role of Braun jejunojejunostomy in this regard. IRCT2014020316473N1 (www.irct.ir).

  13. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  14. Innervation of the mammalian esophagus.

    PubMed

    Neuhuber, Winfried L; Raab, Marion; Berthoud, Hans-Rudolf; Wörl, Jürgen

    2006-01-01

    Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.

  15. Combining Afferent Stimulation and Mirror Therapy for Improving Muscular, Sensorimotor, and Daily Functions After Chronic Stroke: A Randomized, Placebo-Controlled Study.

    PubMed

    Lee, Ya-yun; Lin, Keh-chung; Wu, Ching-yi; Liao, Ching-hua; Lin, Jui-chi; Chen, Chia-ling

    2015-10-01

    Mirror therapy (MT) combined with mesh glove (MG) afferent stimulation (MT + MG) has been suggested as an effective intervention for motor recovery in patients with stroke. This study aimed to further determine the treatment effects of the MT + MG approach on muscular properties, sensorimotor functions, and daily function. This was a single-blind, randomized, placebo-controlled study. Forty-eight participants with chronic stroke were recruited from medical centers and were randomly assigned to the MT, MT + MG, and MT with sham MG stimulation (MT + sham) groups. The intervention consisted of 1.5 hrs/day, 5 days/wk for 4 wks. Primary outcomes were the Fugl-Meyer Assessment and muscular properties (muscle tone and stiffness). Secondary outcomes included measures of sensorimotor and daily functions. Compared with the MT and MT + sham groups, the MT + MG group demonstrated improved muscular properties. The MT + MG and MT + sham groups showed greater improvement in manual dexterity and daily function than the MT group did. No beneficial effects on the Fugl-Meyer Assessment and other sensorimotor outcomes were found for the MT + MG group. Although no significant group differences were found in the Fugl-Meyer Assessment, MT + MG induced distinctive effects on muscular properties, manual dexterity, and daily function.

  16. Reconstruction with latissimus dorsi, external abdominal oblique and cranial sartorius muscle flaps for a large defect of abdominal wall in a dog after surgical removal of infiltrative lipoma

    PubMed Central

    FENG, Yu-Ching; CHEN, Kuan-Sheng; CHANG, Shih-Chieh

    2016-01-01

    This animal was presented with a large-sized infiltrative lipoma in the abdominal wall that had been noted for 4 years. This lipoma was confirmed by histological examination from a previous biopsy, and the infiltrative features were identified by a computerized tomography scan. The surgical removal created a large-sized abdominal defect that was closed by a combination of latissimus dorsi and external abdominal oblique muscle flaps in a pedicle pattern. A small dehiscence at the most distal end of the muscle flap resulted in a small-sized abdominal hernia and was repaired with cranial sartorius muscle flap 14 days after surgery. The dog was in good general health with no signs of tumor recurrence after 18 months of follow-up. PMID:27476526

  17. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways

    PubMed Central

    Kaji, Izumi; Akiba, Yasutada; Kato, Ikuo; Maruta, Koji; Kuwahara, Atsukazu

    2017-01-01

    Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3− secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3− and Cl− secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum. PMID:28115552

  18. Pulmonary arterial distension and vagal afferent nerve activity in anaesthetized dogs.

    PubMed

    Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J

    2004-03-16

    Distension of the main pulmonary artery and its bifurcation are known to result in a reflex vasoconstriction and increased respiratory drive; however, these responses are observed at abnormally high distending pressures. In this study we recorded afferent activity from pulmonary arterial baroreceptors to investigate their stimulus-response characteristics and to determine whether they are influenced by physiological changes in intrathoracic pressure. In chloralose-anaesthetized dogs, a cardiopulmonary bypass was established, the pulmonary trunk and its main branches were vascularly isolated and perfused with venous blood at pulsatile pressures designed to simulate the normal pulmonary arterial pressure waveform. Afferent slips of a cervical vagus were dissected and nerve fibres identified that displayed discharge patterns with characteristics expected from pulmonary arterial baroreceptors. Recordings were obtained with (a) chest open (b) chest closed and resealed, and (c) with phasic negative intrathoracic pressures in the resealed chest. Pressure-discharge characteristics obtained in the open-chest animals indicated that the threshold pulmonary pressure (corresponding to 5% of the overall response) was 17.1 +/- 2.9 and the inflexion point of the curve was 29.2 +/- 3.3 mmHg (mean +/-S.E.M). In closed-chest animals the threshold and inflexion pressures were reduced to 12.0 +/- 1.7 and 20.7 +/- 1.8 mmHg. Application of phasic negative intrathoracic pressures further reduced the threshold and inflexion pressures to 9.5 +/- 1.2 mmHg (P < 0.05 vs. open) and 14.7 +/- 0.8 mmHg (P < 0.003 vs. open and P < 0.02 vs. atmospheric). These results indicate that under physiological conditions, with closed-chest and phasic negative intrathoracic pressure changes similar to those associated with normal breathing, activity from pulmonary baroreceptors is obtained at physiological pulmonary arterial pressures in intact animals.

  19. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  20. Striated Muscle Function, Regeneration, and Repair

    PubMed Central

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  1. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5‐HT7 receptors in adult rats

    PubMed Central

    Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F.; Stecina, Katinka; Sławińska, Urszula

    2016-01-01

    Key points Experiments on neonatal rodent spinal cord showed that serotonin (5‐HT), acting via 5‐HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter‐ and intralimb coordination, but the importance of the 5‐HT system in adult locomotion is not clear.Blockade of spinal 5‐HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5‐HT neurons for production of locomotion.The direct control of coordinating interneurons by 5‐HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults.An understanding of the afferents controlled by 5‐HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Abstract Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5‐HT7) receptor agonists and antagonists and 5‐HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5‐HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5‐HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5‐HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5‐HT7 antagonist SB269970 in adult

  2. Stricture of the afferent isoperistaltic tubular segment: a late and rare cause of bilateral dilation of the upper urinary tract after ileal bladder substitution.

    PubMed

    Kiss, Bernhard; Schöndorf, Daniel; Studer, Urs E; Roth, Beat

    2013-08-01

    To evaluate the etiology and treatment of bilateral hydronephrosis not responding to bladder substitute drainage after ileal bladder substitution using an afferent isoperistaltic tubular segment. A retrospective analysis was performed of a consecutive series of 739 patients who had undergone bladder substitution from April 1985 to August 2012. Of the 739 ileal bladder substitute patients, 10 (1.4%) developed bilateral hydronephrosis unresponsive to complete bladder substitute drainage. The etiology was stenosis of the afferent isoperistaltic tubular segment. The median interval to presentation was 131 months (range 45-192). The incidence of afferent tubular segment stenosis was significantly higher in the 61 ileal bladder substitute patients with recurrent urinary tract infection (9 [15%]) than in the 678 without recurrent urinary tract infection (1 [0.15%]; P <.001). Urine cultures revealed mixed infections (34%), Escherichia coli (18%), Staphylococcus aureus (13%), enterococci (11%), Candida (8%), Klebsiella (8%), and others (8%). Seven patients underwent 10 endourologic interventions, only 1 of which was successful (10%). After failed endourologic treatment, 7 open surgical revisions with resection of the stricture were performed, with all 7 (100%) successful. Bilateral dilation of the upper urinary tract after ileal orthotopic bladder substitution unresponsive to complete bladder substitute drainage is likely to be caused by stenosis of the afferent isoperistaltic tubular segment. The stenosis occurs almost exclusively in patients with long-lasting, recurrent urinary tract infection and can develop many years after the ileal bladder substitution. Minimally invasive endourologic treatment is usually unsuccessful; however, open surgical revision offers excellent results. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation.

    PubMed

    Duan, Wan-Ru; Lu, Jie; Xie, Yi-Kuan

    2013-09-01

    To investigate the possible mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation. Adult Sprague-Dawley rats of both sexes were injected with complete Freund's adjuvant to induce inflammation in the anterior tibialis muscle of left hindlimb. One of two types of topical analgesics: Xiaotong Tiegao (XTT), a Tibetan herb compound, or Capzasin (CAP), a cream containing 0.1% capsaicin, was applied to the skin over the inflamed anterior tibialis muscle. The following experiments were performed: pain behavioral tests, evaluation of plasma extravasation in the affected limb, and electrophysiological recordings of afferent nerve fibers. The behavioral experiments demonstrated that applications of either type of topical analgesic to the skin over the inflamed muscle significantly reduced muscular inflammatory pain, as indicated by the increased weight bearing capacity on the affected hindlimb (with latencies of 10 minutes for XTT and 1-2 hours for CAP). Meanwhile, both analgesics caused plasma extravasation in the affected skin. Electrophysiological recordings from the afferent fibers in the related cutaneous nerve indicated that topical analgesics selectively activated C-fibers, but not A-fibers innervating the same region of receptive field. The latency and duration of C-fiber activation was similar to those of the reduction of muscular inflammatory pain. On the contrary, topical analgesics substantially decreased C-fiber afferent spontaneous firing in the nerve innervating the inflamed muscle. Moreover, denervation of the affected skin blocked the analgesic effects of both topical analgesics in muscular inflammatory pain. This study suggests that topical analgesics may reduce the nociceptive input from inflamed muscles via a reflex mechanism by activating the cutaneous nociceptive afferents. Wiley Periodicals, Inc.

  4. Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-01-01

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  5. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts.

    PubMed

    Wei, Xiaomei; Yan, Jin; Tillu, Dipti; Asiedu, Marina; Weinstein, Nicole; Melemedjian, Ohannes; Price, Theodore; Dussor, Gregory

    2015-10-01

    Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine. © International Headache Society 2015.

  6. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    PubMed Central

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups) after 30–40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  7. Abnormal afferent nerve endings in the soft palatal mucosa of sleep apnoics and habitual snorers.

    PubMed

    Friberg, D; Gazelius, B; Hökfelt, T; Nordlander, B

    1997-07-23

    Habitual snoring precedes obstructive sleep apnea (OSA), but the pathophysiological mechanisms behind progression are still unclear. The patency of upper airways depends on a reflexogen mechanism reacting on negative intrapharyngeal pressure at inspiration, probably mediated by mucosal receptors, i.e., via afferent nerve endings. Such nerves contain a specific nerve protein, protein-gene product 9.5 (PGP 9.5) and in some cases substance P (SP) and calcitonin gene-related (CGRP). Biopsies of the soft palatial mucosa were obtained from non-smoking men ten OSA patients, 11 habitual snorers and 11 non-snoring controls. The specimens were immunohistochemically analyzed for PGP 9.5, SP and CGRP. As compared to controls, an increased number of PGP-, SP- and CGRP-immunoreactive nerves were demonstrated in the mucosa in 9/10 OSA patients and 4/11 snorers, in addition to varicose nerve endings in the papillae and epithelium. Using double staining methodology, it could be shown that SP- and CGRP-like immunoreactivities (LIs) often coexisted in these fibres, as did CGRP- and PGP 9.5-LIs. The increased density in sensory nerve terminals are interpreted to indicate an afferent nerve lesion. Our results support the hypothesis of a progressive neurogenic lesion as a contributory factor to the collapse of upper airways during sleep in OSA patients.

  8. Gastric Electrical Stimulation Decreases Gastric Distension-Induced Central Nociception Response through Direct Action on Primary Afferents

    PubMed Central

    Ouelaa, Wassila; Ghouzali, Ibtissem; Langlois, Ludovic; Fetissov, Serguei; Déchelotte, Pierre; Ducrotté, Philippe; Leroi, Anne Marie; Gourcerol, Guillaume

    2012-01-01

    Background & Aims Gastric electrical stimulation (GES) is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. Methods Gastric pain was induced by performing gastric distension (GD) in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation), while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. Results GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9–T10), the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. Conclusions GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception. PMID:23284611

  9. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons

    PubMed Central

    Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.

    2011-01-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035

  10. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    PubMed

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  11. New twist on artificial muscles.

    PubMed

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  12. New twist on artificial muscles

    PubMed Central

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  13. Enhanced Renal Afferent Arteriolar Reactive Oxygen Species and Contractility to Endothelin-1 Are Associated with Canonical Wnt Signaling in Diabetic Mice.

    PubMed

    Zhang, Suping; Huang, Qian; Wang, Qiaoling; Wang, Qin; Cao, Xiaoyun; Zhao, Liang; Xu, Nan; Zhuge, Zhengbing; Mao, Jianhua; Fu, Xiaodong; Liu, Ruisheng; Wilcox, Christopher S; Patzak, Andreas; Li, Lingli; Lai, En Yin

    2018-05-30

    Canonical Wnt signaling is involved in oxidative stress, vasculopathy and diabetes mellitus but its role in diabetic renal microvascular dysfunction is unclear. We tested the hypothesis that enhanced canonical Wnt signaling in renal afferent arterioles from diabetic mice increases reactive oxygen species (ROS) and contractions to endothelin-1 (ET-1). Streptozotocin-induced diabetes or control C57Bl/6 mice received vehicle or sulindac (40 mg·kg-1·day-1) to block Wnt signaling for 4 weeks. ET-1 contractions were measured by changes of afferent arteriolar diameter. Arteriolar H2O2, O2 -, protein expression and enzymatic activity were assessed using sensitive fluorescence probes, immunoblotting and colorimetric assay separately. Compared to control, diabetic mouse afferent arteriole had increased O2- (+ 84%) and H2O2 (+ 91%) and enhanced responses to ET-1 at 10-8 mol·l-1 (-72±4% of versus -43±4%, P< 0.05) accompanied by reduced protein expressions and activities for catalase and superoxide dismutase 2 (SOD2). Arteriolar O2 - was increased further by ET-1 and contractions to ET-1 reduced by PEG-SOD in both groups whereas H2O2 unchanged by ET-1 and contractions were reduced by PEG-catalase selectively in diabetic mice. The Wnt signaling protein β-catenin was upregulated (3.3-fold decrease in p-β-catenin/β-catenin) while the glycogen synthase kinase-3β (GSK-3β) was downregulated (2.6-fold increase in p-GSK-3β/ GSK-3β) in preglomerular vessels of diabetic mice. Sulindac normalized the Wnt signaling proteins, arteriolar O2 -, H2O2 and ET-1 contractions while doubling microvascular catalase and SOD2 expression in diabetic mice. Increased ROS, notably H2O2 contributes to enhanced afferent arteriolar responses to ET-1 in diabetes, which is closely associated with Wnt signaling. Antioxidant pharmacological strategies targeting Wnt signaling may improve vascular function in diabetic nephropathy. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Receptor units responding to movement in the octopus mantle.

    PubMed

    Boyle, P R

    1976-08-01

    1. A preparation of the mantle of Octopus which is inverted over a solid support and which exposes the stellate ganglion and associated nerves is described. 2. Afferent activity can be recorded from stellar nerves following electrical stimulation of the pallial nerve. The latency and frequency of the phasic sensory response is correlated with the contraction of the mantle musculature. 3. It is proposed that receptors cells located in the muscle, and their activity following mantle contraction, form part of a sensory feedback system in the mantle. Large, multipolar nerve cells that were found between the two main layers of circular muscle in the mantle could be such receptors.

  15. Experimental comparisons between McKibben type artificial muscles and straight fibers type artificial muscles

    NASA Astrophysics Data System (ADS)

    Nakamura, Taro

    2007-01-01

    This paper describes experimental comparison between a conventional McKibben type artificial muscle and a straight fibers type artificial muscle developed by the authors. A wearable device and a rehabilitation robot which assists a human muscle should have characteristics similar to those of human muscle. In addition, because the wearable device and the rehabilitation robot should be light, an actuator with a high power/weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Further, the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, the authors have developed an artificial muscle tube in which high strength glass fibers have been built into the tube made from natural latex rubber. As results, experimental results demonstrated that the developed artificial muscle is more effective regarding its fundamental characteristics than that of the McKibben type; the straight fibers types of artificial muscle have more contraction ratio and power, longer lifetime than the McKibben types. And it has almost same characteristics of human muscle for isotonic and isometric that evaluate it dynamically.

  16. Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs.

    PubMed

    Coleridge, H M; Coleridge, J C

    1977-04-01

    We recorded impulses from afferent vagal C-fibres (conduction velocities 0.8-2.4 m/sec) arising from endings in the lungs of anesthetized dogs with open chest. Endings were of two types ('pulmonary' and 'bronchial') distinguished by their response and accessibility to capsaicin and phenyl diguanide injected into the right or left atrium. 'Pulmonary' endings, stimulated only by capsaicin and accessible through the pulmonary circulation, have been described previously. 'Bronchial' endings were stimulated by both capsicin and phenyl diguanide and were accessible through the bronchial circulation. Eight of 28 'bronchial' endings were located in large airways within 4 cm of the hilum, and two were in small airways near the edge of the lung. The precise location of the remaining 'bronchial' endings was not determined but we think that many were in the airways. 'Bronchial' endings had a sparse and irregular spontaneous discharge. They were stimulated by the inhalation of 5% histamine aerosol, the evoked discharge having no obvious relation to the phase of ventilation. A few were weakly stimulated by hyperinflating the lungs; deflation was without effect. The function of these endings is unknown.

  17. Synaptic GluN2A and GluN2B Containing NMDA Receptors within the Superficial Dorsal Horn Activated following Primary Afferent Stimulation

    PubMed Central

    MacDermott, Amy B.

    2014-01-01

    NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers, typically composed of two GluN1 and two of four GluN2 subunits: GluN2A-2D. Mice lacking some of the GluN2 subunits show deficits in pain transmission yet functional synaptic localization of these receptor subtypes in the dorsal horn has not been fully resolved. In this study, we have investigated the composition of synaptic NMDA receptors expressed in monosynaptic and polysynaptic pathways from peripheral sensory fibers to lamina I neurons in rats. We focused on substance P receptor-expressing (NK1R+) projection neurons, critical for expression of hyperalgesia and allodynia. EAB-318 and (R)-CPP, GluN2A/B antagonists, blocked both monosynaptic and polysynaptic NMDA EPSCs initiated by primary afferent activation by ∼90%. Physiological measurements exploiting the voltage dependence of monosynaptic EPSCs similarly indicated dominant expression of GluN2A/B types of synaptic NMDA receptors. In addition, at synapses between C fibers and NK1R+ neurons, NMDA receptor activation initiated a secondary, depolarizing current. Ifenprodil, a GluN2B antagonist, caused modest suppression of monosynaptic NMDA EPSC amplitudes, but had a widely variable, sometimes powerful, effect on polysynaptic responses following primary afferent stimulation when inhibitory inputs were blocked to mimic neuropathic pain. We conclude that GluN2B subunits are moderately expressed at primary afferent synapses on lamina I NK1R+ neurons, but play more important roles for polysynaptic NMDA EPSCs driven by primary afferents following disinhibition, supporting the view that the analgesic effect of the GluN2B antagonist on neuropathic pain is at least in part, within the spinal cord. PMID:25122884

  18. Development of Postural Muscles and Their Innervation

    PubMed Central

    IJkema-Paassen, J.; Gramsbergen, A.

    2005-01-01

    Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482

  19. Two horizontal rectus eye muscle surgery combined with botulinum toxin for the treatment of very large angle esotropia. A pilot study.

    PubMed

    Khan, Arif O

    2005-01-01

    To evaluate the effectiveness of a proposed new protocol for the primary treatment for very large angle esotropia: two muscle horizontal rectus muscle surgery with simultaneous botulinum toxin A injection in a small pilot study. Eight patients who had esotropia at near (ET') greater than 60 prism diopters (in actuality 70 to 100 prism diopters ET') underwent 2 muscle horizontal rectus surgery with simultaneous botulinum toxin A injection of the medial rectus intraoperatively. This was the only surgical procedure for all patients included in this report. Seven patients underwent bilateral medial rectus recession and bilateral injection, and one patient underwent a unilateral medial rectus recession / lateral rectus resection procedure with unilateral medial rectus injection. Postoperatively, 6 of the 8 patients demonstrated residual esotropia at near of less than 10 prism diopters and were considered "successful" by the conventional criteria of binocular alignment within 8 prism diopters of orthotropia. Two undercorrections occurred in patients with 100 and 85 prism diopters of preop ET' respectively. But 3 other patients with such large deviations had satisfactory results. All patients and families were satisfied with postoperative binocular alignment, so no further surgery was undertaken. The patient who underwent unilateral surgery had the least surgical effect and was the largest undercorrection, probably because only one medial rectus received a Botox injection. Considering only the bilateral cases, results were "successful" in 6 of 7 cases. Most patients suffered an extended period of Botox induced exotropia in the postop' period before recovery from the paresis. One patient had a transient, successfully treated, postoperative strabismic amblyopia while exotropic. Bilateral medial rectus recession with simultaneous botulinum injection is a safe and effective primary surgical procedure for very large angle esotropia. A more extensive study is indicated to

  20. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    PubMed

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  1. Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.

    PubMed

    Chittajallu, R; Wester, J C; Craig, M T; Barksdale, E; Yuan, X Q; Akgül, G; Fang, C; Collins, D; Hunt, S; Pelkey, K A; McBain, C J

    2017-07-28

    Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.

  2. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    PubMed

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Effects of Muscle Atrophy on Motor Control: Cage-size Effects

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.

  4. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.

  5. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  6. The Regulation of Catch in Molluscan Muscle

    PubMed Central

    Twarog, Betty M.

    1967-01-01

    Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++. PMID:6050594

  7. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain.

    PubMed

    Chen, W; McRoberts, J A; Marvizón, J C G

    2014-05-16

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund's adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. Published by Elsevier Ltd.

  8. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain

    PubMed Central

    Chen, Wenling; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund’s adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. PMID:24583035

  9. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    PubMed

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  10. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity.

    PubMed

    Kopp, Ulla C; Jones, Susan Y; DiBona, Gerald F

    2008-12-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, -60 +/- 4 vs. -77 +/- 6%. Maximum gain, -4.22 +/- 0.45 vs. -6.04 +/- 0.90% DeltaERSNA/mmHg, and the maximum value of instantaneous gain, -4.19 +/- 0.45 vs. -6.04 +/- 0.81% DeltaERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 +/- 0.2 vs. 6.1 +/- 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 +/- 4,900 vs. 20,900 +/- 3,410%.s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet.

  11. A novel approach using tendon vibration of the human flexor carpi radialis muscle to study spinal reflexes.

    PubMed

    Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark

    2008-01-01

    Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented.

  12. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: A high-resolution confocal and correlative electron microscopy approach

    PubMed Central

    Corson, James A.; Erisir, Alev

    2014-01-01

    While physiological studies suggested convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is re-visualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning. PMID:23640852

  13. Influence of limb temperature on cutaneous silent periods.

    PubMed

    Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana

    2014-09-01

    The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. [Nosological classification and assessment of muscle dysmorphia].

    PubMed

    Babusa, Bernadett; Túry, Ferenc

    2011-01-01

    Muscle dysmorphia is a recently described psychiatric disorder, characterized by a pathological preoccupation with muscle size. In spite of their huge muscles, muscle dysmorphia sufferers believe that they are insufficiently large and muscular therefore would like to be bigger and more muscular. Male bodybuilders are at high-risk for the disorder. The nosological classification of muscle dysmorphia has been changed over the years. However, consensus has not emerged so far. Most of the ongoing debate has conceptualized muscle dysmorphia as an eating disorder, obsessive-compulsive disorder and body dysmorphic disorder. There are a number of arguments for and againts. In the present study the authors do not take a position on the diagnostic classification of muscle dysmorphia. The purpose of the study is to review the present approaches relating to the diagnostic classification of muscle dysmporphia. Many different questionnaires were developed for the assessment of muscle dysmorphia. Currently, there is a lack of assessment methods measuring muscle dysmorphia symptoms in Hungary. As a secondary purpose the study also presents the Hungarian version of the Muscle Appearance Satisfaction Scale (Mayville et al., 2002).

  15. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro.

    PubMed

    Badie-Mahdavi, H; Worsley, M A; Ackley, M A; Asghar, A U; Slack, J R; King, A E

    2001-08-01

    Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.

  16. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  17. Regulation of muscle stiffness during periodic length changes in the isolated abdomen of the hermit crab.

    PubMed

    Chapple, W D

    1997-09-01

    Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from

  18. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  19. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    PubMed

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  20. Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles

    PubMed Central

    Kim, Shi Hyeong; Kwon, Cheong Hoon; Park, Karam; Mun, Tae Jin; Lepró, Xavier; Baughman, Ray H.; Spinks, Geoffrey M.; Kim, Seon Jeong

    2016-01-01

    Hygromorph artificial muscles are attractive as self-powered actuators driven by moisture from the ambient environment. Previously reported hygromorph muscles have been largely limited to bending or torsional motions or as tensile actuators with low work and energy densities. Herein, we developed a hybrid yarn artificial muscle with a unique coiled and wrinkled structure, which can be actuated by either changing relative humidity or contact with water. The muscle provides a large tensile stroke (up to 78%) and a high maximum gravimetric work capacity during contraction (2.17 kJ kg−1), which is over 50 times that of the same weight human muscle and 5.5 times higher than for the same weight spider silk, which is the previous record holder for a moisture driven muscle. We demonstrate an automatic ventilation system that is operated by the tensile actuation of the hybrid muscles caused by dew condensing on the hybrid yarn. This self-powered humidity-controlled ventilation system could be adapted to automatically control the desired relative humidity of an enclosed space. PMID:26973137

  1. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Sex hormones and skeletal muscle weakness.

    PubMed

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael; Pöllänen, Eija; Atkinson, Ross A; Hansen, Mette; Kovanen, Vuokko

    2013-06-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.

  3. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  4. Effect of Fenspiride on Bronchial Smooth Muscle of Rats with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kuzubova, Nataliya A.; Lebedeva, Elena S.; Fedin, Anatoliy N.; Dvorakovskaya, Ivetta V.; Preobrazhenskaya, Tatiana N.; Titova, Olga N.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is among the leading causes of morbidity and mortality worldwide. Glucocorticoids are currently the most applicable anti-inflammatory treatment for COPD. However, a subset of COPD subjects is relatively insensitive to this treatment. Fenspiride, a non-corticosteroid anti-inflammatory drug, has been described to have beneficial effects in patients with COPD, although the mechanism of its action is not well known. The effect of fenspiride on contractile activity of bronchial smooth muscle was studied in a rat model of COPD induced by long-term exposure of the animals to nitrogen dioxide (NO2). Contractile activity of bronchial smooth muscle was evaluated in vitro. Isometric contraction of bronchial preparations was measured following electrical stimulation. Fenspiride administration to rats during the acute stage of COPD (15 days of NO2 exposure) prevented the bronchial constriction induced by NO2. The bronchodilator effect of a low-dose of fenspiride (0.15 mg/kg) was mediated by interaction with the nerve endings of capsaicin-sensitive C-fibers. Interaction of fenspiride with C-fibers was shown to prevent initiation of neurogenic inflammation, as evidenced by lack of COPD-like structural changes in the lungs. The bronchodilator effect of a high-dose of fenspiride (15 mg/kg) was mediated not only by the afferent component, but also involved a direct relaxing effect on smooth muscle cells. The anti-inflammatory and bronchodilator effects of a low-dose of fenspiride may be used for prevention of COPD development in individuals from high-risk cohorts exposed to aggressive environmental factors. PMID:24133694

  5. Prefrontal cortex afferents to the anterior temporal lobe in the Macaca fascicularis monkey.

    PubMed

    Mohedano-Moriano, Alicia; Muñoz-López, Mónica; Sanz-Arigita, Ernesto; Pró-Sistiaga, Palma; Martínez-Marcos, Alino; Legidos-Garcia, María Ester; Insausti, Ana María; Cebada-Sánchez, Sandra; Arroyo-Jiménez, María Del Mar; Marcos, Pilar; Artacho-Pérula, Emilio; Insausti, Ricardo

    2015-12-01

    The anatomical organization of the lateral prefrontal cortex (LPFC) afferents to the anterior part of the temporal lobe (ATL) remains to be clarified. The LPFC has two subdivisions, dorsal (dLPFC) and ventral (vLPFC), which have been linked to cognitive processes. The ATL includes several different cortical areas, namely, the temporal polar cortex and rostral parts of the perirhinal, inferotemporal, and anterior tip of the superior temporal gyrus cortices. Multiple sensory modalities converge in the ATL. All of them (except the rostral inferotemporal and superior temporal gyrus cortices) are components of the medial temporal lobe, which is critical for long-term memory processing. We studied the LPFC connections with the ATL by placing retrograde tracer injections into the ATL: the temporal polar (n = 3), perirhinal (areas 35 and 36, n = 6), and inferotemporal cortices (area TE, n = 5), plus one additional deposit in the posterior parahippocampal cortex (area TF, n = 1). Anterograde tracer deposits into the dLPFC (A9 and A46, n = 2), the vLPFC (A46v, n = 2), and the orbitofrontal cortex (OF; n = 2) were placed for confirmation of those projections. The results showed that the vLPFC displays a moderate projection to rostral area TE and the dorsomedial portion of the temporal polar cortex; in contrast, the dLPFC connections with the ATL were weak. By comparison, the OFC and medial frontal cortices (MFC) showed dense connectivity with the ATL, namely, A13 with the temporopolar and perirhinal cortices. All areas of the MFC projected to the temporopolar cortex, albeit with a lower intensity. The functional significance of such paucity of LPFC afferents is unknown. © 2015 Wiley Periodicals, Inc.

  6. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    PubMed

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p < 0.001) and to the CSA fraction formed by type 1 and 2a fibers (r = 0.80, p < 0.001). However, when adjusted for body height and age by multiple regression, MG yielded a largely improved prediction of total CSA (multiple r = 0.83, p < 0.001) and of fiber type 1 and 2a CSA (multiple r = 0.89, p < 0.001). The correlations between CK and these muscle parameters were weaker, and elevated CK values were observed in 20% of control subjects despite a prior abstinence from exercise for 5 days. In conclusion, plasma MG, when adjusted for anthropometric parameters unaffected by weight, may be considered as a novel marker of muscle mass (CSA) indicating best the mass of MG-rich type 1 and 2a fibers as well as VO(2)max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer

  7. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    PubMed

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  8. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6)

    PubMed Central

    2012-01-01

    Background Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. Methods Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation. Results Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment. Conclusions Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses contribute to migraine

  9. Non-peptidergic small diameter primary afferents expressing VGluT2 project to lamina I of mouse spinal dorsal horn

    PubMed Central

    2011-01-01

    Background Unmyelinated primary afferent nociceptors are commonly classified into two main functional types: those expressing neuropeptides, and non-peptidergic fibers that bind the lectin IB4. However, many small diameter primary afferent neurons neither contain any known neuropeptides nor bind IB4. Most express high levels of vesicular glutamate transporter 2 (VGluT2) and are assumed to be glutamatergic nociceptors but their terminations within the spinal cord are unknown. We used in vitro anterograde axonal tracing with Neurobiotin to identify the central projections of these putative glutamatergic nociceptors. We also quantitatively characterised the spatial arrangement of these terminals with respect to those that expressed the neuropeptide, calcitonin gene-related peptide (CGRP). Results Neurobiotin-labeled VGluT2-immunoreactive (IR) terminals were restricted to lamina I, with a medial-to-lateral distribution similar to CGRP-IR terminals. Most VGluT2-IR terminals in lateral lamina I were not labeled by Neurobiotin implying that they arose mainly from central neurons. 38 ± 4% of Neurobiotin-labeled VGluT2-IR terminals contained CGRP-IR. Conversely, only 17 ± 4% of Neurobiotin-labeled CGRP-IR terminals expressed detectable VGluT2-IR. Neurobiotin-labeled VGluT2-IR or CGRP-IR terminals often aggregated into small clusters or microdomains partially surrounding intrinsic lamina I neurons. Conclusions The central terminals of primary afferents which express high levels of VGluT2-IR but not CGRP-IR terminate mainly in lamina I. The spatial arrangement of VGluT2-IR and CGRP-IR terminals suggest that lamina I neurons receive convergent inputs from presumptive nociceptors that are primarily glutamatergic or peptidergic. This reveals a previously unrecognized level of organization in lamina I consistent with the presence of multiple nociceptive processing pathways. PMID:22152428

  10. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders

    PubMed Central

    D'Antona, Giuseppe; Lanfranconi, Francesca; Pellegrino, Maria Antonietta; Brocca, Lorenza; Adami, Raffaella; Rossi, Rosetta; Moro, Giorgio; Miotti, Danilo; Canepari, Monica; Bottinelli, Roberto

    2006-01-01

    Needle biopsy samples were taken from vastus lateralis muscle (VL) of five male body builders (BB, age 27.4 ± 0.93 years; mean ±s.e.m.), who had being performing hypertrophic heavy resistance exercise (HHRE) for at least 2 years, and from five male active, but untrained control subjects (CTRL, age 29.9 ± 2.01 years). The following determinations were performed: anatomical cross-sectional area and volume of the quadriceps and VL muscles in vivo by magnetic resonance imaging (MRI); myosin heavy chain isoform (MHC) distribution of the whole biopsy samples by SDS-PAGE; cross-sectional area (CSA), force (Po), specific force (Po/CSA) and maximum shortening velocity (Vo) of a large population (n= 524) of single skinned muscle fibres classified on the basis of MHC isoform composition by SDS-PAGE; actin sliding velocity (Vf) on pure myosin isoforms by in vitro motility assays. In BB a preferential hypertrophy of fast and especially type 2X fibres was observed. The very large hypertrophy of VL in vivo could not be fully accounted for by single muscle fibre hypertrophy. CSA of VL in vivo was, in fact, 54% larger in BB than in CTRL, whereas mean fibre area was only 14% larger in BB than in CTRL. MHC isoform distribution was shifted towards 2X fibres in BB. Po/CSA was significantly lower in type 1 fibres from BB than in type 1 fibres from CTRL whereas both type 2A and type 2X fibres were significantly stronger in BB than in CTRL. Vo of type 1 fibres and Vf of myosin 1 were significantly lower in BB than in CTRL, whereas no difference was observed among fast fibres and myosin 2A. The findings indicate that skeletal muscle of BB was markedly adapted to HHRE through extreme hypertrophy, a shift towards the stronger and more powerful fibre types and an increase in specific force of muscle fibres. Such adaptations could not be fully accounted for by well known mechanisms of muscle plasticity, i.e. by the hypertrophy of single muscle fibre (quantitative mechanism) and by a

  11. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.

    PubMed

    Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S

    2017-10-01

    Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    involved in low-amplitude activities and that the amount of type IIX fibers is positively related to the generation of large muscle forces, validating our hypothesis.

  13. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  14. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals.

    PubMed

    Baillie, Landon D; Schmidhammer, Helmut; Mulligan, Sean J

    2015-06-01

    While μ-opioid receptor (MOR) agonists remain the most powerful analgesics for the treatment of severe pain, serious adverse side effects that are secondary to their central nervous system actions pose substantial barriers to therapeutic use. Preclinical and clinical evidence suggest that peripheral MORs play an important role in opioid analgesia, particularly under inflammatory conditions. However, the mechanisms of peripheral MOR signaling in primary afferent pain fibres remain to be established. We have recently introduced a novel ex vivo optical imaging approach that, for the first time, allows the study of physiological functioning within individual peripheral nociceptive fibre free nerve endings in mice. In the present study, we found that MOR activation in selectively identified, primary afferent CGRP nociceptive terminals caused inhibition of N-type Ca(2+) channel signaling and suppression of action potential-evoked Ca(2+) fluorescent transients mediated by 'big conductance' Ca(2+)-activated K(+) channels (BKCa). In the live animal, we showed that the peripherally acting MOR agonist HS-731 produced analgesia and that BKCa channels were the major effectors of the peripheral MOR signaling. We have identified two key molecular transducers of MOR activation that mediate significant inhibition of nociceptive signaling in primary afferent terminals. Understanding the mechanisms of peripheral MOR signaling may promote the development of pathway selective μ-opioid drugs that offer improved therapeutic profiles for achieving potent analgesia while avoiding serious adverse central side effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spinal cord stimulation paresthesia and activity of primary afferents.

    PubMed

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  16. State-space decoding of primary afferent neuron firing rates

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. B.; Ventura, V.; Weber, D. J.

    2011-02-01

    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.

  17. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  18. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus

    PubMed Central

    Haight, Joshua L.; Fuller, Zachary L.; Fraser, Kurt M.; Flagel, Shelly B.

    2016-01-01

    The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The “sign-tracker/goal-tracker” animal model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc), and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli. PMID:27793779

  19. Muscular responses appear to be associated with existence of kinesthetic perception during combination of tendon co-vibration and motor imagery.

    PubMed

    Shibata, Eriko; Kaneko, Fuminari; Katayose, Masaki

    2017-11-01

    The afferent inputs from peripheral sensory receptors and efferent signals from the central nervous system that underlie intentional movement can contribute to kinesthetic perception. Previous studies have revealed that tendon vibration to wrist muscles elicits an excitatory response-known as the antagonist vibratory response-in muscles antagonistic to the vibrated muscles. Therefore, the present study aimed to further investigate the effect of tendon vibration combined with motor imagery on kinesthetic perception and muscular activation. Two vibrators were applied to the tendons of the left flexor carpi radialis and extensor carpi radialis. When the vibration frequency was the same between flexors and extensors, no participant perceived movement and no muscle activity was induced. When participants imagined flexing their wrists during tendon vibration, the velocity of perceptual flexion movement increased. Furthermore, muscle activity of the flexor increased only during motor imagery. These results demonstrate that kinesthetic perception can be induced during the combination of motor imagery and co-vibration, even with no experience of kinesthetic perception from an afferent input with co-vibration at the same frequency. Although motor responses were observed during combined co-vibration and motor imagery, no such motor responses were recorded during either co-vibration alone or motor imagery alone, suggesting that muscular responses during the combined condition are associated with kinesthetic perception. Thus, the present findings indicate that kinesthetic perception is influenced by the interaction between afferent input from muscle spindles and the efferent signals that underlie intentional movement. We propose that the physiological behavior resulting from kinesthetic perception affects the process of modifying agonist muscle activity, which will be investigated in a future study.

  20. The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles.

    PubMed

    Cuff, Andrew R; Sparkes, Emily L; Randau, Marcela; Pierce, Stephanie E; Kitchener, Andrew C; Goswami, Anjali; Hutchinson, John R

    2016-07-01

    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength