Science.gov

Sample records for large non-orthogonal stbcs

  1. Which are more accurate, orthogonal or non-orthogonal sonic anemometers?

    NASA Astrophysics Data System (ADS)

    Massman, W. J.; Frank, J. M.; Swiatek, E.; Zimmerman, H.; Ewers, B. E.

    2013-12-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy, ecosystem carbon, and water balance. Recent studies have shown the potential underestimation of the vertical wind fluctuations among the most commonly encountered anemometer models, but thus far testing has been focused on non-orthogonal sonic anemometer designs. We hypothesize that these underestimates are systematic to the non-orthogonal design and not attributable to a single manufacturer. If so, orthogonal measurements of vertical wind should be more accurate. We tested this by conducting an experiment to measure the relative consistency between vertical and horizontal wind measurements for three sonic anemometer designs: orthogonal, non-orthogonal, and quasi-orthogonal. Both the orthogonal and non-orthogonal models were from a single manufacturer (K-probe and A-probe, Applied Technologies, Inc.) while the quasi-orthogonal design featured non-orthogonal u- and v-axes but with an orthogonal w-axis (CSAT3V, Campbell Scientific, Inc.). We conducted a 12-week experiment, testing four sonic anemometers relative to a control (CSAT3, Campbell Scientific, Inc.), each week randomly selecting at least one of each model from a pool of twelve instruments (three of each model) and randomly locating the test anemometers around the control. Half-way through the week the test anemometers were re-mounted in a horizontal position. Work was done at the GLEES AmeriFlux site (southeastern Wyoming, USA) which experiences large, uni-directional wind and turbulence. Results are discussed.

  2. Using Non-Orthogonal Iris Images for Iris Recognition

    DTIC Science & Technology

    2006-05-05

    geometry, face, voice , and iris. These quantifiable features are measured and stored in a database to be used for automatic recognition . The...U.S.N.A. --- Trident Scholar project report; no. 342 (2006) USING NON-ORTHOGONAL IRIS IMAGES FOR IRIS RECOGNITION by MIDN 1/C Ruth Mary...orthogonal iris images for iris recognition 6. AUTHOR(S) Gaunt, Ruth Mary, 1984- 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME

  3. Velocity field calculation for non-orthogonal numerical grids

    SciTech Connect

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal

  4. Oscillator strengths of allowed and intercombination lines in Si II using non-orthogonal wavefunctions

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2007-07-01

    The importance of valence-shell, core-valence and core-core correlation and interactions between the members of 3s2nd 2D Rydberg series and between the Rydberg series and 3s3p22D perturber state in singly ionized silicon has been examined using term-dependent non-orthogonal orbitals in the multiconfiguration Hartree-Fock approach. Large sets of spectroscopic and correlation non-orthogonal functions have been chosen to adequately describe the term dependence of wavefunctions, various correlation corrections and strong interactions in Rydberg series. The relativistic corrections are included through the one-body mass correction, Darwin and spin-orbit operators and two-body spin-other-orbit operator in the Breit-Pauli Hamiltonian. Extensive configuration-interaction wavefunctions have been used in the representation of Si II levels to calculate oscillator strengths and transition probabilities. The accuracy of present oscillator strengths is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results have been compared with previous calculations, experimental measurements and astronomical observations.

  5. Exact exchange with non-orthogonal generalized Wannier functions.

    PubMed

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J

    2017-03-14

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  6. Exact exchange with non-orthogonal generalized Wannier functions

    NASA Astrophysics Data System (ADS)

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J.

    2017-03-01

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  7. Reformulating time-dependent density functional theory with non-orthogonal localized molecular orbitals.

    PubMed

    Cui, Ganglong; Fang, Weihai; Yang, Weitao

    2010-01-14

    Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.

  8. Arrow diagram theory for non-orthogonal electronic groups: the continued fractions method.

    PubMed

    Wang, Yu; Kantorovich, Lev

    2009-11-25

    The group function theory by Tolpygo and McWeeny is a useful tool in treating quantum systems that can be represented as a set of localized electronic groups (e.g. atoms, molecules or bonds). It provides a general means of taking into account intra-correlation effects inside the groups without assuming that the interaction between the groups is weak. For non-orthogonal group functions the arrow diagram (AD) technique provides a convenient procedure for calculating matrix elements [Formula: see text] of arbitrary symmetrical operators [Formula: see text] which are needed, for example, for calculating the total energy of the system or its electron density. The total wavefunction of the system [Formula: see text] is represented as an antisymmetrized product of non-orthogonal electron group functions Φ(I) of each group I in the system. However, application of the AD theory to extended (e.g. infinite) systems (such as biological molecules or crystals) is not straightforward, since the calculation of the mean value of an operator requires that each term of the diagram expansion be divided by the normalization integral S = ⟨Ψ|Ψ⟩ which is given by an AD expansion as well. In our previous work, we cast the mean value [Formula: see text] of a symmetrical operator [Formula: see text] in the form of an AD expansion which is a linear combination of linked (connected) ADs multiplied by numerical pre-factors. To obtain the pre-factors, a method based on power series expansion with respect to overlap was developed and tested for a simple 1D Hartree-Fock (HF) ring model. In the present paper this method is first tested on a 2D HF model, and we find that the power series expansion for the pre-factors converges extremely slowly to the exact solution. Instead, we suggest another, more powerful, method based on a continued fraction expansion of the pre-factors that approaches the exact solution much faster. The method is illustrated on the calculation of the electron density

  9. Orthogonal and Non-Orthogonal Tight Binding Parameters for III-V Semiconductors Nitrides

    NASA Astrophysics Data System (ADS)

    Martins, A. S.; Fellows, C. E.

    2016-12-01

    A simulated annealing (SA) approach is employed in the determination of different tight binding (TB) sets of parameters for the nitride semiconductors AlN, GaN and InN, as well their limitations and potentialities are also discussed. Two kinds of atomic basis set are considered: (i) the orthogonal sp 3 s∗ with interaction up to second neighbors and (ii) a spd non-orthogonal set, with the Hamiltonian matrix elements calculated within the Extended Hückel Theory (EHT) prescriptions. For the non-orthogonal method, TB parameters are given for both zincblend and wurtzite crystalline structures.

  10. Teleportation of a qubit using entangled non-orthogonal states: a comparative study

    NASA Astrophysics Data System (ADS)

    Sisodia, Mitali; Verma, Vikram; Thapliyal, Kishore; Pathak, Anirban

    2017-03-01

    The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice's, Bob's and to be teleported qubits), but the converse may be observed in some particular cases.

  11. Deterministic Quantum Key Distribution Using Two Non-orthogonal Entangled States

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua

    2007-03-01

    A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.

  12. Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Gordon, R. G.

    2015-12-01

    Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.

  13. Non-orthogonal optical multicarrier access based on filter bank and SCMA.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-10-19

    This paper proposes a novel non-orthogonal optical multicarrier access system based on filter bank and sparse code multiple access (SCMA). It offers released frequency offset and better spectral efficiency for multicarrier access. An experiment of 73.68 Gb/s filter bank-based multicarrier (FBMC) SCMA system with 60 km single mode fiber link is performed to demonstrate the feasibility. The comparison between fast Fourier transform (FFT) based multicarrier and the proposed scheme is also investigated in the experiment.

  14. Fairness for Non-Orthogonal Multiple Access in 5G Systems

    NASA Astrophysics Data System (ADS)

    Timotheou, Stelios; Krikidis, Ioannis

    2015-10-01

    In non-orthogonal multiple access (NOMA) downlink, multiple data flows are superimposed in the power domain and user decoding is based on successive interference cancellation. NOMA's performance highly depends on the power split among the data flows and the associated power allocation (PA) problem. In this letter, we study NOMA from a fairness standpoint and we investigate PA techniques that ensure fairness for the downlink users under i) instantaneous channel state information (CSI) at the transmitter, and ii) average CSI. Although the formulated problems are non-convex, we have developed low-complexity polynomial algorithms that yield the optimal solution in both cases considered.

  15. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    NASA Astrophysics Data System (ADS)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  16. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    SciTech Connect

    Sundstrom, Eric J. Head-Gordon, Martin

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  17. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.

    PubMed

    Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua

    2013-12-14

    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

  18. Non-orthogonal multiple access with phase pre-distortion in visible light communication.

    PubMed

    Guan, Xun; Yang, Qing; Hong, Yang; Chan, Calvin Chun-Kit

    2016-10-31

    Non-orthogonal multiple access (NOMA) offers a good balance between throughput and fairness for visible light communication (VLC). This work presents a phase pre-distortion method to improve the symbol error rate performance of NOMA uplink with successive interference cancellation (SIC) decoding in VLC. Both theoretical analysis and experimental evaluation have shown that the proposed phase pre-distortion method improves the bit-error-rate (BER) performance for NOMA under both low and high relative power ratios. Specifically, at low relative power ratios, the proposed method can eliminate the possible BER floors and alleviate the power ratio requirement by 2 dB at the BER of 3.8 × 10-3.

  19. Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

    PubMed Central

    Gong, Xiao-Feng; Wang, Ke; Lin, Qiu-Hua; Liu, Zhi-Wen; Xu, You-Gen

    2012-01-01

    Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decompositions of the target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD algorithms we present a novel strategy to exploit the multi-dimensional structure present in the second-order statistics of EMVS outputs for simultaneous DOA and polarization estimation. Simulations are provided to compare the proposed strategy with existing tensorial or joint diagonalization based methods. PMID:22737015

  20. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors.

    PubMed

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-05-19

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance.

  1. Optimized Non-Orthogonal Localized Orbitals for Linear Scaling Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Reboredo, Fernando; Galli, Giulia

    2004-03-01

    It has been shown [1] that Quantum Monte Carlo calculations of total energies of interacting systems can be made to scale nearly linearly with the number of electrons (N), by using localized single particle orbitals to construct Slater determinants. Here we propose a new way of defining the localized orbitals required for O(N)-QMC calculation, by minimizing an appropriate cost function yielding a set of N non-orthogonal (NO) localized orbitals considerably smoother in real space than Maximally localized Wannier functions (MLWF). These NO orbitals have better localization properties than MLWFs. We show that for semiconducting systems NO orbitals can be localized in a much smaller region of space than orthogonal orbitals (typically, one eighth of the volume) and give total energies with the same accuracy, thus yielding a linear scaling QMC algorithm which is 5 times faster than the one originally proposed [1]. We also discuss the extension of O(N)-QMC with NO orbitals to the calculations of total energies of metallic systems. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. [1] A. J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87, 246406 (2001)

  2. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors

    PubMed Central

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-01-01

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389

  3. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions

    NASA Astrophysics Data System (ADS)

    Dziedzic, J.; Hill, Q.; Skylaris, C.-K.

    2013-12-01

    We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.

  4. A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method

    NASA Astrophysics Data System (ADS)

    Ward, A. J.; Pendry, J. B.

    2000-06-01

    In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.

  5. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    SciTech Connect

    Matthews, Devin A.; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))

  6. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations.

    PubMed

    Matthews, Devin A; Stanton, John F

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).

  7. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Stanton, John F.

    2015-02-01

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).

  8. Multireference M[oslash]ller Plesset perturbation theory with non-canonical and non-orthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Finley, James P.; Hirao, Kimihiko

    2000-09-01

    Using non-orthogonal secondary orbitals and non-canonical (localized) inactive and active orbitals, a second-order multireference perturbation theory is formulated, based on a complete active space self-consistent field (CASSCF) wavefunction. The equations of interest are derived from the first-order Bloch equation by using an approach based on a bi-orthogonal basis and operators expressed in second-quantization.

  9. On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

    NASA Astrophysics Data System (ADS)

    Ding, Zhiguo; Yang, Zheng; Fan, Pingzhi; Poor, H. Vincent

    2014-12-01

    In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users. The developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of NOMA depends critically on the choices of the users' targeted data rates and allocated power. In particular, a wrong choice of the targeted data rates and allocated power can lead to a situation in which the user's outage probability is always one, i.e. the user's targeted quality of service will never be met.

  10. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Head-Gordon, Martin

    2016-08-01

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

  11. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction.

    PubMed

    Yost, Shane R; Head-Gordon, Martin

    2016-08-07

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

  12. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    NASA Astrophysics Data System (ADS)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so called Alternate Direction Implicit algorithm) to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the Cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. In all this process the momentum exchange forces and the interphase heat exchanges are treated implicitly to ensure stability. To reduce the computational cost, a domain decomposition strategy is adopted with an overlapping procedure at the interface between subdomains. We show here two cases involving non-Cartesian computational domains: a two-phase volcanic flow along a realistic topography and a gas-particle flow in a complex vertical conduct (riser) used in industrial plants of fluid catalytical cracking processes geometry. With an initial Richardson number of 0.16 slightly higher than the critical Richardson number of 0.1, particles and water vapor are injected at the bottom of the riser. Countercurrents appear near the walls and gravity effects begin to dominate inducing an increase of particulate volumic fractions near the walls. We show here the hydrodynamics for 13s.

  13. Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals

    PubMed Central

    Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.

    2013-01-01

    The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256

  14. Three Dimensional Wind Speed and Flux Measurement over a Rain-fed Soybean Field Using Orthogonal and Non-orthogonal Sonic Anemometer Designs

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.

    2014-12-01

    The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.

  15. Reliable Attention Network Scores and Mutually Inhibited Inter-network Relationships Revealed by Mixed Design and Non-orthogonal Method.

    PubMed

    Wang, Yi-Feng; Jing, Xiu-Juan; Liu, Feng; Li, Mei-Ling; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-05-21

    The attention system can be divided into alerting, orienting, and executive control networks. The efficiency and independence of attention networks have been widely tested with the attention network test (ANT) and its revised versions. However, many studies have failed to find effects of attention network scores (ANSs) and inter-network relationships (INRs). Moreover, the low reliability of ANSs can not meet the demands of theoretical and empirical investigations. Two methodological factors (the inter-trial influence in the event-related design and the inter-network interference in orthogonal contrast) may be responsible for the unreliability of ANT. In this study, we combined the mixed design and non-orthogonal method to explore ANSs and directional INRs. With a small number of trials, we obtained reliable and independent ANSs (split-half reliability of alerting: 0.684; orienting: 0.588; and executive control: 0.616), suggesting an individual and specific attention system. Furthermore, mutual inhibition was observed when two networks were operated simultaneously, indicating a differentiated but integrated attention system. Overall, the reliable and individual specific ANSs and mutually inhibited INRs provide novel insight into the understanding of the developmental, physiological and pathological mechanisms of attention networks, and can benefit future experimental and clinical investigations of attention using ANT.

  16. Non-Orthogonal Iris Segmentation

    DTIC Science & Technology

    2005-05-09

    rounding operation for + ints */ #define MIN(A,B) (A) < (B) ? (A) B) #define MAX(A,B) (A) > (B) ? (A) B) void mexFunction(int nlhs, mxArray * plhs ...mxMalloc(N*sizeof(double)); /* create storage for output */ /*y=mxMalloc(rows*cols*sizeof(double)); */ plhs [0...mxCreateDoubleMatrix(cols,rows,mxREAL); y=mxGetPr( plhs [0]); /*yy=mxCreateDoubleMatrix(rows,cols,mxREAL); y=mxGetPr(yy);*/ /* compute local standard

  17. A Non-Orthogonal Fourier Expansion for Conic Decomposition.

    DTIC Science & Technology

    1980-09-01

    permitted for any purpose of the United States Government. CENTER FOR CYBERNETIC STUDIES A. Charnes, Director Business -Economics Building, 203E The...mathematical model of the problem is (see [6]): (6.1) x. = b. + A. - i ,1 1 i-I 2 (6.2) xi+1 - x i 0 (6.3) A i (xi+1 - x i ) = 0 i =,...,n-1 (6.4) X= n =-0...Space Approach to Models and Optimization, Wiley-Interscience, New York, 1975. 3. Dunford, N., and Schwartz, J.T., Linear Operators, Part I, Wiley

  18. Non-Orthogonal Channel and Reservoir Routing in GSSHA

    DTIC Science & Technology

    2008-07-01

    GSSHA has the following structure types and related features. ERDC TN-SWWRP-08-05 July 2008 8 • Broad crested weirs o Horizontal o Parabolic... discharge coefficients depending upon the flow direction, which accounts for asymmetry of the structure. Weir sub- mergence is accounted for if the...each stream reach (link in GSSHA) is subdivided into cells (nodes) for computational purposes. Channel properties, cross section, roughness coefficient

  19. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    PubMed

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  20. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  1. A non-orthogonal SVD-based decomposition for phase invariant error-related potential estimation.

    PubMed

    Phlypo, Ronald; Jrad, Nisrine; Rousseau, Sandra; Congedo, Marco

    2011-01-01

    The estimation of the Error Related Potential from a set of trials is a challenging problem. Indeed, the Error Related Potential is of low amplitude compared to the ongoing electroencephalographic activity. In addition, simple summing over the different trials is prone to errors, since the waveform does not appear at an exact latency with respect to the trigger. In this work, we propose a method to cope with the discrepancy of these latencies of the Error Related Potential waveform and offer a framework in which the estimation of the Error Related Potential waveform reduces to a simple Singular Value Decomposition of an analytic waveform representation of the observed signal. The followed approach is promising, since we are able to explain a higher portion of the variance of the observed signal with fewer components in the expansion.

  2. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission

    PubMed Central

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402

  3. Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.

    1991-01-01

    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.

  4. Non-orthogonal depth from focus for on-the-fly, three-dimensional inspection

    NASA Astrophysics Data System (ADS)

    Ribnick, Evan

    2012-08-01

    This paper describes a new technique that was developed for performing three-dimensional (3-D) reconstruction on-the-fly for inspection applications. It is based on the same principles as the traditional depth from focus approach but is able to estimate the three-dimensional structure of a surface as it is undergoing a continuous linear lateral translation, similar to the situation on many types of modern production lines. This has important applications in the area of automated inspection and quality control, since the ability to inspect materials in real-time as they are being manufactured in a continuous process is valuable in a broad range of circumstances. We assume that the relative motion of the surface is known, which is realistic in these types of environments. We demonstrate the technical feasibility of our approach, including its ability to acquire 3-D shape on several different types of structured surfaces.

  5. Large N

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2002-09-01

    In the first part of this lecture, the 1/N expansion technique is illustrated for the case of the large-N sigma model. In large-N gauge theories, the 1/N expansion is tantamount to sorting the Feynman diagrams according to their degree of planarity, that is, the minimal genus of the plane onto which the diagram can be mapped without any crossings. This holds both for the usual perturbative expansion with respect to powers of ˜ {g}2 = g2N, as well as for the expansion of lattice theories in positive powers of 1/˜ {g}2. If there were no renormalization effects, the ˜ {g} expansion would have a finite radius of convergence. The zero-dimensional theory can be used for counting planar diagrams. It can be solved explicitly, so that the generating function for the number of diagrams with given 3-vertices and 4-vertices, can be derived exactly. This can be done for various kinds of Feynman diagrams. We end with some remarks about planar renormalization.

  6. Flow-Field Matrix Solution for Direct Problem of Flow along S1 Relative Stream Surface Employing Non-Orthogonal Curvilinear Coordinates and Corresponding Non-Orthogonal Velocity Components,

    DTIC Science & Technology

    1983-07-18

    two level fan , when the aerodynamic parameters are identical and only the mesh densities in the streamline direction are different, there are the...verifying computation of a highly loaded axial-flow two stage fan showed that the computed results and experimental results are in agreement. The principal...The condition used is that in the bladeless regions. Var remains a constant along the streamline. The tgy in the blade array varies according to the

  7. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states

    SciTech Connect

    Yost, Shane R.; Kowalczyk, Tim; Van Voorhis, Troy

    2013-11-07

    In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Møller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N{sub occ}{sup 2}N{sub virt}{sup 3}. Unlike most active space methods, ΔSCF(2) treats the ground and excited state determinants even-handedly. We apply ΔSCF(2) to the H{sub 2}, hydrogen fluoride, and H{sub 4} systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.

  8. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  9. Instantons and Large N

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos

    2015-09-01

    Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.

  10. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  11. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  12. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  13. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  14. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  15. Large Customers (DR Sellers)

    SciTech Connect

    Kiliccot, Sila

    2011-10-25

    State of the large customers for demand response integration of solar and wind into electric grid; openADR; CAISO; DR as a pseudo generation; commercial and industrial DR strategies; California regulations

  16. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  17. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  18. Large bowel resection - discharge

    MedlinePlus

    ... 26. Read More Colon cancer Colostomy Crohn disease Intestinal obstruction Large bowel resection Ulcerative colitis Patient Instructions Bland ... Diseases Colonic Polyps Colorectal Cancer Diverticulosis and Diverticulitis Intestinal Obstruction Ulcerative Colitis Browse the Encyclopedia A.D.A. ...

  19. Large Deployable Shroud

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.

    1987-01-01

    Preliminary design proposed for large, lightweight telescope shroud or light shield carried to orbit in single Space Shuttle cargo load. Shroud concept applied on Earth in portable, compactly storable displays or projection screens. Large telescope shroud includes four deployable masts erecting eight walls of hinged panels of polyimide film. Panels stored fanfolded before deployment and threaded on guide wires unwinding from spools and remain taut during deployment.

  20. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  1. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  2. Death Writ Large

    ERIC Educational Resources Information Center

    Kastenbaum, Robert

    2004-01-01

    Mainstream thanatology has devoted its efforts to improving the understanding, care, and social integration of people who are confronted with life-threatening illness or bereavement. This article suggests that it might now be time to expand the scope and mission to include large-scale death and death that occurs through complex and multi-domain…

  3. Developing Large CAI Packages.

    ERIC Educational Resources Information Center

    Reed, Mary Jac M.; Smith, Lynn H.

    1983-01-01

    When developing large computer-assisted instructional (CAI) courseware packages, it is suggested that there be more attentive planning to the overall package design before actual lesson development is begun. This process has been simplified by modifying the systems approach used to develop single CAI lessons, followed by planning for the…

  4. Risks of Large Portfolios

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Shi, Xiaofeng

    2014-01-01

    The risk of a large portfolio is often estimated by substituting a good estimator of the volatility matrix. However, the accuracy of such a risk estimator is largely unknown. We study factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the estimation. The H-CLUB is constructed using the confidence interval of risk estimators with either known or unknown factors. We derive the limiting distribution of the estimated risks in high dimensionality. We find that when the dimension is large, the factor-based risk estimators have the same asymptotic variance no matter whether the factors are known or not, which is slightly smaller than that of the sample covariance-based estimator. Numerically, H-CLUB outperforms the traditional crude bounds, and provides an insightful risk assessment. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data. PMID:26195851

  5. Estimating Large Numbers

    ERIC Educational Resources Information Center

    Landy, David; Silbert, Noah; Goldin, Aleah

    2013-01-01

    Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…

  6. LARGE BUILDING HVAC SIMULATION

    EPA Science Inventory

    The report discusses the monitoring and collection of data relating to indoor pressures and radon concentrations under several test conditions in a large school building in Bartow, Florida. The Florida Solar Energy Center (FSEC) used an integrated computational software, FSEC 3.0...

  7. Large, Easily Deployable Structures

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1983-01-01

    Study of concepts for large space structures will interest those designing scaffolding, radio towers, rescue equipment, and prefabricated shelters. Double-fold, double-cell module was selected for further design and for zero gravity testing. Concept is viable for deployment by humans outside space vehicle as well as by remotely operated manipulator.

  8. Teaching Very Large Classes

    ERIC Educational Resources Information Center

    DeRogatis, Amy; Honerkamp, Kenneth; McDaniel, Justin; Medine, Carolyn; Nyitray, Vivian-Lee; Pearson, Thomas

    2014-01-01

    The editor of "Teaching Theology and Religion" facilitated this reflective conversation with five teachers who have extensive experience and success teaching extremely large classes (150 students or more). In the course of the conversation these professors exchange and analyze the effectiveness of several active learning strategies they…

  9. Teaching Large Evening Classes

    ERIC Educational Resources Information Center

    Wambuguh, Oscar

    2008-01-01

    High enrollments, conflicting student work schedules, and the sheer convenience of once-a-week classes are pushing many colleges to schedule evening courses. Held from 6 to 9 pm or 7 to 10 pm, these classes are typically packed, sometimes with more than 150 students in a large lecture theater. How can faculty effectively teach, control, or even…

  10. Risks of Large Portfolios.

    PubMed

    Fan, Jianqing; Liao, Yuan; Shi, Xiaofeng

    2015-06-01

    The risk of a large portfolio is often estimated by substituting a good estimator of the volatility matrix. However, the accuracy of such a risk estimator is largely unknown. We study factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the estimation. The H-CLUB is constructed using the confidence interval of risk estimators with either known or unknown factors. We derive the limiting distribution of the estimated risks in high dimensionality. We find that when the dimension is large, the factor-based risk estimators have the same asymptotic variance no matter whether the factors are known or not, which is slightly smaller than that of the sample covariance-based estimator. Numerically, H-CLUB outperforms the traditional crude bounds, and provides an insightful risk assessment. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data.

  11. Large bouncing jets

    NASA Astrophysics Data System (ADS)

    Cardin, Karl; Weislogel, Mark

    2016-11-01

    We experimentally investigate the phenomena of large jet rebound (bounce), a mode of fluid transfer following oblique jet impacts on hydrophobic surfaces. We initially seek to describe the regimes of such jet bounce in tests conducted in the weightless environment of a drop tower. A parametric study reveals the dependence of the rebound mode on the relevant dimensionless groups such as Weber number We⊥ defined on the velocity component perpendicular to the surface. We show that significantly larger diameter jets behave similarly as much smaller jets demonstrated during previous terrestrial investigations when We⊥ 1 . For We⊥ > 1 , large jet impacts create fishbone-like structures. We also explore rebounds from nonplanar substrates. Improving our understanding of such jet rebound opens avenues for unique transport capabilities. NASA Cooperative Agreement NNX12A047A.

  12. Large area mass analyzer

    NASA Astrophysics Data System (ADS)

    Rachev, Mikhail; Srama, Ralf; Srowig, Andre; Grün, Eberhard

    2004-12-01

    A new time-of-flight spectrometer for the chemical analysis of cosmic dust particles in space has been simulated by Simion 7.0. The instrument is based upon impact ionization. This method is a reliable method for in situ dust detection and is well established. Instruments using the impact ionization flew on board of Helios and Galileo and are still in operation on board of the Ulysses and Cassini-Huygens missions. The new instrument has a large sensitive area of 0.1 m2 in order to achieve a significant number of measurements. The mass resolution M/ΔM>100 and the mass range covers the most relevant elements expected in cosmic dust. The instrument has a reflectron configuration which increases the mass resolution. Most of the ions released during the impact are focused to the detector. The ion detector consists of a large area ion-to-electron converter, an electron reflectron and a microchannel plate detector.

  13. The Universe at Large

    NASA Astrophysics Data System (ADS)

    Münch, Guido; Mampaso, Antonio; Sánchez, Francisco

    1997-11-01

    The Universe at Large presents a unique survey of key questions outstanding in contemporary astronomy and cosmology. In this timely volume, eleven of the world's greatest living astronomers and cosmologists present personal views of what problems must be addressed by future research. Allan Sandage presents a 23-point plan to reach a full understanding of the large-scale structure in the Universe; Geoffrey Burbidge looks at the future of the Quasi Steady State alternative to the Big Bang; E. Margaret Burbidge, Donald Osterbrock and Malcolm Longair discuss active galactic nuclei (AGN); Igor Novikov, Donald Lynden-Bell, Martin Rees and Rashid Sunyaev look at the physics of black holes; and Bernard Pagel and Hubert Reeves concentrate on what we don't yet understand about elements in the cosmos. This book provides a unique review of our current understanding in astronomy and cosmology and a host of profitable research ideas for graduate students and researchers.

  14. Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The larger of two nearby companions of the Milky Way Galaxy that can be seen with the naked eye in the southern hemisphere sky and which are named after the Portuguese navigator, Ferdinand Magellan, who observed them in 1519 during his circumnavigation of the world. Located in the constellation of Dorado, at a distance of about 170 000 light-years, the Large Magellanic Cloud (LMC) has an overall ...

  15. Large area LED package

    NASA Astrophysics Data System (ADS)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  16. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  17. The large pursuit rotor.

    PubMed

    Williams, L R; Grbin, I R

    1976-09-01

    The question of whether certain phenomena that occur on the conventional rotary pursuit and other small apparatus also appear on a gross motor task was examined using a large pursuit rotor that required whole-body movements. College males (n=29) were given 90 10-sec trials over three consecutive days with 30 trials of continuous practice per day. The existence of reactive inhibition, reminiscence, and warmup decrement was confirmed, indicating that common mechanisms underlie both fine and gross bodily movements. In addition, the substantial amounts of learning and the high reliabilities for performance and learning indicated that the present apparatus has considerable potential for motor-learning research.

  18. Large character sums

    NASA Astrophysics Data System (ADS)

    Granville, Andrew; Soundararajan, K.

    2007-04-01

    In 1918 Polya and Vinogradov gave an upper bound for the maximal size of character sums, which still remains the best known general estimate. One of the main results of this paper provides a substantial improvement of the Polya-Vinogradov bound for characters of odd, bounded order. In 1977 Montgomery and Vaughan showed how the Polya-Vinogradov inequality may be sharpened assuming the Generalized Riemann Hypothesis. We give a simple proof of their estimate and provide an improvement for characters of odd, bounded order. The paper also gives characterizations of the characters for which the maximal character sum is large, and it finds a hidden structure among these characters.

  19. Large Optics Technology.

    DTIC Science & Technology

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  20. Large coil test facility

    SciTech Connect

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system.

  1. Large right ventricular thrombus.

    PubMed

    Sousa, Carla; Almeida, Pedro; Gonçalves, Alexandra; Rodrigues, João; Rangel, Inês; Macedo, Filipe; Maciel, M Júlia

    2014-01-01

    Right ventricular thrombosis is a rare yet potentially fatal condition. It has been described in association with hypercoagulability states, autoimmune diseases and dilated cardiomyopathy. Echocardiography constitutes the election tool for diagnosis and characterization of these entities, allowing for the differentiation between the various types of thrombi. We present a case of a patient with alcoholic dilated cardiomyopathy admitted for congestive heart failure and lower respiratory infection. In the diagnostic approach, a routine echocardiography revealed a large mural right ventricular thrombus in association with severe biventricular dysfunction. The patient was proposed for anticoagulation strategy, which he refused.

  2. A large thumb mass.

    PubMed

    Shah, Amit K; Macnair, Rory; Figus, Andrea

    2012-02-01

    A 31-year-old man presented with a 5-year history of a spontaneously occurring soft tissue mass on the palmar aspect of his left non dominant thumb. Over 5 months he was having progressive difficulty flexing at the interphalangeal joint. Magnetic resonance imaging demonstrated an heterogeneously enhancing soft tissue mass likely to be either a peripheral fibromatosis or giant cell tumour of the flexor tendon (Figure 1). Intraoperatively a large neuroma in continuity with the ulnar digital nerve was found and debulked (Figure 2). The diagnosis was confirmed histologically.

  3. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  4. Infinitely Large New Dimensions

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia; Kaloper, Nemanja

    1999-07-29

    We construct intersecting brane configurations in Anti-de-Sitter space localizing gravity to the intersection region, with any number n of extra dimensions. This allows us to construct two kinds of theories with infinitely large new dimensions, TeV scale quantum gravity and sub-millimeter deviations from Newton's Law. The effective 4D Planck scale M{sub Pl} is determined in terms of the fundamental Planck scale M{sub *} and the AdS radius of curvature L via the familiar relation M{sub Pl}{sup 2} {approx} M{sub *}{sup 2+n} L{sup n}; L acts as an effective radius of compactification for gravity on the intersection. Taking M{sub *} {approx} TeV and L {approx} sub-mm reproduces the phenomenology of theories with large extra dimensions. Alternately, taking M{sub *} {approx} L{sup -1} {approx} M{sub Pl}, and placing our 3-brane a distance {approx} 100M{sub Pl}{sup -1} away from the intersection gives us a theory with an exponential determination of the Weak/Planck hierarchy.

  5. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  6. Large Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Angulo, María E.; Mena Marugán, Guillermo A.; Ashtekar, A.

    Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.

  7. Contrasting Large Solar Events

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2010-10-01

    After an unusually long solar minimum, solar cycle 24 is slowly beginning. A large coronal mass ejection (CME) from sunspot 1092 occurred on 1 August 2010, with effects reaching Earth on 3 August and 4 August, nearly 38 years to the day after the huge solar event of 4 August 1972. The prior event, which those of us engaged in space research at the time remember well, recorded some of the highest intensities of solar particles and rapid changes of the geomagnetic field measured to date. What can we learn from the comparisons of these two events, other than their essentially coincident dates? One lesson I took away from reading press coverage and Web reports of the August 2010 event is that the scientific community and the press are much more aware than they were nearly 4 decades ago that solar events can wreak havoc on space-based technologies.

  8. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  9. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  10. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  11. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  12. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  13. Large Databases in Astronomy

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander S.; Gray, Jim; Kunszt, Peter; Thakar, Anirudha; Slutz, Don

    The next-generation astronomy digital archives will cover most of the sky at fine resolution in many wavelengths, from X-rays through ultraviolet, optical, and infrared. The archives will be stored at diverse geographical locations. The intensive use of advanced data archives will enable astronomers to explore their data interactively. Data access will be aided by multidimensional spatial and attribute indices. The data will be partitioned in many ways. Small tag indices consisting of the most popular attributes will accelerate frequent searches. Splitting the data among multiple servers will allow parallel, scalable I/O and parallel data analysis. Hashing techniques will allow efficient clustering, and pair-wise comparison algorithms that should parallelize nicely. Randomly sampled subsets will allow debugging otherwise large queries at the desktop. Central servers will operate a data pump to support sweep searches touching most of the data. The anticipated queries will require special operators related to angular distances and complex similarity tests of object properties, like shapes, colors, velocity vectors, or temporal behaviors. These issues pose interesting data management challenges.

  14. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  15. Large building characterization

    SciTech Connect

    Menetrez, M.Y.; Sanchez, D.C.; Kulp, R.N.; Pyle, B.; Williamson, A.; McDonough, S.

    1994-12-31

    Buildings are characterized in this project by examining radon concentrations and indoor air quality (IAQ) levels as affected by building ventilation dynamics. IAQ data collection stations (IAQDS), for monitoring and data logging, remote switches (pressure and sail switches), and a weather station were installed. Measurements of indoor radon, carbon dioxide (CO{sub 2}), and particle concentrations; temperature; humidity; indoor to outdoor or sub-slab pressure differentials; ambient and sub-slab radon concentrations; and outdoor air intake flow rates were collected. The outdoor air intake was adjusted, and fan cycles were controlled while tracer gas measurements were taken in all zones and IAQDS data are processed. Ventilation, infiltration, mixing rates, radon entry, pressure/temperature convective driving forces, CO{sub 2} generation/decay concentrations, and IAQ levels were defined. These dynamic interacting processes characterize the behavior of this and similar large buildings. The techniques incorporated into the experimental plan are discussed with project rationale. Results and the discussion of those results are beyond the limits of this paper.

  16. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L. |; Rickert, M. |

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  17. Large scale tracking algorithms

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  18. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  19. Applied large eddy simulation.

    PubMed

    Tucker, Paul G; Lardeau, Sylvain

    2009-07-28

    Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity.

  20. Large for Gestational Age (LGA)

    MedlinePlus

    ... 5 Additional Content Medical News Large for Gestational Age (LGA) By Arthur E. Kopelman, MD, The Brody ... Newborns Birth Injury Prematurity Postmaturity Small for Gestational Age (SGA) Large for Gestational Age (LGA) Respiratory Distress ...

  1. Large for gestational age (LGA)

    MedlinePlus

    ... gov/ency/article/002248.htm Large for gestational age (LGA) To use the sharing features on this page, please enable JavaScript. Large for gestational age means that a fetus or infant is larger ...

  2. Large Deviations for Random Trees

    PubMed Central

    Heitsch, Christine

    2010-01-01

    We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures. PMID:20216937

  3. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  4. Health impacts of large dams

    SciTech Connect

    Lerer, L.B.; Scudder, T.

    1999-03-01

    Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.

  5. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    regeneration using our approach with an acellular nerve allograft to be equivalent to standard autograft repair in rodent models. An ongoing large animal ...be clinically acceptable for use in the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial...product. Given that the large animal studies with large caliber nerves in Aim 3 will use AxoGuard we feel that the single layer SIS material is totally

  6. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  7. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  8. Students' Perceptions of Large Classes.

    ERIC Educational Resources Information Center

    Wulff, Donald H.; And Others

    1987-01-01

    Students' perceptions of instruction in large classes are summarized, based on standardized questionnaires administered in lower-division large classes. Students' ratings of classes and responses to open-ended questions are discussed in terms of content and amount learned, specific instructional dimensions, and evaluation processes. (MLW)

  9. Team Learning in Large Classes.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1984-01-01

    Information and suggestions are provided on the use of team learning in large college classes. Introductory material discusses the negative cycle of student-teacher interaction that may be provoked by large classes, and the use of permanent, heterogeneous, six- or seven-member student learning groups as the central focus of class activity as a…

  10. Sharpen Your Skills: Large Type.

    ERIC Educational Resources Information Center

    Knisely, Phyllis

    1983-01-01

    Three short articles about large type transcribing are provided for braille transcribers and teachers of the visually handicapped. The first article explains section IV-B-2 of the National Braille Association Manual for Large Type Transcribing. The second article presents the results of a survey on the kinds of typewriters, types of…

  11. Sharpen Your Skills: Large Type.

    ERIC Educational Resources Information Center

    Knisely, Phillis; Wickham, Marian

    1984-01-01

    Three short articles about large type transcribing are provided for braille transcribers and teachers of the visually handicapped. The first article lists general suggestions for simple typewriter maintenance. The second article reviews the guidelines for typing fractions in large type for mathematics exercises. The third article describes a…

  12. Measuring happiness in large population

    NASA Astrophysics Data System (ADS)

    Wenas, Annabelle; Sjahputri, Smita; Takwin, Bagus; Primaldhi, Alfindra; Muhamad, Roby

    2016-01-01

    The ability to know emotional states for large number of people is important, for example, to ensure the effectiveness of public policies. In this study, we propose a measure of happiness that can be used in large scale population that is based on the analysis of Indonesian language lexicons. Here, we incorporate human assessment of Indonesian words, then quantify happiness on large-scale of texts gathered from twitter conversations. We used two psychological constructs to measure happiness: valence and arousal. We found that Indonesian words have tendency towards positive emotions. We also identified several happiness patterns during days of the week, hours of the day, and selected conversation topics.

  13. Large engines and vehicles, 1958

    NASA Technical Reports Server (NTRS)

    1978-01-01

    During the mid-1950s, the Air Force sponsored work on the feasibility of building large, single-chamber engines, presumably for boost-glide aircraft or spacecraft. In 1956, the Army missile development group began studies of large launch vehicles. The possibilities opened up by Sputnik accelerated this work and gave the Army an opportunity to bid for the leading role in launch vehicles. The Air Force had the responsibility for the largest ballistic missiles and hence a ready-made base for extending their capability for spaceflight. During 1958, actions taken to establish a civilian space agency, and the launch vehicle needs seen by its planners, added a third contender to the space vehicle competition. These activities during 1958 are examined as to how they resulted in the initiation of a large rocket engine and the first large launch vehicle.

  14. Personalized Teaching in Large Classes.

    ERIC Educational Resources Information Center

    Silvia, Evelyn M.; Hom, Carole L.

    1996-01-01

    Refutes the assumption that large classes must be impersonal, characterized by lecture style, and presented in a theorem-proof-example format. Discusses successful strategies for space use, classroom management, and collecting student feedback. (DDR)

  15. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    approach with an acellular nerve allograft to be equivalent to standard autograft repair in rodent models. An ongoing large animal validation study...the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial layer is in contact with the amniotic...AxoGuard and Oasis SIS products are manufactured by Cook Medical. AxoGuard is simply a multi-layered SIS product. Given that the large animal studies with

  16. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2015-10-01

    in rodent models. An ongoing large animal validation study will pave the way for human studies of this technology. 15. SUBJECT TERMS 16. SECURITY...to be clinically acceptable for use in the animal studies in Aim 2. The anatomy of HAM is shown pictorially in Figure 7. In vivo, the epithelial... animal studies with large caliber nerves in Aim 3 will use AxoGuard we feel that the single layer SIS material is totally appropriate for these small

  17. Laparoscopic Management of Large Myomas

    PubMed Central

    Sinha, Rakesh; Sundaram, Meenakshi

    2009-01-01

    The objective of this article is to review the different techniques that have been adopted for removal of large myomas laparoscopically. We have also quoted literature about the impact of myomas on Pregnancy and obstetrical outcome and the effect of laparoscopic myomectomy on the same. Technical modifications to remove large myomas have been described along with methods to reduce intraoperative bleeding. This comprehensive review describes all possibilities of laparoscopic myomectomy irrespective of size, site and number. PMID:22442517

  18. Does Yellowstone need large fires

    SciTech Connect

    Romme, W.H. ); Turner, M.G.; Gardner, R.H.; Hargrove, W.W. )

    1994-06-01

    This paper synthesizes several studies initiated after the 1988 Yellowstone fires, to address the question whether the ecological effects of large fires differ qualitatively as well as quantitatively from small fires. Large burn patches had greater dominance and contagion of burn severity classes, and a higher proportion of crown fire. Burned aspen stands resprouted vigorously over an extensive area, but heavy ungulate browsing prevented establishment of new tree-sized stems. A burst of sexual reproduction occurred in forest herbs that usually reproduce vegetatively, and new aspen clones became established from seed - a rare event in this region. We conclude that the effects of large fires are qualitatively different, but less dramatically so than expected.

  19. Phenomenology of Large Nc QCD

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.

    1999-09-01

    These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c. We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c, while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when large” N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions.

  20. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  1. Pictures of Tethys' large crater.

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This series of Voyager 2 pictures of Tethys shows its distinctive large crater, 400 kilometers (250 miles) in diameter, as it rotates toward the termination and limb of this satellite of Saturn. These images were obtained at four-hour intervals beginning late Aug. 24 and ending early the next day; the distances were 1.1 million km. (670,000 mi.), 826,000 km. (510,000 mi.) and 680,000 km. (420,000 mi.), respectively. The crater, the remnant of a large impact, has a central peak and several concentric rings. Some grooves radiating from the center may be formed of material thrown from the crater during the impact. The bottom frame, with the crater in profile, reveals that its floor has risen back to the spherical shape of the satellite, unlike the large crater seen on Tethys sister moon Mimas. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  2. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  3. Management of large hepatocellular carcinoma.

    PubMed

    Amarapurkar, D N

    2004-04-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. There is increasing incidence of HCC in India. More than 70% of HCC are not suitable for curative treatment. Majority of the HCCs are large when diagnosed all over the world. There is no standard treatment for large HCCs. Different palliative treatments like arterial embolization/chemoembolization, intraarterial lipoidol chemotherapy, hormonal compounds like tamoxifene, octerotide systemic chemotherapy, immuno therapy with interferon, internal radiation with 131I or 99Yttrium. Arterial chemoembolization is the treatment of choice with proved efficacy in selected group of patients. The newer modalities and strategies need to be tried in controlled randomized trials.

  4. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  5. Ideas for Managing Large Classes.

    ERIC Educational Resources Information Center

    Kabel, Robert L.

    1983-01-01

    Describes management strategies used in a large kinetics/industrial chemistry course. Strategies are designed to make instruction in such classes more efficient and effective. Areas addressed include homework assignment, quizzes, final examination, grading and feedback, and rewards for conducting the class in the manner described. (JN)

  6. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  7. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  8. Making Large Classes More Interactive.

    ERIC Educational Resources Information Center

    Brenner, John

    2000-01-01

    Describes the method of using prompts to allow students to have more "voice" in a large class. The prompt assignment requires students to respond anonymously to a statement that concerns the chapter being discussed in the class. Discusses how the Internet has allowed more freedom with the prompts. Puts forth some student responses to the…

  9. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  10. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  11. Large pure intracranial vagal schwannoma.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Costanzo, De Bonis; Carotenuto, Vincenzo; D'Angelo, Vincenzo

    2009-04-01

    We report a patient with a large, pure intracranial vagal schwannoma, compressing the medulla who presented with essential hypertension. Based on this and on previous cases, we suggest that a differentiation of pure intracranial schwannomas (subtype A1) from intracranial schwannomas with some extension in the jugular foramen (type A) should be used.

  12. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  13. Large deviations and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  14. Large deviations in Taylor dispersion

    NASA Astrophysics Data System (ADS)

    Kahlen, Marcel; Engel, Andreas; Van den Broeck, Christian

    2017-01-01

    We establish a link between the phenomenon of Taylor dispersion and the theory of empirical distributions. Using this connection, we derive, upon applying the theory of large deviations, an alternative and much more precise description of the long-time regime for Taylor dispersion.

  15. Pesa Large Red Dry Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Released in 2006, Pesa was derived from the single cross Rojo x Kablanketi made in Dec-Jan 1992-93. The parent ‘Rojo’ is a large red-seeded cultivar released by SUA in 1997. It has I bc-12 resistance to BCMV and BCMNV, resistance to the prevalent races of ALS, and moderate resistance to CBB, and H...

  16. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  17. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  18. Structural qualification of large spacecraft

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.

    1986-01-01

    Over the past twenty-five (25) years of the space program, the major challenge in the structural qualification of the primary structure has shifted from conducting a test that simulated the environment to accurately predicting the structural member loads in flight. Once the flight loads are avaliable, a number of different test methods are used to qualify the structure by subjecting it to the proper loads. The qualification challenge for future large spacecraft will be to adequately predict its dynamic characteristic in space to assure that it can be controlled to meet the mission objectives. A new test concept that may allow acquisition of modal data by ground tests for verification of mathematical models of large flexible space structures which can't be ground tested by conventional methods is discussed.

  19. Development of large rotorcraft transmissions

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Drago, R. J.; Mack, J. C.

    1984-01-01

    The U.S. Army Heavy Lift Helicopter (HLH) represents a large rotorcraft which was developed by an American aerospace company. In the early 1970's with the HLH Advanced Technology Components (ATC) program, the development of large rotorcraft transmission and drive systems was started. Failures in the spiral bevel gearing were experienced in tests because the employed method of analysis had not considered the effect of rim bending. Consequently, new gears with strengthened rims were designed and fabricated. For a more accurate prediction of the load capacity of the gears, an extensive Finite Element Method (FEM) system was developed. The U.S. Army's XCH-62 HLH aft rotor transmission was finally successfully tested at full design torque and speed. A description of the test program is provided, and the analytical program is discussed. The analytical phase includes the development of a preprocessing program which aids in the review of calculated FEM stresses.

  20. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  1. Large Capacity Missile Carrier (CMX)

    DTIC Science & Technology

    1993-12-01

    is examined. It is included that the benefits of the large number of additional missiles provided by the CMX more than offsets the lost capability of...project was to exercise the ship design process from the requirements setting phase through the preliminary design, including design analysis. The...Navy to meet the challenges ensuing from this assumed global scenario. The Student Design Team was tasked to develop scenarios for the deployment of the

  2. Collapse of large vapor bubbles

    NASA Technical Reports Server (NTRS)

    Tegart, J.; Dominick, S.

    1982-01-01

    The refilling of propellant tanks while in a low-gravity environment requires that entrapped vapor bubbles be collapsed by increasing the system pressure. Tests were performed to verify the mechanism of collapse for these large vapor bubbles with the thermodynamic conditions, geometry, and boundary conditions being those applicable to propellant storage systems. For these conditions it was found that conduction heat transfer determined the collapse rate, with the specific bubble geometry having a significant influence.

  3. Simulating cosmic reionization: how large a volume is large enough?

    NASA Astrophysics Data System (ADS)

    Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.; Mao, Yi; Pen, Ue-Li

    2014-03-01

    We present the largest-volume (425 Mpc h-1 = 607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investigate the effects this additional power has on the progress, duration and features of reionization and on selected reionization observables. We find that comoving volume of ˜100 Mpc h-1 per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume. We find that sub-volumes of ˜100 Mpc h-1 per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of ˜50 Mpc h-1 or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, as high as Δz ˜ 1 for ˜50 Mpc h-1 volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Δz ˜ 0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all show good convergence for volumes of ˜200 Mpc h-1, but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k < 0.25 h Mpc-1) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies.

  4. Large Component Removal/Disposal

    SciTech Connect

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  5. TURP for BPH. How large is too large?

    PubMed

    Persu, C; Georgescu, D; Arabagiu, I; Cauni, V; Moldoveanu, C; Geavlete, P

    2010-01-01

    BPH remains one of the most common diseases that the urologist has to manage. The last decade brought numerous new techniques, aiming to improve the minimally invasive approach to BPH, but, for the moment, none had changed the place of TURP as the gold standard treatment for medium sized prostates. Based on a large personal experience, the authors present a study in which TURP is used for prostates over 80 ml, the cutoff point set by the guidelines of the European Association of Urology. The rationale for this study is that many situations require minimally invasive treatment, based on the express request of the patient, other conditions that makes open surgery very difficult or impossible, or the need for a quick discharge in an overcrowded service. The aim of the study was to prove that TURP is safe and effective even in larger prostates. The technique used is basically the classic one, with minor tactical alterations in some cases. Some cases required a two-stage approach, but offered good functional results after the first stage. The results proved that, with a good technique, a skilled urologist might achieve the same results by using TURP or open surgery for large sized prostates.

  6. TURP for BPH. How Large is Too Large?

    PubMed Central

    Georgescu, D; Arabagiu, I; Cauni, V; Moldoveanu, C; Geavlete, P

    2010-01-01

    BPH remains one of the most common disease that the urologist has to manage. The last decade brought numerous new techniques, aiming to improve the minimally invasive approach to BPH, but none had, for the moment, changed the place of TURP as the gold standard treatment for medium sized prostates. Based on a large personal experience, the authors present a study in which TURP is used for prostates over 80ml, the cutoff point set by the guidelines of the European Association of Urology. The rationale for this study is that many situations require minimally invasive treatment, based on the express request of the patient, other conditions that makes open surgery very difficult or impossible, or the need for a quick discharge in an overcrowded service. The aim of the study was to prove that TURP is safe and effective even in larger prostates. The technique used is basically the classic one, with minor tactical alterations in some cases. Some cases required a two-stage approach, but offered good functional results after the first stage. The results proved that, with a good technique, a skilled urologist might achieve the same results by using TURP or open surgery for large sized prostates. PMID:21254734

  7. Large wood recruitment and transport during large floods: A review

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Lucía, A.; Rickenmann, D.

    2016-09-01

    Large wood (LW) elements transported during large floods are long known to have the capacity to induce dangerous obstructions along the channel network, mostly at bridges and at hydraulic structures such as weirs. However, our current knowledge of wood transport dynamics during high-magnitude flood events is still very scarce, mostly because these are (locally) rare and thus unlikely to be directly monitored. Therefore, post-event surveys are invaluable ways to get insights (although indirectly) on LW recruitment processes, transport distance, and factors inducing LW deposition - all aspects that are crucial for the proper management of river basins related to flood hazard mitigation. This paper presents a review of the (quite limited) literature available on LW transport during large floods, drawing extensively on the authors' own experience in mountain and piedmont rivers, published and unpublished. The overall picture emerging from these studies points to a high, catchment-specific variability in all the different processes affecting LW dynamics during floods. Specifically, in the LW recruitment phase, the relative floodplain (bank erosion) vs. hillslope (landslide and debris flows) contribution in mountain rivers varies substantially, as it relates to the extent of channel widening (which depends on many variables itself) but also to the hillslope-channel connectivity of LW mobilized on the slopes. As to the LW transport phase within the channel network, it appears to be widely characterized by supply-limited conditions; whereby LW transport rates (and thus volumes) are ultimately constrained by the amount of LW that is made available to the flow. Indeed, LW deposition during floods was mostly (in terms of volume) observed at artificial structures (bridges) in all the documented events. This implies that the estimation of LW recruitment and the assessment of clogging probabilities for each structure (for a flood event of given magnitude) are the most important

  8. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  9. Foreshock occurrence before large earthquakes

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform

  10. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  11. Large block test status report

    SciTech Connect

    Wilder, D.G.; Lin, W.; Blair, S.C.

    1997-08-26

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved.

  12. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  13. Large holograms in traveling exhibitions

    NASA Astrophysics Data System (ADS)

    Christakis, Anne-Marie

    1994-01-01

    The presentation of large holograms in travelling exhibitions has always posed problems, mainly due to lack of space. The Museum of Holography was consequently required to develop, with Jean-Francois Moreau, display consoles which are light, affordable and completely detachable. In a permanent exposition at the Forum des Halles in Paris, the Museum displays a room with 22 holograms, each measuring 1 m X 1 m, in a structure designed by the architect Fabien Vienne. The different systems used by the Museum are presented here.

  14. Radiative transport in large arteries

    PubMed Central

    Ruh, Dominic; Subramanian, Sivaraman; Theodor, Michael; Zappe, Hans; Seifert, Andreas

    2013-01-01

    A refined model for the photon energy distribution in a living artery is established by solving the radiative transfer equation in a cylindrical geometry, using the Monte Carlo method. Combining this model with the most recent experimental values for the optical properties of flowing blood and the biomechanics of a blood-filled artery subject to a pulsatile pressure, we find that the optical intensity transmitted through large arteries decreases linearly with increasing arterial distension. This finding provides a solid theoretical foundation for measuring photoplethysmograms. PMID:24466476

  15. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  16. Large spin systematics in CFT

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Bissi, Agnese; Lukowski, Tomasz

    2015-11-01

    Using conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analyticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new "reciprocity" principle for structure constants. We argue that these results extend also to non-conformal theories.

  17. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  18. Mobile Platform for Large Structures

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Schneider, W. C.

    1987-01-01

    Proposed platform moves forward and in reverse, turns left and right, and changes planes. Mobile-platform concept proposed to move remote manipulators, workers, or other loads over truss panels on large structures. Platform moves at constant speed so does not cause swinging motion in hanging loads and overstress remote-manipulator arms. Transferred around corners to adjacent panels. Platform rides on sprocketed guide pins extending from structure at truss joints. Set of orthogonal tracks under platform slides on pins, which have enlarged heads to interlock with tracks. At least three tracks engage at least three pins at any position on panel so platform adequately and stably supported.

  19. Large-Scale Sequence Comparison.

    PubMed

    Lal, Devi; Verma, Mansi

    2017-01-01

    There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.

  20. Mesoscale Ocean Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2015-11-01

    The highest resolution global climate models (GCMs) can now resolve the largest scales of mesoscale dynamics in the ocean. This has the potential to increase the fidelity of GCMs. However, the effects of the smallest, unresolved, scales of mesoscale dynamics must still be parametrized. One such family of parametrizations are mesoscale ocean large eddy simulations (MOLES), but the effects of including MOLES in a GCM are not well understood. In this presentation, several MOLES schemes are implemented in a mesoscale-resolving GCM (CESM), and the resulting flow is compared with that produced by more traditional sub-grid parametrizations. Large eddy simulation (LES) is used to simulate flows where the largest scales of turbulent motion are resolved, but the smallest scales are not resolved. LES has traditionally been used to study 3D turbulence, but recently it has also been applied to idealized 2D and quasi-geostrophic (QG) turbulence. The MOLES presented here are based on 2D and QG LES schemes.

  1. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  2. Damping characterization in large structures

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Eke, Estelle M.

    1991-01-01

    This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.

  3. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  4. Historical challenge of large lenses

    NASA Astrophysics Data System (ADS)

    Johnson, Kevin L.

    2002-02-01

    To present a full account of the developments in the manufacture of large lenses one needs to address wider issues rather than just provide a catalogue of technological progress. The advances in glass manufacture and improvement in optical techniques have to be considered in relation to the cultural, social and economic factors that have determined where, how and why large lens manufacture developed in specific countries. The challenge facing historians trying to tackle this technological theme, is that it is often poorly documented and little is preserved in the historical records. Until relatively recent times, opticians have concealed their methods, trade secrecy being an important economic strategy. To provide an example, it should be noted that although William Herschel produced the best optics and telescopes of the day, he published practically nothing about his methods. What has been gleaned of his techniques has only been uncovered by careful study of surviving manuscript sources and measurement of his surviving optics. Such was William's personal knowledge, that his son John had to take instruction from his father to refurbish William Herschel's 20-foot telescope. This training gave John tacit knowledge of William's methods and allowed him to successfully undertake his cape observations in the Southern Hemisphere. In spite of the shortcomings of the historical record, historians can give a measured account of the developments of lens optics by studying surviving telescopes and their optics.

  5. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  6. Large scale cluster computing workshop

    SciTech Connect

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  7. Large data centers interconnect bottlenecks.

    PubMed

    Ghiasi, Ali

    2015-02-09

    Large data centers interconnect bottlenecks are dominated by the switch I/O BW and the front panel BW as a result of pluggable modules. To overcome the front panel BW and the switch ASIC BW limitation one approach is to either move the optics onto the mid-plan or integrate the optics into the switch ASIC. Over the last 4 years, VCSEL based optical engines have been integrated into the packages of large-scale HPC routers, moderate size Ethernet switches, and even FPGA's. Competing solutions based on Silicon Photonics (SiP) have also been proposed for integration into HPC and Ethernet switch packages but with better integration path through the use of TSV (Through Silicon Via) stack dies. Integrating either VCSEL or SiP based optical engines into complex ASIC package that operates at high temperatures, where the required reliability is not trivial, one should ask what is the technical or the economic advantage before embarking on such a complex integration. High density Ethernet switches addressing data centers currently in development are based on 25G NRZ signaling and QSFP28 optical module that can support up to 3.6 Tb of front panel bandwidth.

  8. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  9. Histotripsy Liquefaction of Large Hematomas.

    PubMed

    Khokhlova, Tatiana D; Monsky, Wayne L; Haider, Yasser A; Maxwell, Adam D; Wang, Yak-Nam; Matula, Thomas J

    2016-07-01

    Intra- and extra-muscular hematomas result from repetitive injury as well as sharp and blunt limb trauma. The clinical consequences can be serious, including debilitating pain and functional deficit. There are currently no short-term treatment options for large hematomas, only lengthy conservative treatment. The goal of this work was to evaluate the feasibility of a high intensity focused ultrasound (HIFU)-based technique, termed histotripsy, for rapid (within a clinically relevant timeframe of 15-20 min) liquefaction of large volume (up to 20 mL) extra-vascular hematomas for subsequent fine-needle aspiration. Experiments were performed using in vitro extravascular hematoma phantoms-fresh bovine blood poured into 50 mL molds and allowed to clot. The resulting phantoms were treated by boiling histotripsy (BH), cavitation histotripsy (CH) or a combination in a degassed water tank under ultrasound guidance. Two different transducers operating at 1 MHz and 1.5 MHz with f-number = 1 were used. The liquefied lysate was aspirated and analyzed by histology and sized in a Coulter Counter. The peak instantaneous power to achieve BH was lower than (at 1.5 MHz) or equal to (at 1 MHz) that which was required to initiate CH. Under the same exposure duration, BH-induced cavities were one and a half to two times larger than the CH-induced cavities, but the CH-induced cavities were more regularly shaped, facilitating easier aspiration. The lysates contained a small amount of debris larger than 70 μm, and 99% of particulates were smaller than 10 μm. A combination treatment of BH (for initial debulking) and CH (for liquefaction of small residual fragments) yielded 20 mL of lysate within 17.5 minutes of treatment and was found to be most optimal for liquefaction of large extravascular hematomas.

  10. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  11. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  12. Large-scale Digitoxin Intoxication

    PubMed Central

    Lely, A. H.; Van Enter, C. H. J.

    1970-01-01

    Because of an error in the manufacture of digoxin tablets a large number of patients took tablets that contained 0·20 mg. of digitoxin and 0·05 mg. of digoxin instead of the prescribed 0·25 mg. of digoxin. The symptoms are described of 179 patients who took these tablets and suffered from digitalis intoxication. Of these patients, 125 had taken the faultily composed tablets for more than three weeks. In 48 patients 105 separate disturbances in rhythm or in atrioventricular conduction were observed on the electrocardiogram. Extreme fatigue and serious eye conditions were observed in 95% of the patients. Twelve patients had a transient psychosis. Extensive ophthalmological observations indicated that the visual complaints were most probably caused by a transient retrobulbar neuritis. PMID:5273245

  13. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  14. Gyrodampers for large space structures

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.; Margulies, G.

    1979-01-01

    The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.

  15. LARGE BLOCK TEST STATUS REPORT

    SciTech Connect

    Wilder, D. G.; Blair, S. C.; Buscheck, T.; Carloson, R. C.; Lee, K.; Meike, A.; Ramirez, J. L.; Sevougian, D.

    1997-08-26

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved. The United States Department of Energy (DOE) is investigatinq the suitability of Yucca Mountain (YM) as a potential site for the nation's first high-level nuclear waste repository. As shown in Fig. 1-1, the site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert.

  16. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  17. Black rings at large D

    NASA Astrophysics Data System (ADS)

    Tanabe, Kentaro

    2016-02-01

    We study the effective theory of slowly rotating black holes at the infinite limit of the spacetime dimension D. This large D effective theory is obtained by integrating the Einstein equation with respect to the radial direction. The effective theory gives equations for non-linear dynamical deformations of a slowly rotating black hole by effective equations. The effective equations contain the slowly rotating Myers-Perry black hole, slowly boosted black string, non-uniform black string and black ring as stationary solutions. We obtain the analytic solution of the black ring by solving effective equations. Furthermore, by perturbation analysis of effective equations, we find a quasinormal mode condition of the black ring in analytic way. As a result we confirm that thin black ring is unstable against non-axisymmetric perturbations. We also include 1 /D corrections to the effective equations and discuss the effects by 1 /D corrections.

  18. Large area mercuric iodide photodetectors

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  19. Large Aperture Scintillometer Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Kleissl, J.; Gomez, J.; Hong, S.-H.; Hendrickx, J. M. H.; Rahn, T.; Defoor, W. L.

    2008-07-01

    Two field studies with six large aperture scintillometers (LASs) were performed using horizontal and slant paths. The accuracy of this novel and increasingly popular technique for measuring sensible heat fluxes was quantified by comparing measurements from different instruments over nearly identical transects. Random errors in LAS measurements were small, since correlation coefficients between adjacent measurements were greater than 0.995. However, for an ideal set-up differences in linear regression slopes of up to 21% were observed with typical inter-instrument differences of 6%. Differences of 10% are typical in more realistic measurement scenarios over homogeneous natural vegetation and different transect heights and locations. Inaccuracies in the optics, which affect the effective aperture diameter, are the most likely explanation for the observed differences.

  20. OSIRIS Large Guaranteed Time Programs

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Bongiovanni, A.; Ramón-Pérez, M.; Pérez García, A. M.; Alfaro, E. J.; Castaneda, H. O.; Cervino, M.; Gallego, J.; González, J. J.; González-Serrano, J. I.; Lara-López, M. A.; Pérez-Martínez, R.; Pintos-Castro, I.; Sánchez-Portal, M.; Bland-Hawthorn, J.; Jones, D. H.

    2017-03-01

    The status of OTELO and Lockman SpReSO surveys, the two large guaranteed time programs currently under way using OSIRIS at the 10.4m GTC is presented. The OTELO project, designed to detect the main optical emission lines from Hα to Lyα at redshifts from 0.4 through 7, is the deepest emission line survey to date, with unprecedented sensitivity in the detection of small equivalent widths. Lockman SpReSO is aimed to obtaining optical spectra, up to 24.5 AB magnitudes, in the central 24×24 square arcminutes of the Lockman Hole field, which has been observed with ROSAT and XMM–Newton at the highest depth. Lockman SpReSO mainly targets Far Infrared sources detected with the Herschel Space Observatory.

  1. Large exotropia after retrobulbar anesthesia

    PubMed Central

    Kim, Chung-Hwan; Kim, Ungsoo Samuel

    2016-01-01

    A 67-year-old woman complained of horizontal diplopia shortly following bilateral cataract surgery with intraocular lens implantation performed under retrobulbar anesthesia. Retrobulbar anesthesia was administered at an inferotemporal injection site using 1 cc lidocaine hydrochloride 2% mixed with bupivacaine hydrochloride 0.5%. The initial ophthalmologic evaluation showed a 12-prism diopter (PD) exotropia, and ocular motility evaluation revealed marked limitation of adduction without vertical limitation. One year after cataract surgery, the exodeviation increased up to 60 PD. The patient underwent an 8.0-mm recession of the right lateral rectus and a 6.0-mm recession of the left lateral rectus. Both lateral rectus muscles were biopsied, and biopsy revealed dense fibrous connective tissue without viable muscular cells. The lateral rectus muscle might be injured by retrobulbar anesthesia, and it could induce large exotropia. PMID:26953032

  2. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  3. Large and small photovoltaic powerplants

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel

    The installed base of photovoltaic power plants in the United States has roughly doubled every 1 to 2 years between 2008 and 2015. The primary economic drivers of this are government mandates for renewable power, falling prices for all PV system components, 3rd party ownership models, and a generous tariff scheme known as net-metering. Other drivers include a desire for decreasing the environmental impact of electricity generation and a desire for some degree of independence from the local electric utility. The result is that in coming years, PV power will move from being a minor niche to a mainstream source of energy. As additional PV power comes online this will create challenges for the electric grid operators. We examine some problems related to large scale adoption of PV power in the United States. We do this by first discussing questions of reliability and efficiency at the PV system level. We measure the output of a fleet of small PV systems installed at Tucson Electric Power, and we characterize the degradation of those PV systems over several years. We develop methods to predict energy output from PV systems and quantify the impact of negatives such as partial shading, inverter inefficiency and malfunction of bypass diodes. Later we characterize the variability from large PV systems, including fleets of geographically diverse utility scale power plants. We also consider the power and energy requirements needed to smooth those systems, both from the perspective of an individual system and as a fleet. Finally we report on experiments from a utility scale PV plus battery hybrid system deployed near Tucson, Arizona where we characterize the ability of this system to produce smoothly ramping power as well as production of ancillary energy services such as frequency response.

  4. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  5. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  6. Low Cost Large Space Antennas

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur B.; Freeland, Robert

    1997-01-01

    The mobile communication community could significantly benefit from the availability of low-cost, large space-deployable antennas. A new class of space structures, called inflatable deployable structures, will become an option for this industry in the near future. This new technology recently made significant progress with respect to reducing the risk of flying large inflatable structures in space. This progress can be attributed to the successful space flight of the Inflatable Antenna Experiment in May of 1996, which prompted the initiation of the NASA portion of the joint NASA/DOD coordinated Space Inflatables Program, which will develop the technology to be used in future mobile communications antennas along with other users. The NASA/DOD coordinated Space Inflatables Program was initiated in 1997 as a direct result of the Inflatable Antenna Experiment. The program adds a new NASA initiative to a substantial DOD program that involves developing a series of ground test hardware, starting with 3 meter diameter units and advancing the manufacturing techniques to fabricate a 25 meter ground demonstrator unit with surface accuracy exceeding the requirements for mobile communication applications. Simultaneously, the program will be advancing the state of the art in several important inflatable technology areas, such as developing rigidizable materials for struts and tori and investigating thin film technology issues, such as application of coatings, property measurement and materials processing and assembly techniques. A very important technology area being addressed by the program is deployment control techniques. The program will sponsor activities that will lead to understanding the effects of material strain energy release, residual air in the stowed structure, and the design of the launch restraint and release system needed to control deployment dynamics. Other technology areas directly applicable to developing inflatable mobile communication antennas in the near

  7. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  8. Large optical field enhancement for nanotips with large opening angles

    NASA Astrophysics Data System (ADS)

    Thomas, Sebastian; Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter

    2015-06-01

    We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm the strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≥slant 5 nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ∼ 35 for Au and ∼ 12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.

  9. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  10. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  11. Large Block Test Final Report

    SciTech Connect

    Lin, W

    2001-12-01

    This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively well known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test

  12. Large-scale PACS implementation.

    PubMed

    Carrino, J A; Unkel, P J; Miller, I D; Bowser, C L; Freckleton, M W; Johnson, T G

    1998-08-01

    The transition to filmless radiology is a much more formidable task than making the request for proposal to purchase a (Picture Archiving and Communications System) PACS. The Department of Defense and the Veterans Administration have been pioneers in the transformation of medical diagnostic imaging to the electronic environment. Many civilian sites are expected to implement large-scale PACS in the next five to ten years. This presentation will related the empirical insights gleaned at our institution from a large-scale PACS implementation. Our PACS integration was introduced into a fully operational department (not a new hospital) in which work flow had to continue with minimal impact. Impediments to user acceptance will be addressed. The critical components of this enormous task will be discussed. The topics covered during this session will include issues such as phased implementation, DICOM (digital imaging and communications in medicine) standard-based interaction of devices, hospital information system (HIS)/radiology information system (RIS) interface, user approval, networking, workstation deployment and backup procedures. The presentation will make specific suggestions regarding the implementation team, operating instructions, quality control (QC), training and education. The concept of identifying key functional areas is relevant to transitioning the facility to be entirely on line. Special attention must be paid to specific functional areas such as the operating rooms and trauma rooms where the clinical requirements may not match the PACS capabilities. The printing of films may be necessary for certain circumstances. The integration of teleradiology and remote clinics into a PACS is a salient topic with respect to the overall role of the radiologists providing rapid consultation. A Web-based server allows a clinician to review images and reports on a desk-top (personal) computer and thus reduce the number of dedicated PACS review workstations. This session

  13. Anthropogenic Triggering of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor ``foreshocks'', since the induction may occur with a delay up to several years.

  14. Large cities are less green.

    PubMed

    Oliveira, Erneson A; Andrade, José S; Makse, Hernán A

    2014-02-28

    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent β = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias.

  15. Large Angle Satellite Attitude Maneuvers

    NASA Technical Reports Server (NTRS)

    Cochran, J. E.; Junkins, J. L.

    1975-01-01

    Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.

  16. Large Eddy Simulations in Astrophysics

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfram

    2015-12-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid-scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid-scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamic procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid-scale turbulence energy model allows for a particularly elegant and physically well-motivated way of preserving momentum and energy conservation in adaptive mesh refinement (AMR) simulations. Moreover, the notion of shear-improved models for in-homogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.

  17. Chemotaxis of large granular lymphocytes

    SciTech Connect

    Pohajdak, B.; Gomez, J.; Orr, F.W.; Khalil, N.; Talgoy, M.; Greenberg, A.H.

    1986-01-01

    The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-..beta.. and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1/sup +/ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 ..mu..m nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (> 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML(/sup 3/H)P, suggesting that LGL bear receptors for the chemotactic peptide.

  18. Large boulders at landing site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Large boulders are visible in this enlargement of pictures taken by the Imager for Mars Pathfinder (IMP) lander camera on July 4, 1997. The landing site is in the dry flood channel named Ares Valles. The boulders probably represent deposits from one of the catastrophic floods that carved the ancient channel. Between the rocks is brownish windblown soil. The gray-tan sky results from dust particles in the atmosphere.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Facilitating Navigation Through Large Archives

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Troung, Dat; Hodgson, Terry R.

    2005-01-01

    Automated Visual Access (AVA) is a computer program that effectively makes a large collection of information visible in a manner that enables a user to quickly and efficiently locate information resources, with minimal need for conventional keyword searches and perusal of complex hierarchical directory systems. AVA includes three key components: (1) a taxonomy that comprises a collection of words and phrases, clustered according to meaning, that are used to classify information resources; (2) a statistical indexing and scoring engine; and (3) a component that generates a graphical user interface that uses the scoring data to generate a visual map of resources and topics. The top level of an AVA display is a pictorial representation of an information archive. The user enters the depicted archive by either clicking on a depiction of subject area cluster, selecting a topic from a list, or entering a query into a text box. The resulting display enables the user to view candidate information entities at various levels of detail. Resources are grouped spatially by topic with greatest generality at the top layer and increasing detail with depth. The user can zoom in or out of specific sites or into greater or lesser content detail.

  20. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  1. How large should whales be?

    PubMed

    Clauset, Aaron

    2013-01-01

    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2 g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000 g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000 g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.

  2. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  3. Control of large space structures

    NASA Technical Reports Server (NTRS)

    Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.

    1979-01-01

    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.

  4. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1–10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor “foreshocks”, since the induction may occur with a delay up to several years. PMID:25156190

  5. Large cities are less green

    NASA Astrophysics Data System (ADS)

    Oliveira, Erneson A.; Andrade, José S.; Makse, Hernán A.

    2014-02-01

    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent β = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias.

  6. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  7. Disorder in large- N theories

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon

    2016-04-01

    We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large- N theories (vector models or gauge theories in the `t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ > d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1 /N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.

  8. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  9. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  10. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  11. Temporal Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Thomas, B. C.

    2004-01-01

    In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.

  12. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1994-12-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astronomico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in late fall 1995 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia. Construction

  13. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1995-05-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in spring of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximicrons flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximicrons stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia

  14. Large capacity temporary visual memory

    PubMed Central

    Endress, Ansgar D.; Potter, Mary C.

    2014-01-01

    Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181

  15. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently

  16. Large springs of east Tennessee

    USGS Publications Warehouse

    Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.

    1963-01-01

    Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients

  17. The Very Large Ecological Array

    NASA Astrophysics Data System (ADS)

    Hamilton, M. P.; Dawson, T. E.; Thompson, S. E.

    2011-12-01

    Regional climatic change and variability is expected to alter the boundary conditions to which ecosystems and landscapes are subject. Unambiguously identifying how these changes alter the biophysics of ecosystems or the phenology or behavior of individual organisms, however, remains challenging due to the complexity and heterogeneity of real landscapes. One of the aims of the Very Large Ecological Array (VeLEA) - a landscape-scale distributed wireless environmental monitoring system under deployment at the University of California, Blue Oak Ranch Reserve (Mount Hamilton Range, Santa Clara County, California) - is to allow a sufficiently fine-resolution understanding of spatial and temporal variability in the landscape that such changes can be reliably quantified. The VeLEA is structured around two wireless mesh radio networks, with solar-powered nodes spaced by up to 2 miles. This allows widely distributed arrays of instrumentation to be deployed over hundreds to thousands of hectares. The first network supports ten weather stations (recording barometric pressure, temperature, humidity, wind, rainfall, total solar radiation and leaf wetness), along with sixty nodes measuring humidity and air temperature at 1m above ground. Future deployments will extend the network to include soil moisture, soil temperature, piezometric head and streamflow across the site. The second network supports an array of 10 networked cameras providing real-time viewing and time-lapse recording of animal behavior, vegetation phenology and aquatic variability. An important goal of the VeLEA project is to optimize the deployment of wireless nodes with respect to spatial and temporal variation at the site. Preliminary data obtained from the initial deployments are being used to characterize spatial and temporal variability across the site and to investigate mechanistic and statistical methods for interpolating and up-scaling that data. Observing and characterizing such spatio

  18. Experiments with large enclosed ecosystems.

    PubMed

    Davies, J M; Gamble, J C

    1979-08-08

    conclusion that the levels of mercury found in surface waters around the coast of the U.K. (0.001--0.022 microgram Hg/l) are one or two orders of magnitude below the levels at which a response of the biological population can be demonstrated. The usefulness of large scale enclosed ecosystems for further pollution research is discussed and it is concluded that those facilities that provided a link between the water column and the sediments would be most useful since they would (1) enable estimates to be made of the flux rates of pollutants from the water column to the sediments; and (2) allow experiments to be carried out with the pollutant in contact with sediment in its natural form.

  19. Large space systems technology, 1981. [conferences

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.

  20. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  1. 27 CFR 19.915 - Large plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Large plants. 19.915... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.915 Large plants. Any person wishing to establish a large plant shall make application for and obtain...

  2. Large Devaluations and the Real Exchange Rate

    ERIC Educational Resources Information Center

    Burstein, Ariel; Eichenbaum, Martin; Rebelo, Sergio

    2005-01-01

    In this paper we argue that the primary force behind the large drop in real exchange rates that occurs after large devaluations is the slow adjustment in the prices of nontradable goods and services. Our empirical analysis uses data from five large devaluation episodes: Argentina (2002), Brazil (1999), Korea (1997), Mexico (1994), and Thailand…

  3. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  4. SOME TRAINING IMPLICATIONS OF LARGE SHELTERS.

    ERIC Educational Resources Information Center

    BEND, EMIL

    BASED LARGELY ON AIR RESEARCH ON SHELTER MANAGEMENT SIMULATION, AN ANALYSIS WAS MADE OF THE IMPACT OF THE LARGE, COMPLEX SHELTER ON SHELTER MANAGEMENT TRAINING NEEDS. THE LARGE SHELTER REQUIRES THE TYPE OF LEADERSHIP THAT ONLY THOSE WHO ALREADY HAVE SUPERVISORY SKILLS CAN SUPPLY. SUCH PEOPLE ARE NEITHER ATTRACTED NOR HELPED BY THE USUAL SHELTER…

  5. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  6. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  7. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  8. Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers

    PubMed Central

    Basak, Supratim; Blanco, Alvaro; López, Cefe

    2016-01-01

    Intensity fluctuations in lasers are commonly studied above threshold in some special configurations (especially when emission is fed back into the cavity or when two lasers are coupled) and related with their chaotic behaviour. Similar fluctuating instabilities are usually observed in random lasers, which are open systems with plenty of quasi-modes whose non orthogonality enables them to exchange energy and provides the sort of loss mechanism whose interplay with pumping leads to replica symmetry breaking. The latter however, had never been observed in plain cavity lasers where disorder is absent or not intentionally added. Here we show a fluctuating lasing behaviour at the lasing threshold both in solid and liquid dye lasers. Above and below a narrow range around the threshold the spectral line-shape is well correlated with the pump energy. At the threshold such correlation disappears, and the system enters a regime where emitted laser fluctuates between narrow, intense and broad, weak peaks. The immense number of modes and the reduced resonator quality favour the coupling of modes and prepares the system so that replica symmetry breaking occurs without added disorder. PMID:27558968

  9. Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers.

    PubMed

    Basak, Supratim; Blanco, Alvaro; López, Cefe

    2016-08-25

    Intensity fluctuations in lasers are commonly studied above threshold in some special configurations (especially when emission is fed back into the cavity or when two lasers are coupled) and related with their chaotic behaviour. Similar fluctuating instabilities are usually observed in random lasers, which are open systems with plenty of quasi-modes whose non orthogonality enables them to exchange energy and provides the sort of loss mechanism whose interplay with pumping leads to replica symmetry breaking. The latter however, had never been observed in plain cavity lasers where disorder is absent or not intentionally added. Here we show a fluctuating lasing behaviour at the lasing threshold both in solid and liquid dye lasers. Above and below a narrow range around the threshold the spectral line-shape is well correlated with the pump energy. At the threshold such correlation disappears, and the system enters a regime where emitted laser fluctuates between narrow, intense and broad, weak peaks. The immense number of modes and the reduced resonator quality favour the coupling of modes and prepares the system so that replica symmetry breaking occurs without added disorder.

  10. Force Sensor for Large Robot Arms

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Primus, H. C.; Scheinman, V. D.

    1985-01-01

    Modified Maltese-cross force sensor larger and more sensitive than earlier designs. Measures inertial forces and torques exerted on large robot arms during free movement as well as those exerted by claw on manipulated objects. Large central hole of sensor allows claw drive mounted inside arm instead of perpendicular to its axis, eliminating potentially hazardous projection. Originally developed for Space Shuttle, sensor finds applications in large industrial robots.

  11. Global Behavior in Large Scale Systems

    DTIC Science & Technology

    2013-12-05

    Sinopoli, and J. Moura, “ Distributed detection over time varying networks: Large deviations analysis,” in Communication, Control , and Computing...and J. Moura, “ Distributed detection via gaussian running consensus : Large deviations asymptotic analysis,” Signal Processing, IEEE Transactions on... Distributed detection via Gaussian running consensus : large deviations asymptotic analysis,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp

  12. How Large Are Large Classes? Lancaster-Leeds Language Learning in Large Classes Research Project Report No. 4.

    ERIC Educational Resources Information Center

    Coleman, Hywel

    This report confirms anecdotal evidence that language teachers do find large classes to be problematic, collates data on class sizes in various parts of the world, and investigates the possibility of defining a large class, at least from the teachers'points of view. The first section is introductory. The second presents findings of a small-scale…

  13. What is a large-scale dynamo?

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  14. Scalar gain interpretation of large order filters

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Mook, D. Joseph

    1993-01-01

    A technique is developed which demonstrates how to interpret a large fully-populated filter gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate the method.

  15. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  16. Getting Active in the Large Lecture

    ERIC Educational Resources Information Center

    Huerta, Juan Carlos

    2007-01-01

    The benefits of active learning are well documented; nonetheless, the implementation of active learning strategies can be challenging in large lecture environments. The project will examine the research supporting active learning, present the implementation of simple active learning techniques in large lecture classes, and provide evidence to test…

  17. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  18. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  19. LARGE AND GREAT RIVERS: NEW ASSESSMENT TOOLS

    EPA Science Inventory

    The Ecological Exposure Research Division has been conducting research to support the development of the next generation of bioassessment and monitoring tools for large and great rivers. Focus has largely been on the development of standardized protocols for the traditional indi...

  20. Collaborative Working for Large Digitisation Projects

    ERIC Educational Resources Information Center

    Yeates, Robin; Guy, Damon

    2006-01-01

    Purpose: To explore the effectiveness of large-scale consortia for disseminating local heritage via the web. To describe the creation of a large geographically based cultural heritage consortium in the South East of England and management lessons resulting from a major web site digitisation project. To encourage the improved sharing of experience…

  1. Generically large nongaussianity in small multifield inflation

    SciTech Connect

    Bramante, Joseph

    2015-07-07

    If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r<0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computations of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons’ field directions have unequal slopes.

  2. Large Scale Metal Additive Techniques Review

    SciTech Connect

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W; Love, Lonnie J

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  3. Environmental effects and large space systems

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  4. Testing Large Structures in the Field

    NASA Technical Reports Server (NTRS)

    James, George; Carne, Thomas G.

    2009-01-01

    Field testing large structures creates unique challenges such as limited choices for boundary conditions and the fact that natural excitation sources cannot be removed. Several critical developments in field testing of large structures are reviewed, including: step relaxation testing which has been developed into a useful technique to apply large forces to operational systems by careful windowing; the capability of large structures testing with free support conditions which has been expanded by implementing modeling of the support structure; natural excitation which has been developed as a viable approach to field testing; and the hybrid approach which has been developed to allow forces to be estimated in operating structures. These developments have increased the ability to extract information from large structures and are highlighted in this presentation.

  5. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  6. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  7. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  8. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  9. Large area perovskite solar cell module

    NASA Astrophysics Data System (ADS)

    Cai, Longhua; Liang, Lusheng; Wu, Jifeng; Ding, Bin; Gao, Lili; Fan, Bin

    2017-01-01

    The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5 × 5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

  10. The next generation very large array

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark; Carilli, Chris; Beasley, Tony

    2016-07-01

    The North American astronomical community is considering a future large area radio array optimized to perform imaging of thermal emission down to milliarcsecond scales. This `Next Generation Very Large Array' would entail ten times the effective collecting area of the Jansky Very Large Array, operate from 1GHz to 115GHz, with ten times longer baselines (300km) providing milliarcsecond resolution, and include a dense core on kilometer scales for high surface brightness imaging. The preliminary design, capabilities, and some of the priority science goals of the instrument are summarized.

  11. The Amateurs' Love Affair with Large Datasets

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Jacoby, S. H.; Henden, A.

    2006-12-01

    Amateur astronomers are professionals in other areas. They bring expertise from such varied and technical careers as computer science, mathematics, engineering, and marketing. These skills, coupled with an enthusiasm for astronomy, can be used to help manage the large data sets coming online in the next decade. We will show specific examples where teams of amateurs have been involved in mining large, online data sets and have authored and published their own papers in peer-reviewed astronomical journals. Using the proposed LSST database as an example, we will outline a framework for involving amateurs in data analysis and education with large astronomical surveys.

  12. Adaptive Control Of Large Vibrating, Rotating Structures

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1991-01-01

    Globally convergent theoretical method provides for adaptive set-point control of orientation of, along with suppression of the vibrations of, large structure. Method utilizes inherent passivity properties of structure to attain mathematical condition essential to adaptive convergence on commanded set point. Maintains stability and convergence in presence of errors in mathematical model of dynamics of structure and actuators. Developed for controlling attitudes of large, somewhat flexible spacecraft, also useful in such terrestrial applications as controlling movable bridges or suppressing earthquake vibrations in bridges, buildings, and other large structures.

  13. Performance of large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1981-01-01

    The performance of large inert-gas thrusters is predicted based on present knowledge of ion optics performance and discharge chamber operation. Calculated performance data are given for argon and xenon propellants. The effect of varying propellant utilization and thruster diameter is discussed and the optimum choice of beam diameter for very large systems is indicated for low, intermediate, and high specific impulses. Optimum discharge chamber depths are also specified. Although detailed design considerations may modify the predictions, the general trends indicated should still be useful for directing future technology efforts and evaluating mission studies involving large thrusters.

  14. Model for repetitive cycles of large earthquakes

    SciTech Connect

    Newman, W.I.; Knopoff, L.

    1983-04-01

    The theory of the fusion of small cracks into large ones reproduces certain features also observed in the clustering of earthquake sequences. By modifying our earlier model to take into account the stress release associated with the occurrence of large earthquakes, we obtain repetitive periodic cycles of large earthquakes. A preliminary conclusion is that a combination of the stress release or elastic rebound mechanism plus time delays in the fusion process are sufficient to destabilize the crack populations and, ultimately, give rise to repetitive episodes of seismicity.

  15. Learning to build large structures in space

    NASA Technical Reports Server (NTRS)

    Hagler, T.; Patterson, H. G.; Nathan, C. A.

    1977-01-01

    The paper examines some of the key technologies and forms of construction know-how that will have to be developed and tested for eventual application to building large structures in space. Construction of a shuttle-tended space construction/demonstration platform would comprehensively demonstrate large structure technology, develop construction capability, and furnish a construction platform for a variety of operational large structures. Completion of this platform would lead to demonstrations of the Satellite Power System (SPS) concept, including microwave transmission, fabrication of 20-m-deep beams, conductor installation, rotary joint installation, and solar blanket installation.

  16. Environmental interaction implications for large space systems

    NASA Technical Reports Server (NTRS)

    Miller, E.; Fischbein, W.; Stauber, M. C.; Suh, P. K.

    1979-01-01

    Large Space Systems (LSS) comprise a new class of spacecraft, the design and performance of which may be seriously affected by a variety of environmental interactions. The special concerns associated with spacecraft charging and plasma interactions from the LSS designer's viewpoint are addressed. Survivability of these systems under combined solar U.V., particle radiation and repeated electrical discharges is of primary importance. Additional questions regard the character of electrical discharges over very large areas, the effects of high current/voltage systems and magnitude of induced structural disturbances. A concept is described for a large scale experiment platform.

  17. Laparoscopic management of large ureteral fibroepithelial polyp.

    PubMed

    Kijvikai, Kittinut; Maynes, Lincoln J; Herrell, S Duke

    2007-08-01

    Fibroepithelial polyps of the ureter are rare benign mesothelial tumors. Most polyps are small; however, very rare large polyps have also been reported. Currently, most investigators encourage endoscopic management in these patients. Nevertheless, endoscopic resection can be difficult in patients with a long or large polypoid lesion. We describe our experience and laparoscopic technique for treatment of a symptomatic 42-year-old woman who presented with a 17-cm-long fibroepithelial polyp in the proximal ureter associated with ureteral obstruction. To our knowledge, this is the first reported case of laparoscopic management of a large ureteral fibroepithelial polyp.

  18. Experimental verification of a large flexible manipulator

    NASA Technical Reports Server (NTRS)

    Lee, Jac Won; Huggins, James D.; Book, Wayne J.

    1988-01-01

    A large experimental lightweight manipulator would be useful for material handling, for welding, or for ultrasonic inspection of a large structure, such as an airframe. The flexible parallel link mechanism is designed for high rigidity without increasing weight. This constrained system is analyzed by singular value decomposition of the constraint Jacobian matrix. A verification of the modeling using the assumed mode method is presented. Eigenvalues and eigenvectors of the linearized model are compared to the measured system natural frequencies and their associated mode shapes. The modeling results for large motions are compared to the time response data from the experiments. The hydraulic actuator is verified.

  19. Cognitive Airborne Networking: Self-Aware Communications via Sensing, Adaptation, and Cross-Layer Optimization

    DTIC Science & Technology

    2011-03-01

    and M. Medley, ”Fast maximum-likelihood decoding of quasi-orthogonal STBCs with QAM signals,” submitted to IEEE Transactions on Wireless Communications...maximum-likelihood decoding of 4x4 full-diversity quasi-orthogonal STBCs with QAM signals,” in Proceedings of IEEE Global Telecommunications Con...networks due to its advantage that information can be differentially modulated /demodulated and channel estimation can be avoided (at the cost of an

  20. Communication architecture for large geostationary platforms

    NASA Technical Reports Server (NTRS)

    Bond, F. E.

    1979-01-01

    Large platforms have been proposed for supporting multipurpose communication payloads to exploit economy of scale, reduce congestion in the geostationary orbit, provide interconnectivity between diverse earth stations, and obtain significant frequency reuse with large multibeam antennas. This paper addresses a specific system design, starting with traffic projections in the next two decades and discussing tradeoffs and design approaches for major components including: antennas, transponders, and switches. Other issues explored are selection of frequency bands, modulation, multiple access, switching methods, and techniques for servicing areas with nonuniform traffic demands. Three-major services are considered: a high-volume trunking system, a direct-to-user system, and a broadcast system for video distribution and similar functions. Estimates of payload weight and d.c. power requirements are presented. Other subjects treated are: considerations of equipment layout for servicing by an orbit transfer vehicle, mechanical stability requirements for the large antennas, and reliability aspects of the large number of transponders employed.

  1. Large Meteor Tracked over Northeast Alabama

    NASA Video Gallery

    On the evening of May 18, NASA all-sky meteor cameras located at NASA’s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

  2. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  3. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  4. Remotely controlled large container disposal methodology

    SciTech Connect

    Amir, S.J.

    1994-09-01

    Remotely Handled Large Containers (RHLC), also called drag-off boxes, have been used at the Hanford Site since the 1940s to dispose of large pieces of radioactively contaminated equipment. These containers are typically large steel-reinforced concrete boxes, which weigh as much as 40 tons. Because large quantities of high-dose waste can produce radiation levels as high as 200 mrem/hour at 200 ft, the containers are remotely handled (either lifted off the railcar by crane or dragged off with a cable). Many of the existing containers do not meet existing structural and safety design criteria and some of the transportation requirements. The drag-off method of pulling the box off the railcar using a cable and a tractor is also not considered a safe operation, especially in view of past mishaps.

  5. Gravitational waves and large field inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2017-02-01

    According to the famous Lyth bound, one can confirm large field inflation by finding tensor modes with sufficiently large tensor-to-scalar ratio r. Here we will try to answer two related questions: is it possible to rule out all large field inflationary models by not finding tensor modes with r above some critical value, and what can we say about the scale of inflation by measuring r? However, in order to answer these questions one should distinguish between two different definitions of the large field inflation and three different definitions of the scale of inflation. We will examine these issues using the theory of cosmological α-attractors as a convenient testing ground.

  6. Bipartite Graphs of Large Clique-Width

    NASA Astrophysics Data System (ADS)

    Korpelainen, Nicholas; Lozin, Vadim V.

    Recently, several constructions of bipartite graphs of large clique-width have been discovered in the literature. In the present paper, we propose a general framework for developing such constructions and use it to obtain new results on this topic.

  7. Large & Small: Exploring the Laws of Nature

    ERIC Educational Resources Information Center

    Creutz, E.

    1976-01-01

    Illustrates how both large entities (such as stars and galaxies) and small entities (such as fundamental particles) obey the same physical laws. Discusses quantum mechanics, Newton's laws, and general relativity. (MLH)

  8. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  9. Retroperitoneoscopic partial adrenalectomy for large adrenocortical oncocytoma.

    PubMed

    Modi, Pranjal; Goel, Rajiv; Kadam, Gaurang

    2007-04-01

    A young woman had mild hypertension, and on evaluation, a large tumor arising from the right adrenal gland was found. The tumor was hormonally inactive. Retroperitoneoscopic partial adrenalectomy was carried out. The histopathology report described adrenocortical oncocytoma.

  10. Decontamination of large components-test case

    SciTech Connect

    Mancini, A.; Bosco, B.

    1996-12-31

    The rising per-cubic-foot burial costs, together with the trend toward standardized above-ground burial sites, provides the basis for seeking an alternative to direct burial of large components. Large contaminated components such as steam generators can be safely dismantled and decontaminated for free release, metals recycle, and volume reduction. This grand-scale disposal technology will prove to be an economical and ecological alternative to direct burial or interim storage. Yankee Atomic Electric Company (YAEC) in Bolton, operators and decommissioners of the Yankee Nuclear Power Station in Rowe, Massachusetts, has teamed with Frank W Hake Associates in Memphis, TN, to decontaminate a large component as a test case. The large component is YAEC`s reactor pressure vessel head (RPVH). The 79 100 lb RPVH is surface contaminated with 0.7 Ci (1500 mR/h contact) resulting from 32 yr of operating in a 2000 psi, 530{degrees}F pressurized water reactor environment.

  11. Large Space Antenna Systems Technology, part 1

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1983-01-01

    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.

  12. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  13. Cosmogenic Nuclides Study of Large Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Hutzler, A.; Smith, T.; Rochette, P.; Bourles, D. L.; Leya, I.; Gattacceca, J.

    2014-09-01

    Six large iron meteorites were selected (Saint-Aubin, Mont-Dieu, Caille, Morasko, Agoudal, and Gebel Kamil). We measured stable and radiogenic cosmogenic nuclides, to study pre-atmospheric size, cosmic-ray exposure ages and terrestrial ages.

  14. The large bowel--a supplementary rumen?

    PubMed

    Argenzio, R A; Stevens, C E

    1984-01-01

    The rumen and the mammalian large intestine are similar in many respects. Microbial protein appears to be synthesized and degraded in the digesta of both organs in a comparable manner. The VFA end-products of carbohydrate fermentation are produced in similar concentrations. Digesta pH is maintained with buffer added by the saliva or ileal fluid, HCO3 released into the lumen and rapid absorption of the organic acids. VFA are absorbed at equivalent rates by rumen epithelium and large intestinal mucosa. Over-production of VFA produces similar adverse effects. There is a considerable amount of species variation in the relative length and volume as well as the extent of sacculation of the large intestine. The caecum is the primary site for retention of digesta and microbial fermentation in the large intestine of rabbits, rodents and a few other species. However, the proximal colon is the major site of retention and fermentation in most mammals. Absorptions of Na and VFA appear to account for absorption of most of the water removed during passage of digesta through the large intestine. A relatively slow rate of Na absorption and release of HCO3 appears to provide the fluid and buffering capacity needed for efficient microbial digestion in the rumen and in the large intestine of some species. A more rapid absorption of Na by the large intestine of other species would aid in the conservation of Na and water. The many similarities between the large intestine and the rumen suggest that further comparison can provide additional information on both the function and diseases of these two organs. The rumen has proved to be accessible to a variety of procedures useful for the study of microbial digestive processes and its epithelium has provided a non-glandular tissue for studies of inorganic ion transport as well as the transport and metabolism of VFA. Comparative studies of the large intestine also can provide a better understanding of the functions and malfunctions of the

  15. [Endobronchial anaplastic large cell lymphoma in childhood].

    PubMed

    Escobosa Sánchez, O M; Herrero Hernández, A; Acha García, T

    2009-05-01

    Anaplastic large cell lymphoma is a very rare disease in childhood. The most common location of this lymphoma is lymph node and skin, with endobronchial involvement being extremely rare. We report a case of a 10-year-old boy diagnosed by chance with an endobronchial anaplastic large cell lymphoma, while he was being investigated for a a benign bone disease, due to the initial absence of respiratory symptoms.

  16. Very Large Arrays of Bipolar Electrodes

    DTIC Science & Technology

    2013-01-01

    Array-based chemical and biosensors are necessary for detection of WMDs. • At present there are no viable, large-scale electrochemical array...Mavre, John A. Crooks, Byoung-Yong Chang, Richard M. Crooks, Kwok-Fan Chow. A Large-Scale, Wireless Electrochemical Bipolar Electrode Microarray, Journal...Wireless Electrochemical DNA Microarray Sensor, Journal of the American Chemical Society, (06 2008): 7544. doi: 10.1021/ja802013q 05/30/2013 17.00 Rahul

  17. Optical iconic filters for large class recognition.

    PubMed

    Casasent, D; Mahalamobis, A

    1987-06-01

    Approaches are advanced for pattern recognition when a large number of classes must be identified. Multilevel encoded multiple-iconic filters are considered for this problem. Hierarchical arrangements of iconic filters and/or preprocessing stages are described. A theoretical basis for the sidelobe level and noise effects of filters designed for large class problems is advanced. Experimental data are provided for an optical character recognition case study.

  18. Algorithms for Large-Scale Astronomical Problems

    DTIC Science & Technology

    2013-08-01

    release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Modern astronomical datasets are getting larger and larger, which already include...of data, which raises the following question: How can we use modern computer science techniques to help astronomers better analyze large datasets? To...indexing and sorting further reduce the processing time of user queries.  We processed large data using modern distributed computing frameworks

  19. On large N solution of ABJM theory

    NASA Astrophysics Data System (ADS)

    Suyama, Takao

    2010-07-01

    We investigate the large N limit of the expectation value W(λ) of a BPS Wilson loop in ABJM theory, using an integral expression of the partition function obtained recently by Kapustin et al. Certain saddle-point equations provide the correct perturbative expansion of W(λ). The large λ behavior of W(λ) is also obtained from the saddle-point equations. The result is consistent with AdS/CFT correspondence.

  20. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  1. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  2. Large area monolithic organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Tao, Cheng; Hambsch, Mike; Pivrikas, Almantas; Velusamy, Marappan; Aljada, Muhsen; Zhang, Yuliang; Burn, Paul L.; Meredith, Paul

    2012-11-01

    Although efficiencies of > 10% have recently been achieved in laboratory-scale organic solar cells, these competitive performance figures are yet to be translated to large active areas and geometries relevant for viable manufacturing. One of the factors hindering scale-up is a lack of knowledge of device physics at the sub-module level, particularly cell architecture, electrode geometry and current collection pathways. A more in depth understanding of how photocurrent and photovoltage extraction can be optimised over large active areas is urgently needed. Another key factor suppressing conversion efficiencies in large area cells is the relatively high sheet resistance of the transparent conducting anode - typically indium tin oxide. Hence, to replace ITO with alternative transparent conducting anodes is also a high priority on the pathway to viable module-level organic solar cells. In our paper we will focus on large area devices relevant to sub-module scales - 5 cm × 5 cm monolithic geometry. We have applied a range of experimental techniques to create a more comprehensive understanding of the true device physics that could help make large area, monolithic organic solar cells more viable. By employing this knowledge, a novel transparent anode consisting of molybdenum oxide (MoOx) and silver (Ag) is developed to replace ITO and PEDOT-free large area solar cell sub-modules, acting as both a transparent window and hole-collecting electrode. The proposed architecture and anode materials are well suited to high throughput, low cost all-solution processing.

  3. 26 CFR 54.4980H-2 - Applicable large employer and applicable large employer member.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... employer/controlled group). (i) Facts. For all of 2015 and 2016, Corporation Z owns 100 percent of all... employees during 2015, Corporations Z, Y, and X together are an applicable large employer for 2016. Each of Corporations Z, Y and X is an applicable large employer member for 2016. Example 2 (Applicable large...

  4. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  5. Megascours: the morphodynamics of large river confluences

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Sambrook Smith, Greg; Nicholas, Andrew; Best, Jim; Bull, Jon; Vardy, Mark; Goodbred, Steve; Haque Sarker, Maminul

    2015-04-01

    River confluences are wildly acknowledged as crucial controlling influences upon upstream and downstream morphology and thus landscape evolution. Despite their importance very little is known about their evolution and morphodynamics, and there is a consensus in the literature that confluences represent fixed, nodal points in the fluvial network. Confluences have been shown to generate substantial bed scours around five times greater than mean depth. Previous research on the Ganges-Jamuna junction has shown large river confluences can be highly mobile, potentially 'combing' bed scours across a large area, although the extent to which this is representative of large confluences in general is unknown. Understanding the migration of confluences and associated scours is important for multiple applications including: designing civil engineering infrastructure (e.g. bridges, laying cable, pipelines, etc.), sequence stratigraphic interpretation for reconstruction of past environmental and sea level change, and in the hydrocarbon industry where it is crucial to discriminate autocyclic confluence scours from widespread allocyclic surfaces. Here we present a wide-ranging global review of large river confluence planforms based on analysis of Landsat imagery from 1972 through to 2014. This demonstrates there is an array of confluence morphodynamic types: from freely migrating confluences such as the Ganges-Jamuna, through confluences migrating on decadal timescales and fixed confluences. Along with data from recent geophysical field studies in the Ganges-Brahmaputra-Meghna basin we propose a conceptual model of large river confluence types and hypothesise how these influence morphodynamics and preservation of 'megascours' in the rock record. This conceptual model has implications for sequence stratigraphic models and the correct identification of surfaces related to past sea level change. We quantify the abundance of mobile confluence types by classifying all large confluences

  6. Large Payload Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Pope, James C.

    2011-01-01

    Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure - roads, bridges, airframes, and buildings - necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider how large spacecraft are designed, and where they are manufactured, tested, or launched, could result in unforeseen cost to modify/develop infrastructure, or incur additional risk due to increased handling or elimination of key verifications. During test and verification planning for the Altair project, a number of transportation and test issues related to the large payload diameter were identified. Although the entire Constellation Program - including Altair - was canceled in the 2011 NASA budget, issues identified by the Altair project serve as important lessons learned for future payloads that may be developed to support national "heavy lift" strategies. A feasibility study performed by the Constellation Ground Operations (CxGO) project found that neither the Altair Ascent nor Descent Stage would fit inside available transportation aircraft. Ground transportation of a payload this large over extended distances is generally not permitted by most states, so overland transportation alone would not have been an option. Limited ground transportation to the nearest waterway may be permitted, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary

  7. Metrology of Large Parts. Chapter 5

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    As discussed in the first chapter of this book, there are many different methods to measure a part using optical technology. Chapter 2 discussed the use of machine vision to measure macroscopic features such as length and position, which was extended to the use of interferometry as a linear measurement tool in chapter 3, and laser or other trackers to find the relation of key points on large parts in chapter 4. This chapter looks at measuring large parts to optical tolerances in the sub-micron range using interferometry, ranging, and optical tools discussed in the previous chapters. The purpose of this chapter is not to discuss specific metrology tools (such as interferometers or gauges), but to describe a systems engineering approach to testing large parts. Issues such as material warpage and temperature drifts that may be insignificant when measuring a part to micron levels under a microscope, as will be discussed in later chapters, can prove to be very important when making the same measurement over a larger part. In this chapter, we will define a set of guiding principles for successfully overcoming these challenges and illustrate the application of these principles with real world examples. While these examples are drawn from specific large optical testing applications, they inform the problems associated with testing any large part to optical tolerances. Manufacturing today relies on micrometer level part performance. Fields such as energy and transportation are demanding higher tolerances to provide increased efficiencies and fuel savings. By looking at how the optics industry approaches sub-micrometer metrology, one can gain a better understanding of the metrology challenges for any larger part specified to micrometer tolerances. Testing large parts, whether optical components or precision structures, to optical tolerances is just like testing small parts, only harder. Identical with what one does for small parts, a metrologist tests large parts and optics

  8. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  9. Astronomy Outreach for Large and Unique Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  10. Large-grain pipelining on hypercube multiprocessors

    SciTech Connect

    King, Chung-Ta; Ni, Lionel M.

    1988-01-01

    A new paradigm, called large-grain pipelining, for developing efficient parallel algorithms on distributed-memory multiprocessors, e.g., hypercube machines, is introduced. Large-grain pipelining attempts to maximize the degree of overlapping and minimize the effect of communication overhead in a multiprocessor system through macro-pipelining between the nodes. Algorithms developed through large-grain pipelining to perform matrix multiplication are presented. To model the pipelined computations, an analytic model is introduced, which takes into account both underlying architecture and algorithm behavior. Through the analytical model, important design parameters, such as data partition sizes, can be determined. Experiments were conducted on a 64-node NCUBE multiprocessor. The measured results match closely with the analyzed results, which establishes the analytic model as an integral part of algorithm design. Comparison with an algorithm which does not use large-grain pipelining also shows that large-grain pipelining is an efficient scheme for achieving a greater parallelism. 14 refs., 12 figs.

  11. Astronomical large Ge immersion grating by Canon

    NASA Astrophysics Data System (ADS)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  12. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  13. Public health impact of large airports.

    PubMed

    Passchier, W; Knottnerus, A; Albering, H; Walda, I

    2000-01-01

    Large airports with the related infrastructure, businesses and industrial activities affect the health of the population living, travelling and working in the surroundings of or at the airport. The employment and contributions to economy from the airport and related operations are expected to have a beneficial effect, which, however, is difficult to quantify. More pertinent data are available on the, largely negative, health effects of environmental factors, such as air and soil pollution, noise, accident risk, and landscape changes. Information on the concurrent and cumulative impact of these factors is lacking, but is of primary relevance for public health policy. A committee of the Health Council of The Netherlands recently reviewed the data on the health impact of large airports. It was concluded that, generally, integrated health assessments are not available. Such assessments, as part of sustainable mobility policy, should accompany the further development of the global aviation system.

  14. Sonic Data in Large, Shallow Holes

    NASA Astrophysics Data System (ADS)

    Market, J.; Kessler, C.

    2005-05-01

    In the past, it has been difficult to acquire reliable data in large, shallow surface holes, as it is far from an ideal environment for wireline tools. With the advent of large (9 ½") LWD sonic tools which do not need to be centralised and which log the formation mere minutes after drilling, it is possible, and in fact becoming common, to acquire good quality sonic logs almost from surface to bottom. Real time sonic pore pressure and compressional logs provide confidence in drilling and ties to seismic. There are some special considerations when logging in this environment, as the large fluid enhances certain borehole modes. Theory, modelling, and field data will be presented and discussed.

  15. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  16. Multiple large xanthomas: A case report

    PubMed Central

    Zhao, Chen; Kong, Mingxiang; Cao, Li; Zhang, Qiong; Fang, Yong; Ruan, Weiwei; Dou, Xiaofan; Gu, Xiaohui; Bi, Qing

    2016-01-01

    A 23-year-old male patient presented with multiple large masses in his elbows, buttocks, knees, Achilles tendons, feet, shoulders and hands. The large masses in the elbows and buttocks measured ~6×5×5 cm and ~7×5×4 cm, respectively. The patient presented with an elevated level of low-density lipoprotein cholesterol, and had been previously diagnosed with homozygous familial hypercholesterolemia (FH) and multiple xanthomas. Local surgical excisions were performed to remove the massive xanthomas from the elbows and buttocks, and histological analysis of the surgical specimens confirmed the previous diagnosis of homozygous FH (HoFH). The aim of the present study was to report a rare case of HoFH coinciding with multiple, large and widely-distributed xanthomas and to discuss the clinical characteristics, in order to provide a better understanding of xanthomas and FH. PMID:28101197

  17. Statistical Ensemble of Large Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.

  18. Cholecystectomy: clinical experience with a large series.

    PubMed

    Ganey, J B; Johnson, P A; Prillaman, P E; McSwain, G R

    1986-03-01

    This large series of 1,035 consecutive operations with a primary diagnosis of inflammatory or calculus disease of the gallbladder included a large number of elderly patients with the greatest incidence in the seventh and eighth decades of life. Operation was performed after initial stabilization when acute illness presented and without prolonged delay of medical treatment. Cholecystectomy was almost always able to be performed successfully at the initial operation. This approach produced low rates of morbidity and mortality when compared with reports from large university centers and with reports advocating delayed operation for acute cholecystitis or planned cholecystostomy in elderly and high risk patients. Operative cholangiograms were rarely performed and rates of residual or retained common duct stones were low. Length of hospital stay was related to age and performance of a common duct exploration. Draining the subhepatic space routinely by way of a separate peritoneal stab incision and removing the drain within 48 hours produced a low rate of wound complications.

  19. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  20. Large scale preparation of pure phycobiliproteins.

    PubMed

    Padgett, M P; Krogmann, D W

    1987-01-01

    This paper describes simple procedures for the purification of large amounts of phycocyanin and allophycocyanin from the cyanobacterium Microcystis aeruginosa. A homogeneous natural bloom of this organism provided hundreds of kilograms of cells. Large samples of cells were broken by freezing and thawing. Repeated extraction of the broken cells with distilled water released phycocyanin first, then allophycocyanin, and provides supporting evidence for the current models of phycobilisome structure. The very low ionic strength of the aqueous extracts allowed allophycocyanin release in a particulate form so that this protein could be easily concentrated by centrifugation. Other proteins in the extract were enriched and concentrated by large scale membrane filtration. The biliproteins were purified to homogeneity by chromatography on DEAE cellulose. Purity was established by HPLC and by N-terminal amino acid sequence analysis. The proteins were examined for stability at various pHs and exposures to visible light.

  1. Large Synoptic Survey Telescope mount final design

    NASA Astrophysics Data System (ADS)

    Callahan, Shawn; Gressler, William; Thomas, Sandrine J.; Gessner, Chuck; Warner, Mike; Barr, Jeff; Lotz, Paul J.; Schumacher, German; Wiecha, Oliver; Angeli, George; Andrew, John; Claver, Chuck; Schoening, Bill; Sebag, Jacques; Krabbendam, Victor; Neill, Doug; Hileman, Ed; Muller, Gary; Araujo, Constanza; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García-Marchena, Luis; Ruiz de Argandoña, Ismael; Romero, Francisco M.; Rodríguez, Ricardo; Carlos González, José; Venturini, Marco

    2016-08-01

    This paper describes the status and details of the large synoptic survey telescope1,2,3 mount assembly (TMA). On June 9th, 2014 the contract for the design and build of the large synoptic survey telescope mount assembly (TMA) was awarded to GHESA Ingeniería y Tecnología, S.A. and Asturfeito, S.A. The design successfully passed the preliminary design review on October 2, 2015 and the final design review January 29, 2016. This paper describes the detailed design by subsystem, analytical model results, preparations being taken to complete the fabrication, and the transportation and installation plans to install the mount on Cerro Pachón in Chile. This large project is the culmination of work by many people and the authors would like to thank everyone that has contributed to the success of this project.

  2. Design of large aperture focal plane shutter

    NASA Astrophysics Data System (ADS)

    Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long

    2012-09-01

    To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.

  3. Large kinetic power in FRII radio jets

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Kino, Motoki; Kawakatu, Nozomu; Isobe, Naoki; Yamada, Shoichi

    2007-10-01

    We investigate the total kinetic powers ( L j) and ages ( t age) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L j to the Eddington luminosity ( L Edd) resides in 0.02< L j/ L Edd<10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon ( E c) exceed the energy derived from the minimum energy condition ( E min ): 2< E c/ E min <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.

  4. Large-scale sparse singular value computations

    NASA Technical Reports Server (NTRS)

    Berry, Michael W.

    1992-01-01

    Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.

  5. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage.

  6. Eyeglass. 1. Very large aperture diffractive telescopes

    SciTech Connect

    Hyde, R.A.

    1999-07-01

    The Eyeglass is a very large aperture (25{endash}100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope{close_quote}s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope{close_quote}s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band ({Delta}{lambda}/{lambda}{approximately}0.1), multiband, or continuous spectral coverage. {copyright} 1999 Optical Society of America

  7. Large Interface Simulation in Multiphase Flow Phenomena

    SciTech Connect

    Henriques, Aparicio; Coste, Pierre; Pigny, Sylvain; Magnaudet, Jacques

    2006-07-01

    An attempt to represent multiphase multi-scale flow, filling the gap between Direct Numerical Simulation (DNS) and averaged approaches, is the purpose of this paper. We present a kind of Large Interface (LI) simulation formalism obtained after a filtering process on local instantaneous conservation equations of the two-fluid model which distinguishes between small scales and large scales contributions. LI surface tension force is also taken into account. Small scale dynamics call for modelization and large scale for simulation. Joined to this formalism, a criterion to recognize LI's is developed. It is used in an interface recognition algorithm which is qualified on a sloshing case and a bubble oscillation under zero-gravity. This method is applied to a rising bubble in a pool that collapses at a free surface and to a square-base basin experiment where splashing and sloshing at the free surface are the main break-up phenomena. (authors)

  8. Complications of thyroidectomy for large goiter

    PubMed Central

    Berri, Toufik; Houari, Rachida

    2013-01-01

    Thyroidectomy is a routinely common practiced surgery. Morbidity and mortality from thyroid surgery are disregarded nowadays and undervalued in the literature. Perioperative risks and complications still exist for large goiters and can be life-threatening. These complications may occur during the anesthesia and intubation, intra-, or postoperatively. We set out through a case of a large cervical multinodular goiter (MNG) and a review of literature the perioperative complications and how to avoid them. During the total thyroidectomy operation, an accidental devascularisation of a parathyroid gland, a cervical hematoma which was evacuated by surgical reoperation, hemodynamic disorder and a transitory hypoparathyroidism were the postoperative complications that occurred. Surgery for large goiters remains difficult; so adequate preoperative assessment, particular attention and careful operative procedure should be followed to obtain better surgical outcomes. PMID:24847400

  9. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1979-01-01

    Technology developed by NASA in conjunction with industry for potential large, deployable space antennas with applications in communication, radio astronomy and earth observation is reviewed. Concepts for deployable antennas that have been developed to the point of detail design are summarized, including the advanced sunflower precision antenna, the radial rib antenna, the maypole (hoop/column) antenna and the parabolic erectable truss antenna. The assessment of state-of-the-art deployable antenna technology is discussed, and the approach taken by the NASA Large Space Systems Technology (LSST) Program to the development of technology for large space antenna systems is outlined. Finally, the further development of the wrap-rib antenna and the maypole (hoop/column) concept, which meet mission model requirements, to satisfy LSST size and frequency requirements is discussed.

  10. Unusually large sialolith of Wharton's duct

    PubMed Central

    Iqbal, Ali; Gupta, Anup K.; Natu, Subodh S.; Gupta, Atul K.

    2012-01-01

    The formation of calcific concretions in the salivary duct or glands is a common disorder, especially in the submandibular glands. Most of the salivary calculi are small in size, in contrast to those that reach several centimeters, which are reported as megaliths or giant calculi in the literature. They may occur in any of the salivary gland ducts but are most common in Wharton's duct and the submandibular gland. This report presents clinical and radiographical sign of an unusually large sialolith. There was painless swelling on the floor of the edentulous mouth and patient was unaware of it. Radiographical examination revealed large irregular radio-opaque mass superimposed on right canine and premolar areas. This case report describes a patient presenting with an unusually large submandibular gland duct sialolith, the subsequent patient management, the aetiology, diagnosis and its treatment. PMID:23483770

  11. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  12. Large-scale nanophotonic phased array.

    PubMed

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  13. Heterothermy in large mammals: inevitable or implemented?

    PubMed

    Hetem, Robyn S; Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan

    2016-02-01

    Advances in biologging techniques over the past 20 years have allowed for the remote and continuous measurement of body temperatures in free-living mammals. While there is an abundance of literature on heterothermy in small mammals, fewer studies have investigated the daily variability of body core temperature in larger mammals. Here we review measures of heterothermy and the factors that influence heterothermy in large mammals in their natural habitats, focussing on large mammalian herbivores. The mean 24 h body core temperatures for 17 species of large mammalian herbivores (>10 kg) decreased by ∼1.3°C for each 10-fold increase in body mass, a relationship that remained significant following phylogenetic correction. The degree of heterothermy, as measured by the 24 h amplitude of body core temperature rhythm, was independent of body mass and appeared to be driven primarily by energy and water limitations. When faced with the competing demands of osmoregulation, energy acquisition and water or energy use for thermoregulation, large mammalian herbivores appear to relax the precision of thermoregulation thereby conserving body water and energy. Such relaxation may entail a cost in that an animal moves closer to its thermal limits for performance. Maintaining homeostasis requires trade-offs between regulated systems, and homeothermy apparently is not accorded the highest priority; large mammals are able to maintain optimal homeothermy only if they are well nourished, hydrated, and not compromised energetically. We propose that the amplitude of the 24 h rhythm of body core temperature provides a useful index of any compromise experienced by a free-living large mammal and may predict the performance and fitness of an animal.

  14. Large bimedial rectus recessions in congenital esotropia.

    PubMed Central

    Szmyd, S. M.; Nelson, L. B.; Calhoun, J. H.; Spratt, C.

    1985-01-01

    The success rate of large (6 and 7 mm) bimedial rectus recessions in 45 congenital esotropes with deviations of 50 prism dioptres or greater was found to be 91%. Judgment of final alignment was made six weeks postoperatively, with an average follow-up of 13 months. Large bimedial rectus recessions are an effective surgical treatment for congenital esotropia. This procedure does not significantly alter adduction, and leaves other muscles available should further surgery be necessary. These findings show that initial surgery on three or more muscles is unnecessary in congenital esotropia. PMID:3994944

  15. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  16. Identification of large space structures - Overview

    NASA Technical Reports Server (NTRS)

    Denman, Eugene; Juang, Jer-Nan; Junkins, John; Kamat, Manohar; Hasselman, T. K.

    1988-01-01

    The system identification process presently discussed for the case of large space structures uses the observed input to a system and its observed response, or output, to derive an analytical model of the system which can then be used to predict its response to future inputs. Due to their size and complexity, as well as the intrinsic difficulty of identifying the environment in which they function, large space structures will require vast amounts of information, encompassing both experimental and analytical data for identification. A status evaluation is made of the structural system identification literature to date.

  17. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  18. Knowledge Discovery in Large Data Sets

    SciTech Connect

    Simas, Tiago; Silva, Gabriel; Miranda, Bruno; Ribeiro, Rita

    2008-12-05

    In this work we briefly address the problem of unsupervised classification on large datasets, magnitude around 100,000,000 objects. The objects are variable objects, which are around 10% of the 1,000,000,000 astronomical objects that will be collected by GAIA/ESA mission. We tested unsupervised classification algorithms on known datasets such as OGLE and Hipparcos catalogs. Moreover, we are building several templates to represent the main classes of variable objects as well as new classes to build a synthetic dataset of this dimension. In the future we will run the GAIA satellite scanning law on these templates to obtain a testable large dataset.

  19. Large space structures - Fantasies and facts

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Boyer, W. J.

    1980-01-01

    A review of large space structures activities from 1973 to 1979 is presented. Long-range studies of space colonies, gigantic solar power stations and projected earth applications revived interest in space activities. Studies suggest opportunities for advanced antenna and platform applications. Matching low-thrust propulsion to large flexible vehicles will be a key technology. Current structures technology investigations include deployable and erectable structures and assembly techniques. Based on orbited structures experience, deployment reliability is a critical issue for deployable structures. For erectable structures, concepts for earth-fabricated and space-fabricated memb

  20. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  1. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  2. Large eddy simulation in the ocean

    NASA Astrophysics Data System (ADS)

    Scotti, Alberto

    2010-12-01

    Large eddy simulation (LES) is a relative newcomer to oceanography. In this review, both applications of traditional LES to oceanic flows and new oceanic LES still in an early stage of development are discussed. The survey covers LES applied to boundary layer flows, traditionally an area where LES has provided considerable insight into the physics of the flow, as well as more innovative applications, where new SGS closure schemes need to be developed. The merging of LES with large-scale models is also briefly reviewed.

  3. Large natural geophysical events: planetary planning

    SciTech Connect

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.

  4. Infrared digital holography for large objects investigation

    NASA Astrophysics Data System (ADS)

    Geltrude, A.; Locatelli, M.; Poggi, P.; Pelagotti, A.; Paturzo, M.; Ferraro, P.; Meucci, R.

    2011-05-01

    In this work we show several acquisition setups and techniques which make it possible to obtain holographic recording and reconstruction of large objects by means of Infrared Digital Holography (IDH). In previous works it was demonstrated that, using the long wavelength coherent radiation produced by a CO2 laser instead of visible radiation, it is possible to obtain advantages in terms of larger field of view and lower seismic noise sensitivity. The only drawback using this wavelength is represented by the low resolution of current recording devices in this spectral region. The reported methods may have industrial applications where investigation of large dimension samples is needed.

  5. Structure of large dsDNA viruses

    PubMed Central

    Klose, Thomas; Rossmann, Michael G.

    2015-01-01

    Nucleocytoplasmic large dsDNA viruses (NCLDVs) encompass an ever-increasing group of large eukaryotic viruses, infecting a wide variety of organisms. The set of core genes shared by all these viruses includes a major capsid protein with a double jelly-roll fold forming an icosahedral capsid, which surrounds a double layer membrane that contains the viral genome. Furthermore, some of these viruses, such as the members of the Mimiviridae and Phycodnaviridae have a unique vertex that is used during infection to transport DNA into the host. PMID:25003382

  6. Dynamics and control of large space structures

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.; Ryan, R. S.; Scofield, H. N.; Sims, J. L.

    1984-01-01

    An attempt is made to gather data useful to investigators in the fields of large space structure dynamics and control modeling, design and testing. Attention is given to structural dynamics and its relationship to such allied engineering fields as flutter analysis, as well as to problems in the prediction of atmospheric density at orbital altitude. The first challenge posed by large space structure control is the design of control systems with natural frequencies above several major structural frequencies. The establishment of a sufficiently accurate structural model, plant excitation, and shape maintenance, are noted to be additional problems.

  7. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  8. Precision genetic engineering in large mammals.

    PubMed

    Garrels, Wiebke; Ivics, Zoltan; Kues, Wilfried A

    2012-07-01

    Precision genetic engineering based on stable chromosomal insertion of exogenous DNA in the genomes of large mammals is immensely important for the development of improved biomedical models, pharmaceutical research and an accelerated breeding progress. Precision genetic engineering requires (i) a known locus of genomic integration, (ii) a defined status of foreign DNA, (iii) that transgene expression is unaffected by neighbouring chromosomal sequences, (iv) endogenous genes are not mutated and (v) no unwanted DNA sequences are present. Recently, advanced molecular techniques exploiting exogenous enzymes have opened the possibilities for more sophisticated genetic engineering. Here, we critically review current developments of enzyme-catalysed approaches for targeted transgenesis in large mammals.

  9. [Large vessels vasculopathy in systemic sclerosis].

    PubMed

    Tejera Segura, Beatriz; Ferraz-Amaro, Iván

    2015-12-07

    Vasculopathy in systemic sclerosis is a severe, in many cases irreversible, manifestation that can lead to amputation. While the classical clinical manifestations of the disease have to do with the involvement of microcirculation, proximal vessels of upper and lower limbs can also be affected. This involvement of large vessels may be related to systemic sclerosis, vasculitis or atherosclerotic, and the differential diagnosis is not easy. To conduct a proper and early diagnosis, it is essential to start prompt appropriate treatment. In this review, we examine the involvement of large vessels in scleroderma, an understudied manifestation with important prognostic and therapeutic implications.

  10. Pions in large N quantum chromodynamics.

    PubMed

    Weinberg, Steven

    2010-12-31

    An effective field theory of quarks, gluons, and pions, with the number N of colors treated as large, is proposed as a basis for calculations of hadronic phenomena at moderate energies. The qualitative consequences of the large N limit are similar though not identical to those in pure quantum chromodynamics, but because constituent quark masses appear in the effective Lagrangian, the 't Hooft coupling in the effective theory need not be strong at moderate energies. To leading order in 1/N the effective theory is renormalizable, with only a finite number of terms in the Lagrangian.

  11. European Extremely Large Telescope: progress report

    NASA Astrophysics Data System (ADS)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  12. Method and apparatus for extruding large honeycombs

    DOEpatents

    Kragle, Harry A.; Lambert, David W.; Lipp, G. Daniel

    1996-09-03

    Extrusion die apparatus and an extrusion method for extruding large-cross-section honeycomb structures from plasticized ceramic batch materials are described, the apparatus comprising a die having a support rod connected to its central portion, the support rod being anchored to support means upstream of the die. The support rod and support means act to limit die distortion during extrusion, reducing die strain and stress to levels permitting large honeycomb extrusion without die failure. Dies of optimal thickness are disclosed which reduce the maximum stresses exerted on the die during extrusion.

  13. Tensor methods for large, sparse unconstrained optimization

    SciTech Connect

    Bouaricha, A.

    1996-11-01

    Tensor methods for unconstrained optimization were first introduced by Schnabel and Chow [SIAM J. Optimization, 1 (1991), pp. 293-315], who describe these methods for small to moderate size problems. This paper extends these methods to large, sparse unconstrained optimization problems. This requires an entirely new way of solving the tensor model that makes the methods suitable for solving large, sparse optimization problems efficiently. We present test results for sets of problems where the Hessian at the minimizer is nonsingular and where it is singular. These results show that tensor methods are significantly more efficient and more reliable than standard methods based on Newton`s method.

  14. Laboratory Modeling of Aspects of Large Fires,

    DTIC Science & Technology

    1984-04-30

    7 -7 g~L AD-A153 152 DNA-TR- 84-18 LABORATORY MODELING OF ASPECTS OF LARGE FIRES G.F. Carrier "URARY F.E. Fendell b DVSO R.D. Fleeter N. Got L.M...I1I TITLE (include Socurty Olassihicarion) LABORATORY MODELING OF ASPECTS OF LARGE FIRES 12. PERSONAL AUrHoR(S G.F. Carrier F.E. Fendell R.D. Fleeter N...Motorbuch Verlag.___ Caidin, M. (1960). A Torch to the Enemy: the Fire Raid on Tokyo. New York, NY: Ballantine. Carrier, G. F., Fendell , F. E., and

  15. Method of Making Large Area Nanostructures

    NASA Technical Reports Server (NTRS)

    Marks, Alvin M.

    1995-01-01

    A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.

  16. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  17. Subleading soft photons and large gauge transformations

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Laddha, Alok

    2016-11-01

    Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large U(1) gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles, (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theorem in gravity in terms of Ward identities associated to large diffeomorphisms.

  18. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  19. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  20. Large gradual solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Giacalone, Joe

    2016-12-01

    Solar energetic particles, or SEPs, from suprathermal (few keV) up to relativistic (˜ few GeV) energies are accelerated near the Sun in at least two ways: (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs, and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy ({>}10s MeV) protons pose serious radiation threats to human explorers living and working beyond low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of these large SEP events has eluded us primarily because their properties, as observed in Earth orbit, are smeared due to mixing and contributions from many important physical effects. This paper provides a comprehensive review of the current state of knowledge of these important phenomena, and summarizes some of the key questions that will be addressed by two upcoming missions—NASA’s Solar Probe Plus and ESA’s Solar Orbiter. Both of these missions are designed to directly and repeatedly sample the near-Sun environments where interplanetary scattering and transport effects are significantly reduced, allowing us to discriminate between different acceleration sites and mechanisms and to isolate the contributions of numerous physical processes occurring during large SEP events.

  1. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  2. Large-Eddy Simulation and Multigrid Methods

    SciTech Connect

    Falgout,R D; Naegle,S; Wittum,G

    2001-06-18

    A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.

  3. Distortion compensation techniques for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2001-01-01

    The high-frequency limit of reflector antennas is usually governed by the magnitude of the surface error. Whereas little can be done for the high-spatial frequency portion of this error, there are various techniques that can be employed to compensate for large-scale surface errors due to gravity induced distortions for spacecraft antennas.

  4. Forecasting distribution of numbers of large fires

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.

    2014-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.

  5. Control problems in very large accelerators

    SciTech Connect

    Crowley-Milling, M.C.

    1985-06-01

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC.

  6. Teaching a Large Lecture Interpersonal Communication Course.

    ERIC Educational Resources Information Center

    Pearson, Judy C.

    Though lecturing reflects the outmoded view that communication consists of action rather than transaction, large lecture classes are a reality that must be engaged. An interpersonal communication course can be adapted to the lecture hall and need not include the traditional lecture as the only teaching method. Students should be allowed to…

  7. Linking Large-Scale Reading Assessments: Comment

    ERIC Educational Resources Information Center

    Hanushek, Eric A.

    2016-01-01

    E. A. Hanushek points out in this commentary that applied researchers in education have only recently begun to appreciate the value of international assessments, even though there are now 50 years of experience with these. Until recently, these assessments have been stand-alone surveys that have not been linked, and analysis has largely focused on…

  8. Uniform spray coating for large tanks

    NASA Technical Reports Server (NTRS)

    Carter, J. M.

    1977-01-01

    System employs spray facility located within ventilated plastic booth to uniformly coat exterior of large cylindrical tanks with polyurethane foam insulation. Coating target is rotated on turntable while movable spray guns apply overlapping spirals of foam. Entire operation may be controlled by single operator from remote station.

  9. Large abdominoscrotal hydrocele: Uncommon surgical entity

    PubMed Central

    Kamble, Pramod M.; Deshpande, Aparna A.; Thapar, Vinaykumar B.; Das, Krishanu

    2015-01-01

    Introduction An abdominoscrotal hydrocele (ASH) consists of a large inguinoscrotal hydrocele which communicates in an hour glass fashion with a large “intraabdominal component”. Mostly affects single testis but very rarely can present bilaterally. Presentation of case We are presenting here a young 25 year old patient with large right sided scrotal swelling encroaching over lower abdomen. Clinically it was abdominoscrotal hydrocele which was confirmed with CT abdomen and later on subjected for surgery. Discussion Abdominoscrotal hydrocele is rarest type of hydrocele; first described by Dupuytren. The etiology of ASH is unknown; however, different theories have been described in literature to explain the pathogenesis. Diagnosis of ASH is done by clinical examination and is confirmed by radiological examination. Though ultrasonography is the first choice, in few selected cases contrast enhanced computerized tomography or magnetic resonant imaging may be helpful for more anatomical delineation. It may present with various complications secondary to pressure exerted by the components of the ASH. Surgical excision of the sac is the only definitive treatment option. There is no role of conservative treatment. Sometimes, decompression of the cyst needed to ease the dissection of the sac. Conclusion Abdominoscrotal hydrocele differential should be considered while dealing with large lower abdominal swelling along with scrotal swelling. PMID:26363104

  10. Jettison system for a large inflatable antenna

    NASA Technical Reports Server (NTRS)

    Jarosz, Don; Hendricks, Steven; Landis, Dave; Tooley, Craig; Martins, Greg

    1996-01-01

    This paper describes a jettison system used to separate a large, inflatable-deployable antenna from a free-flying spacecraft. The jettison system consists of four discrete Marman band clamps, released simultaneously via pyrotechnics. The design, analysis, analytical simulation, and testing of the system are discussed. Of particular note is the correlation of test results with the Marman band design calculations.

  11. Mechanisms of large rock avalanche propagation

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth

    2014-05-01

    Large rock avalanches present a serious mountain hazard to lifelines, infrastructure and lives. They are one of a class of low frequency, high impact events for which there is a still considerable debate over the transport mechanism. The behaviour of large rock avalanches, sometimes referred to as sturzstrom or "stream flow" after Heim, is characterised by a volumetric dependence, so that very large rock avalanches tend to travel with a greater spreading "efficiency" than smaller ones. In this work we propose a mechanism for the volumetric dependence of rock avalanche spread (or runout) in light of the ubiquitous dynamic fragmentation behaviour of brittle solids, Terzaghi's principle of effective stress as used most commonly in soil mechanics, and concepts of momentum transfer. The proposed conceptual model is based on both observations of field scale events, such as made at Elm in Switzerland, Huascaran in Peru and Falling Mountain in New Zealand, and small scale physical model experiments using analogue rock materials which have been conducted at elevated g-level so as to increase stress levels within the experiments. In particular the model aims to explain how momentum transfer between elements within a fragmenting rock avalanche mass may lead to the greater mobility or spreading efficiency that is observed at large scale and may provide insight as to the conditions needed for rock avalanche propagation and arrest.

  12. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  13. Stowable large area solar power module

    SciTech Connect

    Hanak, J.J.

    1987-12-15

    A stowable, deployable large area solar module is described comprising: discrete, interconnected, flexible, large area solar panels; hinge means operatively disposed on the panels so as to provide for the relative planar displacement of the folded panels of the module when the panels are folded in overlying sandwiched relationship; the hinge means also operatively disposed so as to provide for the folded panels to be rolled into a stowable, substantially cylindrical configuration. The hinge means comprise: hinge knuckles associated with at least one edge of each large area panel, each of the knuckles including a passage therethrough adapted to receive pintle means, the knuckles of adjacent panels disposed in a spaced apart, generally coplanar, interdigitating relationship; and, flexible pintle means disposed so as to sequentially pass through the interdigitating knuckles, whereby the spaced apart knuckles allow for a degree of planar displacement of adjoining large area panels relative to one another, as well as allowing for the folding of the panels in a sandwiched relationship and the flexible pintle means allows for the panels to be rolled into the substantially cylindrical configuration.

  14. Collaboration within Large Groups in the Classroom

    ERIC Educational Resources Information Center

    Szewkis, Eyal; Nussbaum, Miguel; Rosen, Tal; Abalos, Jose; Denardin, Fernanda; Caballero, Daniela; Tagle, Arturo; Alcoholado, Cristian

    2011-01-01

    The purpose of this paper is to show how a large group of students can work collaboratively in a synchronous way within the classroom using the cheapest possible technological support. Making use of the features of Single Display Groupware and of Multiple Mice we propose a computer-supported collaborative learning approach for big groups within…

  15. Generating Large Unit Staffs during Wartime Mobilization

    DTIC Science & Technology

    2013-12-10

    cohesive staff that could forecast and plan. The Mexico City campaign was a successful use of large unit staffs. To begin, Major General Gideon Pillow ...Lawrence, KS: University of Kansas Press, 2007), 274-290. 34 Ibid. 35 Ibid. 12 avenues of approach.36 Pillow used his staff to maintain

  16. Hoisting frame facilitates handling of large objects

    NASA Technical Reports Server (NTRS)

    Colpean, K. V.; Holcomb, D. F.

    1968-01-01

    Hoisting frame can be used with a standard 5-ton forklift to handle the large spreader bars, or other bulky pieces of equipment, much faster and more efficiently than with a boom or gantry crane. In addition forklifts of this type are more readily available.

  17. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  18. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  19. Employment and Large Cities: Problems and Outlook.

    ERIC Educational Resources Information Center

    Bairoch, Paul

    1982-01-01

    This article traces the history of the emergence of large cities and examines the outlook for the future. It then answers questions about the effects of city size on general living conditions and on the various aspects of employment and the ways in which it might develop. (CT)

  20. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  1. Providing Assistance with Large Collaborative Grant Applications.

    ERIC Educational Resources Information Center

    Bell, Nancy B.

    1998-01-01

    Large collaborative grant applications, typically involving researchers from varied disciplines and proposing a lengthy work span, can be stressful for researchers and research administrators. The research office of the University of Texas Medical Branch at Galveston helps plan and develop these complex applications. Resources and services are…

  2. Pronunciation Modeling for Large Vocabulary Speech Recognition

    ERIC Educational Resources Information Center

    Kantor, Arthur

    2010-01-01

    The large pronunciation variability of words in conversational speech is one of the major causes of low accuracy in automatic speech recognition (ASR). Many pronunciation modeling approaches have been developed to address this problem. Some explicitly manipulate the pronunciation dictionary as well as the set of the units used to define the…

  3. Large area space solar cell assemblies

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Nowlan, M. J.

    1982-01-01

    Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication.

  4. Fate of Alpha Dynamos at Large Rm.

    PubMed

    Cameron, Alexandre; Alexakis, Alexandros

    2016-11-11

    At the heart of today's solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large-scale components from the ones that only involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random flows with short correlation time. Our results determine that the alpha description is valid for Rm smaller than a critical value Rm_{c} at which small-scale dynamo instability starts. When Rm is above Rm_{c}, the dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes independent of the scale separation, while the energy in the large-scale modes is inversely proportional to the square of the scale separation. The results in this second regime do not depend on the presence of helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions for mean-field modeling are proposed.

  5. 76 FR 46959 - Large Trader Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    .... Costs Associated With Maintaining and Reporting Large Trader Transaction Data 3. Relationship Between U... risk management controls for brokers or dealers with market access); and CAT Proposal, supra note 2. \\7..., available at http://blogs.wsj.com/marketbeat/2009/06/19/rise-of-the-market-machines/ . The trend is...

  6. Large Animal Models of Huntington's Disease.

    PubMed

    Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    Huntington's disease is caused by the expansion of a polyglutamine repeat (>37 glutamines) in the disease protein huntingtin, which results in preferential neuronal loss in distinct brain regions. Mutant huntingtin causes late-onset neurological symptoms in patients in middle life, though the expression of mutant huntingtin is ubiquitous from early life. Thus, it is important to understand why mutant huntingtin selectively causes neuronal loss in an age-dependent manner. Transgenic animal models have been essential tools for uncovering the pathogenesis and therapeutic targets of neurodegenerative diseases. Genetic mouse models have been investigated extensively and have revealed the common pathological hallmark of age-dependent formation of aggregates or inclusions consisting of misfolded proteins. However, most genetic mouse models lack striking neurodegeneration that has been found in patient brains. Since there are considerable species differences between small and large animals, large animal models of Huntington's disease may allow one to identify the pathological features that are more similar to those in patients and also help uncover more effective therapeutic targets. This chapter will focus on the important findings from large animal models of Huntington's disease and discusses the use of large animal models to investigate the pathogenesis of Huntington's disease and develop new therapeutic strategies.

  7. Reading the World through Very Large Numbers

    ERIC Educational Resources Information Center

    Greer, Brian; Mukhopadhyay, Swapna

    2010-01-01

    One original, and continuing, source of interest in large numbers is observation of the natural world, such as trying to count the stars on a clear night or contemplation of the number of grains of sand on the seashore. Indeed, a search of the internet quickly reveals many discussions of the relative numbers of stars and grains of sand. Big…

  8. Large size space construction for space exploitation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  9. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  10. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  11. Unusually large-sized peripheral ossifying fibroma.

    PubMed

    John, Reena Rachel; Kandasamy, Saravanan; Achuthan, Narendran

    2016-01-01

    Fibrous growths in the gingiva with the histopathological presence of calcifications are a common occurrence in the oral cavity. These lesions can be neoplastic in nature with either odontogenic or non odontogenic origin or they can be reactive lesions. This is a case report of an unusual presentation of peripheral ossifying fibroma , unusual because of its abnormally large size with review of literature.

  12. Mass extinctions caused by large bolide impacts

    SciTech Connect

    Alvarez, L.W.

    1987-07-01

    Evidence indicates that the collision of Earth and a large piece of Solar System derbris such as a meteoroid, asteroid or comet caused the great extinctions of 65 million years ago, leading to the transition from the age of the dinosaurs to the age of the mammals.

  13. Tutoring Large Numbers: An Unmet Challenge

    ERIC Educational Resources Information Center

    Lentell, Helen; O'Rourke, Jennifer

    2004-01-01

    Open and distance learning (ODL) is increasingly being regarded as a viable policy option for developing countries with limited educational resources for buildings, books and trained teachers, seeking to increase accessibility for large numbers of learners in education and training opportunities. Advocates of ODL as an appropriate solution to…

  14. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  15. Virtual Teamwork in Very Large Undergraduate Classes

    ERIC Educational Resources Information Center

    Alexander, P. M.

    2006-01-01

    Collaborative work is an important part of tertiary education but it is very difficult to arrange and supervise for extremely large classes of students in their first year. The possibility that computer-mediated communication can be used to facilitate this type of learning is appealing from a pragmatic organisational point of view. This paper…

  16. Large Actuator Count MEMS Deformable Mirror Development

    DTIC Science & Technology

    2010-06-07

    Large-actuator-count deformable mirrors (DM) are essential for high-contrast imaging systems NASA is developing for exoplanet detection. These same...applications: Nulling coronagraphs for exoplanet imaging, Atmospheric turbulence compensation for free-space laser communication, laser guide star

  17. Using Large Diabetes Databases for Research.

    PubMed

    Wild, Sarah; Fischbacher, Colin; McKnight, John

    2016-09-01

    There are an increasing number of clinical, administrative and trial databases that can be used for research. These are particularly valuable if there are opportunities for linkage to other databases. This paper describes examples of the use of large diabetes databases for research. It reviews the advantages and disadvantages of using large diabetes databases for research and suggests solutions for some challenges. Large, high-quality databases offer potential sources of information for research at relatively low cost. Fundamental issues for using databases for research are the completeness of capture of cases within the population and time period of interest and accuracy of the diagnosis of diabetes and outcomes of interest. The extent to which people included in the database are representative should be considered if the database is not population based and there is the intention to extrapolate findings to the wider diabetes population. Information on key variables such as date of diagnosis or duration of diabetes may not be available at all, may be inaccurate or may contain a large amount of missing data. Information on key confounding factors is rarely available for the nondiabetic or general population limiting comparisons with the population of people with diabetes. However comparisons that allow for differences in distribution of important demographic factors may be feasible using data for the whole population or a matched cohort study design. In summary, diabetes databases can be used to address important research questions. Understanding the strengths and limitations of this approach is crucial to interpret the findings appropriately.

  18. Large erupting complex odontoma: a case report.

    PubMed

    Vengal, Manoj; Arora, Honey; Ghosh, Sujoy; Pai, Keerthilatha M

    2007-03-01

    Odontomas are the most common odontogenic tumours. They are usually asymptomatic and are often discovered during routine radiography. We report a case of a large erupting complex odontoma that caused pain, infection and facial asymmetry. This case is significant as there are few reports of complex odontoma erupting in the oral cavity.

  19. Design evolution of large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1979-01-01

    During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.

  20. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  1. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.

  2. Financing Equity Among Schools in Large Cities.

    ERIC Educational Resources Information Center

    Hubbard, Ben C.

    Nineteen states now have some form of compensatory education grants apart from support for exceptional children. Compensatory education is a large part of the urban problem. The suburbs have replaced the cities as educational leaders, not because the cities have stopped trying to educate students, but because of many sociological and economic…

  3. Understanding Student Performance in a Large Class

    ERIC Educational Resources Information Center

    Snowball, Jen D.; Boughey, Chrissie

    2012-01-01

    Across the world, university teachers are increasingly being required to engage with diversity in the classes they teach. Using the data from a large Economics 1 class at a South African university, this attempts to understand the effects of diversity on chances of success and how assessment can impact on this. By demonstrating how theory can be…

  4. The Large Context Problem (LCP) Approach

    ERIC Educational Resources Information Center

    Stinner, Arthur

    2006-01-01

    This article traces the development of a contextual approach to the teaching of science (physics) subsequently called the Large Context Problem (LCP) approach. This approach is based on the general observation that learning could be well motivated by a context with one unifying central idea capable of capturing the imagination of the students. The…

  5. Insights into Our Understandings of Large Numbers

    ERIC Educational Resources Information Center

    Kastberg, Signe E.; Walker, Vicki

    2008-01-01

    This article explores prospective teachers' understandings of one million to gain insights into the development of adult understanding of large numbers. Themes in the prospective teachers' work included number associated with a quantity of objects, number as an abstraction, and additive and multiplicative approaches. The authors suggest that the…

  6. Report of the large solenoid detector group

    SciTech Connect

    Hanson, G.G.; Mori, S.; Pondrom, L.G.; Williams, H.H.; Barnett, B.; Barnes, V.; Cashmore, R.; Chiba, M.; DeSalvo, R.; Devlin, T.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region.

  7. Embodied largeness: a significant women's health issue.

    PubMed

    Carryer, J

    2001-06-01

    This paper describes a three-year long research project in which nine large-bodied women have engaged in a prolonged dialogue with the researcher about the experience of being 'obese'. The study involved an extensive review of the multidisciplinary literature that informs our understandings of body size. The literature review was shared with participants in order to support their critical understanding of their experience. An examination of a wide range of literature pertinent to the area of study reveals widespread acceptance of the notion that to be thin is to be healthy and virtuous, and to be fat is to be unhealthy and morally deficient. The experience of participants raised questions as to how nursing could best provide health-care for large women. According to the literature review, nurses have perpetuated an unhelpful and reductionist approach to their care of large women, in direct contradiction to nursing's supposed allegiance to a holistic approach to health-care. This paper suggests strategies for an improved response to women who are concerned about their large body size.

  8. Assessing Stakeholder Input in a Large System.

    ERIC Educational Resources Information Center

    Kuzmyn, Zenon J.; Collet, Leverne S.

    The intent of this paper is to illustrate the use of stakeholder information in evaluating a school program. The material presented is part of a comprehensive formative evaluation of a crisis intervention program operated by a suburban school district situated near a large industrial city in the Midwest. The crisis intervention program provided…

  9. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  10. Modal Vibration Analysis of Large Castings

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Margasahayam, Ravi N.

    2009-01-01

    The art of experimental modal vibration analysis (MVA) has been extended to apply to large castings. This extension was made to enable the use of experimental MVA as a relatively inexpensive, simple means of assessing the internal structural integrity of tread shoes of crawler transporters used to move spacecraft to the launch pad at Kennedy Space Center. Each tread shoe is made from cast iron and weighs about a ton (has a mass .907 kg). The present extended version of experimental MVA could also be applied to other large castings. It could be especially useful to manufacturers as a means of rapidly discriminating against large castings that contain unacceptably large concentrations of internal defects. The use of experimental MVA to assess structural integrity is not new. What are new here are those aspects of the extension of experimental MVA that pertain to the application of MVA to objects so massive that it may not be practical or cost effective to mount them in special test fixtures that impose special test boundary conditions to test them in place under normal conditions of use.

  11. Privacy Regulation in Small and Large Groups

    ERIC Educational Resources Information Center

    Koneya, Mele

    1977-01-01

    The contrasting interaction potentials of commonly used seating arrangements for small and large group meetings are discussed from the vantage point of contemporary definitions of privacy. Seat location is associated with verbal interaction rates and visual accessibility among and between group members and leaders. Seating design should provide…

  12. Large Indoor Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    Seidler, Todd

    This paper presents an overview and analysis of field houses, stadiums, arenas, and campus recreation centers. All are large indoor sports or recreation facilities. In general, stadiums and arenas are spectator facilities while field houses and campus recreation centers are primarily designed for activity. A college field house is a structure that…

  13. Demonstrations to Wake Up Large Classes.

    ERIC Educational Resources Information Center

    Howes, Ruth; Watson, James

    1982-01-01

    A general strategy and specific examples for demonstrations in large physics classes are given. Such "action" demonstrations may involve students moving around the class to demonstrate molecular behavior in different states of matter, and effect of heat in changing state. (JN)

  14. Estimation and Compression over Large Alphabets

    ERIC Educational Resources Information Center

    Acharya, Jayadev

    2014-01-01

    Compression, estimation, and prediction are basic problems in Information theory, statistics and machine learning. These problems have been extensively studied in all these fields, though the primary focus in a large portion of the work has been on understanding and solving the problems in the asymptotic regime, "i.e." the alphabet size…

  15. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    During test and verification planning for the Altair lunar lander project, a National Aeronautics and Space Administration (NASA) study team identified several ground transportation and test issues related to the large payload diameter. Although the entire Constellation Program-including Altair-has since been canceled, issues identified by the Altair project serve as important lessons learned for payloads greater than 7 m diameter being considered for NASA's new Space Launch System (SLS). A transportation feasibility study found that Altair's 8.97 m diameter Descent Module would not fit inside available aircraft. Although the Ascent Module cabin was only 2.35 m diameter, the long reaction control system booms extended nearly to the Descent Module diameter, making it equally unsuitable for air transportation without removing the booms and invalidating assembly workmanship screens or acceptance testing that had already been performed. Ground transportation of very large payloads over extended distances is not generally permitted by most states, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA's Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  16. Hayward fault: Large earthquakes versus surface creep

    USGS Publications Warehouse

    Lienkaemper, James J.; Borchardt, Glenn; Borchardt, Glenn; Hirschfeld, Sue E.; Lienkaemper, James J.; McClellan, Patrick H.; Williams, Patrick L.; Wong, Ivan G.

    1992-01-01

    The Hayward fault, thought a likely source of large earthquakes in the next few decades, has generated two large historic earthquakes (about magnitude 7), one in 1836 and another in 1868. We know little about the 1836 event, but the 1868 event had a surface rupture extending 41 km along the southern Hayward fault. Right-lateral surface slip occurred in 1868, but was not well measured. Witness accounts suggest coseismic right slip and afterslip of under a meter. We measured the spatial variation of the historic creep rate along the Hayward fault, deriving rates mainly from surveys of offset cultural features, (curbs, fences, and buildings). Creep occurs along at least 69 km of the fault's 82-km length (13 km is underwater). Creep rate seems nearly constant over many decades with short-term variations. The creep rate mostly ranges from 3.5 to 6.5 mm/yr, varying systemically along strike. The fastest creep is along a 4-km section near the south end. Here creep has been about 9mm/yr since 1921, and possibly since the 1868 event as indicated by offset railroad track rebuilt in 1869. This 9mm/yr slip rate may approach the long-term or deep slip rate related to the strain buildup that produces large earthquakes, a hypothesis supported by geoloic studies (Lienkaemper and Borchardt, 1992). If so, the potential for slip in large earthquakes which originate below the surficial creeping zone, may now be 1/1m along the southern (1868) segment and ≥1.4m along the northern (1836?) segment. Substracting surface creep rates from a long-term slip rate of 9mm/yr gives present potential for surface slip in large earthquakes of up to 0.8m. Our earthquake potential model which accounts for historic creep rate, microseismicity distribution, and geodetic data, suggests that enough strain may now be available for large magnitude earthquakes (magnitude 6.8 in the northern (1836?) segment, 6.7 in the southern (1868) segment, and 7.0 for both). Thus despite surficial creep, the fault may be

  17. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  18. Large ejecta fragments from asteroids. [Abstract only

    NASA Technical Reports Server (NTRS)

    Asphaug, E.

    1994-01-01

    The asteroid 4 Vesta, with its unique basaltic crust, remains a key mystery of planetary evolution. A localized olivine feature suggests excavation of subcrustal material in a crater or impact basin comparable in size to the planetary radius (R(sub vesta) is approximately = 280 km). Furthermore, a 'clan' of small asteroids associated with Vesta (by spectral and orbital similarities) may be ejecta from this impact 151 and direct parents of the basaltic achondrites. To escape, these smaller (about 4-7 km) asteroids had to be ejected at speeds greater than the escape velocity, v(sub esc) is approximately = 350 m/s. This evidence that large fragments were ejected at high speed from Vesta has not been reconciled with the present understanding of impact physics. Analytical spallation models predict that an impactor capable of ejecting these 'chips off Vesta' would be almost the size of Vesta! Such an impact would lead to the catastrophic disruption of both bodies. A simpler analysis is outlined, based on comparison with cratering on Mars, and it is shown that Vesta could survive an impact capable of ejecting kilometer-scale fragments at sufficient speed. To what extent does Vesta survive the formation of such a large crater? This is best addressed using a hydrocode such as SALE 2D with centroidal gravity to predict velocities subsequent to impact. The fragmentation outcome and velocity subsequent to the impact described to demonstrate that Vesta survives without large-scale disassembly or overturning of the crust. Vesta and its clan represent a valuable dataset for testing fragmentation hydrocodes such as SALE 2D and SPH 3D at planetary scales. Resolution required to directly model spallation 'chips' on a body 100 times as large is now marginally possible on modern workstations. These boundaries are important in near-surface ejection processes and in large-scale disruption leading to asteroid families and stripped cores.

  19. Large-scale instabilities of helical flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-10-01

    Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.

  20. Large scale scientific computing - future directions

    NASA Astrophysics Data System (ADS)

    Patterson, G. S.

    1982-06-01

    Every new generation of scientific computers has opened up new areas of science for exploration through the use of more realistic numerical models or the ability to process ever larger amounts of data. Concomitantly, scientists, because of the success of past models and the wide range of physical phenomena left unexplored, have pressed computer designers to strive for the maximum performance that current technology will permit. This encompasses not only increased processor speed, but also substantial improvements in processor memory, I/O bandwidth, secondary storage and facilities to augment the scientist's ability both to program and to understand the results of a computation. Over the past decade, performance improvements for scientific calculations have come from algoeithm development and a major change in the underlying architecture of the hardware, not from significantly faster circuitry. It appears that this trend will continue for another decade. A future archetectural change for improved performance will most likely be multiple processors coupled together in some fashion. Because the demand for a significantly more powerful computer system comes from users with single large applications, it is essential that an application be efficiently partitionable over a set of processors; otherwise, a multiprocessor system will not be effective. This paper explores some of the constraints on multiple processor architecture posed by these large applications. In particular, the trade-offs between large numbers of slow processors and small numbers of fast processors is examined. Strategies for partitioning range from partitioning at the language statement level (in-the-small) and at the program module level (in-the-large). Some examples of partitioning in-the-large are given and a strategy for efficiently executing a partitioned program is explored.

  1. Data acquisition system issues for large experiments

    NASA Astrophysics Data System (ADS)

    Siskind, E. J.

    2007-09-01

    This talk consists of personal observations on two classes of data acquisition ("DAQ") systems for Silicon trackers in large experiments with which the author has been concerned over the last three or more years. The first half is a classic "lessons learned" recital based on experience with the high-level debug and configuration of the DAQ system for the GLAST LAT detector. The second half is concerned with a discussion of the promises and pitfalls of using modern (and future) generations of "system-on-a-chip" ("SOC") or "platform" field-programmable gate arrays ("FPGAs") in future large DAQ systems. The DAQ system pipeline for the 864k channels of Si tracker in the GLAST LAT consists of five tiers of hardware buffers which ultimately feed into the main memory of the (two-active-node) level-3 trigger processor farm. The data formats and buffer volumes of these tiers are briefly described, as well as the flow control employed between successive tiers. Lessons learned regarding data formats, buffer volumes, and flow control/data discard policy are discussed. The continued development of platform FPGAs containing large amounts of configurable logic fabric, embedded PowerPC hard processor cores, digital signal processing components, large volumes of on-chip buffer memory, and multi-gigabit serial I/O capability permits DAQ system designers to vastly increase the amount of data preprocessing that can be performed in parallel within the DAQ pipeline for detector systems in large experiments. The capabilities of some currently available FPGA families are reviewed, along with the prospects for next-generation families of announced, but not yet available, platform FPGAs. Some experience with an actual implementation is presented, and reconciliation between advertised and achievable specifications is attempted. The prospects for applying these components to space-borne Si tracker detectors are briefly discussed.

  2. Large area damage testing of optics

    SciTech Connect

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-04-26

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed {open_quotes}functional damage threshold{close_quotes} was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold.

  3. Enclosure of the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Salinari, Piero; Hill, John M.

    1994-06-01

    We describe the enclosure of the Large Binocular Telescope, now in a detailed design phase. The enclosure is co-rotating with the telescope, includes a service floor carrying all telescope utilities, and is characterized by two large portal shutters, which open laterally leaving the air flow at the front and at the back of the telescope essentially unobstructed. Large louvers on the side walls and wind shields with variable permeability at the front and back openings are used to control the air flow in different wind conditions. The inner and outer surfaces of the enclosure are designed to obtain short thermal time constant and close equilibrium with ambient air. Forced air circulation in the outer skin of the enclosure is used for better heat exchange and, with electrical heaters, for melting snow. The interaction of the whole building with the natural air flow in conditions representative of those encountered at the specific site on Mt. Graham was the subject of extensive water channel measurements on a model of the building and of the surrounding environment. The flow patterns obtained in the simulations show no mixing of lower air layers with those at the level of the primary mirrors or above. The handling scheme for large equipment, including the primary mirror cells and the bell-jar for aluminizing of the mirrors on board the telescope, is based on a large bridge crane that can transfer instruments and maintenance equipment to the telescope and to the service floor from the storage and maintenance area at ground level.

  4. The paradox of large alluvial rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2010-12-01

    Large alluvial rivers exhibit large floodplains, very gentle slopes, a good selection of bed materials (generally sand), low specific stream power, and could represent the ultimate examples of “dynamic equilibrium” in fluvial systems. However, equilibrium can be discussed at different temporal scales. Base level changes by tectonic or climatic effects, modifications in sediment and water supply or different kinds of human impacts are the traditional causes that could trigger “disequilibrium” and changes in the longitudinal profile. Simultaneously, adjustments of longitudinal profiles were thought to be evolving from downstream to upstream by several processes, being the most common receding erosion. Some authors,have demonstrated that when changes in base level happen, a variety of adjustments can be reached in the lower course in function of the available sediment and water discharge, slopes articulations between the fluvial reach and the continental shelve, among others, and that the adjustments can be transferred upstream significantly in small rivers but not far upstream along large fluvial systems. When analyzing the Quaternary fluvial belts of large rivers in the millennium scale, paleohydrological changes and modifications in floodplain constructional processes or erosion, are associated normally to late Quaternary climatic changes. The study of several of the largest rivers demonstrates that climatic changes and fluvial responses are not always working totally in phase and those direct cause-consequences relations are not a rule. This paper describes floodplain evolution and the lagged geomorphic responses of some large river system to recent climatic changes. Information from some of the largest rivers of the world such as the Amazon, Parana, several tributaries of the Amazon (Negro, Xingú, Tapajos) as well as some large Siberian Rivers was used. Since the last deglaciation, these large fluvial systems have not had enough time to reach equilibrium

  5. Large orb-webs adapted to maximise total biomass not rare, large prey.

    PubMed

    Harmer, Aaron M T; Clausen, Philip D; Wroe, Stephen; Madin, Joshua S

    2015-09-16

    Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass, and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size.

  6. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  7. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  8. The large APEX bolometer camera LABOCA

    NASA Astrophysics Data System (ADS)

    Siringo, Giorgio; Kreysa, Ernst; Kovacs, Attila; Schuller, Frederic; Weiß, Axel; Esch, Walter; Gemünd, Hans-Peter; Jethava, Nikhil; Lundershausen, Gundula; Güsten, Rolf; Menten, Karl M.; Beelen, Alexandre; Bertoldi, Frank; Beeman, Jeffrey W.; Haller, Eugene E.; Colin, Angel

    2008-07-01

    A new facility instrument, the Large APEX Bolometer Camera (LABOCA), developed by the Max-Planck-Institut für Radioastronomie (MPIfR, Bonn, Germany), has been commissioned in May 2007 for operation on the Atacama Pathfinder Experiment telescope (APEX), a 12 m submillimeter radio telescope located at 5100 m altitude on Llano de Chajnantor in northern Chile. For mapping, this 295-bolometer camera for the 870 micron atmospheric window operates in total power mode without wobbling the secondary mirror. One LABOCA beam is 19 arcsec FWHM and the field of view of the complete array covers 100 square arcmin. Combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, LABOCA offers unprecedented capability in large scale mapping of submillimeter continuum emission. Details of design and operation are presented.

  9. Future large broadband switched satellite communications networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  10. Buried pipelines in large fault movements

    SciTech Connect

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  11. Flow imaging and computing: large artery hemodynamics.

    PubMed

    Steinman, David A; Taylor, Charles A

    2005-12-01

    The objective of our session at the International Bio-Fluid Mechanics Symposium and Workshop was at the International Bio-Fluid Mechanics Symposium and Workshop to review the state-of-the-art in, and identify future directions for, imaging and computational modeling of blood flow in the large arteries and the microcirculation. Naturally, talks in other sessions of the workshop overlapped this broad topic, and so here we summarize progress within the last decade in terms of the technical development and application of flow imaging and computing, rather than the knowledge derived from specific studies. We then briefly discuss ways in these tools may be extended, and their application broadened, in the next decade. Furthermore, owing to the conceptual division between the hemodynamics of large arteries, and those within the microcirculation, we review these regimes separately: The former here by Steinman and Taylor; and the latter in a separate paper by Cristini.

  12. Large-scale preparation of plasmid DNA.

    PubMed

    Heilig, J S; Elbing, K L; Brent, R

    2001-05-01

    Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.

  13. GLAST Large Area Telescope Multiwavelength Planning

    SciTech Connect

    Reimer, O.; Michelson, P.F.; Cameron, R.A.; Digel, S.W.; Thompson, D.J.; Wood, K.S.

    2007-01-03

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-band blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  14. Passive load control for large wind turbines.

    SciTech Connect

    Ashwill, Thomas D.

    2010-05-01

    Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

  15. Large antenna measurement and compensation techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1989-01-01

    Antennas in the range of 20 meters or larger will be an integral part of future satellite communication and scientific payloads. In order to commercially use these large, low sidelobe and multiple-beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. It is also desirable to compensate for slowly varying surface distortions which could results from thermal effects. An overview of recent advances in performing rf measurements on large antennas is presented with emphasis given to the application of a space-based far-field range utilizing the Space Shuttle. The concept of surface distortion compensation is discussed by providing numerical and measurement results.

  16. Cloud Based Processing of Large Photometric Surveys

    NASA Astrophysics Data System (ADS)

    Farivar, R.; Brunner, R. J.; Santucci, R.; Campbell, R.

    2013-10-01

    Astronomy, as is the case with many scientific domains, has entered the realm of being a data rich science. Nowhere is this reflected more clearly than in the growth of large area surveys, such as the recently completed Sloan Digital Sky Survey (SDSS) or the Dark Energy Survey, which will soon obtain PB of imaging data. The data processing on these large surveys is a major challenge. In this paper, we demonstrate a new approach to this common problem. We propose the use of cloud-based technologies (e.g., Hadoop MapReduce) to run a data analysis program (e.g., SExtractor) across a cluster. Using the intermediate key/value pair design of Hadoop, our framework matches objects across different SExtractor invocations to create a unified catalog from all SDSS processed data. We conclude by presenting our experimental results on a 432 core cluster and discuss the lessons we have learned in completing this challenge.

  17. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  18. The missing large impact craters on Ceres

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; de Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.

    2016-07-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  19. Planning for large construction projects in space

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1978-01-01

    The paper discusses briefly some broad plans for developing the technology needed for large construction projects in space ranging from orbiting solar power stations to large communications antennas. Space construction classes include assembly of modules, deployment of compacted structures, assembly of passive preformed pieces, and fabrication of structures from sheet stock. Technological areas related to structural concepts include (1) analyses for prediction of structural behavior, structural/control interaction, electromagnetic and control performance, and integrated design development; (2) electronics for signal conditioning and data acquisition, power distribution, and signal channel interference and multipaction; (3) concepts for shape control, attitude/pointing control, and orbital transfer and station keeping; and (4) materials and techniques for 30-year dimensional stable composites, thermal control, thin-lightweight structural alloys, and material joining in space. The concept of a power module for the construction operations is discussed along with a concept for a habitability module.

  20. Crunching Large Graphs with Commodity Processors

    SciTech Connect

    Nelson, Jacob E; Myers, Brandon D; Hunter, Andrew H; Briggs, Preston; Ceze, Luis; Ebeling, William C; Grossman, Dan; Kahan, Simon H; Oskin, Mark

    2011-05-26

    Crunching large graphs is the basis of many emerging appli- cations, such as social network analysis and bioinformatics. Graph analytics algorithms exhibit little locality and therefore present significant performance challenges. Hardware multi- threading systems (e.g, Cray XMT) show that with enough concurrency, we can tolerate long latencies. Unfortunately, this solution is not available with commodity parts. Our goal is to develop a latency-tolerant system built out of commodity parts and mostly in software. The proposed system includes a runtime that supports a large number of lightweight contexts, full-bit synchronization and a memory manager that provides a high-latency but high-bandwidth global shared memory. This paper lays out the vision for our system, and justifies its feasibility with a performance analysis of the run- time for latency tolerance.

  1. Laser crystallization for large-area electronics

    NASA Astrophysics Data System (ADS)

    Sameshima, Toshiyuki

    2009-07-01

    Laser crystallization is reviewed for the purpose of fabrication of polycrystalline silicon thin film transistors (poly-Si TFTs). Laser-induced rapid heating is important for formation of crystalline films with a low thermal budget. Reduction of electrically active defects located at grain boundaries is essential for improving electrical properties of poly-Si films and achieving poly-Si TFTs with high performances. The internal film stress is attractive to increase the carrier mobility. Recent developments in laser crystallization methods with pulsed and continuous-wave lasers are also reviewed. Control of heat flow results in crystalline grain growth in the lateral direction, which is important for fabrication of large crystalline grains. We also report an annealing method using a high-power infrared semiconductor laser. High-power lasers will be attractive for rapid formation of crystalline films over a large area and activation of silicon with impurity atoms.

  2. Primer design for large scale sequencing.

    PubMed

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-06-15

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects.

  3. Large subcortical hemispheric infarctions. Presentation and prognosis.

    PubMed

    Levine, R L; Lagreze, H L; Dobkin, J A; Turski, P A

    1988-10-01

    A specific form of large subcortical hemispheric infarction on computed tomography was identified in 24 of 2198 (1%) stroke registry patients. Combined with 13 cases from earlier literature reports, a characteristic neurologic picture developed. Severe face plus arm plus leg weakness at onset (76%), corticallike features of aphasia and/or contralateral neglect (68%), and premonitory transient ischemic attacks (24%) were frequent. Twenty-two patients (59%) had large vessel arterial occlusive disease. Eight patients (22%) had primary embolic occlusion in the middle cerebral artery territory. During an average follow-up of 16 months, five patients (14%) suffered recurrent stroke or death. The clinical presentation and prognostic features of this distinct stroke subtype are described.

  4. Optimization Integrator for Large Time Steps.

    PubMed

    Gast, Theodore F; Schroeder, Craig; Stomakhin, Alexey; Jiang, Chenfanfu; Teran, Joseph M

    2015-10-01

    Practical time steps in today's state-of-the-art simulators typically rely on Newton's method to solve large systems of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations. We show that recasting backward Euler as a minimization problem allows Newton's method to be stabilized by standard optimization techniques with some novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the [Formula: see text] frame rate and beyond. We show how simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for self collisions and collisions against scripted bodies designed for the unique demands of this solver. Finally, we show that these techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.

  5. GLAST Large Area Telescope Multiwavelength Planning

    NASA Technical Reports Server (NTRS)

    Reimer, O.; Michelson, P. F.; Cameron, R. A.; Digel, S. W.; Thompson, D. J.; Wood, K. S.

    2007-01-01

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  6. "Cosmological Parameters from Large Scale Structure"

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    2005-01-01

    This grant has provided primary support for graduate student Mark Neyrinck, and some support for the PI and for colleague Nick Gnedin, who helped co-supervise Neyrinck. This award had two major goals. First, to continue to develop and apply methods for measuring galaxy power spectra on large, linear scales, with a view to constraining cosmological parameters. And second, to begin try to understand galaxy clustering at smaller. nonlinear scales well enough to constrain cosmology from those scales also. Under this grant, the PI and collaborators, notably Max Tegmark. continued to improve their technology for measuring power spectra from galaxy surveys at large, linear scales. and to apply the technology to surveys as the data become available. We believe that our methods are best in the world. These measurements become the foundation from which we and other groups measure cosmological parameters.

  7. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  8. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  9. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  10. Small-on-large geometric anelasticity

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Yavari, Arash

    2016-11-01

    In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids.

  11. Black hole production and large extra dimensions.

    PubMed

    Cheung, Kingman

    2002-06-03

    Black hole (BH) production at colliders is possible when the colliding energy is above the Planck scale, which can effectively be at TeV scale in models of large extra dimensions. In this work, we study the production of black holes at colliders and discuss the possible signatures. We point out the " ij-->BH+others" subprocesses, in which the BH and other standard-model particles are produced with a large transverse momentum. When the BH decays, it gives a signature that consists of particles of high multiplicity in a boosted spherical shape on one side of the event and a few numbers of high p(T) partons on the other side, which provide very useful tags for the event.

  12. Damage Tolerance of Large Shell Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  13. Online Community Detection for Large Complex Networks

    PubMed Central

    Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian

    2014-01-01

    Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683

  14. Timing Characteristics of Large Area Picosecond Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  15. Distributed control of large space antennas

    NASA Technical Reports Server (NTRS)

    Cameron, J. M.; Hamidi, M.; Lin, Y. H.; Wang, S. J.

    1983-01-01

    A systematic way to choose control design parameters and to evaluate performance for large space antennas is presented. The structural dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib Antenna are characterized. Some results of the effects of model parameter uncertainties to the stability, surface accuracy, and pointing errors are presented. Critical dynamics and control problems for these antenna configurations are identified and potential solutions are discussed. It was concluded that structural uncertainties and model error can cause serious performance deterioration and can even destabilize the controllers. For the hoop and column antenna, large hoop and long meat and the lack of stiffness between the two substructures result in low structural frequencies. Performance can be improved if this design can be strengthened. The two-site control system is more robust than either single-site control systems for the hoop and column antenna.

  16. Actinide Recovery Method for Large Soil Samples

    SciTech Connect

    Maxwell, S.L. III; Nichols, S.

    1998-11-01

    A new Actinide Recovery Method has been developed by the Savannah River Site Central Laboratory to preconcentrate actinides in very large soil samples. Diphonix Resin(r) is used eliminate soil matrix interferences and preconcentrate actinides after soil leaching or soil fusion. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin(r). After the resin digestion, the actinides are recovered in a small volume of nitric acid which can be easily loaded onto small extraction-chromatography columns, such as TEVA Resin(r), U-TEVA Resin(r) or TRU Resin(r) (Eichrom Industries). This method enables the application of small, selective extraction-columns to recover actinides from very large soil samples with high selectivity, consistent tracer recoveries and minimal liquid waste.

  17. Vibration suppression in a large space structure

    NASA Technical Reports Server (NTRS)

    Narendra, Kumpati S.

    1988-01-01

    The Yale University Center for Systems Science and the NASA Johnson Space Center collaborated in a study of vibration suppression in a large space structure during the period January 1985 to August 1987. The research proposal submitted by the Center to NASA concerned disturbance isolation in flexible space structures. The general objective of the proposal was to create within the Center a critical mass of expertise on problems related to the dynamics and control of large flexible space structures. A specific objective was to formulate both passive and active control strategies for the disturbance isolation problem. Both objectives were achieved during the period of the contract. While an extensive literature exists on the control of flexible space structures, it is generally acknowledged that many important questions remain open at even a fundamental level. Hence, instead of studying grossly simplified models of complex structural systems, it was decided as a first step to confine attention to detailed and thorough analyses of simple structures.

  18. Primer design for large scale sequencing.

    PubMed Central

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-01-01

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects. PMID:9611248

  19. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  20. Large scale study of tooth enamel

    SciTech Connect

    Bodart, F.; Deconninck, G.; Martin, M.Th.

    1981-04-01

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. One hundred eighty samples of teeth were first analysed using PIXE, backscattering and nuclear reaction techniques. The results were analysed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population.

  1. Sea-level changes before large earthquakes

    USGS Publications Warehouse

    Wyss, M.

    1978-01-01

    Changes in sea level have long been used as a measure of local uplift and subsidence associated with large earthquakes. For instance, in 1835, the British naturalist Charles Darwin observed that sea level dropped by 2.7 meters during the large earthquake in Concepcion, CHile. From this piece of evidence and the terraces along the beach that he saw, Darwin concluded that the Andes had grown to their present height through earthquakes. Much more recently, George Plafker and James C. Savage of the U.S Geological Survey have shown, from barnacle lines, that the great 1960 Chile and the 1964 Alaska earthquakes caused several meters of vertical displacement of the shoreline. 

  2. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  3. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  4. Large igneous provinces linked to supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Santosh, M.; Luo, Zhaohua; Hao, Jinhua

    2015-04-01

    Models for the disruption of supercontinents have considered mantle plumes as potential triggers for continental extension and the formation of large igneous provinces (LIPs). An alternative hypothesis of top-down tectonics links large volcanic eruptions to lithospheric delamination. Here we argue that the formation of several LIPs in Tarim, Yangtze, Lhasa and other terranes on the Eurasian continent was coeval with the assembly of the Pangean supercontinent, in the absence of plumes rising up from the mantle transition zone or super-plumes from the core-mantle boundary. The formation of these LIPs was accompanied by subduction and convergence of continents and micro-continents, with no obvious relation to major continental rifting or mantle plume activity. Our model correlates LIPs with lithospheric extension caused by asthenospheric flow triggered by multiple convergent systems associated with supercontinent formation.

  5. Environmental effects of large impacts on Mars.

    PubMed

    Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin

    2002-12-06

    The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers.

  6. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  7. Large field inflation from D-branes

    NASA Astrophysics Data System (ADS)

    Escobar, Dagoberto; Landete, Aitor; Marchesano, Fernando; Regalado, Diego

    2016-04-01

    We propose new large field inflation scenarios built on the framework of F-term axion monodromy. Our setup is based on string compactifications where D-branes create potentials for closed string axions via F-terms. Because the source of the axion potential is different from the standard sources of moduli stabilization, it is possible to lower the inflaton mass as compared to other massive scalars. We discuss a particular class of models based on type IIA flux compactifications with D6-branes. In the small field regime they describe supergravity models of quadratic chaotic inflation with a stabilizer field. In the large field regime the inflaton potential displays a flattening effect due to Planck suppressed corrections, allowing us to easily fit the cosmological parameters of the model within current experimental bounds.

  8. Large Amplitude Oscillations of a Double Pendulum

    NASA Astrophysics Data System (ADS)

    Gerres, Jeffrey M.; Jacobs, Robert M.; Kasun, Sara F.; Bacon, Margaret E.; Nagolu, Chakravarthi M.; Owens, Erin L.; Siehl, Kevin F.; Thomsen, Marshall; Troyer, Jon S.

    2008-03-01

    The nature of the normal modes of oscillation in the small angle regime of a double pendulum is well established. However, for large amplitude oscillations, a closed form solution of the differential equations of motion does not exist. Using Lagrange formalism, we explore both the in-phase and out-of-phase normal modes of oscillation of a double pendulum as a function of the mass ratio of the two bobs and their initial angular positions. We conduct the analysis using MatLab, where we initially verify our code in the known small amplitude limit. Among our results we find that certain symmetries between the in-phase and out-of-phase normal modes that exist in the small amplitude limit are no longer present at large amplitudes.

  9. Operations analysis for a large lunar telescope

    NASA Technical Reports Server (NTRS)

    Thyen, Christopher

    1992-01-01

    Consideration is given to a study of the operations and assembly of a 16-m large lunar telescope (LLT), which deals with the operations and assembly of the telescope from LEO to the lunar surface for assembly. The study of LLT operations and assembly is broken down into three divisions to allow easier operations analysis: earth to orbit operations, LEO operations (transfer to lunar surface operations), and lunar surface operations. The following guidelines were set down to ensure a reasonable starting point for a large, lunar, untended installation: the existence of a lunar base, a space transportation system from LEO to the lunar surface, continuous manning of the lunar base during the assembly period, and availability/capability to perform lunar assembly with the lunar base crew. The launch/vehicle packaging options, lunar site selection and assembly options, and assembly crew assumptions are discussed.

  10. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  11. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  12. Fabrication of Large YBCO Superconducting Disks

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  13. Large Platform Autonomy in Urban Environments

    DTIC Science & Technology

    2012-08-01

    1 Mover Per Run • Mannequin on computer controlled pulley system • Avoided mover on each scenario by more than 6 meter The SOURCE Enhanced...UNCLASSIFIED: Distribution Statement A. Approved for public release. 2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM ROBOTIC... SYSTEMS (RS) MINI-SYMPOSIUM AUGUST 14-16, MICHIGAN LARGE PLATFORM AUTONOMY IN URBAN ENVIRONMENTS Chip DiBerardino Edward Mottern Tracy K

  14. Shielding and grounding in large detectors

    SciTech Connect

    Radeka, V.

    1998-09-01

    Prevention of electromagnetic interference (EMI), or ``noise pickup,`` is an important design aspect in large detectors in accelerator environments. Shielding effectiveness as a function of shield thickness and conductivity vs the type and frequency of the interference field is described. Noise induced in transmission lines by ground loop driven currents in the shield is evaluated and the importance of low shield resistance is emphasized. Some measures for prevention of ground loops and isolation of detector-readout systems are discussed.

  15. Large icebergs characteristics from altimeter waveforms analysis

    NASA Astrophysics Data System (ADS)

    Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.

    2015-03-01

    Large uncertainties exist on the volume of ice transported by the Southern Ocean large icebergs, a key parameter for climate studies, because of the paucity of information, especially on iceberg thickness. Using icebergs tracks from the National Ice Center (NIC) and Brigham Young University (BYU) databases to select altimeter data over icebergs and a method of analysis of altimeter waveforms, a database of 5366 icebergs freeboard elevation, length, and backscatter covering the 2002-2012 period has been created. The database is analyzed in terms of distributions of freeboard, length, and backscatter showing differences as a function of the iceberg's quadrant of origin. The database allows to analyze the temporal evolution of icebergs and to estimate a melt rate of 35-39 m·yr-1 (neglecting the firn compaction). The total daily volume of ice, estimated by combining the NIC and altimeter sizes and the altimeter freeboards, regularly decreases from 2.2 104km3 in 2002 to 0.9 104km3 in 2012. During this decade, the total loss of ice (˜1800 km3·yr-1) is twice as large as than the input (˜960 km3·yr-1) showing that the system is out of equilibrium after a very large input of ice between 1997 and 2002. Breaking into small icebergs represents 80% (˜1500 km3·yr-1) of the total ice loss while basal melting is only 18% (˜320 km3·yr-1). Small icebergs are thus the major vector of freshwater input in the Southern Ocean.

  16. Millimeter Wave Applications of Large Aperture Systems

    DTIC Science & Technology

    1980-02-01

    unit step impulse ................. 89 5-8 Truss/tower model. Joints identification numbers ............... 91 5-9 z-displacement (m) histories for the...tip joint 801 displacements for 1 cycle steady-state response to harmonic excitation (15 N at 10 Hz) ................ 101 6-1 Elliptic torus 30 x 60 m...freedom (DOF) -o a reasonable level, the large platform was modelled with axial members whereby only three DOF’s are present nat each joint . Although

  17. Large-area thin-film modules

    NASA Astrophysics Data System (ADS)

    Tyan, Y. S.; Perez-Albuerne, E. A.

    1985-10-01

    The low cost potential of thin film solar cells can only be fully realized if large area modules can be made economically with good production yields. This paper deals with two of the critical challenges. A scheme is presented which allows the simple, economical realization of the long recognized, preferred module structure of monolithic integration. Another scheme reduces the impact of shorting defects and, as a result, increases the production yields. Analytical results demonstrating the utilization and advantages of such schemes are discussed.

  18. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  19. MeerKAT Large Area Survey

    NASA Astrophysics Data System (ADS)

    Leeuw, Lerothodi

    2017-01-01

    We present the goals and strategies for a large area MeerKAT survey, that is expected to be proposed under the MeerKAT open time call. The survey will be at least 400 square degrees, detect galaxies up to high redshift and cover various science interests that will exploit synergies with complementary data at other wavebands. For as high impact and legacy value as possible, the survey is open to synergies from the community.

  20. Design concepts for large reflector antenna structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Adams, L. R.

    1983-01-01

    Practical approaches for establishing large, precise antenna reflectors in space are described. Reflector surfaces consisting of either solid panels or knitted mesh are considered. The approach using a deep articulated truss structure to support a mesh reflector is selected for detailed investigations. A new sequential deployment concept for the tetrahedral truss is explained. Good joint design is discussed, and examples are described both analytically and by means of demonstration models. The influence of curvature on the design and its vibration characteristics are investigated.

  1. Parabolic cylinder functions of large order

    NASA Astrophysics Data System (ADS)

    Jones, D. S.

    2006-06-01

    The asymptotic behaviour of parabolic cylinder functions of large real order is considered. Various expansions in terms of elementary functions are derived. They hold uniformly for the variable in appropriate parts of the complex plane. Some of the expansions are doubly asymptotic with respect to the order and the complex variable which is an advantage for computational purposes. Error bounds are determined for the truncated versions of the asymptotic series.

  2. Big Data Challenges for Large Radio Arrays

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  3. Clipping prevents perforation in large, flat polyps

    PubMed Central

    Luba, Daniel; Raphael, Mona; Zimmerman, Dayna; Luba, Joseph; Detka, Jon; DiSario, James

    2017-01-01

    AIM To determine if prophylactic clipping of post-polypectomy endoscopic mucosal resection (EMR) mucosal defects of large, flat, right sided polyps prevents perforations. METHODS IRB approved review of all colonoscopies, and prospective data collection of grasp and snare EMR performed by 2 endoscopists between January 1, 2010 and March 31, 2014 in a community ambulatory endoscopy center. The study consisted of two phases. In the first phase, all right-sided, flat polyps greater than or equal to 1.2 cm in size were removed using the grasp and snare technique. Clipping was done at the discretion of the endoscopist. In the second phase, all mucosal defects were closed using resolution clips. Phase 2 of the study was powered to detect a statistically significant difference in perforation rate with 148 EMRs, if less than or equal to 2 perforations occurred. RESULTS In phase 1 of the study, 2121 colonoscopies were performed. Seventy-five patients had 95 large polyps removed. There were 4 perforations in 95 polypectomies (4.2%). The perforations occurred in polyps ranging in size from 1.5 cm to 2.5 cm. In phase 2, there were 2464 colonoscopies performed. One hundred and sixteen patients had 151 large polyps removed, and all mucosal defects were clipped. There were no perforations (P = 0.0016). There were no post-polypectomy hemorrhages in either phase. An average of 2.15 clips were required to close the mucosal defects. The median time to perform the polypectomy and clipping was 13 min, and the median procedure duration was 40 min. Five percent of all patients undergoing colonoscopy in our community based, ambulatory endoscopy center had flat, right sided polyps greater than or equal to 1.2 cm in size. CONCLUSION Prophylactic clipping of the mucosal resection defect of large, right-sided, flat polyps reduces the incidence of perforation. PMID:28360975

  4. Compliant Baffle for Large Telescope Daylight Imaging

    DTIC Science & Technology

    2014-09-01

    Compliant Baffle for Large Telescope Daylight Imaging Steven Griffin, Andrew Whiting, Shawn Haar The Boeing Company Stacie Williams Air Force...not impact wind loading induced jitter on the 3.6 m telescope . Analysis was performed to design a compliant baffle out of a synthetic fabric that...will be a comparison of angular rate sensors and accelerometers mounted on the telescope . 1.0 INTRODUCTION Unsteady wind loading is the largest

  5. Large rivers of the United States

    USGS Publications Warehouse

    Iseri, Kathleen T.; Langbein, Walter Basil

    1974-01-01

    Information on the flow of the 28 largest rivers in the United States is presented for the base periods 1931-60 and 1941-70. Drainage area, stream length, source, and mouth are included. Table 1 shows the average discharge at downstream gaging stations. Table 2 lists large rivers in order of average discharge at the mouth, based on the period 1941-70.

  6. Large space antenna concepts for ESGP

    NASA Technical Reports Server (NTRS)

    Love, Allan W.

    1989-01-01

    It is appropriate to note that 1988 marks the 100th anniversary of the birth of the reflector antenna. It was in 1888 that Heinrich Hertz constructed the first one, a parabolic cylinder made of sheet zinc bent to shape and supported by a wooden frame. Hertz demonstrated the existence of the electromagnetic waves that had been predicted theoretically by James Clerk Maxwell some 22 years earlier. In the 100 years since Hertz's pioneering work the field of electromagnetics has grown explosively: one of the technologies is that of remote sensing of planet Earth by means of electromagnetic waves, using both passive and active sensors located on an Earth Science Geostationary Platform (ESEP). For these purposes some exquisitely sensitive instruments were developed, capable of reaching to the fringes of the known universe, and relying on large reflector antennas to collect the minute signals and direct them to appropriate receiving devices. These antennas are electrically large, with diameters of 3000 to 10,000 wavelengths and with gains approaching 80 to 90 dB. Some of the reflector antennas proposed for ESGP are also electrically large. For example, at 220 GHz a 4-meter reflector is nearly 3000 wavelengths in diameter, and is electrically quite comparable with a number of the millimeter wave radiotelescopes that are being built around the world. Its surface must meet stringent requirements on rms smoothness, and ability to resist deformation. Here, however, the environmental forces at work are different. There are no varying forces due to wind and gravity, but inertial forces due to mechanical scanning must be reckoned with. With this form of beam scanning, minimizing momentum transfer to the space platform is a problem that demands an answer. Finally, reflector surface distortion due to thermal gradients caused by the solar flux probably represents the most challenging problem to be solved if these Large Space Antennas are to achieve the gain and resolution required of

  7. Producing Large-Particle Monodisperse Latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.

    1986-01-01

    Chemical process produces latex particles of relatively large, uniform size for use as size standards for instrument calibration. Process, based on seeding of mixture by very small latex particles, yields particles measuring 2 to 30 micrometer or more in average size. Produces monodisperse latexes in which deviation from average size is less than 2 percent. Particles used directly, without tedious separation procedures for removing off-size particles.

  8. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2009-09-30

    9 October and lasting until 1500 UTC, 11 October. (bottom) COAMPS forecast of visibility for the same period showing a dust storm with a similar...starting time and an ending time of 0900 UTC 12 October. (Walker et al., 2009.) 6 7 Figure 3. Comparison of COAMPS dust storm forecast...forecasts of dust storms in areas downwind of the large deserts of the world: Arabian Gulf, Sea of Japan, China Sea, Mediterranean Sea, and the Tropical

  9. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2008-09-30

    aerosol species up to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas...impact cloud processes globally. With increasing dust storms due to climate change and land use changes in desert regions, the impact of the...bacteria in large-scale dust storms is expected to significantly impact warm ice cloud formation, human health, and ecosystems globally. In Niemi et al

  10. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2010-09-30

    advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas downwind of the large deserts of the world... dust source regions in NAAPS. The DSD has been crucial for high-resolution dust forecasting in SW Asia using COAMPS (Walker et al., 2009). Dust ...6 Figure 2. Four-panel product used to compare multiple model forecasts of visibility in SW Asia dust storms . On the web the product is

  11. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2007-09-30

    to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas downwind of the large...in FY08. NAAPS forecasts of CONUS dust storms and long-range dust transport to CONUS were further evaluated in collaboration with CSU. These...visibility. The regional model ( COAMPS /Aerosol) became operational during OIF. The global model Navy Aerosol Analysis and Prediction System (NAAPS

  12. Cross-Matching of Very Large Catalogs

    NASA Astrophysics Data System (ADS)

    Martynov, M. V.; Bodryagin, D. V.

    Modern astronomical catalogs and sky surveys, that contain billions of objects, belong to the "big data" data class. Existing available services have limited functionality and do not include all required and available catalogs. The software package ACrId (Astronomical Cross Identification) for cross-matching large astronomical catalogs, which uses an sphere pixelation algorithm HEALPix, ReiserFS file system and JSON-type text files for storage, has been developed at the Research Institution "Mykolaiv Astronomical Observatory".

  13. Large Eddy Simulation of Turbulent Combustion

    DTIC Science & Technology

    2006-03-15

    Application to an HCCI Engine . Proceedings of the 4th Joint Meeting of the U.S. Sections of the Combustion Institute, 2005. [34] K. Fieweger...LARGE EDDY SIMULATION OF TURBULENT COMBUSTION Principle Investigator: Heinz Pitsch Flow Physics and Computation Department of Mechanical Engineering ...burners and engines found in modern, industrially relevant equipment. In the course of this transition of LES from a scientifically interesting method

  14. Large-area thin-film modules

    NASA Technical Reports Server (NTRS)

    Tyan, Y. S.; Perez-Albuerne, E. A.

    1985-01-01

    The low cost potential of thin film solar cells can only be fully realized if large area modules can be made economically with good production yields. This paper deals with two of the critical challenges. A scheme is presented which allows the simple, economical realization of the long recognized, preferred module structure of monolithic integration. Another scheme reduces the impact of shorting defects and, as a result, increases the production yields. Analytical results demonstrating the utilization and advantages of such schemes are discussed.

  15. Adaptive Techniques for Large Space Apertures.

    DTIC Science & Technology

    1980-03-01

    GP Anitern, 200l de or,~,’rn, receiner/ proceso 1"’ - requires enternal !titude deter- minationr such as a star tracker Increased mechanizatio’ Sensor...control systems into one unit; namely, a fine pointing control using the gimbal rates as the control variables while maintaining constant rotor speeds...CMG mode), and a coarse control for large maneuvers using the rotor speeds as the control variables and locking the gimbals (RW mode). The simultaneous

  16. Large-Angle Anomalies in the CMB

    DOE PAGES

    Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; ...

    2010-01-01

    We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.

  17. Large numbers hypothesis. I - Classical formalism

    NASA Technical Reports Server (NTRS)

    Adams, P. J.

    1982-01-01

    A self-consistent formulation of physics at the classical level embodying Dirac's large numbers hypothesis (LNH) is developed based on units covariance. A scalar 'field' phi(x) is introduced and some fundamental results are derived from the resultant equations. Some unusual properties of phi are noted such as the fact that phi cannot be the correspondence limit of a normal quantum scalar field.

  18. Ehrenfest model with large jumps in finance

    NASA Astrophysics Data System (ADS)

    Takahashi, Hisanao

    2004-02-01

    Changes (returns) in stock index prices and exchange rates for currencies are argued, based on empirical data, to obey a stable distribution with characteristic exponent α<2 for short sampling intervals and a Gaussian distribution for long sampling intervals. In order to explain this phenomenon, an Ehrenfest model with large jumps (ELJ) is introduced to explain the empirical density function of price changes for both short and long sampling intervals.

  19. NASA/MSFC Large Stretch Press Study

    NASA Technical Reports Server (NTRS)

    Choate, M. W.; Nealson, W. P.; Jay, G. C.; Buss, W. D.

    1985-01-01

    The purpose of this study was to: A. assess and document the advantages/disadvantages of a government agency investment in a large stretch form press on the order of 5000 tons capacity (per jaw); B. develop a procurement specification for the press; and C. provide trade study data that will permit an optimum site location. Tasks were separated into four major elements: cost study, user survey, site selection, and press design/procurement specification.

  20. Science Diplomacy in Large International Collaborations

    NASA Astrophysics Data System (ADS)

    Barish, Barry C.

    2011-04-01

    What opportunities and challenges does the rapidly growing internationalization of science, especially large scale science and technology projects, present for US science policy? On one hand, the interchange of scientists, the sharing of technology and facilities and the working together on common scientific goals promotes better understanding and better science. On the other hand, challenges are presented, because the science cannot be divorced from government policies, and solutions must be found for issues varying from visas to making reliable international commitments.

  1. Introduction to comparing large sequence sets.

    PubMed

    Page, Roderic D M

    2003-02-01

    Comparisons of whole genomes can yield important insights into the evolution of genome structure, such as the role of inversions in bacterial evolution and the identification of large-scale duplications in the human genome. This unit briefly compares two tools for aligning whole genome sequences: MUMmer and PipMaker. These tools differ in both the underlying algorithms used, and in the interface they present to the user.

  2. Single and large grain activities at Fermilab

    SciTech Connect

    Antoine, Claire; /Fermilab

    2006-01-01

    This paper describes the ongoing activities at Fermilab for large grains and monocrystalline niobium. In addition to acquisition of local fabrication expertise, we plan to develop an R&D program dedicated to evidence the possible influence of crystal orientation on physical and chemical properties of niobium, such as mechanical properties, magnetic properties or surface contamination. Some considerations are also given about the morphology at grain boundaries and its role on the behavior of superconducting cavities.

  3. Radio signals from very large showers

    NASA Technical Reports Server (NTRS)

    Suga, K.; Kakimoto, F.; Nishi, K.

    1985-01-01

    Radio signals from air showers with electron sizes in the range 1 x 10 to the 7th power to 2 x 10 to the 9th power were detected at 50kHz, 170kHz, and 1,647kHz at large core distances in the Akeno square kilometers air-shower array. The field strength is higher than that expected from any mechanisms hitherto proposed.

  4. Unusually large-sized peripheral ossifying fibroma

    PubMed Central

    John, Reena Rachel; Kandasamy, Saravanan; Achuthan, Narendran

    2016-01-01

    Fibrous growths in the gingiva with the histopathological presence of calcifications are a common occurrence in the oral cavity. These lesions can be neoplastic in nature with either odontogenic or non odontogenic origin or they can be reactive lesions. This is a case report of an unusual presentation of peripheral ossifying fibroma , unusual because of its abnormally large size with review of literature. PMID:28299276

  5. Large electron screening effect in different environments

    SciTech Connect

    Cvetinović, Aleksandra Lipoglavšek, Matej; Markelj, Sabina; Vesić, Jelena

    2015-10-15

    Electron screening effect was studied in the {sup 1}H({sup 7}Li,α){sup 4}He, {sup 1}H({sup 11}B,α){sup 4}He and {sup 1}H({sup 19}F,αγ){sup 16}O reactions in inverse kinematics on different hydrogen implanted targets. Results show large electron screening potentials strongly dependent on the proton number Z of the projectile.

  6. 75 FR 72611 - Assessments, Large Bank Pricing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...The FDIC proposes to revise the assessment system applicable to large insured depository institutions (IDIs or institutions) to better differentiate IDIs and take a more forward-looking view of risk; to better take into account the losses that the FDIC may incur if such an IDI fails; and to make technical and other changes to the rules governing the risk-based assessment system, including......

  7. Summary report on large HVEC accelerators

    SciTech Connect

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated.

  8. Avoiding troubles in large gear boxes

    SciTech Connect

    Abou-Haidar, A.N.

    1995-05-08

    This article describes how attention to details such as moisture, contamination, and mechanical loading pays off in troublefree service. Most problems in large gear boxes occur with gears and bearings. Their failure modes and causes should be carefully analyzed to determine the proper corrective action. If gears are selected properly and maintained while in operation, they should last 20 or 30 yr. Gears usually fail because an interruption in operation causes wear and surface fatigue.

  9. Pioneer Venus large probe neutral mass spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J.

    1982-01-01

    The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.

  10. Quality Function Deployment for Large Systems

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    Quality Function Deployment (QFD) is typically applied to small subsystems. This paper describes efforts to extend QFD to large scale systems. It links QFD to the system engineering process, the concurrent engineering process, the robust design process, and the costing process. The effect is to generate a tightly linked project management process of high dimensionality which flushes out issues early to provide a high quality, low cost, and, hence, competitive product. A pre-QFD matrix linking customers to customer desires is described.

  11. Large-Area Vacuum Ultraviolet Sensors

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2012-01-01

    Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

  12. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array.

  13. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  14. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  15. Large electron screening effect in different environments

    NASA Astrophysics Data System (ADS)

    Cvetinović, Aleksandra; Lipoglavsek, Matej; Markelj, Sabina; Vesić, Jelena

    2016-05-01

    Electron screening effect was studied on different hydrogen containing targets with the 7Li, 11B and 19F ion beams. Results show large electron screening potentials strongly dependent on the proton number Z of the projectile. The largest ever measured screening potential with the value about a factor of 50 above the calculations from the model in adiabatic limit was observed in the graphite target containing hydrogen as an impurity.

  16. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  17. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael; Wiscombe, Warren

    2004-01-01

    The analysis of aircraft measurements of individual drop sizes in clouds suggests that for sufficiently small volumes the mean number of cloud drops with a given radius is proportional to volume powered by a drop-size dependent exponent. For abundant small drops present, the exponent is 1 as assumed in conventional approach. However, for rarer large drops, the exponents fall below unity. We show striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast and also helps explain why remotely sensed cloud drop size is generally biased.

  18. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  19. Large-Scale Visual Data Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  20. Actinide recovery method -- Large soil samples

    SciTech Connect

    Maxwell , S.L. III

    2000-04-25

    There is a need to measure actinides in environmental samples with lower and lower detection limits, requiring larger sample sizes. This analysis is adversely affected by sample-matrix interferences, which make analyzing soil samples above five-grams very difficult. A new Actinide-Recovery Method has been developed by the Savannah River Site Central Laboratory to preconcentrate actinides from large-soil samples. Diphonix Resin (Eichrom Industries), a 1994 R and D 100 winner, is used to preconcentrate the actinides from large soil samples, which are bound powerfully to the resin's diphosphonic acid groups. A rapid microwave-digestion technique is used to remove the actinides from the Diphonix Resin, which effectively eliminates interfering matrix components from the soil matrix. The microwave-digestion technique is more effective and less tedious than catalyzed hydrogen peroxide digestions of the resin or digestion of diphosphonic stripping agents such as HEDPA. After resin digestion, the actinides are recovered in a small volume of nitric acid which can be loaded onto small extraction chromatography columns, such as TEVA Resin, U-TEVA Resin or TRU Resin (Eichrom Industries). Small, selective extraction columns do not generate large volumes of liquid waste and provide consistent tracer recoveries after soil matrix elimination.