Science.gov

Sample records for large non-orthogonal stbcs

  1. Non-Orthogonal Iris Segmentation

    DTIC Science & Technology

    2005-05-09

    pixels ( eyelashes , eyelids, etc.). For example, if all three quality bounds are close in proximity, the iris pattern that was segmented...iris pattern that was segmented by the algorithm contains eyelashes and additional extraneous information. If all automatically generated “test” mask...orthogonal iris images (see Figs. 25-28). This is primarily explained by the increased presence of eyelashes in the non-orthogonal iris masks. As the angle

  2. Non-orthogonal subband/transform coder

    NASA Technical Reports Server (NTRS)

    Glover, Daniel R. (Inventor)

    1993-01-01

    The present invention is directed to a simplified digital subband coder/decoder. In the present invention a signal is fed into a coder. The coder uses a non-orthogonal algorithm that is simply implemented in the coder hardware. The simple non-orthogonal design is then used in the implementation of the decoder to decode the signal.

  3. Which are more accurate, orthogonal or non-orthogonal sonic anemometers?

    NASA Astrophysics Data System (ADS)

    Massman, W. J.; Frank, J. M.; Swiatek, E.; Zimmerman, H.; Ewers, B. E.

    2013-12-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy, ecosystem carbon, and water balance. Recent studies have shown the potential underestimation of the vertical wind fluctuations among the most commonly encountered anemometer models, but thus far testing has been focused on non-orthogonal sonic anemometer designs. We hypothesize that these underestimates are systematic to the non-orthogonal design and not attributable to a single manufacturer. If so, orthogonal measurements of vertical wind should be more accurate. We tested this by conducting an experiment to measure the relative consistency between vertical and horizontal wind measurements for three sonic anemometer designs: orthogonal, non-orthogonal, and quasi-orthogonal. Both the orthogonal and non-orthogonal models were from a single manufacturer (K-probe and A-probe, Applied Technologies, Inc.) while the quasi-orthogonal design featured non-orthogonal u- and v-axes but with an orthogonal w-axis (CSAT3V, Campbell Scientific, Inc.). We conducted a 12-week experiment, testing four sonic anemometers relative to a control (CSAT3, Campbell Scientific, Inc.), each week randomly selecting at least one of each model from a pool of twelve instruments (three of each model) and randomly locating the test anemometers around the control. Half-way through the week the test anemometers were re-mounted in a horizontal position. Work was done at the GLEES AmeriFlux site (southeastern Wyoming, USA) which experiences large, uni-directional wind and turbulence. Results are discussed.

  4. Using Non-Orthogonal Iris Images for Iris Recognition

    DTIC Science & Technology

    2006-05-05

    Figure 4. Rectangular-to-polar coordinate transformation. glare and eyelashes are then accounted for by determining if any...Coordinate Transformation Boundary of pupil/iris Lower eyelid & eyelashes Center of pupil Upper eyelid & eyelashes glare Image in polar coordinates 130...are not hidden by glare, eyelids, and eyelashes . In the case of non-orthogonal iris images, the pupillary and limbic boundaries are now elliptical

  5. Velocity field calculation for non-orthogonal numerical grids

    SciTech Connect

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal

  6. A novel calibration method for non-orthogonal shaft laser theodolite measurement system

    SciTech Connect

    Wu, Bin E-mail: xueting@tju.edu.cn; Yang, Fengting; Ding, Wen; Xue, Ting E-mail: xueting@tju.edu.cn

    2016-03-15

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  7. A novel calibration method for non-orthogonal shaft laser theodolite measurement system

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yang, Fengting; Ding, Wen; Xue, Ting

    2016-03-01

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  8. A novel calibration method for non-orthogonal shaft laser theodolite measurement system.

    PubMed

    Wu, Bin; Yang, Fengting; Ding, Wen; Xue, Ting

    2016-03-01

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  9. Oscillator strengths of allowed and intercombination lines in Si II using non-orthogonal wavefunctions

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2007-07-01

    The importance of valence-shell, core-valence and core-core correlation and interactions between the members of 3s2nd 2D Rydberg series and between the Rydberg series and 3s3p22D perturber state in singly ionized silicon has been examined using term-dependent non-orthogonal orbitals in the multiconfiguration Hartree-Fock approach. Large sets of spectroscopic and correlation non-orthogonal functions have been chosen to adequately describe the term dependence of wavefunctions, various correlation corrections and strong interactions in Rydberg series. The relativistic corrections are included through the one-body mass correction, Darwin and spin-orbit operators and two-body spin-other-orbit operator in the Breit-Pauli Hamiltonian. Extensive configuration-interaction wavefunctions have been used in the representation of Si II levels to calculate oscillator strengths and transition probabilities. The accuracy of present oscillator strengths is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results have been compared with previous calculations, experimental measurements and astronomical observations.

  10. Exact exchange with non-orthogonal generalized Wannier functions.

    PubMed

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J

    2017-03-14

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  11. Exact exchange with non-orthogonal generalized Wannier functions

    NASA Astrophysics Data System (ADS)

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J.

    2017-03-01

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  12. Reformulating time-dependent density functional theory with non-orthogonal localized molecular orbitals.

    PubMed

    Cui, Ganglong; Fang, Weihai; Yang, Weitao

    2010-01-14

    Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.

  13. Arrow diagram theory for non-orthogonal electronic groups: the continued fractions method.

    PubMed

    Wang, Yu; Kantorovich, Lev

    2009-11-25

    The group function theory by Tolpygo and McWeeny is a useful tool in treating quantum systems that can be represented as a set of localized electronic groups (e.g. atoms, molecules or bonds). It provides a general means of taking into account intra-correlation effects inside the groups without assuming that the interaction between the groups is weak. For non-orthogonal group functions the arrow diagram (AD) technique provides a convenient procedure for calculating matrix elements [Formula: see text] of arbitrary symmetrical operators [Formula: see text] which are needed, for example, for calculating the total energy of the system or its electron density. The total wavefunction of the system [Formula: see text] is represented as an antisymmetrized product of non-orthogonal electron group functions Φ(I) of each group I in the system. However, application of the AD theory to extended (e.g. infinite) systems (such as biological molecules or crystals) is not straightforward, since the calculation of the mean value of an operator requires that each term of the diagram expansion be divided by the normalization integral S = ⟨Ψ|Ψ⟩ which is given by an AD expansion as well. In our previous work, we cast the mean value [Formula: see text] of a symmetrical operator [Formula: see text] in the form of an AD expansion which is a linear combination of linked (connected) ADs multiplied by numerical pre-factors. To obtain the pre-factors, a method based on power series expansion with respect to overlap was developed and tested for a simple 1D Hartree-Fock (HF) ring model. In the present paper this method is first tested on a 2D HF model, and we find that the power series expansion for the pre-factors converges extremely slowly to the exact solution. Instead, we suggest another, more powerful, method based on a continued fraction expansion of the pre-factors that approaches the exact solution much faster. The method is illustrated on the calculation of the electron density

  14. Orthogonal and Non-Orthogonal Tight Binding Parameters for III-V Semiconductors Nitrides

    NASA Astrophysics Data System (ADS)

    Martins, A. S.; Fellows, C. E.

    2016-12-01

    A simulated annealing (SA) approach is employed in the determination of different tight binding (TB) sets of parameters for the nitride semiconductors AlN, GaN and InN, as well their limitations and potentialities are also discussed. Two kinds of atomic basis set are considered: (i) the orthogonal sp 3 s∗ with interaction up to second neighbors and (ii) a spd non-orthogonal set, with the Hamiltonian matrix elements calculated within the Extended Hückel Theory (EHT) prescriptions. For the non-orthogonal method, TB parameters are given for both zincblend and wurtzite crystalline structures.

  15. Deterministic Quantum Key Distribution Using Two Non-orthogonal Entangled States

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua

    2007-03-01

    A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.

  16. Teleportation of a qubit using entangled non-orthogonal states: a comparative study

    NASA Astrophysics Data System (ADS)

    Sisodia, Mitali; Verma, Vikram; Thapliyal, Kishore; Pathak, Anirban

    2017-03-01

    The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice's, Bob's and to be teleported qubits), but the converse may be observed in some particular cases.

  17. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Treesearch

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  18. Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Gordon, R. G.

    2015-12-01

    Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.

  19. A calibration method of non-orthogonal redundant ring laser gyro inertial navigation system

    NASA Astrophysics Data System (ADS)

    Gao, Chunfeng; Wang, Qi; Wei, Guo; Ying, Zhihui; Long, Xingwu

    2017-05-01

    As a highly reliable positioning and orientation equipment, the redundant inertial navigation system (INS) is widely used in aerospace and other fields. For INS, high-precision calibration is the basis of high-precision navigation. Different from the calibration error modeling method of traditional orthogonal system, the nonorthogonal redundant ring laser gyro INS is installed with multi-device obliquely, and with the complexity of the configuration, the difficulty of separating the calibration parameters is also increased. Therefore, it is very significant to find a high precision calibration scheme for the non-orthogonal redundant INS. In this paper, the high precision calibration of non-orthogonal redundant INS in laboratory is studied, and a new calibration model of redundant system is summarized. A regular tetrahedral configuration prototype consisting of four Ring Laser Gyro and four Quartz Accelerometer is designed, and the calibration error modeling method and calibration accuracy are verified.

  20. Non-orthogonal optical multicarrier access based on filter bank and SCMA.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-10-19

    This paper proposes a novel non-orthogonal optical multicarrier access system based on filter bank and sparse code multiple access (SCMA). It offers released frequency offset and better spectral efficiency for multicarrier access. An experiment of 73.68 Gb/s filter bank-based multicarrier (FBMC) SCMA system with 60 km single mode fiber link is performed to demonstrate the feasibility. The comparison between fast Fourier transform (FFT) based multicarrier and the proposed scheme is also investigated in the experiment.

  1. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    SciTech Connect

    Sundstrom, Eric J. Head-Gordon, Martin

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  2. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    NASA Astrophysics Data System (ADS)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  3. Fairness for Non-Orthogonal Multiple Access in 5G Systems

    NASA Astrophysics Data System (ADS)

    Timotheou, Stelios; Krikidis, Ioannis

    2015-10-01

    In non-orthogonal multiple access (NOMA) downlink, multiple data flows are superimposed in the power domain and user decoding is based on successive interference cancellation. NOMA's performance highly depends on the power split among the data flows and the associated power allocation (PA) problem. In this letter, we study NOMA from a fairness standpoint and we investigate PA techniques that ensure fairness for the downlink users under i) instantaneous channel state information (CSI) at the transmitter, and ii) average CSI. Although the formulated problems are non-convex, we have developed low-complexity polynomial algorithms that yield the optimal solution in both cases considered.

  4. Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

    PubMed Central

    Gong, Xiao-Feng; Wang, Ke; Lin, Qiu-Hua; Liu, Zhi-Wen; Xu, You-Gen

    2012-01-01

    Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decompositions of the target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD algorithms we present a novel strategy to exploit the multi-dimensional structure present in the second-order statistics of EMVS outputs for simultaneous DOA and polarization estimation. Simulations are provided to compare the proposed strategy with existing tensorial or joint diagonalization based methods. PMID:22737015

  5. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.

    PubMed

    Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua

    2013-12-14

    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

  6. Non-orthogonal multiple access with phase pre-distortion in visible light communication.

    PubMed

    Guan, Xun; Yang, Qing; Hong, Yang; Chan, Calvin Chun-Kit

    2016-10-31

    Non-orthogonal multiple access (NOMA) offers a good balance between throughput and fairness for visible light communication (VLC). This work presents a phase pre-distortion method to improve the symbol error rate performance of NOMA uplink with successive interference cancellation (SIC) decoding in VLC. Both theoretical analysis and experimental evaluation have shown that the proposed phase pre-distortion method improves the bit-error-rate (BER) performance for NOMA under both low and high relative power ratios. Specifically, at low relative power ratios, the proposed method can eliminate the possible BER floors and alleviate the power ratio requirement by 2 dB at the BER of 3.8 × 10-3.

  7. Optimized Non-Orthogonal Localized Orbitals for Linear Scaling Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Reboredo, Fernando; Galli, Giulia

    2004-03-01

    It has been shown [1] that Quantum Monte Carlo calculations of total energies of interacting systems can be made to scale nearly linearly with the number of electrons (N), by using localized single particle orbitals to construct Slater determinants. Here we propose a new way of defining the localized orbitals required for O(N)-QMC calculation, by minimizing an appropriate cost function yielding a set of N non-orthogonal (NO) localized orbitals considerably smoother in real space than Maximally localized Wannier functions (MLWF). These NO orbitals have better localization properties than MLWFs. We show that for semiconducting systems NO orbitals can be localized in a much smaller region of space than orthogonal orbitals (typically, one eighth of the volume) and give total energies with the same accuracy, thus yielding a linear scaling QMC algorithm which is 5 times faster than the one originally proposed [1]. We also discuss the extension of O(N)-QMC with NO orbitals to the calculations of total energies of metallic systems. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. [1] A. J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87, 246406 (2001)

  8. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors.

    PubMed

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-05-19

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance.

  9. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors

    PubMed Central

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-01-01

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389

  10. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions.

    PubMed

    Dziedzic, J; Hill, Q; Skylaris, C-K

    2013-12-07

    We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.

  11. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions

    NASA Astrophysics Data System (ADS)

    Dziedzic, J.; Hill, Q.; Skylaris, C.-K.

    2013-12-01

    We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.

  12. Non-orthogonal tool/flange and robot/world calibration.

    PubMed

    Ernst, Floris; Richter, Lars; Matthäus, Lars; Martens, Volker; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2012-12-01

    For many robot-assisted medical applications, it is necessary to accurately compute the relation between the robot's coordinate system and the coordinate system of a localisation or tracking device. Today, this is typically carried out using hand-eye calibration methods like those proposed by Tsai/Lenz or Daniilidis. We present a new method for simultaneous tool/flange and robot/world calibration by estimating a solution to the matrix equation AX = YB. It is computed using a least-squares approach. Because real robots and localisation are all afflicted by errors, our approach allows for non-orthogonal matrices, partially compensating for imperfect calibration of the robot or localisation device. We also introduce a new method where full robot/world and partial tool/flange calibration is possible by using localisation devices providing less than six degrees of freedom (DOFs). The methods are evaluated on simulation data and on real-world measurements from optical and magnetical tracking devices, volumetric ultrasound providing 3-DOF data, and a surface laser scanning device. We compare our methods with two classical approaches: the method by Tsai/Lenz and the method by Daniilidis. In all experiments, the new algorithms outperform the classical methods in terms of translational accuracy by up to 80% and perform similarly in terms of rotational accuracy. Additionally, the methods are shown to be stable: the number of calibration stations used has far less influence on calibration quality than for the classical methods. Our work shows that the new method can be used for estimating the relationship between the robot's and the localisation device's coordinate systems. The new method can also be used for deficient systems providing only 3-DOF data, and it can be employed in real-time scenarios because of its speed. Copyright © 2012 John Wiley & Sons, Ltd.

  13. A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method

    NASA Astrophysics Data System (ADS)

    Ward, A. J.; Pendry, J. B.

    2000-06-01

    In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.

  14. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    SciTech Connect

    Matthews, Devin A.; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))

  15. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations.

    PubMed

    Matthews, Devin A; Stanton, John F

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).

  16. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Stanton, John F.

    2015-02-01

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).

  17. Multireference M[oslash]ller Plesset perturbation theory with non-canonical and non-orthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Finley, James P.; Hirao, Kimihiko

    2000-09-01

    Using non-orthogonal secondary orbitals and non-canonical (localized) inactive and active orbitals, a second-order multireference perturbation theory is formulated, based on a complete active space self-consistent field (CASSCF) wavefunction. The equations of interest are derived from the first-order Bloch equation by using an approach based on a bi-orthogonal basis and operators expressed in second-quantization.

  18. On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

    NASA Astrophysics Data System (ADS)

    Ding, Zhiguo; Yang, Zheng; Fan, Pingzhi; Poor, H. Vincent

    2014-12-01

    In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users. The developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of NOMA depends critically on the choices of the users' targeted data rates and allocated power. In particular, a wrong choice of the targeted data rates and allocated power can lead to a situation in which the user's outage probability is always one, i.e. the user's targeted quality of service will never be met.

  19. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Head-Gordon, Martin

    2016-08-01

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

  20. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction.

    PubMed

    Yost, Shane R; Head-Gordon, Martin

    2016-08-07

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

  1. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    NASA Astrophysics Data System (ADS)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so called Alternate Direction Implicit algorithm) to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the Cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. In all this process the momentum exchange forces and the interphase heat exchanges are treated implicitly to ensure stability. To reduce the computational cost, a domain decomposition strategy is adopted with an overlapping procedure at the interface between subdomains. We show here two cases involving non-Cartesian computational domains: a two-phase volcanic flow along a realistic topography and a gas-particle flow in a complex vertical conduct (riser) used in industrial plants of fluid catalytical cracking processes geometry. With an initial Richardson number of 0.16 slightly higher than the critical Richardson number of 0.1, particles and water vapor are injected at the bottom of the riser. Countercurrents appear near the walls and gravity effects begin to dominate inducing an increase of particulate volumic fractions near the walls. We show here the hydrodynamics for 13s.

  2. Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals

    PubMed Central

    Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.

    2013-01-01

    The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256

  3. Three Dimensional Wind Speed and Flux Measurement over a Rain-fed Soybean Field Using Orthogonal and Non-orthogonal Sonic Anemometer Designs

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.

    2014-12-01

    The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.

  4. Reliable Attention Network Scores and Mutually Inhibited Inter-network Relationships Revealed by Mixed Design and Non-orthogonal Method.

    PubMed

    Wang, Yi-Feng; Jing, Xiu-Juan; Liu, Feng; Li, Mei-Ling; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-05-21

    The attention system can be divided into alerting, orienting, and executive control networks. The efficiency and independence of attention networks have been widely tested with the attention network test (ANT) and its revised versions. However, many studies have failed to find effects of attention network scores (ANSs) and inter-network relationships (INRs). Moreover, the low reliability of ANSs can not meet the demands of theoretical and empirical investigations. Two methodological factors (the inter-trial influence in the event-related design and the inter-network interference in orthogonal contrast) may be responsible for the unreliability of ANT. In this study, we combined the mixed design and non-orthogonal method to explore ANSs and directional INRs. With a small number of trials, we obtained reliable and independent ANSs (split-half reliability of alerting: 0.684; orienting: 0.588; and executive control: 0.616), suggesting an individual and specific attention system. Furthermore, mutual inhibition was observed when two networks were operated simultaneously, indicating a differentiated but integrated attention system. Overall, the reliable and individual specific ANSs and mutually inhibited INRs provide novel insight into the understanding of the developmental, physiological and pathological mechanisms of attention networks, and can benefit future experimental and clinical investigations of attention using ANT.

  5. Modified Reinshaw and Pollard Criteria for a Non-Orthogonal Cohesive Natural Interface Intersected by an Induced Fracture

    NASA Astrophysics Data System (ADS)

    Sarmadivaleh, M.; Rasouli, V.

    2014-11-01

    Hydraulic fracturing is a widely used stimulation method to enhance the productivity of unconventional resources. The hydraulic fracturing operation in naturally fractured reservoirs or when it is expected to intersect a natural interface, such as an interbed is subjected to complexity. The induced fracture may cross, get arrested by or open the fracture plane upon its arrival at the natural interface. Besides other parameters, this depends on the natural interface mechanical properties, including the cohesion and friction angle of the interface. Several analytical criteria have been developed to predict the interaction mechanism of induced and natural fracture. While these analytical solutions have been developed based on some simplified assumptions, they can provide a good understanding of the effect of different parameters. The first part of this paper summarizes the available criteria for interaction of hydraulic and natural fractures. Important factors will be mentioned and illustrations will be given to present the limitations of each criterion. The second part discusses the development and validation of an extension to Renshaw and Pollard criterion in the form a single analytical formula for non-orthogonal cohesive fracture. This includes the contribution of the strength of the in-fill material to the bonding of the two sides of a fracture, hence its effect on the interaction mechanism. The proposed criterion was validated using published laboratory data. Finally, a methodology is proposed to help the design of interaction experiments in the laboratory, which can also be used for prediction of interaction mode in numerical simulations.

  6. Correction of a Non-orthogonal, Three-Component Sonic Anemometer for Flow Distortion by Transducer Shadowing

    NASA Astrophysics Data System (ADS)

    Horst, T. W.; Semmer, S. R.; Maclean, G.

    2015-06-01

    We propose that flow distortion within a non-orthogonal CSAT3 sonic anemometer is primarily due to transducer shadowing, which is caused by wakes in the lee of the acoustic transducers impinging on their measurement paths. The dependence of transducer shadowing on sonic path geometry, wind direction and atmospheric stability is investigated with simulations that use surface-layer data from the Horizontal Array Turbulence Study (HATS) field program and canopy roughness-sublayer data from the CHATS (Canopy HATS) field program. We demonstrate the efficacy of correcting the CSAT3 for transducer shadowing with measurements of its flow distortion in the NCAR wind tunnel, combined with 6 months of data collected in the atmospheric surface layer with adjacent CSAT3 and orthogonal ATI-K sonic anemometers at the NCAR Marshall field site. CSAT3 and ATI-K measurements of the variance of vertical velocity and the vertical flux of sonic temperature agree within 1 % after correction of both sonics for transducer shadowing. Both the simulations of transducer shadowing and the comparison of CSAT3 and ATI-K field data suggest a simple, approximate correction of CSAT3 surface-layer scalar fluxes with an increase on the order of 4-5 %, independent of wind direction and atmospheric stability. We also find that (where is the friction velocity) and (the correlation coefficient) calculated with corrected CSAT3 data are insensitive to wind direction and agree closely with known values of these dimensionless variables for neutral stratification, which is evidence for the efficacy of the correction of the horizontal wind components for transducer shadowing as well.

  7. Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer.

    PubMed

    Olsen, Jeppe

    2015-09-21

    A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three- and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 × 10(6) determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration.

  8. The Unevenness and Non-orthogonal State of Distribution of Corneal Thickness and the Influence on Correction of Myopic Astigmatism by LASEK.

    PubMed

    Wang, Shulin; Wang, Xin; Liu, Mingna; Wang, Haiying; Li, Jing; Shi, Weiyun

    2015-09-01

    To observe and calculate the unevenness and the non-orthogonal state of distribution of corneal thickness and the relationship between them using Pentacam and to investigate the influence of unevenness and the non-orthogonal state on correction of myopic astigmatism by laser subepithelial keratomileusis (LASEK). 230 eyes with myopic astigmatism treated with LASEK were divided into two groups: 114 eyes as the low astigmatism group (-0.25 to -0.75 DC) and 116 eyes as the midrange-high astigmatism group (-1.00 to -4.50 DC). With the help of the diagram of keratoconus evaluation program of the Pentacam, the D 3.0 and D 6.5 were calculated for the index of distribution of unevenness of the corneal thickness, and the absolute value of the angle between the maximum and minimum progression-index orientation (M 90) for the index of non-orthogonal states. The correction of myopic astigmatism by LASEK was based on standard vector analysis and power vector analysis. The follow-up period was for 3 months. The preoperative M 90 was 22.14° ± 20.87°, D 6.5 was 58.66 ± 21.32 μm, and D 3.0 was 16.11 ± 4.28 μm for the 230 eyes that were tested. The D 6.5 of low astigmatism group (55.62 ± 20.81) μm was significantly lower than that of midrange-high astigmatism group (61.65 ± 21.48) μm (P < 0.05). Of the 230 eyes, the M 90 was positively correlated with D 6.5 (r = 0.37, P < 0.001), and D 6.5 was positively correlated with D 3.0 (r = 0.56, P < 0.001). 3 months postoperatively, the absolute error vector (|EV|) of low astigmatism group (0.46 ± 0.34) was significantly lower than that of midrange-high astigmatism group (0.53 ± 0.29) (P < 0.01). The error of magnitude of low astigmatism group (-0.10 ± 0.31) was significantly lower than that of midrange-high astigmatism group (0.08 ± 0.41) (P < 0.001). The absolute error of angle (|EA|) of low astigmatism group (26.10 ± 27.24) was significantly higher than that of midrange

  9. Modeling and Simulation of Electrical Breakdown in DC for Dielectric-Loaded Systems with Non-Orthogonal Boundaries Including the Effects of Space-Charge and Gaseous Collisions

    NASA Astrophysics Data System (ADS)

    Aldan, Manuel Thomas Pangelinan, III

    Improved modeling of angled-dielectric insulation in high-voltage systems is described for use in particle-in-cell (PIC) simulations. Treatment of non-orthogonal boundaries is a significant challenge in modeling angled-dielectric flashover, and conditions on boundaries are developed to maintain uniform truncation error in discretized space across the dielectric angles studied. Extensive effort was expended in isolating particular operating regimes to illustrate fundamental phenomenological surface effects that drive the discharges studied herein; consequently, this document focuses on the phenomenology of two specific dielectric angles at 6.12° for multiplicative breakdown (the so-called single-surface multipactor) and 22.9° for a non-multiplicative discharge that evolves into a dark current at steady state. Phenomenological results for simulations in vacuum through "ultra-low pressures" on the order of a few hundred mTorr are presented. A multipactor front forms via net emission of electrons from impact on the dielectric surface, where emission leads to saturated field conditions in the wake of the front, producing a well-defined forward-peaked wave. A treatment of the gain and saturation characteristics is presented, isolating the surface electric fields as the driving contributor to both metrics. Physical models include oftenneglected effects such as space-charge, dielectric-surface charging, and particle distributions in energy and space. For the discharges treated in this study, breakdown voltages of the typical Paschen form are not applicable, since multiplicative conditions are driven primarily by surface effects. Phenomenological results are also presented for simulations at low pressure (~ 1Torr), which is shown to be a transitional limit where volume effects become appreciable compared to surface effects. A coupling between space charge and surface charge is shown to lead to oscillatory effects in otherwise DC discharges. Surface multipactor leads to

  10. Nanomachining of non-orthogonal mask patterns

    NASA Astrophysics Data System (ADS)

    Robinson, Tod; Yi, Daniel; White, Roy; Bozak, Ron; Archuletta, Mike; Lee, David

    2010-05-01

    Patterns which are not aligned to standard orthogonal (x and y ordinate) directions have recently been developed for advanced lithography nodes. Efforts have been successful in developing single pass nanomachining repair processes to meet the printability requirements for these patterns. This development makes use of the latest improvements made to the COBRA repair process (the Enhanced COBRA process typically completed in less than 2 minutes of repair time) with symmetric NanoBits to repair opposing critical edges of bridging defects. It also required fundamental changes in the software tools to allow automated detection of the angle of the edges and the application of pre-programmed repair edge biases normal (90°) to the detected angled edges. Additionally, some other new improvements (hardware, software, and process) are reviewed in light of more traditional nanomachining repairs.

  11. New Advances In Multiphase Flow Numerical Modelling Using A General Domain Decomposition and Non-orthogonal Collocated Finite Volume Algorithm: Application To Industrial Fluid Catalytical Cracking Process and Large Scale Geophysical Fluids.

    NASA Astrophysics Data System (ADS)

    Martin, R.; Gonzalez Ortiz, A.

    In the industry as well as in the geophysical community, multiphase flows are mod- elled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents os- cillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillatons of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. A pentadiagonal system in 2D or a septadiagonal in 3D must be solve but here we have chosen to solve 3 tridiagonal linear systems (the so called Alternate Direction Implicit algorithm), one in each spatial direction, to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. At the end the energy conservation equations are solved. In all this process the momentum exchange forces and the interphase heat exchanges are 1 treated implicitly to ensure stability. In order to reduce one more time the computa- tional cost, a decomposition of the global domain in N subdomains is introduced and all the previous algorithms applied to one block is performed in each block. At the in- terface between subdomains, an overlapping procedure is used. Another advantage is that different sets of equations can be solved in each block like fluid/structure interac- tions for instance. We show here the hydrodynamics of a two-phase flow in a vertical conduct as in industrial plants of fluid catalytical cracking processes with a complex geometry. With an initial Richardson number of 0.16 slightly higher than the critical Richardson number of 0.1, particles and water vapor are injected at the bottom of the riser. Countercurrents appear near the walls and gravity effects begin to dominate in- ducing an increase of particulate volumic fractions near the walls. We show here the hydrodynamics for 13s. 2

  12. A Non-Orthogonal Fourier Expansion for Conic Decomposition.

    DTIC Science & Technology

    1980-09-01

    permitted for any purpose of the United States Government. CENTER FOR CYBERNETIC STUDIES A. Charnes, Director Business - Economics Building, 203E The...where initially, (k=l) = 0 (2.1) Y= b x i = 0 VieN. 1 Then one computes vectors dk, zk +1• Yk+l• and scalars ck’ xk+l as follows ’ ’* .’ 4...34 " 7 for k odd (2.2) dk = a(k+) (2.3) dk = max { d -X k+l 2 xk+ l k k+1 (2.4) j C xk+l x k c k+lI i k Y) - - (2.5) zk +l = b -z k + l d for k even

  13. Non-Orthogonal Channel and Reservoir Routing in GSSHA

    DTIC Science & Technology

    2008-07-01

    GSSHA has the following structure types and related features. ERDC TN-SWWRP-08-05 July 2008 8 • Broad crested weirs o Horizontal o Parabolic... discharge coefficients depending upon the flow direction, which accounts for asymmetry of the structure. Weir sub- mergence is accounted for if the...each stream reach (link in GSSHA) is subdivided into cells (nodes) for computational purposes. Channel properties, cross section, roughness coefficient

  14. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    PubMed

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  15. Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.

    1991-01-01

    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.

  16. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission

    PubMed Central

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402

  17. A non-orthogonal SVD-based decomposition for phase invariant error-related potential estimation.

    PubMed

    Phlypo, Ronald; Jrad, Nisrine; Rousseau, Sandra; Congedo, Marco

    2011-01-01

    The estimation of the Error Related Potential from a set of trials is a challenging problem. Indeed, the Error Related Potential is of low amplitude compared to the ongoing electroencephalographic activity. In addition, simple summing over the different trials is prone to errors, since the waveform does not appear at an exact latency with respect to the trigger. In this work, we propose a method to cope with the discrepancy of these latencies of the Error Related Potential waveform and offer a framework in which the estimation of the Error Related Potential waveform reduces to a simple Singular Value Decomposition of an analytic waveform representation of the observed signal. The followed approach is promising, since we are able to explain a higher portion of the variance of the observed signal with fewer components in the expansion.

  18. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  19. The radar cross section of non-orthogonal corner reflectors, symmetrically illuminated

    NASA Astrophysics Data System (ADS)

    Williams, J. M.

    The monostatic radar cross section of a nonorthogonal corner reflector, for symmetrical illumination, is shown to be a function of a single dimensionless group at high frequency. The function is calculated for the triangular and square trihedrals and the dihedral.

  20. Non-orthogonal depth from focus for on-the-fly, three-dimensional inspection

    NASA Astrophysics Data System (ADS)

    Ribnick, Evan

    2012-08-01

    This paper describes a new technique that was developed for performing three-dimensional (3-D) reconstruction on-the-fly for inspection applications. It is based on the same principles as the traditional depth from focus approach but is able to estimate the three-dimensional structure of a surface as it is undergoing a continuous linear lateral translation, similar to the situation on many types of modern production lines. This has important applications in the area of automated inspection and quality control, since the ability to inspect materials in real-time as they are being manufactured in a continuous process is valuable in a broad range of circumstances. We assume that the relative motion of the surface is known, which is realistic in these types of environments. We demonstrate the technical feasibility of our approach, including its ability to acquire 3-D shape on several different types of structured surfaces.

  1. Large N

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2002-09-01

    In the first part of this lecture, the 1/N expansion technique is illustrated for the case of the large-N sigma model. In large-N gauge theories, the 1/N expansion is tantamount to sorting the Feynman diagrams according to their degree of planarity, that is, the minimal genus of the plane onto which the diagram can be mapped without any crossings. This holds both for the usual perturbative expansion with respect to powers of ˜ {g}2 = g2N, as well as for the expansion of lattice theories in positive powers of 1/˜ {g}2. If there were no renormalization effects, the ˜ {g} expansion would have a finite radius of convergence. The zero-dimensional theory can be used for counting planar diagrams. It can be solved explicitly, so that the generating function for the number of diagrams with given 3-vertices and 4-vertices, can be derived exactly. This can be done for various kinds of Feynman diagrams. We end with some remarks about planar renormalization.

  2. Flow-Field Matrix Solution for Direct Problem of Flow along S1 Relative Stream Surface Employing Non-Orthogonal Curvilinear Coordinates and Corresponding Non-Orthogonal Velocity Components,

    DTIC Science & Technology

    1983-07-18

    two level fan , when the aerodynamic parameters are identical and only the mesh densities in the streamline direction are different, there are the...verifying computation of a highly loaded axial-flow two stage fan showed that the computed results and experimental results are in agreement. The principal...The condition used is that in the bladeless regions. Var remains a constant along the streamline. The tgy in the blade array varies according to the

  3. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  4. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states

    SciTech Connect

    Yost, Shane R.; Kowalczyk, Tim; Van Voorhis, Troy

    2013-11-07

    In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Møller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N{sub occ}{sup 2}N{sub virt}{sup 3}. Unlike most active space methods, ΔSCF(2) treats the ground and excited state determinants even-handedly. We apply ΔSCF(2) to the H{sub 2}, hydrogen fluoride, and H{sub 4} systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.

  5. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  6. Instantons and Large N

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos

    2015-09-01

    Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.

  7. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  8. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  9. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  10. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  11. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  12. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  13. Large native ungulates

    Treesearch

    Bryce Rickel

    2005-01-01

    This chapter addresses the large native ungulates (American bison (Bos bison), elk (Cervus elaphus), white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana) of the grasslands. The information presented includes...

  14. Learning with Large Blocks.

    ERIC Educational Resources Information Center

    Cartwright, Sally

    1990-01-01

    Discusses how large hollow blocks can meet many preschool children's learning needs through creative dramatic play, and also gives some guidelines on how these blocks can be constructed by parents and teachers. (BB)

  15. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  16. Large bowel resection - discharge

    MedlinePlus

    ... 26. Read More Colon cancer Colostomy Crohn disease Intestinal obstruction Large bowel resection Ulcerative colitis Patient Instructions Bland ... Diseases Colonic Polyps Colorectal Cancer Diverticulosis and Diverticulitis Intestinal Obstruction Ulcerative Colitis Browse the Encyclopedia A.D.A. ...

  17. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  18. Large Customers (DR Sellers)

    SciTech Connect

    Kiliccot, Sila

    2011-10-25

    State of the large customers for demand response integration of solar and wind into electric grid; openADR; CAISO; DR as a pseudo generation; commercial and industrial DR strategies; California regulations

  19. Large Deployable Shroud

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.

    1987-01-01

    Preliminary design proposed for large, lightweight telescope shroud or light shield carried to orbit in single Space Shuttle cargo load. Shroud concept applied on Earth in portable, compactly storable displays or projection screens. Large telescope shroud includes four deployable masts erecting eight walls of hinged panels of polyimide film. Panels stored fanfolded before deployment and threaded on guide wires unwinding from spools and remain taut during deployment.

  20. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  1. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  2. Large meteor bodies

    NASA Astrophysics Data System (ADS)

    Terentjeva, A. K.

    A population of 69 large meteor bodies with extra-atmospheric masses from several kilograms up to several tens of tons detected from photographic observations of bright fireballs of Prairie and European networks is investigated. A half of these objects are "meteorite producers". A relationship between large meteor bodies and meteor streams is analysed. A unique group of meteorite producers moving along extremely short period orbits is considered. Orbits of these bodies are entirely located inside the Earth's orbit similarly to the orbits of system of the Eccentrid meteor bodies, has been discovered by the author in 1981. Interrelationship between all of these bodies and meteor streams is investigated. Some associations have been revealed. Families may exist inside the complex of minor bodies which consist of meteor streams, asteroids of Aten, Apollo and Amor type and large meteor bodies, including meteorite producers.

  3. Large databases in anaesthesiology.

    PubMed

    Dutton, Richard P

    2015-12-01

    The purpose of this study is to review the current state of large database research in anaesthesiology and to describe the evolution of the National Anesthesia Clinical Outcomes Registry (NACOR) in the USA. The Anesthesia Quality Institute of the American Society of Anesthesiologists was created to develop a national anaesthesia registry for the USA. NACOR and the companion Anesthesia Incident Reporting System are now 5 years old and in daily use by hundreds of US practices. The 30 million cases in NACOR are an emerging source for 'big data' research in anaesthesiology. The Information Age is bringing new capabilities for large database research to the specialty of anaesthesiology, driven by the formation of registries capable of capturing a large fraction of all cases performed.

  4. Large TV display system

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1986-01-01

    A relatively small and low cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.

  5. Large Solar Observatory

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2003-01-01

    This article summarizes the scientific aim, design considerations and observatory site of a large optical solar telescope. The day time "seeing" is better on the islands, surrounded by large body of water, compared to the mountain sites. Therefore, in order to obtain the solar images with sub-arcsec resolution, the observatory site should be preferably located on an island. A list of potential sites on Himalayas and surrounding region is given. A brief description of the telescope design, enclosure and back-end instruments are also presented.

  6. Estimating Large Numbers

    ERIC Educational Resources Information Center

    Landy, David; Silbert, Noah; Goldin, Aleah

    2013-01-01

    Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…

  7. Risks of Large Portfolios.

    PubMed

    Fan, Jianqing; Liao, Yuan; Shi, Xiaofeng

    2015-06-01

    The risk of a large portfolio is often estimated by substituting a good estimator of the volatility matrix. However, the accuracy of such a risk estimator is largely unknown. We study factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the estimation. The H-CLUB is constructed using the confidence interval of risk estimators with either known or unknown factors. We derive the limiting distribution of the estimated risks in high dimensionality. We find that when the dimension is large, the factor-based risk estimators have the same asymptotic variance no matter whether the factors are known or not, which is slightly smaller than that of the sample covariance-based estimator. Numerically, H-CLUB outperforms the traditional crude bounds, and provides an insightful risk assessment. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data.

  8. Teaching Very Large Classes

    ERIC Educational Resources Information Center

    DeRogatis, Amy; Honerkamp, Kenneth; McDaniel, Justin; Medine, Carolyn; Nyitray, Vivian-Lee; Pearson, Thomas

    2014-01-01

    The editor of "Teaching Theology and Religion" facilitated this reflective conversation with five teachers who have extensive experience and success teaching extremely large classes (150 students or more). In the course of the conversation these professors exchange and analyze the effectiveness of several active learning strategies they…

  9. LARGE BUILDING HVAC SIMULATION

    EPA Science Inventory

    The report discusses the monitoring and collection of data relating to indoor pressures and radon concentrations under several test conditions in a large school building in Bartow, Florida. The Florida Solar Energy Center (FSEC) used an integrated computational software, FSEC 3.0...

  10. Death Writ Large

    ERIC Educational Resources Information Center

    Kastenbaum, Robert

    2004-01-01

    Mainstream thanatology has devoted its efforts to improving the understanding, care, and social integration of people who are confronted with life-threatening illness or bereavement. This article suggests that it might now be time to expand the scope and mission to include large-scale death and death that occurs through complex and multi-domain…

  11. Risks of Large Portfolios

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Shi, Xiaofeng

    2014-01-01

    The risk of a large portfolio is often estimated by substituting a good estimator of the volatility matrix. However, the accuracy of such a risk estimator is largely unknown. We study factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the estimation. The H-CLUB is constructed using the confidence interval of risk estimators with either known or unknown factors. We derive the limiting distribution of the estimated risks in high dimensionality. We find that when the dimension is large, the factor-based risk estimators have the same asymptotic variance no matter whether the factors are known or not, which is slightly smaller than that of the sample covariance-based estimator. Numerically, H-CLUB outperforms the traditional crude bounds, and provides an insightful risk assessment. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data. PMID:26195851

  12. LARGE BUILDING HVAC SIMULATION

    EPA Science Inventory

    The report discusses the monitoring and collection of data relating to indoor pressures and radon concentrations under several test conditions in a large school building in Bartow, Florida. The Florida Solar Energy Center (FSEC) used an integrated computational software, FSEC 3.0...

  13. Dengfeng Large Gnomon

    NASA Astrophysics Data System (ADS)

    Xu, Fengxian

    Dengfeng large gnomon is a Yuan Dynasty astronomical instrument used for observing the length of the sun's shadow in different seasons and determining the tropical year. Together with the Tang Dynasty stele lying to the south of it, witnessed the idea of the center of the world.

  14. Teaching Large Evening Classes

    ERIC Educational Resources Information Center

    Wambuguh, Oscar

    2008-01-01

    High enrollments, conflicting student work schedules, and the sheer convenience of once-a-week classes are pushing many colleges to schedule evening courses. Held from 6 to 9 pm or 7 to 10 pm, these classes are typically packed, sometimes with more than 150 students in a large lecture theater. How can faculty effectively teach, control, or even…

  15. Developing Large CAI Packages.

    ERIC Educational Resources Information Center

    Reed, Mary Jac M.; Smith, Lynn H.

    1983-01-01

    When developing large computer-assisted instructional (CAI) courseware packages, it is suggested that there be more attentive planning to the overall package design before actual lesson development is begun. This process has been simplified by modifying the systems approach used to develop single CAI lessons, followed by planning for the…

  16. Very Large Databases.

    DTIC Science & Technology

    1977-08-30

    and the Datacomputer itself will determine which of its distributed modules contains the requested message. The message activated form of retrieving...seismic waveform information (seismograms) as measured by seismometers installed throughout the world. The data will assist seismologists in exploring... waveform Information in real-time, the Large Aperture Seismic Array (LASA) in Montana, and the Norwegian Seismic Array (NORSAR). LASA data is

  17. Death Writ Large

    ERIC Educational Resources Information Center

    Kastenbaum, Robert

    2004-01-01

    Mainstream thanatology has devoted its efforts to improving the understanding, care, and social integration of people who are confronted with life-threatening illness or bereavement. This article suggests that it might now be time to expand the scope and mission to include large-scale death and death that occurs through complex and multi-domain…

  18. Teaching Very Large Classes

    ERIC Educational Resources Information Center

    DeRogatis, Amy; Honerkamp, Kenneth; McDaniel, Justin; Medine, Carolyn; Nyitray, Vivian-Lee; Pearson, Thomas

    2014-01-01

    The editor of "Teaching Theology and Religion" facilitated this reflective conversation with five teachers who have extensive experience and success teaching extremely large classes (150 students or more). In the course of the conversation these professors exchange and analyze the effectiveness of several active learning strategies they…

  19. Large scale scientific computing

    SciTech Connect

    Deuflhard, P. ); Engquist, B. )

    1987-01-01

    This book presents papers on large scale scientific computing. It includes: Initial value problems of ODE's and parabolic PDE's; Boundary value problems of ODE's and elliptic PDE's; Hyperbolic PDE's; Inverse problems; Optimization and optimal control problems; and Algorithm adaptation on supercomputers.

  20. Estimating Large Numbers

    ERIC Educational Resources Information Center

    Landy, David; Silbert, Noah; Goldin, Aleah

    2013-01-01

    Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…

  1. Large, Easily Deployable Structures

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1983-01-01

    Study of concepts for large space structures will interest those designing scaffolding, radio towers, rescue equipment, and prefabricated shelters. Double-fold, double-cell module was selected for further design and for zero gravity testing. Concept is viable for deployment by humans outside space vehicle as well as by remotely operated manipulator.

  2. Developing Large CAI Packages.

    ERIC Educational Resources Information Center

    Reed, Mary Jac M.; Smith, Lynn H.

    1983-01-01

    When developing large computer-assisted instructional (CAI) courseware packages, it is suggested that there be more attentive planning to the overall package design before actual lesson development is begun. This process has been simplified by modifying the systems approach used to develop single CAI lessons, followed by planning for the…

  3. Teaching Large Evening Classes

    ERIC Educational Resources Information Center

    Wambuguh, Oscar

    2008-01-01

    High enrollments, conflicting student work schedules, and the sheer convenience of once-a-week classes are pushing many colleges to schedule evening courses. Held from 6 to 9 pm or 7 to 10 pm, these classes are typically packed, sometimes with more than 150 students in a large lecture theater. How can faculty effectively teach, control, or even…

  4. Large Brown Oval

    NASA Image and Video Library

    1996-01-29

    This large brown oval, photographed on Mar. 2, 1979 by NASA Voyager 1. Features of this sort are not rare on Jupiter and have an average lifetime of one to two years. Above the feature is the pale orange North Temperate Belt. http://photojournal.jpl.nasa.gov/catalog/PIA00015

  5. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  6. The Universe at Large

    NASA Astrophysics Data System (ADS)

    Münch, Guido; Mampaso, Antonio; Sánchez, Francisco

    1997-11-01

    The Universe at Large presents a unique survey of key questions outstanding in contemporary astronomy and cosmology. In this timely volume, eleven of the world's greatest living astronomers and cosmologists present personal views of what problems must be addressed by future research. Allan Sandage presents a 23-point plan to reach a full understanding of the large-scale structure in the Universe; Geoffrey Burbidge looks at the future of the Quasi Steady State alternative to the Big Bang; E. Margaret Burbidge, Donald Osterbrock and Malcolm Longair discuss active galactic nuclei (AGN); Igor Novikov, Donald Lynden-Bell, Martin Rees and Rashid Sunyaev look at the physics of black holes; and Bernard Pagel and Hubert Reeves concentrate on what we don't yet understand about elements in the cosmos. This book provides a unique review of our current understanding in astronomy and cosmology and a host of profitable research ideas for graduate students and researchers.

  7. Large bouncing jets

    NASA Astrophysics Data System (ADS)

    Cardin, Karl; Weislogel, Mark

    2016-11-01

    We experimentally investigate the phenomena of large jet rebound (bounce), a mode of fluid transfer following oblique jet impacts on hydrophobic surfaces. We initially seek to describe the regimes of such jet bounce in tests conducted in the weightless environment of a drop tower. A parametric study reveals the dependence of the rebound mode on the relevant dimensionless groups such as Weber number We⊥ defined on the velocity component perpendicular to the surface. We show that significantly larger diameter jets behave similarly as much smaller jets demonstrated during previous terrestrial investigations when We⊥ 1 . For We⊥ > 1 , large jet impacts create fishbone-like structures. We also explore rebounds from nonplanar substrates. Improving our understanding of such jet rebound opens avenues for unique transport capabilities. NASA Cooperative Agreement NNX12A047A.

  8. [Large benign prostatic hiperplasia].

    PubMed

    Soria-Fernández, Guillermo René; Jungfermann-Guzman, José René; Lomelín-Ramos, José Pedro; Jaspersen-Gastelum, Jorge; Rosas-Nava, Jesús Emmanuel

    2012-01-01

    the term prostatic hyperplasia is most frequently used to describe the benign prostatic growth, this being a widely prevalent disorder associated with age that affects most men as they age. The association between prostate growth and urinary obstruction in older adults is well documented. large benign prostatic hyperplasia is rare and few cases have been published and should be taken into account during the study of tumors of the pelvic cavity. we report the case of an 81-year-old who had significant symptoms relating to storage and bladder emptying, with no significant elevation of prostate specific antigen. this is a rare condition but it is still important to diagnose and treat as it may be related to severe obstructive uropathy and chronic renal failure. In our institution, cases of large prostatic hyperplasia that are solved by suprapubic adenomectomy are less than 3%.

  9. Large area mass analyzer

    NASA Astrophysics Data System (ADS)

    Rachev, Mikhail; Srama, Ralf; Srowig, Andre; Grün, Eberhard

    2004-12-01

    A new time-of-flight spectrometer for the chemical analysis of cosmic dust particles in space has been simulated by Simion 7.0. The instrument is based upon impact ionization. This method is a reliable method for in situ dust detection and is well established. Instruments using the impact ionization flew on board of Helios and Galileo and are still in operation on board of the Ulysses and Cassini-Huygens missions. The new instrument has a large sensitive area of 0.1 m2 in order to achieve a significant number of measurements. The mass resolution M/ΔM>100 and the mass range covers the most relevant elements expected in cosmic dust. The instrument has a reflectron configuration which increases the mass resolution. Most of the ions released during the impact are focused to the detector. The ion detector consists of a large area ion-to-electron converter, an electron reflectron and a microchannel plate detector.

  10. Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The larger of two nearby companions of the Milky Way Galaxy that can be seen with the naked eye in the southern hemisphere sky and which are named after the Portuguese navigator, Ferdinand Magellan, who observed them in 1519 during his circumnavigation of the world. Located in the constellation of Dorado, at a distance of about 170 000 light-years, the Large Magellanic Cloud (LMC) has an overall ...

  11. Unusually Large Runup Events

    NASA Astrophysics Data System (ADS)

    Garcia-Medina, G.; Ozkan-Haller, H. T.; Holman, R. A.; Ruggiero, P.

    2016-02-01

    Understanding the primary hydrodynamic processes that cause extreme runup events is important for the prediction of dune erosion and coastal flooding. Large runups may be caused by a superposition of physical and environmental conditions, bore-bore capture, infragravity-short wave interaction, and/or swash-backwash interaction. To investigate the conditions leading to these events we combine optical remote sensing observations (Argus) and state-of-the-art phase resolving numerical modeling (primarily NHWAVE). We evaluate runup time series derived from across-shore transects of pixel intensities in two very different beaches: Agate (Oregon, USA) and Duck (North Carolina, USA). The former is a dissipative beach where the runup is dominated by infragravity energy, whereas the latter is a reflective beach where the runup is dominated by short surface gravity waves. Phase resolving numerical models are implemented to explore an expanded parameter set and identify the mechanisms that control these large runups. Model results are in good qualitative agreement with observations. We also distinguish unexpected runups, which are defined by having an unexpectedly large excursion distance in comparison to the hourly-to-daily local runup conditions and do not necessarily represent a statistical extrema. These events pose significant safety hazards. We evaluate the relative contribution of the dominating physics to extreme and unexpected runup events.

  12. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  13. Large area LED package

    NASA Astrophysics Data System (ADS)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  14. Large coil test facility

    SciTech Connect

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system.

  15. Large right ventricular thrombus.

    PubMed

    Sousa, Carla; Almeida, Pedro; Gonçalves, Alexandra; Rodrigues, João; Rangel, Inês; Macedo, Filipe; Maciel, M Júlia

    2014-01-01

    Right ventricular thrombosis is a rare yet potentially fatal condition. It has been described in association with hypercoagulability states, autoimmune diseases and dilated cardiomyopathy. Echocardiography constitutes the election tool for diagnosis and characterization of these entities, allowing for the differentiation between the various types of thrombi. We present a case of a patient with alcoholic dilated cardiomyopathy admitted for congestive heart failure and lower respiratory infection. In the diagnostic approach, a routine echocardiography revealed a large mural right ventricular thrombus in association with severe biventricular dysfunction. The patient was proposed for anticoagulation strategy, which he refused.

  16. Large, Bright Wind Ripples

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-397, 20 June 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, relatively bright ripples of windblown sediment in the Sinus Sabaeus region south of Schiaparelli Basin. The surrounding substrate is thickly mantled by very dark material, possibly windblown silt that settled out of the atmosphere. The picture is located near 7.1oS, 343.7oW. Sunlight illuminates the scene from the left.

  17. Large character sums

    NASA Astrophysics Data System (ADS)

    Granville, Andrew; Soundararajan, K.

    2007-04-01

    In 1918 Polya and Vinogradov gave an upper bound for the maximal size of character sums, which still remains the best known general estimate. One of the main results of this paper provides a substantial improvement of the Polya-Vinogradov bound for characters of odd, bounded order. In 1977 Montgomery and Vaughan showed how the Polya-Vinogradov inequality may be sharpened assuming the Generalized Riemann Hypothesis. We give a simple proof of their estimate and provide an improvement for characters of odd, bounded order. The paper also gives characterizations of the characters for which the maximal character sum is large, and it finds a hidden structure among these characters.

  18. Large space structures testing

    NASA Technical Reports Server (NTRS)

    Waites, Henry; Worley, H. Eugene

    1987-01-01

    There is considerable interest in the development of testing concepts and facilities that accurately simulate the pathologies believed to exist in future spacecraft. Both the Government and Industry have participated in the development of facilites over the past several years. The progress and problems associated with the development of the Large Space Structure Test Facility at the Marshall Flight Center are presented. This facility was in existence for a number of years and its utilization has run the gamut from total in-house involvement, third party contractor testing, to the mutual participation of other Government Agencies in joint endeavors.

  19. The large pursuit rotor.

    PubMed

    Williams, L R; Grbin, I R

    1976-09-01

    The question of whether certain phenomena that occur on the conventional rotary pursuit and other small apparatus also appear on a gross motor task was examined using a large pursuit rotor that required whole-body movements. College males (n=29) were given 90 10-sec trials over three consecutive days with 30 trials of continuous practice per day. The existence of reactive inhibition, reminiscence, and warmup decrement was confirmed, indicating that common mechanisms underlie both fine and gross bodily movements. In addition, the substantial amounts of learning and the high reliabilities for performance and learning indicated that the present apparatus has considerable potential for motor-learning research.

  20. The large hadron computer

    NASA Astrophysics Data System (ADS)

    Hirstius, Andreas

    2008-11-01

    In the mid-1990s, when CERN physicists made their first cautious estimates of the amount of data that experiments at the Large Hadron Collider (LHC) would produce, the microcomputer component manufacturer Intel had just released the Pentium Pro processor. Windows was the dominant operating system, although Linux was gaining momentum. CERN had recently made the World Wide Web public, but the system was still a long way from the all-encompassing network it is today. And a single gigabyte (109 bytes) of disk space cost several hundred dollars.

  1. Large Optics Technology.

    DTIC Science & Technology

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  2. Large Scale Nonlinear Programming.

    DTIC Science & Technology

    1978-06-15

    KEY WORDS (Conhinu. as, t.n.t.. aid. if nic••iary aid ld.ntify by block n,a,b.r) L. In,~~~ IP!CIE LARGE SCALE OPTIMIZATION APPLICATIONS OF NONLINEAR ... NONLINEAR PROGRAMMING by Garth P. McCormick 1. Introduction The general mathematical programming ( optimization ) problem can be stated in the following form...because the difficulty in solving a general nonlinear optimization problem has a~ much to do with the nature of the functions involved as it does with the

  3. Large lithium loop experience

    SciTech Connect

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430/sup 0/C and flow to 0.038 m/sup 3//s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed.

  4. Large Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Angulo, María E.; Mena Marugán, Guillermo A.; Ashtekar, A.

    Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.

  5. Estimating large numbers.

    PubMed

    Landy, David; Silbert, Noah; Goldin, Aleah

    2013-07-01

    Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions predict a log-to-linear shift: People will either place numbers linearly or will place numbers according to a compressive logarithmic or power-shaped function (Barth & Paladino, ; Siegler & Opfer, ). While about half of people did estimate numbers linearly over this range, nearly all the remaining participants placed 1 million approximately halfway between 1 thousand and 1 billion, but placed numbers linearly across each half, as though they believed that the number words "thousand, million, billion, trillion" constitute a uniformly spaced count list. Participants in this group also tended to be optimistic in evaluations of largely ineffective political strategies, relative to linear number-line placers. The results indicate that the surface structure of number words can heavily influence processes for dealing with numbers in this range, and it can amplify the possibility that analogous surface regularities are partially responsible for parallel phenomena in children. In addition, these results have direct implications for lawmakers and scientists hoping to communicate effectively with the public. Copyright © 2013 Cognitive Science Society, Inc.

  6. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  7. Infinitely Large New Dimensions

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia; Kaloper, Nemanja

    1999-07-29

    We construct intersecting brane configurations in Anti-de-Sitter space localizing gravity to the intersection region, with any number n of extra dimensions. This allows us to construct two kinds of theories with infinitely large new dimensions, TeV scale quantum gravity and sub-millimeter deviations from Newton's Law. The effective 4D Planck scale M{sub Pl} is determined in terms of the fundamental Planck scale M{sub *} and the AdS radius of curvature L via the familiar relation M{sub Pl}{sup 2} {approx} M{sub *}{sup 2+n} L{sup n}; L acts as an effective radius of compactification for gravity on the intersection. Taking M{sub *} {approx} TeV and L {approx} sub-mm reproduces the phenomenology of theories with large extra dimensions. Alternately, taking M{sub *} {approx} L{sup -1} {approx} M{sub Pl}, and placing our 3-brane a distance {approx} 100M{sub Pl}{sup -1} away from the intersection gives us a theory with an exponential determination of the Weak/Planck hierarchy.

  8. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  9. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  10. A large frame gyrolaser

    NASA Astrophysics Data System (ADS)

    Allegrini, Maria; Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Carelli, Giorgio; di Virgilio, Angela; Maccioni, Enrico; Sorrentino, Fiodor

    2009-05-01

    A large frame ring laser gyroscope optimized for very high rotational sensitivity has been designed and built. It can be used for fine control of the interferometer mirrors alignment for the Earth based third generation gravitational antenna. Another foreseen application is geophysical monitoring of the Earth rotational motion. Presently, the ring laser optical cavity is a square with 1.60 m of side with 4 mirrors of reflectivity near 99.999%. The mechanical drawing allows easy scaling of the square area from the present 2m^2 value down to 0.81 m^2. Without optimization of the isolation system from the vibration noise of the environment, preliminary recording of the power spectral noise indicates a rotational resolution near to 10^8 rad/(sHz^1/2) at 1 Hz. Exploitation for a three dimensional sensor, composed by three independent gyroscopes, is in progress.

  11. Contrasting Large Solar Events

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2010-10-01

    After an unusually long solar minimum, solar cycle 24 is slowly beginning. A large coronal mass ejection (CME) from sunspot 1092 occurred on 1 August 2010, with effects reaching Earth on 3 August and 4 August, nearly 38 years to the day after the huge solar event of 4 August 1972. The prior event, which those of us engaged in space research at the time remember well, recorded some of the highest intensities of solar particles and rapid changes of the geomagnetic field measured to date. What can we learn from the comparisons of these two events, other than their essentially coincident dates? One lesson I took away from reading press coverage and Web reports of the August 2010 event is that the scientific community and the press are much more aware than they were nearly 4 decades ago that solar events can wreak havoc on space-based technologies.

  12. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  13. Infrasound from large surf

    NASA Astrophysics Data System (ADS)

    Garcés, M.; Aucan, J.; Fee, D.; Caron, P.; Merrifield, M.; Gibson, R.; Bhattacharyya, J.; Shah, S.

    2006-03-01

    Simultaneous infrasonic, visual, and ocean-bottom pressure sensor observations of large swells on the island of Kauai and small to medium-sized surf on the island of Hawaii yielded a clear relationship between breaking wave height and low-frequency atmospheric sound amplitudes in the 1-20 Hz frequency range. These experiments confirmed that infrasound can be generated by barreling waves as well as by waves crashing against rocky shorelines and exposed ledges. As will be demonstrated in a companion paper, breaking wave period may also be extracted from infrasound data. The results of these experiments demonstrate that low-frequency sound may be used for real-time estimates of the amplitude, period, and spatial distribution of surf in the littoral zone, with a potential application to the identification of breaking wave types.

  14. Synchronizing Large Systolic Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Allan L.; Kung, H. T.

    1982-12-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of a systolic array. it may be convenient to think of all processors as operating in lock step. This synchronized view, for example, often makes the definition of the structure and its correctness relatively easy to follow. However, large, totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic study of synchronization problems for large systolic arrays. One set of models is based on assumptions that allow the use of a pipelined clocking scheme, where more than one clock event is propagated at a time. In this case, it is shown that even assuming that physical variations along clock lines can produce skews between wires of the same length, any one-dimensional systolic array can be correctly synchronized by a global pipelined clock while enjoying desirable properties such as modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to two-dimensional arrays, however--the paper shows that under this assumption, it is impossible to run a clock such that the maximum clock skew between two communicating cells will be bounded by a constant as systems grow. For such cases or where pipelined clocking is unworkable, a synchronization scheme

  15. Large offspring syndrome

    PubMed Central

    Chen, Zhiyuan; Robbins, Katherine Marie; Wells, Kevin Dale; Rivera, Rocío Melissa

    2013-01-01

    Beckwith-Wiedemann syndrome (BWS) is a human loss-of-imprinting syndrome primarily characterized by macrosomia, macroglossia, and abdominal wall defects. BWS has been associated with misregulation of two clusters of imprinted genes. Children conceived with the use of assisted reproductive technologies (ART) appear to have an increased incidence of BWS. As in humans, ART can also induce a similar overgrowth syndrome in ruminants which is referred to as large offspring syndrome (LOS). The main goal of our study is to determine if LOS shows similar loss-of-imprinting at loci known to be misregulated in BWS. To test this, Bos taurus indicus × Bos taurus taurus F1 hybrids were generated by artificial insemination (AI; control) or by ART. Seven of the 27 conceptuses in the ART group were in the > 97th percentile body weight when compared with controls. Further, other characteristics reported in BWS were observed in the ART group, such as large tongue, umbilical hernia, and ear malformations. KCNQ1OT1 (the most-often misregulated imprinted gene in BWS) was biallelically-expressed in various organs in two out of seven overgrown conceptuses from the ART group, but shows monoallelic expression in all tissues of the AI conceptuses. Furthermore, biallelic expression of KCNQ1OT1 is associated with loss of methylation at the KvDMR1 on the maternal allele and with downregulation of the maternally-expressed gene CDKN1C. In conclusion, our results show phenotypic and epigenetic similarities between LOS and BWS, and we propose the use of LOS as an animal model to investigate the etiology of BWS. PMID:23751783

  16. Large Format Radiographic Imaging

    SciTech Connect

    J. S. Rohrer; Lacey Stewart; M. D. Wilke; N. S. King; S. A Baker; Wilfred Lewis

    1999-08-01

    Radiographic imaging continues to be a key diagnostic in many areas at Los Alamos National Laboratory (LANL). Radiographic recording systems have taken on many form, from high repetition-rate, gated systems to film recording and storage phosphors. Some systems are designed for synchronization to an accelerator while others may be single shot or may record a frame sequence in a dynamic radiography experiment. While film recording remains a reliable standby in the radiographic community, there is growing interest in investigating electronic recording for many applications. The advantages of real time access to remote data acquisition are highly attractive. Cooled CCD camera systems are capable of providing greater sensitivity with improved signal-to-noise ratio. This paper begins with a review of performance characteristics of the Bechtel Nevada large format imaging system, a gated system capable of viewing scintillators up to 300 mm in diameter. We then examine configuration alternatives in lens coupled and fiber optically coupled electro-optical recording systems. Areas of investigation include tradeoffs between fiber optic and lens coupling, methods of image magnification, and spectral matching from scintillator to CCD camera. Key performance features discussed include field of view, resolution, sensitivity, dynamic range, and system noise characteristics.

  17. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  18. Large Crater Clustering tool

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Skinner, James A.; Hunter, Marc A.

    2017-08-01

    In this paper we present the Large Crater Clustering (LCC) tool set, an ArcGIS plugin that supports the quantitative approximation of a primary impact location from user-identified locations of possible secondary impact craters or the long-axes of clustered secondary craters. The identification of primary impact craters directly supports planetary geologic mapping and topical science studies where the chronostratigraphic age of some geologic units may be known, but more distant features have questionable geologic ages. Previous works (e.g., McEwen et al., 2005; Dundas and McEwen, 2007) have shown that the source of secondary impact craters can be estimated from secondary impact craters. This work adapts those methods into a statistically robust tool set. We describe the four individual tools within the LCC tool set to support: (1) processing individually digitized point observations (craters), (2) estimating the directional distribution of a clustered set of craters, back projecting the potential flight paths (crater clusters or linearly approximated catenae or lineaments), (3) intersecting projected paths, and (4) intersecting back-projected trajectories to approximate the local of potential source primary craters. We present two case studies using secondary impact features mapped in two regions of Mars. We demonstrate that the tool is able to quantitatively identify primary impacts and supports the improved qualitative interpretation of potential secondary crater flight trajectories.

  19. Large building characterization

    SciTech Connect

    Menetrez, M.Y.; Sanchez, D.C.; Kulp, R.N.; Pyle, B.; Williamson, A.; McDonough, S.

    1994-12-31

    Buildings are characterized in this project by examining radon concentrations and indoor air quality (IAQ) levels as affected by building ventilation dynamics. IAQ data collection stations (IAQDS), for monitoring and data logging, remote switches (pressure and sail switches), and a weather station were installed. Measurements of indoor radon, carbon dioxide (CO{sub 2}), and particle concentrations; temperature; humidity; indoor to outdoor or sub-slab pressure differentials; ambient and sub-slab radon concentrations; and outdoor air intake flow rates were collected. The outdoor air intake was adjusted, and fan cycles were controlled while tracer gas measurements were taken in all zones and IAQDS data are processed. Ventilation, infiltration, mixing rates, radon entry, pressure/temperature convective driving forces, CO{sub 2} generation/decay concentrations, and IAQ levels were defined. These dynamic interacting processes characterize the behavior of this and similar large buildings. The techniques incorporated into the experimental plan are discussed with project rationale. Results and the discussion of those results are beyond the limits of this paper.

  20. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  1. Large scale tracking algorithms

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  2. Typhoon Phanfone's Large Eye

    NASA Image and Video Library

    2017-09-27

    NASA's Terra satellite captured this image of Typhoon Phanfone and its large eye in the western Pacific Ocean on Friday, Oct. 3 at 1:55 UTC. On Oct. 3 at 0900 UTC (5 a.m. EDT), Typhoon Phanfone's maximum sustained winds were near 110 knots (126.6 mph/203.7 kph). It was centered near 23.6 north longitude and 134.4 east latitude, about 374 nautical miles west-southwest of the island of Iwo To. Phanfone has tracked northwestward at 12 knots (13.8 mph/22.2 kph). Read more: 1.usa.gov/1vjS1vs Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  4. Large Deployable Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Huang, John; Lou, Michael

    2006-01-01

    A report discusses a 7-meter-diameter reflectarray antenna that has been conceived in a continuing effort to develop large reflectarray antennas to be deployed in outer space. Major underlying concepts were reported in three prior NASA Tech Briefs articles: "Inflatable Reflectarray Antennas" (NPO-20433), Vol. 23, No. 10 (October 1999), page 50; "Tape-Spring Reinforcements for Inflatable Structural Tubes" (NPO-20615), Vol. 24, No. 7 (July 2000), page 58; and "Self-Inflatable/Self-Rigidizable Reflectarray Antenna" (NPO-30662), Vol. 28, No. 1 (January 2004), page 61. Like previous antennas in the series, the antenna now proposed would include a reflectarray membrane stretched flat on a frame of multiple inflatable booms. The membrane and booms would be rolled up and folded for compact stowage during transport. Deployment in outer space would be effected by inflating the booms to unroll and then to unfold the membrane, thereby stretching the membrane out flat to its full size. The membrane would achieve the flatness for a Ka-band application. The report gives considerable emphasis to designing the booms to rigidify themselves upon deployment: for this purpose, the booms could be made as spring-tape-reinforced aluminum laminate tubes like those described in two of the cited prior articles.

  5. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L. |; Rickert, M. |

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  6. Large size telescope report

    NASA Astrophysics Data System (ADS)

    Mazin, D.; Cortina, J.; Teshima, M.

    2017-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to fulfill the design requirements, present results of element prototyping and describe the installation and operation plans.

  7. Large Databases in Astronomy

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander S.; Gray, Jim; Kunszt, Peter; Thakar, Anirudha; Slutz, Don

    The next-generation astronomy digital archives will cover most of the sky at fine resolution in many wavelengths, from X-rays through ultraviolet, optical, and infrared. The archives will be stored at diverse geographical locations. The intensive use of advanced data archives will enable astronomers to explore their data interactively. Data access will be aided by multidimensional spatial and attribute indices. The data will be partitioned in many ways. Small tag indices consisting of the most popular attributes will accelerate frequent searches. Splitting the data among multiple servers will allow parallel, scalable I/O and parallel data analysis. Hashing techniques will allow efficient clustering, and pair-wise comparison algorithms that should parallelize nicely. Randomly sampled subsets will allow debugging otherwise large queries at the desktop. Central servers will operate a data pump to support sweep searches touching most of the data. The anticipated queries will require special operators related to angular distances and complex similarity tests of object properties, like shapes, colors, velocity vectors, or temporal behaviors. These issues pose interesting data management challenges.

  8. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  9. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  10. Extra large telescope actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben; Hatheway, Alson E.

    2003-02-01

    The goal of the Extra Large Telescope Actuator (ELTA) development project was to demonstrate operation of a relatively high stiffness, single stage optical positioning actuator capable of achieving diffraction-limited performance (<10 nm) in the visible optical band for weeks at a time while consuming no electrical power and dissipating no heat. The design challenge was to develop a linear positioning mechanism exhibiting high stiffness, low power, zero backlash, and thermal stability over extended time periods. The key to achieving high resolution, and stability with low power is to eliminate the closed-loop control system that is normally employed to overcome the nonlinearities and hysteresis inherent in some technologies, such as piezoelectric and magnetostrictive transducers. This was accomplished by using the patented elastic transducer developed by Alson E. Hatheway (AEH Inc.) This device consists of two elastic elements; a soft spring and a stiff flexural member. Deflection of the soft spring applies a force input to the stiff flexure, which responds with a proportionally reduced output deflection. To maintain linearity, the displacements, and hence the stresses, developed in both elastic members are kept below the micro-yield strength of the material. The AEH transducer is inherently linear and hysteresis free. The unique design features of this actuator which contribute to its extremely precise motion capability include an electric motor driving a leadscrew through a zero backlash harmonic drive gear reduction. The already fine incremental motion of the leadscrew nut is further attenuated by the elastic action of the AEH transducer, to provide output motion with resolution <10 nm.

  11. Applied large eddy simulation.

    PubMed

    Tucker, Paul G; Lardeau, Sylvain

    2009-07-28

    Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity.

  12. Large planer for finishing smooth, flat surfaces of large pieces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Large planer for finishing smooth, flat surfaces of large pieces of metal; in operating condition and used for public demonstrations. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  13. Disorders of the Large Intestine

    MedlinePlus

    ... Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of the Pelvic Floor Motility Testing Personal ... Disorders of the Stomach Disorders of the Small Intestine Disorders of the Large Intestine Disorders of the ...

  14. Large for gestational age (LGA)

    MedlinePlus

    ... gov/ency/article/002248.htm Large for gestational age (LGA) To use the sharing features on this page, please enable JavaScript. Large for gestational age means that a fetus or infant is larger ...

  15. Large Deviations for Random Trees

    PubMed Central

    Heitsch, Christine

    2010-01-01

    We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures. PMID:20216937

  16. Health impacts of large dams

    SciTech Connect

    Lerer, L.B.; Scudder, T.

    1999-03-01

    Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.

  17. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  18. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  19. Revisiting large neutrino magnetic moments

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Radovčić, Branimir; Welter, Johannes

    2017-07-01

    Current experimental sensitivity on neutrino magnetic moments is many orders of magnitude above the Standard Model prediction. A potential measurement of next-generation experiments would therefore strongly request new physics beyond the Standard Model. However, large neutrino magnetic moments generically tend to induce large corrections to the neutrino masses and lead to fine-tuning. We show that in a model where neutrino masses are proportional to neutrino magnetic moments. We revisit, discuss and propose mechanisms that still provide theoretical consistent explanations for a potential measurement of large neutrino magnetic moments. We find only two viable mechanisms to realize large transition magnetic moments for Majorana neutrinos only.

  20. Sharpen Your Skills: Large Type.

    ERIC Educational Resources Information Center

    Knisely, Phyllis

    1983-01-01

    Three short articles about large type transcribing are provided for braille transcribers and teachers of the visually handicapped. The first article explains section IV-B-2 of the National Braille Association Manual for Large Type Transcribing. The second article presents the results of a survey on the kinds of typewriters, types of…

  1. Sharpen Your Skills: Large Type.

    ERIC Educational Resources Information Center

    Knisely, Phillis; Wickham, Marian

    1984-01-01

    Three short articles about large type transcribing are provided for braille transcribers and teachers of the visually handicapped. The first article lists general suggestions for simple typewriter maintenance. The second article reviews the guidelines for typing fractions in large type for mathematics exercises. The third article describes a…

  2. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  3. Sharpen Your Skills: Large Type.

    ERIC Educational Resources Information Center

    Knisely, Phillis; Wickham, Marian

    1984-01-01

    Three short articles about large type transcribing are provided for braille transcribers and teachers of the visually handicapped. The first article lists general suggestions for simple typewriter maintenance. The second article reviews the guidelines for typing fractions in large type for mathematics exercises. The third article describes a…

  4. Team Learning in Large Classes.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1984-01-01

    Information and suggestions are provided on the use of team learning in large college classes. Introductory material discusses the negative cycle of student-teacher interaction that may be provoked by large classes, and the use of permanent, heterogeneous, six- or seven-member student learning groups as the central focus of class activity as a…

  5. Statistical analysis of large wildfires

    Treesearch

    Thomas P. Holmes; Robert J. Jr. Huggett; Anthony L. Westerling

    2008-01-01

    Large, infrequent wildfires cause dramatic ecological and economic impacts. Consequently, they deserve special attention and analysis. The economic significance of large fires is indicated by the fact that approximately 94 percent of fire suppression costs on U.S. Forest Service land during the period 1980-2002 resulted from a mere 1.4 percent of the fires (Strategic...

  6. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  7. Students' Perceptions of Large Classes.

    ERIC Educational Resources Information Center

    Wulff, Donald H.; And Others

    1987-01-01

    Students' perceptions of instruction in large classes are summarized, based on standardized questionnaires administered in lower-division large classes. Students' ratings of classes and responses to open-ended questions are discussed in terms of content and amount learned, specific instructional dimensions, and evaluation processes. (MLW)

  8. Large Caliber Projectile Soft Recovery

    DTIC Science & Technology

    1981-02-01

    BRL modified firing lock. In all plots, 5 J. J. Rocchio , R. A. Hartman and N. J. Gerri, "An Electric Primer-Oper- ated Firing Pin Actuator for Large...by Honeywell, Inc., September 1977. S. J.J. Rocchio , R.A. Hartman and N.J. Gerri, "An Electric Primer-Oper- ated Firing Pin Actuator for Large

  9. Measuring happiness in large population

    NASA Astrophysics Data System (ADS)

    Wenas, Annabelle; Sjahputri, Smita; Takwin, Bagus; Primaldhi, Alfindra; Muhamad, Roby

    2016-01-01

    The ability to know emotional states for large number of people is important, for example, to ensure the effectiveness of public policies. In this study, we propose a measure of happiness that can be used in large scale population that is based on the analysis of Indonesian language lexicons. Here, we incorporate human assessment of Indonesian words, then quantify happiness on large-scale of texts gathered from twitter conversations. We used two psychological constructs to measure happiness: valence and arousal. We found that Indonesian words have tendency towards positive emotions. We also identified several happiness patterns during days of the week, hours of the day, and selected conversation topics.

  10. Science with Large Solar Telescopes

    NASA Astrophysics Data System (ADS)

    Cauzzi, G.; Tritschler, A.; Deng, Y.

    2012-12-01

    With several large aperture optical/IR telescopes coming on-line, and scheduled for the near future, solar physics is on the verge of a quantum leap in observational capabilities. An efficient use of such facilities will require new and innovative approaches to both observatory operations and data handling. This two-days long Special Session will discuss the science expected with large solar telescopes, and start addressing the strategies necessary to optimize their scientific return. Cutting edge solar science as derived from state of the art observations and numerical simulations will be presented, and discussions will be held on the role of large facilities in satisfying the demanding requirements of spatial and temporal resolution, stray-light, and spectro-polarimetric accuracy. Building on the experience of recently commissioned telescopes, we will then discuss critical issues for the development of future facilities including operational issues peculiar to large telecopes, and strategies for their best use.

  11. Large for Gestational Age (LGA)

    MedlinePlus

    ... Common complications include the following: Excess amount of red blood cells (polycythemia—see see Polycythemia in the Newborn ): Large- ... may have a ruddy complexion because too many red blood cells are produced. As the excess red blood cells ...

  12. Personalized Teaching in Large Classes.

    ERIC Educational Resources Information Center

    Silvia, Evelyn M.; Hom, Carole L.

    1996-01-01

    Refutes the assumption that large classes must be impersonal, characterized by lecture style, and presented in a theorem-proof-example format. Discusses successful strategies for space use, classroom management, and collecting student feedback. (DDR)

  13. Large engines and vehicles, 1958

    NASA Technical Reports Server (NTRS)

    1978-01-01

    During the mid-1950s, the Air Force sponsored work on the feasibility of building large, single-chamber engines, presumably for boost-glide aircraft or spacecraft. In 1956, the Army missile development group began studies of large launch vehicles. The possibilities opened up by Sputnik accelerated this work and gave the Army an opportunity to bid for the leading role in launch vehicles. The Air Force had the responsibility for the largest ballistic missiles and hence a ready-made base for extending their capability for spaceflight. During 1958, actions taken to establish a civilian space agency, and the launch vehicle needs seen by its planners, added a third contender to the space vehicle competition. These activities during 1958 are examined as to how they resulted in the initiation of a large rocket engine and the first large launch vehicle.

  14. Large Double-ringed Basin

    NASA Image and Video Library

    2000-08-05

    Taken about 40 minutes before NASA Mariner 10 made its close approach to Mercury on Sept. 21,1974, this picture shows a large double-ringed basin center of picture located in the planet south polar region

  15. Robust large dimension terahertz cloaking.

    PubMed

    Liang, Dachuan; Gu, Jianqiang; Han, Jiaguang; Yang, Yuanmu; Zhang, Shuang; Zhang, Weili

    2012-02-14

    A large scale homogenous invisibility cloak functioning at terahertz frequencies is reported. The terahertz invisibility device features a large concealed volume, low loss, and broad bandwidth. In particular, it is capable of hiding objects with a dimension nearly an order of magnitude larger than that of its lithographic counterpart, but without involving complex and time-consuming cleanroom processing. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laparoscopic Management of Large Myomas

    PubMed Central

    Sinha, Rakesh; Sundaram, Meenakshi

    2009-01-01

    The objective of this article is to review the different techniques that have been adopted for removal of large myomas laparoscopically. We have also quoted literature about the impact of myomas on Pregnancy and obstetrical outcome and the effect of laparoscopic myomectomy on the same. Technical modifications to remove large myomas have been described along with methods to reduce intraoperative bleeding. This comprehensive review describes all possibilities of laparoscopic myomectomy irrespective of size, site and number. PMID:22442517

  17. Can we save large carnivores without losing large carnivore science?

    USGS Publications Warehouse

    Allen, Benjamin L.; Allen, Lee R.; Andrén, Henrik; Ballard, Guy; Boitani, Luigi; Engeman, Richard M.; Fleming, Peter J.S.; Haswell, Peter M.; Ford, Adam T.; Kowalczyk, Rafał; Mech, L. David; Linnell, John D.C.; Parker, Daniel M.

    2017-01-01

    Large carnivores are depicted to shape entire ecosystems through top-down processes. Studies describing these processes are often used to support interventionist wildlife management practices, including carnivore reintroduction or lethal control programs. Unfortunately, there is an increasing tendency to ignore, disregard or devalue fundamental principles of the scientific method when communicating the reliability of current evidence for the ecological roles that large carnivores may play, eroding public confidence in large carnivore science and scientists. Here, we discuss six interrelated issues that currently undermine the reliability of the available literature on the ecological roles of large carnivores: (1) the overall paucity of available data, (2) reliability of carnivore population sampling techniques, (3) general disregard for alternative hypotheses to top-down forcing, (4) lack of applied science studies, (5) frequent use of logical fallacies, and (6) generalisation of results from relatively pristine systems to those substantially altered by humans. We first describe how widespread these issues are, and given this, show, for example, that evidence for the roles of wolves (Canis lupus) and dingoes (Canis lupus dingo) in initiating trophic cascades is not as strong as is often claimed. Managers and policy makers should exercise caution when relying on this literature to inform wildlife management decisions. We emphasise the value of manipulative experiments and discuss the role of scientific knowledge in the decision-making process. We hope that the issues we raise here prompt deeper consideration of actual evidence, leading towards an improvement in both the rigour and communication of large carnivore science.

  18. Large Amplitude Oscillations in Prominences

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Isobe, H.; Jain, R.

    2009-12-01

    Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2-3 km s-1), which are quite common, and “large-amplitude oscillations” (>20 km s-1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in H α as well as motion in the plane-of-sky in H α, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.

  19. Does Yellowstone need large fires

    SciTech Connect

    Romme, W.H. ); Turner, M.G.; Gardner, R.H.; Hargrove, W.W. )

    1994-06-01

    This paper synthesizes several studies initiated after the 1988 Yellowstone fires, to address the question whether the ecological effects of large fires differ qualitatively as well as quantitatively from small fires. Large burn patches had greater dominance and contagion of burn severity classes, and a higher proportion of crown fire. Burned aspen stands resprouted vigorously over an extensive area, but heavy ungulate browsing prevented establishment of new tree-sized stems. A burst of sexual reproduction occurred in forest herbs that usually reproduce vegetatively, and new aspen clones became established from seed - a rare event in this region. We conclude that the effects of large fires are qualitatively different, but less dramatically so than expected.

  20. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  1. Pictures of Tethys' large crater.

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This series of Voyager 2 pictures of Tethys shows its distinctive large crater, 400 kilometers (250 miles) in diameter, as it rotates toward the termination and limb of this satellite of Saturn. These images were obtained at four-hour intervals beginning late Aug. 24 and ending early the next day; the distances were 1.1 million km. (670,000 mi.), 826,000 km. (510,000 mi.) and 680,000 km. (420,000 mi.), respectively. The crater, the remnant of a large impact, has a central peak and several concentric rings. Some grooves radiating from the center may be formed of material thrown from the crater during the impact. The bottom frame, with the crater in profile, reveals that its floor has risen back to the spherical shape of the satellite, unlike the large crater seen on Tethys sister moon Mimas. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  2. Large-scale circuit simulation

    NASA Astrophysics Data System (ADS)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  3. Large Scale Dynamos in Stars

    NASA Astrophysics Data System (ADS)

    Vishniac, Ethan T.

    2015-01-01

    We show that a differentially rotating conducting fluid automatically creates a magnetic helicity flux with components along the rotation axis and in the direction of the local vorticity. This drives a rapid growth in the local density of current helicity, which in turn drives a large scale dynamo. The dynamo growth rate derived from this process is not constant, but depends inversely on the large scale magnetic field strength. This dynamo saturates when buoyant losses of magnetic flux compete with the large scale dynamo, providing a simple prediction for magnetic field strength as a function of Rossby number in stars. Increasing anisotropy in the turbulence produces a decreasing magnetic helicity flux, which explains the flattening of the B/Rossby number relation at low Rossby numbers. We also show that the kinetic helicity is always a subdominant effect. There is no kinematic dynamo in real stars.

  4. Phenomenology of Large Nc QCD

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.

    1999-09-01

    These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c. We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c, while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when large” N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions.

  5. Inflating with large effective fields

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Cicoli, M.; Quevedo, F.; Williams, M.

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V propto phi2) and exponential potentials, V(phi) = ∑kVxe-kphi/M. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| ll epsilon and so predict r simeq (8/3)(1-ns) consequently ns simeq 0.96 gives r simeq 0.11 but not much larger (and so could be ruled out as measurements on r and ns improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  6. Inflating with large effective fields

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  7. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  8. Erosion in Large Gun Barrels

    DTIC Science & Technology

    1975-01-01

    AD-A017-104 EROSION IN LARGE GUN BARRELS National Materials Advisory Board (NAS-NAE) Washington, D. C. 1975 i OD O i...KCEUMk MO Erosion in Large Quo Barrels « »CIIPOMMIHO 0»C MK»0"T NUMK* • COWtWACT OM GHAnT NUMIEIV.I •UTH. National Materials Advisory...Ad Hoc Committee on Gun Tube Erosion MDA903-74-C-0167 — • PCMFOMMIMG 0*)0AMIIAT|©M H «Ml AMD AOO«eSS National Materials Advisory Board

  9. Detecting communities in large networks

    NASA Astrophysics Data System (ADS)

    Capocci, A.; Servedio, V. D. P.; Caldarelli, G.; Colaiori, F.

    2005-07-01

    We develop an algorithm to detect community structure in complex networks. The algorithm is based on spectral methods and takes into account weights and link orientation. Since the method detects efficiently clustered nodes in large networks even when these are not sharply partitioned, it turns to be specially suitable for the analysis of social and information networks. We test the algorithm on a large-scale data-set from a psychological experiment of word association. In this case, it proves to be successful both in clustering words, and in uncovering mental association patterns.

  10. Management of large hepatocellular carcinoma.

    PubMed

    Amarapurkar, D N

    2004-04-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. There is increasing incidence of HCC in India. More than 70% of HCC are not suitable for curative treatment. Majority of the HCCs are large when diagnosed all over the world. There is no standard treatment for large HCCs. Different palliative treatments like arterial embolization/chemoembolization, intraarterial lipoidol chemotherapy, hormonal compounds like tamoxifene, octerotide systemic chemotherapy, immuno therapy with interferon, internal radiation with 131I or 99Yttrium. Arterial chemoembolization is the treatment of choice with proved efficacy in selected group of patients. The newer modalities and strategies need to be tried in controlled randomized trials.

  11. Making Large Classes More Interactive.

    ERIC Educational Resources Information Center

    Brenner, John

    2000-01-01

    Describes the method of using prompts to allow students to have more "voice" in a large class. The prompt assignment requires students to respond anonymously to a statement that concerns the chapter being discussed in the class. Discusses how the Internet has allowed more freedom with the prompts. Puts forth some student responses to the…

  12. Ideas for Managing Large Classes.

    ERIC Educational Resources Information Center

    Kabel, Robert L.

    1983-01-01

    Describes management strategies used in a large kinetics/industrial chemistry course. Strategies are designed to make instruction in such classes more efficient and effective. Areas addressed include homework assignment, quizzes, final examination, grading and feedback, and rewards for conducting the class in the manner described. (JN)

  13. Large deviations in Taylor dispersion

    NASA Astrophysics Data System (ADS)

    Kahlen, Marcel; Engel, Andreas; Van den Broeck, Christian

    2017-01-01

    We establish a link between the phenomenon of Taylor dispersion and the theory of empirical distributions. Using this connection, we derive, upon applying the theory of large deviations, an alternative and much more precise description of the long-time regime for Taylor dispersion.

  14. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  15. Large Classes and Student Learning.

    ERIC Educational Resources Information Center

    LoCastro, Virginia

    2001-01-01

    Surveys the main theoretical issue that a large class, more than small classes, makes salient: How much learning can take place in a class of 300, as opposed to a class of half a dozen learners. Discusses the effect of class size on learning and looks at class size as a sociocultural variable. (Author/VWL)

  16. Modeling large heterogeneous RF structures

    SciTech Connect

    Li, Zenghai; Ko, Kwok; Srinivas, V.; Higo, Toshiyasu

    1996-11-01

    Large heterogeneous structures are difficult to model on a numerical grid because of the limitations on computing resources, so that alternate approaches such as equivalent circuits and mode-matching have been developed to treat this problem. This paper will describe the three methods and will analyze a structure representative of the SLAC and JLC detuned structures to compare the efficacy of each approach.

  17. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  18. Large pure intracranial vagal schwannoma.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Costanzo, De Bonis; Carotenuto, Vincenzo; D'Angelo, Vincenzo

    2009-04-01

    We report a patient with a large, pure intracranial vagal schwannoma, compressing the medulla who presented with essential hypertension. Based on this and on previous cases, we suggest that a differentiation of pure intracranial schwannomas (subtype A1) from intracranial schwannomas with some extension in the jugular foramen (type A) should be used.

  19. Large deviations and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  20. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  1. Ideas for Managing Large Classes.

    ERIC Educational Resources Information Center

    Kabel, Robert L.

    1983-01-01

    Describes management strategies used in a large kinetics/industrial chemistry course. Strategies are designed to make instruction in such classes more efficient and effective. Areas addressed include homework assignment, quizzes, final examination, grading and feedback, and rewards for conducting the class in the manner described. (JN)

  2. Large area CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Guerrini, N.; Sedgwick, I.

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  3. Fermi's Large Area Telescope (LAT)

    NASA Image and Video Library

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  4. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  5. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  6. Pesa Large Red Dry Bean

    USDA-ARS?s Scientific Manuscript database

    Released in 2006, Pesa was derived from the single cross Rojo x Kablanketi made in Dec-Jan 1992-93. The parent ‘Rojo’ is a large red-seeded cultivar released by SUA in 1997. It has I bc-12 resistance to BCMV and BCMNV, resistance to the prevalent races of ALS, and moderate resistance to CBB, and H...

  7. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  8. How large is large? Identifying large corporate ownerships in FIA datasets

    Treesearch

    Jesse Caputo; Brett Butler; Andy. Hartsell

    2017-01-01

    Forest ownership size is a continuous variable, albeit one with a distinctly nonnormal distribution. Although large corporate forest ownerships are expected to differ in terms of behavior and objectives from smaller corporate ownerships, there is no clear and unambiguous means of defined these two ownership groups. We examined the distribution of the ownership size...

  9. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  10. Development of large rotorcraft transmissions

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Drago, R. J.; Mack, J. C.

    1984-01-01

    The U.S. Army Heavy Lift Helicopter (HLH) represents a large rotorcraft which was developed by an American aerospace company. In the early 1970's with the HLH Advanced Technology Components (ATC) program, the development of large rotorcraft transmission and drive systems was started. Failures in the spiral bevel gearing were experienced in tests because the employed method of analysis had not considered the effect of rim bending. Consequently, new gears with strengthened rims were designed and fabricated. For a more accurate prediction of the load capacity of the gears, an extensive Finite Element Method (FEM) system was developed. The U.S. Army's XCH-62 HLH aft rotor transmission was finally successfully tested at full design torque and speed. A description of the test program is provided, and the analytical program is discussed. The analytical phase includes the development of a preprocessing program which aids in the review of calculated FEM stresses.

  11. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  12. Structural qualification of large spacecraft

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.

    1986-01-01

    Over the past twenty-five (25) years of the space program, the major challenge in the structural qualification of the primary structure has shifted from conducting a test that simulated the environment to accurately predicting the structural member loads in flight. Once the flight loads are avaliable, a number of different test methods are used to qualify the structure by subjecting it to the proper loads. The qualification challenge for future large spacecraft will be to adequately predict its dynamic characteristic in space to assure that it can be controlled to meet the mission objectives. A new test concept that may allow acquisition of modal data by ground tests for verification of mathematical models of large flexible space structures which can't be ground tested by conventional methods is discussed.

  13. Large-area aircraft scanner

    NASA Astrophysics Data System (ADS)

    Iddings, Frank A.

    A program to determine the feasibility of present state-of-the-art NDI technology to produce a large-area scanner and to identify commercial equipment available to construct the desired system is presented. Work performed to attain these objectives is described, along with suggested modifications to the existing commercial equipment in order to meet the design criteria as closely as possible. Techniques that show the most promise at present are: D-sight, shearography, and pulse IR thermography (PIRT). D-sight is argued to be inadequate alone, but may well help form a system in conjunction with another technique. Shearography requires additional development in the area of stress application along with interpretation and overall application. PIRT is argued to be satisfactory as a large-area scanner system, at least for thin composite and metal panels.

  14. Cosmology with Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Cuesta, A.; Ross, A.; Seo, H.; DePutter, R.; Padmanabhan, N.; White, M.; Myers, A.; Bovy, J.; Blanton, M.; Hernandez, C.; Mena, O.; Percival, W.; Prada, F.; Ross, N. P.; Saito, S.; Schneider, D.; Skibba, R.; Smith, K.; Slosar, A.; Strauss, M.; Verde, L.; Weinberg, D.; Bachall, N.; Brinkmann, J.; da Costa, L. A.

    2012-01-01

    The Sloan Digital Sky Survey I-III surveyed 14,000 square degrees, and delivered over a trillion pixels of imaging data. I present cosmological results from this unprecedented data set which contains over a million galaxies distributed between redshift of 0.45 to 0.70. With such a large volume of data set, high precision cosmological constraints can be obtained given a careful control and understanding of observational systematics. I present a novel treatment of observational systematics and its application to the clustering signals from the data set. I will present cosmological constraints on dark components of the Universe and tightest constraints of the non-gaussianity of early Universe to date utilizing Large Scale Structure.

  15. Chunking of Large Multidimensional Arrays

    SciTech Connect

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  16. Large scale biomimetic membrane arrays.

    PubMed

    Hansen, Jesper S; Perry, Mark; Vogel, Jörg; Groth, Jesper S; Vissing, Thomas; Larsen, Marianne S; Geschke, Oliver; Emneús, Jenny; Bohr, Henrik; Nielsen, Claus H

    2009-10-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO(2) laser micro-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 microm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.

  17. Collapse of large vapor bubbles

    NASA Technical Reports Server (NTRS)

    Tegart, J.; Dominick, S.

    1982-01-01

    The refilling of propellant tanks while in a low-gravity environment requires that entrapped vapor bubbles be collapsed by increasing the system pressure. Tests were performed to verify the mechanism of collapse for these large vapor bubbles with the thermodynamic conditions, geometry, and boundary conditions being those applicable to propellant storage systems. For these conditions it was found that conduction heat transfer determined the collapse rate, with the specific bubble geometry having a significant influence.

  18. Large Capacity Missile Carrier (CMX)

    DTIC Science & Technology

    1993-12-01

    is examined. It is included that the benefits of the large number of additional missiles provided by the CMX more than offsets the lost capability of...project was to exercise the ship design process from the requirements setting phase through the preliminary design, including design analysis. The...Navy to meet the challenges ensuing from this assumed global scenario. The Student Design Team was tasked to develop scenarios for the deployment of the

  19. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  20. Large Boulders at Landing Site

    NASA Image and Video Library

    1997-07-05

    Large boulders are visible in this enlargement of pictures taken by the Imager for Mars Pathfinder (IMP) lander camera on July 4, 1997. The landing site is in the dry flood channel named Ares Valles. The boulders probably represent deposits from one of the catastrophic floods that carved the ancient channel. Between the rocks is brownish windblown soil. The gray-tan sky results from dust particles in the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00609

  1. Simulating cosmic reionization: how large a volume is large enough?

    NASA Astrophysics Data System (ADS)

    Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.; Mao, Yi; Pen, Ue-Li

    2014-03-01

    We present the largest-volume (425 Mpc h-1 = 607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investigate the effects this additional power has on the progress, duration and features of reionization and on selected reionization observables. We find that comoving volume of ˜100 Mpc h-1 per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume. We find that sub-volumes of ˜100 Mpc h-1 per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of ˜50 Mpc h-1 or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, as high as Δz ˜ 1 for ˜50 Mpc h-1 volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Δz ˜ 0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all show good convergence for volumes of ˜200 Mpc h-1, but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k < 0.25 h Mpc-1) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies.

  2. Hierarchical simulation of large system

    NASA Technical Reports Server (NTRS)

    Saab, Daniel G.

    1991-01-01

    The main problem facing current CAD tools for VLSIs is the large amount of memory required when dealing with large systems, primarily due to the circuit representation used by most current tools. This paper discusses an approach for hierarchical switch-level simulation of digital circuits. The approach exploits the hierarchy to reduce the memory requirements of the simulation, allowing the simulation of circuits that are too large to simulate at one flat level. The approach has been implemented in a hierarchical switch-level simulator, CHAMP, which runs on a SUN workstation. The program performs mixed mode simulation: parts of the circuit can be simulated faster at a behavioral level by supplying a high level software description. CHAMP allows assignable delays, and bidirectional signal flow inside circuit blocks that are represented as transistor networks as well as across the boundaries of higher level blocks. CHAMP is also unique in that it simulates directly from the hierarchical circuit description without flattening to a single level.

  3. The next large helical devices

    NASA Astrophysics Data System (ADS)

    Iiyoshi, Atsuo; Yamazaki, Kozo

    1995-06-01

    Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.

  4. Large Component Removal/Disposal

    SciTech Connect

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  5. TURP for BPH. How Large is Too Large?

    PubMed Central

    Georgescu, D; Arabagiu, I; Cauni, V; Moldoveanu, C; Geavlete, P

    2010-01-01

    BPH remains one of the most common disease that the urologist has to manage. The last decade brought numerous new techniques, aiming to improve the minimally invasive approach to BPH, but none had, for the moment, changed the place of TURP as the gold standard treatment for medium sized prostates. Based on a large personal experience, the authors present a study in which TURP is used for prostates over 80ml, the cutoff point set by the guidelines of the European Association of Urology. The rationale for this study is that many situations require minimally invasive treatment, based on the express request of the patient, other conditions that makes open surgery very difficult or impossible, or the need for a quick discharge in an overcrowded service. The aim of the study was to prove that TURP is safe and effective even in larger prostates. The technique used is basically the classic one, with minor tactical alterations in some cases. Some cases required a two-stage approach, but offered good functional results after the first stage. The results proved that, with a good technique, a skilled urologist might achieve the same results by using TURP or open surgery for large sized prostates. PMID:21254734

  6. Large wood recruitment and transport during large floods: A review

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Lucía, A.; Rickenmann, D.

    2016-09-01

    Large wood (LW) elements transported during large floods are long known to have the capacity to induce dangerous obstructions along the channel network, mostly at bridges and at hydraulic structures such as weirs. However, our current knowledge of wood transport dynamics during high-magnitude flood events is still very scarce, mostly because these are (locally) rare and thus unlikely to be directly monitored. Therefore, post-event surveys are invaluable ways to get insights (although indirectly) on LW recruitment processes, transport distance, and factors inducing LW deposition - all aspects that are crucial for the proper management of river basins related to flood hazard mitigation. This paper presents a review of the (quite limited) literature available on LW transport during large floods, drawing extensively on the authors' own experience in mountain and piedmont rivers, published and unpublished. The overall picture emerging from these studies points to a high, catchment-specific variability in all the different processes affecting LW dynamics during floods. Specifically, in the LW recruitment phase, the relative floodplain (bank erosion) vs. hillslope (landslide and debris flows) contribution in mountain rivers varies substantially, as it relates to the extent of channel widening (which depends on many variables itself) but also to the hillslope-channel connectivity of LW mobilized on the slopes. As to the LW transport phase within the channel network, it appears to be widely characterized by supply-limited conditions; whereby LW transport rates (and thus volumes) are ultimately constrained by the amount of LW that is made available to the flow. Indeed, LW deposition during floods was mostly (in terms of volume) observed at artificial structures (bridges) in all the documented events. This implies that the estimation of LW recruitment and the assessment of clogging probabilities for each structure (for a flood event of given magnitude) are the most important

  7. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  8. Foreshock occurrence before large earthquakes

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform

  9. HISTOTRIPSY LIQUEFACTION OF LARGE HEMATOMAS

    PubMed Central

    Khlokhova, Tatiana D.; Monsky, Wayne L.; Haider, Yasser A.; Maxwell, Adam; Wang, Yak-Nam; Matula, Thomas J.

    2016-01-01

    Intra- and extra-muscular hematomas result from repetitive injury as well as sharp and blunt limb trauma. The clinical consequences can be serious, including debilitating pain and functional deficit. There are currently no short-term treatment options for large hematomas, only lengthy conservative treatment. The goal of this work was to evaluate the feasibility of a high intensity focused ultrasound (HIFU)-based technique, termed histotripsy, for rapid (within a clinically relevant timeframe of 15–20 min) liquefaction of large volume (up to 20 mL) extra-vascular hematomas for subsequent fine-needle aspiration. Experiments were performed using in vitro extravascular hematoma phantoms—fresh bovine blood poured into 50 mL molds and allowed to clot. The resulting phantoms were treated by boiling histotripsy (BH), cavitation histotripsy (CH) or a combination in a degassed water tank under ultrasound guidance. Two different transducers operating at 1 MHz and 1.5 MHz with f-number = 1 were used. The liquefied lysate was aspirated and analyzed by histology and sized in a Coulter Counter. The peak instantaneous power to achieve BH was lower than (at 1.5 MHz) or equal to (at 1 MHz) that which was required to initiate CH. Under the same exposure duration, BH-induced cavities were one and a half to two times larger than the CH-induced cavities, but the CH-induced cavities were more regularly shaped, facilitating easier aspiration. The lysates contained a small amount of debris larger than 70 μm, and 99% of particulates were smaller than 10 μm. A combination treatment of BH (for initial debulking) and CH (for liquefaction of small residual fragments) yielded 20 mL of lysate within 17.5 minutes of treatment and was found to be most optimal for liquefaction of large extravascular hematomas. PMID:27126244

  10. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  11. Radiative transport in large arteries

    PubMed Central

    Ruh, Dominic; Subramanian, Sivaraman; Theodor, Michael; Zappe, Hans; Seifert, Andreas

    2013-01-01

    A refined model for the photon energy distribution in a living artery is established by solving the radiative transfer equation in a cylindrical geometry, using the Monte Carlo method. Combining this model with the most recent experimental values for the optical properties of flowing blood and the biomechanics of a blood-filled artery subject to a pulsatile pressure, we find that the optical intensity transmitted through large arteries decreases linearly with increasing arterial distension. This finding provides a solid theoretical foundation for measuring photoplethysmograms. PMID:24466476

  12. Large spin systematics in CFT

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Bissi, Agnese; Lukowski, Tomasz

    2015-11-01

    Using conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analyticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new "reciprocity" principle for structure constants. We argue that these results extend also to non-conformal theories.

  13. Large block test status report

    SciTech Connect

    Wilder, D.G.; Lin, W.; Blair, S.C.

    1997-08-26

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved.

  14. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  15. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  16. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  17. Large holograms in traveling exhibitions

    NASA Astrophysics Data System (ADS)

    Christakis, Anne-Marie

    1994-01-01

    The presentation of large holograms in travelling exhibitions has always posed problems, mainly due to lack of space. The Museum of Holography was consequently required to develop, with Jean-Francois Moreau, display consoles which are light, affordable and completely detachable. In a permanent exposition at the Forum des Halles in Paris, the Museum displays a room with 22 holograms, each measuring 1 m X 1 m, in a structure designed by the architect Fabien Vienne. The different systems used by the Museum are presented here.

  18. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  19. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  20. Mobile Platform for Large Structures

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Schneider, W. C.

    1987-01-01

    Proposed platform moves forward and in reverse, turns left and right, and changes planes. Mobile-platform concept proposed to move remote manipulators, workers, or other loads over truss panels on large structures. Platform moves at constant speed so does not cause swinging motion in hanging loads and overstress remote-manipulator arms. Transferred around corners to adjacent panels. Platform rides on sprocketed guide pins extending from structure at truss joints. Set of orthogonal tracks under platform slides on pins, which have enlarged heads to interlock with tracks. At least three tracks engage at least three pins at any position on panel so platform adequately and stably supported.

  1. Mesoscale Ocean Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2015-11-01

    The highest resolution global climate models (GCMs) can now resolve the largest scales of mesoscale dynamics in the ocean. This has the potential to increase the fidelity of GCMs. However, the effects of the smallest, unresolved, scales of mesoscale dynamics must still be parametrized. One such family of parametrizations are mesoscale ocean large eddy simulations (MOLES), but the effects of including MOLES in a GCM are not well understood. In this presentation, several MOLES schemes are implemented in a mesoscale-resolving GCM (CESM), and the resulting flow is compared with that produced by more traditional sub-grid parametrizations. Large eddy simulation (LES) is used to simulate flows where the largest scales of turbulent motion are resolved, but the smallest scales are not resolved. LES has traditionally been used to study 3D turbulence, but recently it has also been applied to idealized 2D and quasi-geostrophic (QG) turbulence. The MOLES presented here are based on 2D and QG LES schemes.

  2. Laparoscopic Myomectomy for Large Myomas

    PubMed Central

    Yoon, Hyo Jin; Kyung, Min Sun; Jung, Un Suk

    2007-01-01

    The aim of this study was to assess the feasibility and efficacy of laparoscopic myomectomy (LM) for large myomas. A subpopulation of 51 patients with myomas 8 cm or larger in diameter was selected from 155 patients who underwent LM at Kangbuk Samsung Hospital from July 2003 to November 2006. The mean age of the patients was 34.9±5.6 yr, mean parity was 0.6±0.9, and 8 patients had a previous operative history. The most common operative indication was a palpable abdominal mass (24 patients, 47%). The mean operating time was 85.6±38.9 min, and the mean diameter of the largest myoma was 9.3±1.8 cm. The mean change in hemoglobin concentration was 2.1±1.2 g/dL. Histopathological diagnosis included 49 patients of leiomyoma (96.1%) and 2 patients of leiomyoma with adenomyosis (3.9%). Postoperatively, a transfusion was done in 7 patients, and a case of subcutaneous emphysema was noted. None of the operations was switched to laparotomy. With the newly-developed screw and the port placement system that was modified from the Choi's 4-trocar method to obtain better surgical vision, LM of large myomas proved to be one of the efficient and feasible methods. PMID:17728514

  3. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  4. Large scale cluster computing workshop

    SciTech Connect

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  5. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  6. Large phased-array radars

    NASA Astrophysics Data System (ADS)

    Brookner, Eli, Dr.

    1988-12-01

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  7. LARGE-BORE PIPE DECONTAMINATION

    SciTech Connect

    M.A. Ebadian

    1999-01-01

    The decontamination and characterization of large-bore pipe is difficult because of the various geometries and diameters of pipe and its different material types. A robust decontamination system must be capable of adapting to different pipe diameters (project scope is 6 inches to 24 inches), cleaning surfaces with various surface conditions and material types (i.e., painted, rusted, carbon steel, or stainless steel), and be cost-effective to operate and maintain. The characterization system must be capable of handling the different pipe parameters and detecting contamination on the inside and outside surfaces. It must also operate in a cost-effective manner. Current technology options do not provide a robust system to meet these objectives. The purpose of this project is to verify the need for this technology through determining quantities of pipe available for decontamination (completed FY97), perform a technology screening process to select technologies for decontamination (completed FY97) and characterization (completed FY98), perform treatability studies to collect required performance data (completed FY97), and design and fabricate a prototype system to decontaminate and characterize the internal and external surfaces of large-bore pipe. A field mobile system capable of performing decontamination and characterization operations will be the main deliverable for this project. A summary of activities completed during FY97 is provided to understand the project development and implementation process.

  8. Historical challenge of large lenses

    NASA Astrophysics Data System (ADS)

    Johnson, Kevin L.

    2002-02-01

    To present a full account of the developments in the manufacture of large lenses one needs to address wider issues rather than just provide a catalogue of technological progress. The advances in glass manufacture and improvement in optical techniques have to be considered in relation to the cultural, social and economic factors that have determined where, how and why large lens manufacture developed in specific countries. The challenge facing historians trying to tackle this technological theme, is that it is often poorly documented and little is preserved in the historical records. Until relatively recent times, opticians have concealed their methods, trade secrecy being an important economic strategy. To provide an example, it should be noted that although William Herschel produced the best optics and telescopes of the day, he published practically nothing about his methods. What has been gleaned of his techniques has only been uncovered by careful study of surviving manuscript sources and measurement of his surviving optics. Such was William's personal knowledge, that his son John had to take instruction from his father to refurbish William Herschel's 20-foot telescope. This training gave John tacit knowledge of William's methods and allowed him to successfully undertake his cape observations in the Southern Hemisphere. In spite of the shortcomings of the historical record, historians can give a measured account of the developments of lens optics by studying surviving telescopes and their optics.

  9. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  10. Snell's Law with Large Blocks

    NASA Astrophysics Data System (ADS)

    Lynch, John J.

    2007-03-01

    The introductory physics lab curriculum usually has one experiment devoted to the study of the refraction of light. The most obvious way to study the refraction of light is to lay a transparent block down on the lab bench and aim a laser beam horizontally at the block so that it refracts twice—inward upon entering the block and outward upon exiting. The vendors that provide us with lab equipment (Sargent-Welch, PASCO, Fisher Scientific, and Frey Scientific to name a few) sell acrylic blocks for this very purpose, but these are either too small or they are too expensive. If students are going to measure angles of incidence and refraction, the blocks should be larger than the typical student protractor, which has a radius of 3 in (≈ 7½ cm). These blocks are just not large enough. They are generally not thick enough either so that the beam from a typical laser passes over them and not through them. The vendors mentioned above do sell blackboard optics kits that contain, among other parts, three blocks that are large enough—on the order of 10 to 20 cm. Unfortunately, these kits cost more than 1000.

  11. Large data centers interconnect bottlenecks.

    PubMed

    Ghiasi, Ali

    2015-02-09

    Large data centers interconnect bottlenecks are dominated by the switch I/O BW and the front panel BW as a result of pluggable modules. To overcome the front panel BW and the switch ASIC BW limitation one approach is to either move the optics onto the mid-plan or integrate the optics into the switch ASIC. Over the last 4 years, VCSEL based optical engines have been integrated into the packages of large-scale HPC routers, moderate size Ethernet switches, and even FPGA's. Competing solutions based on Silicon Photonics (SiP) have also been proposed for integration into HPC and Ethernet switch packages but with better integration path through the use of TSV (Through Silicon Via) stack dies. Integrating either VCSEL or SiP based optical engines into complex ASIC package that operates at high temperatures, where the required reliability is not trivial, one should ask what is the technical or the economic advantage before embarking on such a complex integration. High density Ethernet switches addressing data centers currently in development are based on 25G NRZ signaling and QSFP28 optical module that can support up to 3.6 Tb of front panel bandwidth.

  12. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  13. Large-Scale Sequence Comparison.

    PubMed

    Lal, Devi; Verma, Mansi

    2017-01-01

    There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.

  14. Damping characterization in large structures

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Eke, Estelle M.

    1991-01-01

    This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.

  15. Large Synoptic Survey Telescope: Overview

    NASA Astrophysics Data System (ADS)

    Tyson, J. Anthony

    2002-12-01

    A large wide-field telescope and camera with optical throughput over 200 m2 deg2 -- a factor of 50 beyond what we currently have -- would enable the detection of faint moving or bursting optical objects: from Earth threatening asteroids to energetic events at the edge of the optical universe. An optimized design for LSST is a 8.4 m telescope with a 3 degree field of view and an optical throughput of 260 m2 deg2. With its large throughput and dedicated all-sky monitoring mode, the LSST will reach 24th magnitude in a single 10 second exposure, opening unexplored regions of astronomical parameter space. The heart of the 2.3 Gpixel camera will be an array of imager modules with 10 μm pixels. Once each month LSST will survey up to 14,000 deg2 of the sky with many ~10 second exposures. Over time LSST will survey 30,000 deg2 deeply in multiple bandpasses, enabling innovative investigations ranging from galactic structure to cosmology. This is a shift in paradigm for optical astronomy: from "survey follow-up" to "survey direct science." The resulting real-time data products and fifteen petabyte time-tagged imaging database and photometric catalog will provide a unique resource. A collaboration of ~80 engineers and scientists are gearing up to confront this exciting challenge.

  16. Large Folded, Deployable Structure Development

    NASA Astrophysics Data System (ADS)

    Glover, Amy; Kiley, Andrew

    2014-06-01

    This paper presents an overview of Airbus Defence and Space in-house development activity associated with the large foldable deployable structures and analytical process tools initiated in 2007.Industrially the concept of stored energy, self- motorising structures is 'typically' limited to deployable boom concepts with the application to larger secondary or even primary structures having very little heritage. The concept of being able to 'collapse' a structure to fit into the available launcher fairing volume has numerous advantages and applications. One key advantage is the ability to launch very large structures of typical spacecraft cross-sectionand 50m+ deployed length. Another advantage is reduction of body inertia thus promoting dynamic efficiency with possible mass saving.Recent tape spring material characterisation has focused on torque versus angle stiffness characterisation of composite laminates. This work has been extended further to characterise for CFRP Damage Evolution; visco-elastic effect as a function of folded storage duration and impact of stiffness degradation. Further research has been performed around life testing and latched position repeatability.

  17. Histotripsy Liquefaction of Large Hematomas.

    PubMed

    Khokhlova, Tatiana D; Monsky, Wayne L; Haider, Yasser A; Maxwell, Adam D; Wang, Yak-Nam; Matula, Thomas J

    2016-07-01

    Intra- and extra-muscular hematomas result from repetitive injury as well as sharp and blunt limb trauma. The clinical consequences can be serious, including debilitating pain and functional deficit. There are currently no short-term treatment options for large hematomas, only lengthy conservative treatment. The goal of this work was to evaluate the feasibility of a high intensity focused ultrasound (HIFU)-based technique, termed histotripsy, for rapid (within a clinically relevant timeframe of 15-20 min) liquefaction of large volume (up to 20 mL) extra-vascular hematomas for subsequent fine-needle aspiration. Experiments were performed using in vitro extravascular hematoma phantoms-fresh bovine blood poured into 50 mL molds and allowed to clot. The resulting phantoms were treated by boiling histotripsy (BH), cavitation histotripsy (CH) or a combination in a degassed water tank under ultrasound guidance. Two different transducers operating at 1 MHz and 1.5 MHz with f-number = 1 were used. The liquefied lysate was aspirated and analyzed by histology and sized in a Coulter Counter. The peak instantaneous power to achieve BH was lower than (at 1.5 MHz) or equal to (at 1 MHz) that which was required to initiate CH. Under the same exposure duration, BH-induced cavities were one and a half to two times larger than the CH-induced cavities, but the CH-induced cavities were more regularly shaped, facilitating easier aspiration. The lysates contained a small amount of debris larger than 70 μm, and 99% of particulates were smaller than 10 μm. A combination treatment of BH (for initial debulking) and CH (for liquefaction of small residual fragments) yielded 20 mL of lysate within 17.5 minutes of treatment and was found to be most optimal for liquefaction of large extravascular hematomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  19. Large Aperture Scintillometer Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Kleissl, J.; Gomez, J.; Hong, S.-H.; Hendrickx, J. M. H.; Rahn, T.; Defoor, W. L.

    2008-07-01

    Two field studies with six large aperture scintillometers (LASs) were performed using horizontal and slant paths. The accuracy of this novel and increasingly popular technique for measuring sensible heat fluxes was quantified by comparing measurements from different instruments over nearly identical transects. Random errors in LAS measurements were small, since correlation coefficients between adjacent measurements were greater than 0.995. However, for an ideal set-up differences in linear regression slopes of up to 21% were observed with typical inter-instrument differences of 6%. Differences of 10% are typical in more realistic measurement scenarios over homogeneous natural vegetation and different transect heights and locations. Inaccuracies in the optics, which affect the effective aperture diameter, are the most likely explanation for the observed differences.

  20. Large exotropia after retrobulbar anesthesia

    PubMed Central

    Kim, Chung-Hwan; Kim, Ungsoo Samuel

    2016-01-01

    A 67-year-old woman complained of horizontal diplopia shortly following bilateral cataract surgery with intraocular lens implantation performed under retrobulbar anesthesia. Retrobulbar anesthesia was administered at an inferotemporal injection site using 1 cc lidocaine hydrochloride 2% mixed with bupivacaine hydrochloride 0.5%. The initial ophthalmologic evaluation showed a 12-prism diopter (PD) exotropia, and ocular motility evaluation revealed marked limitation of adduction without vertical limitation. One year after cataract surgery, the exodeviation increased up to 60 PD. The patient underwent an 8.0-mm recession of the right lateral rectus and a 6.0-mm recession of the left lateral rectus. Both lateral rectus muscles were biopsied, and biopsy revealed dense fibrous connective tissue without viable muscular cells. The lateral rectus muscle might be injured by retrobulbar anesthesia, and it could induce large exotropia. PMID:26953032

  1. Gyrodampers for large space structures

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.; Margulies, G.

    1979-01-01

    The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.

  2. LARGE BLOCK TEST STATUS REPORT

    SciTech Connect

    Wilder, D. G.; Blair, S. C.; Buscheck, T.; Carloson, R. C.; Lee, K.; Meike, A.; Ramirez, J. L.; Sevougian, D.

    1997-08-26

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved. The United States Department of Energy (DOE) is investigatinq the suitability of Yucca Mountain (YM) as a potential site for the nation's first high-level nuclear waste repository. As shown in Fig. 1-1, the site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert.

  3. Analysis of large urban fires

    SciTech Connect

    Kang, S.W.; Reitter, T.A.; Takata, A.N.

    1984-11-01

    Fires in urban areas caused by a nuclear burst are analyzed as a first step towards determining their smoke-generation chacteristics, which may have grave implications for global-scale climatic consequences. A chain of events and their component processes which would follow a nuclear attack are described. A numerical code is currently being developed to calculate ultimately the smoke production rate for a given attack scenario. Available models for most of the processes are incorporated into the code. Sample calculations of urban fire-development history performed in the code for an idealized uniform city are presented. Preliminary results indicate the importance of the wind, thermal radiation transmission, fuel distributions, and ignition thresholds on the urban fire spread characteristics. Future plans are to improve the existing models and develop new ones to characterize smoke production from large urban fires. 21 references, 18 figures.

  4. Black rings at large D

    NASA Astrophysics Data System (ADS)

    Tanabe, Kentaro

    2016-02-01

    We study the effective theory of slowly rotating black holes at the infinite limit of the spacetime dimension D. This large D effective theory is obtained by integrating the Einstein equation with respect to the radial direction. The effective theory gives equations for non-linear dynamical deformations of a slowly rotating black hole by effective equations. The effective equations contain the slowly rotating Myers-Perry black hole, slowly boosted black string, non-uniform black string and black ring as stationary solutions. We obtain the analytic solution of the black ring by solving effective equations. Furthermore, by perturbation analysis of effective equations, we find a quasinormal mode condition of the black ring in analytic way. As a result we confirm that thin black ring is unstable against non-axisymmetric perturbations. We also include 1 /D corrections to the effective equations and discuss the effects by 1 /D corrections.

  5. Horner's syndrome in large animals.

    PubMed

    Smith, J S; Mayhew, I G

    1977-10-01

    The sympathetic nervous innervation of the head was surgically transected in the horse, cow, sheep and goat. The site of transection was preganglionic in all 4 species and ganglionic-postganglionic in 2 additional horses. The Horner's syndrome, manifested as a result of the iatrogenic lesion, varied with the species. Ptosis was the most constant sign in all species. Unilateral sweating over the face and proximal neck, particularly at the base of the ear, was the most prominent feature in the horse. The cow revealed distension of vasculature and cutaneous heat of the pinna, and a reduced production of beads of sweat over the nostril on the affected side. The goat and sheep exhibited little more than slight ptosis of the upper eyelid of the affected side as the most prominent sign. The ophthalmologic manifestations of Horner's syndrome seen in these large animals were not readily apparent and could easily be overlooked upon clinical examination.

  6. Large-scale Digitoxin Intoxication

    PubMed Central

    Lely, A. H.; Van Enter, C. H. J.

    1970-01-01

    Because of an error in the manufacture of digoxin tablets a large number of patients took tablets that contained 0·20 mg. of digitoxin and 0·05 mg. of digoxin instead of the prescribed 0·25 mg. of digoxin. The symptoms are described of 179 patients who took these tablets and suffered from digitalis intoxication. Of these patients, 125 had taken the faultily composed tablets for more than three weeks. In 48 patients 105 separate disturbances in rhythm or in atrioventricular conduction were observed on the electrocardiogram. Extreme fatigue and serious eye conditions were observed in 95% of the patients. Twelve patients had a transient psychosis. Extensive ophthalmological observations indicated that the visual complaints were most probably caused by a transient retrobulbar neuritis. PMID:5273245

  7. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  8. Safe handling of large animals.

    PubMed

    Grandin, T

    1999-01-01

    The major causes of accidents with cattle, horses, and other grazing animals are: panic due to fear, male dominance aggression, or the maternal aggression of a mother protecting her newborn. Danger is inherent when handling large animals. Understanding their behavior patterns improves safety, but working with animals will never be completely safe. Calm, quiet handling and non-slip flooring are beneficial. Rough handling and excessive use of electric prods increase chances of injury to both people and animals, because fearful animals may jump, kick, or rear. Training animals to voluntarily cooperate with veterinary procedures reduces stress and improves safety. Grazing animals have a herd instinct, and a lone, isolated animal can become agitated. Providing a companion animal helps keep an animal calm.

  9. Large area mercuric iodide photodetectors

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  10. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  11. OSIRIS Large Guaranteed Time Programs

    NASA Astrophysics Data System (ADS)

    Cepa, J.; Bongiovanni, A.; Ramón-Pérez, M.; Pérez García, A. M.; Alfaro, E. J.; Castaneda, H. O.; Cervino, M.; Gallego, J.; González, J. J.; González-Serrano, J. I.; Lara-López, M. A.; Pérez-Martínez, R.; Pintos-Castro, I.; Sánchez-Portal, M.; Bland-Hawthorn, J.; Jones, D. H.

    2017-03-01

    The status of OTELO and Lockman SpReSO surveys, the two large guaranteed time programs currently under way using OSIRIS at the 10.4m GTC is presented. The OTELO project, designed to detect the main optical emission lines from Hα to Lyα at redshifts from 0.4 through 7, is the deepest emission line survey to date, with unprecedented sensitivity in the detection of small equivalent widths. Lockman SpReSO is aimed to obtaining optical spectra, up to 24.5 AB magnitudes, in the central 24×24 square arcminutes of the Lockman Hole field, which has been observed with ROSAT and XMM–Newton at the highest depth. Lockman SpReSO mainly targets Far Infrared sources detected with the Herschel Space Observatory.

  12. Dss Large Rivers: Application Experiences

    NASA Astrophysics Data System (ADS)

    Gijsbers, P. J. A.; Schielen, R. J. M.

    As part of the IRMA-SPONGE programme (project 04) a decision support system has been developed to asses the hydraulic, ecologic and financial impact of flood plain in- terventions in lowland rivers under high discharge conditions. This DSS, called DSS- Large Rivers, has been applied within the several projects of the IRMA-SPONGE programme, and is currently in use in the study Integrated Explorations of the river Meuse. The system will also be applied by Rijkswaterstaat during the detailed plan- ning studies of the lower river Rhine in the Netherlands. Finally, the instrument will provide a tool for the working group "Hochwasserschutzt", a joint co-operation of the Landesumweltamt Nordrhein Westphalia (Germany), the province of Gelderland and Rijkswaterstaat (both the Netherlands). Various applications will be presented and results will be discussed.

  13. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  14. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  15. Low Cost Large Space Antennas

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur B.; Freeland, Robert

    1997-01-01

    The mobile communication community could significantly benefit from the availability of low-cost, large space-deployable antennas. A new class of space structures, called inflatable deployable structures, will become an option for this industry in the near future. This new technology recently made significant progress with respect to reducing the risk of flying large inflatable structures in space. This progress can be attributed to the successful space flight of the Inflatable Antenna Experiment in May of 1996, which prompted the initiation of the NASA portion of the joint NASA/DOD coordinated Space Inflatables Program, which will develop the technology to be used in future mobile communications antennas along with other users. The NASA/DOD coordinated Space Inflatables Program was initiated in 1997 as a direct result of the Inflatable Antenna Experiment. The program adds a new NASA initiative to a substantial DOD program that involves developing a series of ground test hardware, starting with 3 meter diameter units and advancing the manufacturing techniques to fabricate a 25 meter ground demonstrator unit with surface accuracy exceeding the requirements for mobile communication applications. Simultaneously, the program will be advancing the state of the art in several important inflatable technology areas, such as developing rigidizable materials for struts and tori and investigating thin film technology issues, such as application of coatings, property measurement and materials processing and assembly techniques. A very important technology area being addressed by the program is deployment control techniques. The program will sponsor activities that will lead to understanding the effects of material strain energy release, residual air in the stowed structure, and the design of the launch restraint and release system needed to control deployment dynamics. Other technology areas directly applicable to developing inflatable mobile communication antennas in the near

  16. Methane emissions on large scales

    NASA Astrophysics Data System (ADS)

    Beswick, K. M.; Simpson, T. W.; Fowler, D.; Choularton, T. W.; Gallagher, M. W.; Hargreaves, K. J.; Sutton, M. A.; Kaye, A.

    Two separate studies have been undertaken to improve estimates of methane emissions on a landscape scale. The first study took place over a palsa mire in northern Finland in August 1995. A tethered balloon and a tunable diode laser were used to measure profiles of methane in the nocturnal boundary layer. Using a simple box method or the flux gradient technique fluxes ranging from 18.5 to 658 μmol m -2 h -1 were calculated. The large fluxes may be caused by advection of methane pockets across the measurement site, reflecting the heterogeneous nature of methane source strengths in the surrounding area. Under suitable conditions, comparison with nearby ground-based eddy-correlation results suggested that the balloon techniques could successfully measure fluxes on field scales. The second study was carried out by the NERC Scientific Services Atmospheric Research Airborne Support Facility using the Hercules C130 operated by the United Kingdom Meteorological Research Flight. A flight path around the northern coastline of Britain under steady West-East wind conditions enabled the measurement of methane concentrations up- and down-wind of northern Britain. Using a simple one-dimensional, constant-source diffusion model, the difference between the upwind and downwind concentrations was accounted for by methane emission from the surface. The contribution to methane emissions from livestock was also modelled. Modelled non-agricultural methane emissions decreased with increasing latitude with fluxes in northern England being a factor of 4 greater than those in northern Scotland. Since the only major methane source in northern Scotland was peat bogs, these results indicated that emissions over northern England were dominated by anthropogenic sources. Emissions from livestock accounted for 12% of the total flux over northern England, decreasing to 4% in southern Scotland and becoming negligible in northern Scotland. The total methane flux over northern Scotland was consistent

  17. Large and small photovoltaic powerplants

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel

    The installed base of photovoltaic power plants in the United States has roughly doubled every 1 to 2 years between 2008 and 2015. The primary economic drivers of this are government mandates for renewable power, falling prices for all PV system components, 3rd party ownership models, and a generous tariff scheme known as net-metering. Other drivers include a desire for decreasing the environmental impact of electricity generation and a desire for some degree of independence from the local electric utility. The result is that in coming years, PV power will move from being a minor niche to a mainstream source of energy. As additional PV power comes online this will create challenges for the electric grid operators. We examine some problems related to large scale adoption of PV power in the United States. We do this by first discussing questions of reliability and efficiency at the PV system level. We measure the output of a fleet of small PV systems installed at Tucson Electric Power, and we characterize the degradation of those PV systems over several years. We develop methods to predict energy output from PV systems and quantify the impact of negatives such as partial shading, inverter inefficiency and malfunction of bypass diodes. Later we characterize the variability from large PV systems, including fleets of geographically diverse utility scale power plants. We also consider the power and energy requirements needed to smooth those systems, both from the perspective of an individual system and as a fleet. Finally we report on experiments from a utility scale PV plus battery hybrid system deployed near Tucson, Arizona where we characterize the ability of this system to produce smoothly ramping power as well as production of ancillary energy services such as frequency response.

  18. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  19. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  20. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  1. Large optical field enhancement for nanotips with large opening angles

    NASA Astrophysics Data System (ADS)

    Thomas, Sebastian; Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter

    2015-06-01

    We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm the strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≥slant 5 nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ∼ 35 for Au and ∼ 12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.

  2. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  3. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  4. Large Block Test Final Report

    SciTech Connect

    Lin, W

    2001-12-01

    This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively well known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test

  5. Large-scale PACS implementation.

    PubMed

    Carrino, J A; Unkel, P J; Miller, I D; Bowser, C L; Freckleton, M W; Johnson, T G

    1998-08-01

    The transition to filmless radiology is a much more formidable task than making the request for proposal to purchase a (Picture Archiving and Communications System) PACS. The Department of Defense and the Veterans Administration have been pioneers in the transformation of medical diagnostic imaging to the electronic environment. Many civilian sites are expected to implement large-scale PACS in the next five to ten years. This presentation will related the empirical insights gleaned at our institution from a large-scale PACS implementation. Our PACS integration was introduced into a fully operational department (not a new hospital) in which work flow had to continue with minimal impact. Impediments to user acceptance will be addressed. The critical components of this enormous task will be discussed. The topics covered during this session will include issues such as phased implementation, DICOM (digital imaging and communications in medicine) standard-based interaction of devices, hospital information system (HIS)/radiology information system (RIS) interface, user approval, networking, workstation deployment and backup procedures. The presentation will make specific suggestions regarding the implementation team, operating instructions, quality control (QC), training and education. The concept of identifying key functional areas is relevant to transitioning the facility to be entirely on line. Special attention must be paid to specific functional areas such as the operating rooms and trauma rooms where the clinical requirements may not match the PACS capabilities. The printing of films may be necessary for certain circumstances. The integration of teleradiology and remote clinics into a PACS is a salient topic with respect to the overall role of the radiologists providing rapid consultation. A Web-based server allows a clinician to review images and reports on a desk-top (personal) computer and thus reduce the number of dedicated PACS review workstations. This session

  6. Disorder in large- N theories

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon

    2016-04-01

    We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large- N theories (vector models or gauge theories in the `t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ > d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1 /N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.

  7. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  8. Large cities are less green

    NASA Astrophysics Data System (ADS)

    Oliveira, Erneson A.; Andrade, José S.; Makse, Hernán A.

    2014-02-01

    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent β = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias.

  9. Large Angle Satellite Attitude Maneuvers

    NASA Technical Reports Server (NTRS)

    Cochran, J. E.; Junkins, J. L.

    1975-01-01

    Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.

  10. Large cities are less green.

    PubMed

    Oliveira, Erneson A; Andrade, José S; Makse, Hernán A

    2014-02-28

    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent β = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias.

  11. Chemotaxis of large granular lymphocytes

    SciTech Connect

    Pohajdak, B.; Gomez, J.; Orr, F.W.; Khalil, N.; Talgoy, M.; Greenberg, A.H.

    1986-01-01

    The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-..beta.. and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1/sup +/ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 ..mu..m nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (> 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML(/sup 3/H)P, suggesting that LGL bear receptors for the chemotactic peptide.

  12. The Mass of Large Impactors

    NASA Technical Reports Server (NTRS)

    Parisi, M. G.; Brunini, A.

    1996-01-01

    By means of a simplified dynamical model, we have computed the eccentricity change in the orbit of each giant planet, caused by a single, large impact at the end of the accretion process. In order to set an upper bound on this eccentricity change, we have considered the giant planets' present eccentricities as primordial ones. By means of this procedure, we were able to obtain an implicit relation for the impactor masses and maximum velocities. We have estimated by this method the maximum allowed mass to impact Jupiter to be approx. 1.136 x 10(exp -1), being in the case of Neptune approx. 3.99 x 10(exp -2) (expressed in units of each planet final mass). Due to the similar present eccentricities of Saturn, Uranus and Jupiter, the constraint masses and velocities of the bodies to impact them (in units of each planet final mass and velocity respectively) are almost the same for the three planets. These results are in good agreement with those obtained by Lissauer and Safronov. These bounds might be used to derive the mass distribution of planetesimals in the early solar system.

  13. Large cities are less green

    PubMed Central

    Oliveira, Erneson A.; Andrade, José S.; Makse, Hernán A.

    2014-01-01

    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2 emissions and city population with average allometric exponent β = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias. PMID:24577263

  14. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1–10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor “foreshocks”, since the induction may occur with a delay up to several years. PMID:25156190

  15. Facilitating Navigation Through Large Archives

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Troung, Dat; Hodgson, Terry R.

    2005-01-01

    Automated Visual Access (AVA) is a computer program that effectively makes a large collection of information visible in a manner that enables a user to quickly and efficiently locate information resources, with minimal need for conventional keyword searches and perusal of complex hierarchical directory systems. AVA includes three key components: (1) a taxonomy that comprises a collection of words and phrases, clustered according to meaning, that are used to classify information resources; (2) a statistical indexing and scoring engine; and (3) a component that generates a graphical user interface that uses the scoring data to generate a visual map of resources and topics. The top level of an AVA display is a pictorial representation of an information archive. The user enters the depicted archive by either clicking on a depiction of subject area cluster, selecting a topic from a list, or entering a query into a text box. The resulting display enables the user to view candidate information entities at various levels of detail. Resources are grouped spatially by topic with greatest generality at the top layer and increasing detail with depth. The user can zoom in or out of specific sites or into greater or lesser content detail.

  16. Control of large space structures

    NASA Technical Reports Server (NTRS)

    Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.

    1979-01-01

    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.

  17. Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Klarmann, J.; Israel, M. H.; Garrard, T. L.; Mewaldt, R. A.; Stone, E. C.; Ormes, J. F.; Streitmatter, R. E.; Rasmussen, I. L.; Wiedenbeck, M. E.

    1990-01-01

    The Large Isotope Spectrometer for Astromag (LISA) is an experiment designed to measure the isotopic composition and energy spectra of cosmic rays for elements extending from beryllium through zinc. The overall objectives of this investigation are to study the origin and evolution of galactic matter; the acceleration, transport, and time scales of cosmic rays in the galaxy; and search for heavy antinuclei in the cosmic radiation. To achieve these objectives, the LISA experiment will make the first identifications of individual heavy cosmic ray isotopes in the energy range from about 2.5 to 4 GeV/n where relativistic time dilation effects enhance the abundances of radioactive clocks and where the effects of solar modulation and cross-section variations are minimized. It will extend high resolution measurements of individual element abundances and their energy spectra to energies of nearly 1 TeV/n, and has the potential for discovering heavy anti-nuclei which could not have been formed except in extragalactic sources.

  18. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  19. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  20. How large should whales be?

    PubMed

    Clauset, Aaron

    2013-01-01

    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2 g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000 g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000 g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.

  1. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  2. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  3. Large Eddy Simulations in Astrophysics

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfram

    2015-12-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid-scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid-scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamic procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid-scale turbulence energy model allows for a particularly elegant and physically well-motivated way of preserving momentum and energy conservation in adaptive mesh refinement (AMR) simulations. Moreover, the notion of shear-improved models for in-homogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.

  4. Large earthquakes and creeping faults

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.

    2017-03-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  5. How Large Should Whales Be?

    PubMed Central

    Clauset, Aaron

    2013-01-01

    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2 g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000 g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000 g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them. PMID:23342050

  6. Large optics inspection, tilting, and washing stand

    SciTech Connect

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  7. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  8. Large capacity temporary visual memory

    PubMed Central

    Endress, Ansgar D.; Potter, Mary C.

    2014-01-01

    Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181

  9. Temporal Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Thomas, B. C.

    2004-01-01

    In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.

  10. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1994-12-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astronomico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in late fall 1995 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia. Construction

  11. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1995-05-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in spring of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximicrons flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximicrons stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia

  12. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  13. Large springs of east Tennessee

    USGS Publications Warehouse

    Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.

    1963-01-01

    Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients

  14. The Very Large Ecological Array

    NASA Astrophysics Data System (ADS)

    Hamilton, M. P.; Dawson, T. E.; Thompson, S. E.

    2011-12-01

    Regional climatic change and variability is expected to alter the boundary conditions to which ecosystems and landscapes are subject. Unambiguously identifying how these changes alter the biophysics of ecosystems or the phenology or behavior of individual organisms, however, remains challenging due to the complexity and heterogeneity of real landscapes. One of the aims of the Very Large Ecological Array (VeLEA) - a landscape-scale distributed wireless environmental monitoring system under deployment at the University of California, Blue Oak Ranch Reserve (Mount Hamilton Range, Santa Clara County, California) - is to allow a sufficiently fine-resolution understanding of spatial and temporal variability in the landscape that such changes can be reliably quantified. The VeLEA is structured around two wireless mesh radio networks, with solar-powered nodes spaced by up to 2 miles. This allows widely distributed arrays of instrumentation to be deployed over hundreds to thousands of hectares. The first network supports ten weather stations (recording barometric pressure, temperature, humidity, wind, rainfall, total solar radiation and leaf wetness), along with sixty nodes measuring humidity and air temperature at 1m above ground. Future deployments will extend the network to include soil moisture, soil temperature, piezometric head and streamflow across the site. The second network supports an array of 10 networked cameras providing real-time viewing and time-lapse recording of animal behavior, vegetation phenology and aquatic variability. An important goal of the VeLEA project is to optimize the deployment of wireless nodes with respect to spatial and temporal variation at the site. Preliminary data obtained from the initial deployments are being used to characterize spatial and temporal variability across the site and to investigate mechanistic and statistical methods for interpolating and up-scaling that data. Observing and characterizing such spatio

  15. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently

  16. Experiments with large enclosed ecosystems.

    PubMed

    Davies, J M; Gamble, J C

    1979-08-08

    conclusion that the levels of mercury found in surface waters around the coast of the U.K. (0.001--0.022 microgram Hg/l) are one or two orders of magnitude below the levels at which a response of the biological population can be demonstrated. The usefulness of large scale enclosed ecosystems for further pollution research is discussed and it is concluded that those facilities that provided a link between the water column and the sediments would be most useful since they would (1) enable estimates to be made of the flux rates of pollutants from the water column to the sediments; and (2) allow experiments to be carried out with the pollutant in contact with sediment in its natural form.

  17. Investing in a Large Stretch Press

    NASA Technical Reports Server (NTRS)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  18. Large space systems technology, 1981. [conferences

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.

  19. 76 FR 17521 - Assessments, Large Bank Pricing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... 327 RIN 3064-AD66 Assessments, Large Bank Pricing AGENCY: Federal Deposit Insurance Corporation (FDIC... Register of February 25, 2011 (76 FR 10672), regarding Assessments, Large Bank Pricing. This correction...

  20. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  1. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  2. SOME TRAINING IMPLICATIONS OF LARGE SHELTERS.

    ERIC Educational Resources Information Center

    BEND, EMIL

    BASED LARGELY ON AIR RESEARCH ON SHELTER MANAGEMENT SIMULATION, AN ANALYSIS WAS MADE OF THE IMPACT OF THE LARGE, COMPLEX SHELTER ON SHELTER MANAGEMENT TRAINING NEEDS. THE LARGE SHELTER REQUIRES THE TYPE OF LEADERSHIP THAT ONLY THOSE WHO ALREADY HAVE SUPERVISORY SKILLS CAN SUPPLY. SUCH PEOPLE ARE NEITHER ATTRACTED NOR HELPED BY THE USUAL SHELTER…

  3. Forecasting distribution of numbers of large fires

    Treesearch

    Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan

    2015-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...

  4. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  5. Large Devaluations and the Real Exchange Rate

    ERIC Educational Resources Information Center

    Burstein, Ariel; Eichenbaum, Martin; Rebelo, Sergio

    2005-01-01

    In this paper we argue that the primary force behind the large drop in real exchange rates that occurs after large devaluations is the slow adjustment in the prices of nontradable goods and services. Our empirical analysis uses data from five large devaluation episodes: Argentina (2002), Brazil (1999), Korea (1997), Mexico (1994), and Thailand…

  6. 27 CFR 19.915 - Large plants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Large plants. 19.915... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.915 Large plants. Any person wishing to establish a large plant shall make application for and obtain an...

  7. SOME TRAINING IMPLICATIONS OF LARGE SHELTERS.

    ERIC Educational Resources Information Center

    BEND, EMIL

    BASED LARGELY ON AIR RESEARCH ON SHELTER MANAGEMENT SIMULATION, AN ANALYSIS WAS MADE OF THE IMPACT OF THE LARGE, COMPLEX SHELTER ON SHELTER MANAGEMENT TRAINING NEEDS. THE LARGE SHELTER REQUIRES THE TYPE OF LEADERSHIP THAT ONLY THOSE WHO ALREADY HAVE SUPERVISORY SKILLS CAN SUPPLY. SUCH PEOPLE ARE NEITHER ATTRACTED NOR HELPED BY THE USUAL SHELTER…

  8. Large Devaluations and the Real Exchange Rate

    ERIC Educational Resources Information Center

    Burstein, Ariel; Eichenbaum, Martin; Rebelo, Sergio

    2005-01-01

    In this paper we argue that the primary force behind the large drop in real exchange rates that occurs after large devaluations is the slow adjustment in the prices of nontradable goods and services. Our empirical analysis uses data from five large devaluation episodes: Argentina (2002), Brazil (1999), Korea (1997), Mexico (1994), and Thailand…

  9. 75 FR 73983 - Assessments, Large Bank Pricing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...; ] FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Part 327 RIN 3064-AD66 Assessments, Large Bank Pricing AGENCY..., 2010, regarding Assessments, Large Bank Pricing. This correction clarifies that the comment period for the Assessments, Large Bank Pricing ends January 3, 2011. FOR FURTHER INFORMATION CONTACT: Lisa Ryu...

  10. 77 FR 18109 - Assessments, Large Bank Pricing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ...; ] FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Part 327 RIN 3064-AD92 Assessments, Large Bank Pricing AGENCY... determine assessment rates for large and highly complex insured depository institutions. The FDIC believes... proposed rulemaking, identified by RIN number and the words ``Assessments, Large Bank Pricing Definition...

  11. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  12. Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers

    PubMed Central

    Basak, Supratim; Blanco, Alvaro; López, Cefe

    2016-01-01

    Intensity fluctuations in lasers are commonly studied above threshold in some special configurations (especially when emission is fed back into the cavity or when two lasers are coupled) and related with their chaotic behaviour. Similar fluctuating instabilities are usually observed in random lasers, which are open systems with plenty of quasi-modes whose non orthogonality enables them to exchange energy and provides the sort of loss mechanism whose interplay with pumping leads to replica symmetry breaking. The latter however, had never been observed in plain cavity lasers where disorder is absent or not intentionally added. Here we show a fluctuating lasing behaviour at the lasing threshold both in solid and liquid dye lasers. Above and below a narrow range around the threshold the spectral line-shape is well correlated with the pump energy. At the threshold such correlation disappears, and the system enters a regime where emitted laser fluctuates between narrow, intense and broad, weak peaks. The immense number of modes and the reduced resonator quality favour the coupling of modes and prepares the system so that replica symmetry breaking occurs without added disorder. PMID:27558968

  13. Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers.

    PubMed

    Basak, Supratim; Blanco, Alvaro; López, Cefe

    2016-08-25

    Intensity fluctuations in lasers are commonly studied above threshold in some special configurations (especially when emission is fed back into the cavity or when two lasers are coupled) and related with their chaotic behaviour. Similar fluctuating instabilities are usually observed in random lasers, which are open systems with plenty of quasi-modes whose non orthogonality enables them to exchange energy and provides the sort of loss mechanism whose interplay with pumping leads to replica symmetry breaking. The latter however, had never been observed in plain cavity lasers where disorder is absent or not intentionally added. Here we show a fluctuating lasing behaviour at the lasing threshold both in solid and liquid dye lasers. Above and below a narrow range around the threshold the spectral line-shape is well correlated with the pump energy. At the threshold such correlation disappears, and the system enters a regime where emitted laser fluctuates between narrow, intense and broad, weak peaks. The immense number of modes and the reduced resonator quality favour the coupling of modes and prepares the system so that replica symmetry breaking occurs without added disorder.

  14. Large animal models of traumatic brain injury.

    PubMed

    Dai, Jun-Xi; Ma, Yan-Bin; Le, Nan-Yang; Cao, Jun; Wang, Yang

    2017-10-03

    Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. Mixed published articles and books associated with large animal models of TBI were researched and summarized. We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.

  15. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  16. Force Sensor for Large Robot Arms

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Primus, H. C.; Scheinman, V. D.

    1985-01-01

    Modified Maltese-cross force sensor larger and more sensitive than earlier designs. Measures inertial forces and torques exerted on large robot arms during free movement as well as those exerted by claw on manipulated objects. Large central hole of sensor allows claw drive mounted inside arm instead of perpendicular to its axis, eliminating potentially hazardous projection. Originally developed for Space Shuttle, sensor finds applications in large industrial robots.

  17. How Large Are Large Classes? Lancaster-Leeds Language Learning in Large Classes Research Project Report No. 4.

    ERIC Educational Resources Information Center

    Coleman, Hywel

    This report confirms anecdotal evidence that language teachers do find large classes to be problematic, collates data on class sizes in various parts of the world, and investigates the possibility of defining a large class, at least from the teachers'points of view. The first section is introductory. The second presents findings of a small-scale…

  18. What is a large-scale dynamo?

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  19. Improved Large-Field Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1993-01-01

    System used to examine complicated two- and three-dimensional flows. High-brightness large-field focusing schlieren system incorporates Fresnel lens instead of glass diffuser. In system with large field of view, image may also be very large. Relay optical subsystem minifies large image while retaining all of light. Facilities candidates for use of focusing schlieren include low-speed wind and water tunnels. Heated or cooled flow tracers or injected low- or high-density tracers used to make flows visible for photographic recording.

  20. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  1. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  2. Large trees losing out to drought

    Treesearch

    Michael G. Ryan

    2015-01-01

    Large trees provide many ecological services in forests. They provide seeds for reproduction and food, habitat for plants and animals, and shade for understory vegetation. Older trees and forests store large quantities of carbon, tend to release more water to streams than their more rapidly growing younger counterparts, and provide wood for human use. Mature...

  3. Collaborative Working for Large Digitisation Projects

    ERIC Educational Resources Information Center

    Yeates, Robin; Guy, Damon

    2006-01-01

    Purpose: To explore the effectiveness of large-scale consortia for disseminating local heritage via the web. To describe the creation of a large geographically based cultural heritage consortium in the South East of England and management lessons resulting from a major web site digitisation project. To encourage the improved sharing of experience…

  4. Hotseat: Opening the Backchannel in Large Lectures

    ERIC Educational Resources Information Center

    Aagard, Hans; Bowen, Kyle; Olesova, Larisa

    2010-01-01

    Despite their flaws as teaching and learning environments, large lectures remain a standard teaching approach because of their relatively low cost, ease of preparation, and long tradition in education. Research shows that active inquiry yields positive results in learning outcomes, and one way to make the large lecture class more active and…

  5. Braille/Large Print Reference Service.

    ERIC Educational Resources Information Center

    Bell, Lori; Brandon, Valerie

    1993-01-01

    Describes the Braille/Large Print Reference Project developed in Illinois to provide visually impaired patrons with information transcribed into either Braille or large print. Topics discussed include equipment needs; staff training; user response; and problems. Examples of publicity and guidelines are included. (LRW)

  6. How Do People Apprehend Large Numerosities?

    ERIC Educational Resources Information Center

    Sophian, Catherine; Chu, Yun

    2008-01-01

    People discriminate remarkably well among large numerosities. These discriminations, however, need not entail numerical representation of the quantities being compared. This research evaluated the role of both non-numerical and numerical information in adult judgments of relative numerosity for large-numerosity spatial arrays. Results of…

  7. Scalar gain interpretation of large order filters

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Mook, D. Joseph

    1993-01-01

    A technique is developed which demonstrates how to interpret a large fully-populated filter gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate the method.

  8. LARGE AND GREAT RIVERS: NEW ASSESSMENT TOOLS

    EPA Science Inventory

    The Ecological Exposure Research Division has been conducting research to support the development of the next generation of bioassessment and monitoring tools for large and great rivers. Focus has largely been on the development of standardized protocols for the traditional indi...

  9. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  10. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  11. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  12. LARGE AND GREAT RIVERS: NEW ASSESSMENT TOOLS

    EPA Science Inventory

    The Ecological Exposure Research Division has been conducting research to support the development of the next generation of bioassessment and monitoring tools for large and great rivers. Focus has largely been on the development of standardized protocols for the traditional indi...

  13. Collaborative Working for Large Digitisation Projects

    ERIC Educational Resources Information Center

    Yeates, Robin; Guy, Damon

    2006-01-01

    Purpose: To explore the effectiveness of large-scale consortia for disseminating local heritage via the web. To describe the creation of a large geographically based cultural heritage consortium in the South East of England and management lessons resulting from a major web site digitisation project. To encourage the improved sharing of experience…

  14. Getting Active in the Large Lecture

    ERIC Educational Resources Information Center

    Huerta, Juan Carlos

    2007-01-01

    The benefits of active learning are well documented; nonetheless, the implementation of active learning strategies can be challenging in large lecture environments. The project will examine the research supporting active learning, present the implementation of simple active learning techniques in large lecture classes, and provide evidence to test…

  15. Automating large-scale reactor systems

    SciTech Connect

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig.

  16. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  17. Factors influencing large wildland fire suppression expenditures

    Treesearch

    Jingjing Liang; Dave E. Calkin; Krista M. Gebert; Tyron J. Venn; Robin P. Silverstein

    2008-01-01

    There is an urgent and immediate need to address the excessive cost of large fires. Here, we studied large wildland fire suppression expenditures by the US Department of Agriculture Forest Service. Among 16 potential nonmanagerial factors, which represented fire size and shape, private properties, public land attributes, forest and fuel conditions, and geographic...

  18. Cognitive Airborne Networking: Self-Aware Communications via Sensing, Adaptation, and Cross-Layer Optimization

    DTIC Science & Technology

    2011-03-01

    and M. Medley, ”Fast maximum-likelihood decoding of quasi-orthogonal STBCs with QAM signals,” submitted to IEEE Transactions on Wireless Communications...maximum-likelihood decoding of 4x4 full-diversity quasi-orthogonal STBCs with QAM signals,” in Proceedings of IEEE Global Telecommunications Con...networks due to its advantage that information can be differentially modulated /demodulated and channel estimation can be avoided (at the cost of an

  19. Generically large nongaussianity in small multifield inflation

    SciTech Connect

    Bramante, Joseph

    2015-07-01

    If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r < 0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computations of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons' field directions have unequal slopes.

  20. Environmental effects and large space systems

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  1. Generically large nongaussianity in small multifield inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph

    2015-07-01

    If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r < 0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computations of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons' field directions have unequal slopes.

  2. Large Scale Metal Additive Techniques Review

    SciTech Connect

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W; Love, Lonnie J

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  3. Testing Large Structures in the Field

    NASA Technical Reports Server (NTRS)

    James, George; Carne, Thomas G.

    2009-01-01

    Field testing large structures creates unique challenges such as limited choices for boundary conditions and the fact that natural excitation sources cannot be removed. Several critical developments in field testing of large structures are reviewed, including: step relaxation testing which has been developed into a useful technique to apply large forces to operational systems by careful windowing; the capability of large structures testing with free support conditions which has been expanded by implementing modeling of the support structure; natural excitation which has been developed as a viable approach to field testing; and the hybrid approach which has been developed to allow forces to be estimated in operating structures. These developments have increased the ability to extract information from large structures and are highlighted in this presentation.

  4. Triggering of volcanic eruptions by large earthquakes

    NASA Astrophysics Data System (ADS)

    Nishimura, Takeshi

    2017-08-01

    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  5. Generically large nongaussianity in small multifield inflation

    SciTech Connect

    Bramante, Joseph

    2015-07-07

    If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r<0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computations of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons’ field directions have unequal slopes.

  6. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  7. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  8. Analyzing large datasets with bootstrap penalization.

    PubMed

    Fang, Kuangnan; Ma, Shuangge

    2017-03-01

    Data with a large p (number of covariates) and/or a large n (sample size) are now commonly encountered. For many problems, regularization especially penalization is adopted for estimation and variable selection. The straightforward application of penalization to large datasets demands a "big computer" with high computational power. To improve computational feasibility, we develop bootstrap penalization, which dissects a big penalized estimation into a set of small ones, which can be executed in a highly parallel manner and each only demands a "small computer". The proposed approach takes different strategies for data with different characteristics. For data with a large p but a small to moderate n, covariates are first clustered into relatively homogeneous blocks. The proposed approach consists of two sequential steps. In each step and for each bootstrap sample, we select blocks of covariates and run penalization. The results from multiple bootstrap samples are pooled to generate the final estimate. For data with a large n but a small to moderate p, we bootstrap a small number of subjects, apply penalized estimation, and then conduct a weighted average over multiple bootstrap samples. For data with a large p and a large n, the natural marriage of the previous two methods is applied. Numerical studies, including simulations and data analysis, show that the proposed approach has computational and numerical advantages over the straightforward application of penalization. An R package has been developed to implement the proposed methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Range contractions of the world's large carnivores.

    PubMed

    Wolf, Christopher; Ripple, William J

    2017-07-01

    The majority of the world's terrestrial large carnivores have undergone substantial range contractions and many of these species are currently threatened with extinction. However, there has been little effort to fully quantify the extent of large carnivore range contractions, which hinders our ability to understand the roles and relative drivers of such trends. Here we present and analyse a newly constructed and comprehensive set of large carnivore range contraction maps. We reveal the extent to which ranges have contracted since historical times and identify regions and biomes where range contractions have been particularly large. In summary, large carnivores that have experienced the greatest range contractions include the red wolf (Canis rufus) (greater than 99%), Ethiopian wolf (Canis simensis) (99%), tiger (Panthera tigris) (95%) and lion (Panthera leo) (94%). In general, the greatest range contractions occurred in Southeastern Asia and Africa. Motivated by the ecological importance of intact large carnivore guilds, we also examined the spatial extent of intact large carnivore guilds both for the entire world and regionally. We found that intact carnivore guilds occupy just 34% of the world's land area. This compares to 96% in historic times. Spatial modelling of range contractions showed that contractions were significantly more likely in regions with high rural human population density, cattle density or cropland. Our results offer new insights into how best to prevent further range contractions for the world's largest carnivores, which will assist efforts to conserve these species and their important ecological effects.

  10. Range contractions of the world's large carnivores

    PubMed Central

    2017-01-01

    The majority of the world's terrestrial large carnivores have undergone substantial range contractions and many of these species are currently threatened with extinction. However, there has been little effort to fully quantify the extent of large carnivore range contractions, which hinders our ability to understand the roles and relative drivers of such trends. Here we present and analyse a newly constructed and comprehensive set of large carnivore range contraction maps. We reveal the extent to which ranges have contracted since historical times and identify regions and biomes where range contractions have been particularly large. In summary, large carnivores that have experienced the greatest range contractions include the red wolf (Canis rufus) (greater than 99%), Ethiopian wolf (Canis simensis) (99%), tiger (Panthera tigris) (95%) and lion (Panthera leo) (94%). In general, the greatest range contractions occurred in Southeastern Asia and Africa. Motivated by the ecological importance of intact large carnivore guilds, we also examined the spatial extent of intact large carnivore guilds both for the entire world and regionally. We found that intact carnivore guilds occupy just 34% of the world's land area. This compares to 96% in historic times. Spatial modelling of range contractions showed that contractions were significantly more likely in regions with high rural human population density, cattle density or cropland. Our results offer new insights into how best to prevent further range contractions for the world's largest carnivores, which will assist efforts to conserve these species and their important ecological effects. PMID:28791136

  11. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  12. Model for repetitive cycles of large earthquakes

    SciTech Connect

    Newman, W.I.; Knopoff, L.

    1983-04-01

    The theory of the fusion of small cracks into large ones reproduces certain features also observed in the clustering of earthquake sequences. By modifying our earlier model to take into account the stress release associated with the occurrence of large earthquakes, we obtain repetitive periodic cycles of large earthquakes. A preliminary conclusion is that a combination of the stress release or elastic rebound mechanism plus time delays in the fusion process are sufficient to destabilize the crack populations and, ultimately, give rise to repetitive episodes of seismicity.

  13. Learning to build large structures in space

    NASA Technical Reports Server (NTRS)

    Hagler, T.; Patterson, H. G.; Nathan, C. A.

    1977-01-01

    The paper examines some of the key technologies and forms of construction know-how that will have to be developed and tested for eventual application to building large structures in space. Construction of a shuttle-tended space construction/demonstration platform would comprehensively demonstrate large structure technology, develop construction capability, and furnish a construction platform for a variety of operational large structures. Completion of this platform would lead to demonstrations of the Satellite Power System (SPS) concept, including microwave transmission, fabrication of 20-m-deep beams, conductor installation, rotary joint installation, and solar blanket installation.

  14. Performance of large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1981-01-01

    The performance of large inert-gas thrusters is predicted based on present knowledge of ion optics performance and discharge chamber operation. Calculated performance data are given for argon and xenon propellants. The effect of varying propellant utilization and thruster diameter is discussed and the optimum choice of beam diameter for very large systems is indicated for low, intermediate, and high specific impulses. Optimum discharge chamber depths are also specified. Although detailed design considerations may modify the predictions, the general trends indicated should still be useful for directing future technology efforts and evaluating mission studies involving large thrusters.

  15. Adaptive Control Of Large Vibrating, Rotating Structures

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1991-01-01

    Globally convergent theoretical method provides for adaptive set-point control of orientation of, along with suppression of the vibrations of, large structure. Method utilizes inherent passivity properties of structure to attain mathematical condition essential to adaptive convergence on commanded set point. Maintains stability and convergence in presence of errors in mathematical model of dynamics of structure and actuators. Developed for controlling attitudes of large, somewhat flexible spacecraft, also useful in such terrestrial applications as controlling movable bridges or suppressing earthquake vibrations in bridges, buildings, and other large structures.

  16. The Amateurs' Love Affair with Large Datasets

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Jacoby, S. H.; Henden, A.

    2006-12-01

    Amateur astronomers are professionals in other areas. They bring expertise from such varied and technical careers as computer science, mathematics, engineering, and marketing. These skills, coupled with an enthusiasm for astronomy, can be used to help manage the large data sets coming online in the next decade. We will show specific examples where teams of amateurs have been involved in mining large, online data sets and have authored and published their own papers in peer-reviewed astronomical journals. Using the proposed LSST database as an example, we will outline a framework for involving amateurs in data analysis and education with large astronomical surveys.

  17. Experimental verification of a large flexible manipulator

    NASA Technical Reports Server (NTRS)

    Lee, Jac Won; Huggins, James D.; Book, Wayne J.

    1988-01-01

    A large experimental lightweight manipulator would be useful for material handling, for welding, or for ultrasonic inspection of a large structure, such as an airframe. The flexible parallel link mechanism is designed for high rigidity without increasing weight. This constrained system is analyzed by singular value decomposition of the constraint Jacobian matrix. A verification of the modeling using the assumed mode method is presented. Eigenvalues and eigenvectors of the linearized model are compared to the measured system natural frequencies and their associated mode shapes. The modeling results for large motions are compared to the time response data from the experiments. The hydraulic actuator is verified.

  18. Learning to build large structures in space

    NASA Technical Reports Server (NTRS)

    Hagler, T.; Patterson, H. G.; Nathan, C. A.

    1977-01-01

    The paper examines some of the key technologies and forms of construction know-how that will have to be developed and tested for eventual application to building large structures in space. Construction of a shuttle-tended space construction/demonstration platform would comprehensively demonstrate large structure technology, develop construction capability, and furnish a construction platform for a variety of operational large structures. Completion of this platform would lead to demonstrations of the Satellite Power System (SPS) concept, including microwave transmission, fabrication of 20-m-deep beams, conductor installation, rotary joint installation, and solar blanket installation.

  19. PURE CULTURES OF LARGE MONONUCLEAR LEUCOCYTES

    PubMed Central

    Carrel, Alexis; Ebeling, Albert H.

    1922-01-01

    1. Pure strains of mononuclear leucocytes were isolated from the blood of adult chickens and keptin active condition for nearly 3 months. 2. The cultures were composed of large mononuclear leucocytes which migrated and proliferated in vitro at a slower rate than fibroblasts. The cells had no tendency to form a tissue, as do fibroblasts and epithelial cells. They were much less resistant than fibroblasts. 3. Differentiation of the large mononuclears into cells assuming the appearance of fibroblasts took place under certain conditions. 4. The activity of the large mononuclears was increased by embryonic tissue juice and inhibited by homologous serum. PMID:19868678

  20. Large area perovskite solar cell module

    NASA Astrophysics Data System (ADS)

    Cai, Longhua; Liang, Lusheng; Wu, Jifeng; Ding, Bin; Gao, Lili; Fan, Bin

    2017-01-01

    The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5 × 5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

  1. The next generation very large array

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark; Carilli, Chris; Beasley, Tony

    2016-07-01

    The North American astronomical community is considering a future large area radio array optimized to perform imaging of thermal emission down to milliarcsecond scales. This `Next Generation Very Large Array' would entail ten times the effective collecting area of the Jansky Very Large Array, operate from 1GHz to 115GHz, with ten times longer baselines (300km) providing milliarcsecond resolution, and include a dense core on kilometer scales for high surface brightness imaging. The preliminary design, capabilities, and some of the priority science goals of the instrument are summarized.

  2. Laparoscopic management of large ureteral fibroepithelial polyp.

    PubMed

    Kijvikai, Kittinut; Maynes, Lincoln J; Herrell, S Duke

    2007-08-01

    Fibroepithelial polyps of the ureter are rare benign mesothelial tumors. Most polyps are small; however, very rare large polyps have also been reported. Currently, most investigators encourage endoscopic management in these patients. Nevertheless, endoscopic resection can be difficult in patients with a long or large polypoid lesion. We describe our experience and laparoscopic technique for treatment of a symptomatic 42-year-old woman who presented with a 17-cm-long fibroepithelial polyp in the proximal ureter associated with ureteral obstruction. To our knowledge, this is the first reported case of laparoscopic management of a large ureteral fibroepithelial polyp.

  3. Environmental interaction implications for large space systems

    NASA Technical Reports Server (NTRS)

    Miller, E.; Fischbein, W.; Stauber, M. C.; Suh, P. K.

    1979-01-01

    Large Space Systems (LSS) comprise a new class of spacecraft, the design and performance of which may be seriously affected by a variety of environmental interactions. The special concerns associated with spacecraft charging and plasma interactions from the LSS designer's viewpoint are addressed. Survivability of these systems under combined solar U.V., particle radiation and repeated electrical discharges is of primary importance. Additional questions regard the character of electrical discharges over very large areas, the effects of high current/voltage systems and magnitude of induced structural disturbances. A concept is described for a large scale experiment platform.

  4. Experimental verification of a large flexible manipulator

    NASA Technical Reports Server (NTRS)

    Lee, Jac Won; Huggins, James D.; Book, Wayne J.

    1988-01-01

    A large experimental lightweight manipulator would be useful for material handling, for welding, or for ultrasonic inspection of a large structure, such as an airframe. The flexible parallel link mechanism is designed for high rigidity without increasing weight. This constrained system is analyzed by singular value decomposition of the constraint Jacobian matrix. A verification of the modeling using the assumed mode method is presented. Eigenvalues and eigenvectors of the linearized model are compared to the measured system natural frequencies and their associated mode shapes. The modeling results for large motions are compared to the time response data from the experiments. The hydraulic actuator is verified.

  5. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  6. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  7. Remotely controlled large container disposal methodology

    SciTech Connect

    Amir, S.J.

    1994-09-01

    Remotely Handled Large Containers (RHLC), also called drag-off boxes, have been used at the Hanford Site since the 1940s to dispose of large pieces of radioactively contaminated equipment. These containers are typically large steel-reinforced concrete boxes, which weigh as much as 40 tons. Because large quantities of high-dose waste can produce radiation levels as high as 200 mrem/hour at 200 ft, the containers are remotely handled (either lifted off the railcar by crane or dragged off with a cable). Many of the existing containers do not meet existing structural and safety design criteria and some of the transportation requirements. The drag-off method of pulling the box off the railcar using a cable and a tractor is also not considered a safe operation, especially in view of past mishaps.

  8. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  9. Large & Small: Exploring the Laws of Nature

    ERIC Educational Resources Information Center

    Creutz, E.

    1976-01-01

    Illustrates how both large entities (such as stars and galaxies) and small entities (such as fundamental particles) obey the same physical laws. Discusses quantum mechanics, Newton's laws, and general relativity. (MLH)

  10. Cosmogenic Nuclides Study of Large Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Hutzler, A.; Smith, T.; Rochette, P.; Bourles, D. L.; Leya, I.; Gattacceca, J.

    2014-09-01

    Six large iron meteorites were selected (Saint-Aubin, Mont-Dieu, Caille, Morasko, Agoudal, and Gebel Kamil). We measured stable and radiogenic cosmogenic nuclides, to study pre-atmospheric size, cosmic-ray exposure ages and terrestrial ages.

  11. Gravitational waves and large field inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2017-02-01

    According to the famous Lyth bound, one can confirm large field inflation by finding tensor modes with sufficiently large tensor-to-scalar ratio r. Here we will try to answer two related questions: is it possible to rule out all large field inflationary models by not finding tensor modes with r above some critical value, and what can we say about the scale of inflation by measuring r? However, in order to answer these questions one should distinguish between two different definitions of the large field inflation and three different definitions of the scale of inflation. We will examine these issues using the theory of cosmological α-attractors as a convenient testing ground.

  12. Bipartite Graphs of Large Clique-Width

    NASA Astrophysics Data System (ADS)

    Korpelainen, Nicholas; Lozin, Vadim V.

    Recently, several constructions of bipartite graphs of large clique-width have been discovered in the literature. In the present paper, we propose a general framework for developing such constructions and use it to obtain new results on this topic.

  13. Large Meteor Tracked over Northeast Alabama

    NASA Image and Video Library

    On the evening of May 18, NASA all-sky meteor cameras located at NASA’s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

  14. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  15. Large Space Antenna Systems Technology, part 1

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1983-01-01

    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.

  16. Optical design for the large balloon reflector

    NASA Astrophysics Data System (ADS)

    Cortes-Medellin, German; O'Dougherty, Stefan; Walker, Christopher; Goldsmith, Paul F.; Groppi, Chris; Smith, Steve; Bernasconi, Pietro

    2016-07-01

    We present the details of the optical design, corrector system, mechanical layout, tolerances, pointing requirements, and overall performance of the sub-millimeter wavelength Large Balloon Reflector telescope (LBR).

  17. Decontamination of large components-test case

    SciTech Connect

    Mancini, A.; Bosco, B.

    1996-12-31

    The rising per-cubic-foot burial costs, together with the trend toward standardized above-ground burial sites, provides the basis for seeking an alternative to direct burial of large components. Large contaminated components such as steam generators can be safely dismantled and decontaminated for free release, metals recycle, and volume reduction. This grand-scale disposal technology will prove to be an economical and ecological alternative to direct burial or interim storage. Yankee Atomic Electric Company (YAEC) in Bolton, operators and decommissioners of the Yankee Nuclear Power Station in Rowe, Massachusetts, has teamed with Frank W Hake Associates in Memphis, TN, to decontaminate a large component as a test case. The large component is YAEC`s reactor pressure vessel head (RPVH). The 79 100 lb RPVH is surface contaminated with 0.7 Ci (1500 mR/h contact) resulting from 32 yr of operating in a 2000 psi, 530{degrees}F pressurized water reactor environment.

  18. Large Circular Basin Flooded and then Cratered

    NASA Image and Video Library

    2000-08-05

    As NASA Mariner 10 passed by Mercury on its second encounter with the planet on Sept. 21, 1974, this picture of a large circular 350 kilometer, 220 mile diameter basin was obtained near the morning terminator.

  19. Stellar Debris in the Large Magellanic Cloud

    NASA Image and Video Library

    2006-12-08

    This is a composite image of N49, the brightest supernova remnant in optical light in the Large Magellanic Cloud; the image combines data from the Chandra X-ray Telescope blue and NASA Spitzer Space Telescope red.

  20. Large & Small: Exploring the Laws of Nature

    ERIC Educational Resources Information Center

    Creutz, E.

    1976-01-01

    Illustrates how both large entities (such as stars and galaxies) and small entities (such as fundamental particles) obey the same physical laws. Discusses quantum mechanics, Newton's laws, and general relativity. (MLH)

  1. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  2. Large, horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-03-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  3. Communication architecture for large geostationary platforms

    NASA Technical Reports Server (NTRS)

    Bond, F. E.

    1979-01-01

    Large platforms have been proposed for supporting multipurpose communication payloads to exploit economy of scale, reduce congestion in the geostationary orbit, provide interconnectivity between diverse earth stations, and obtain significant frequency reuse with large multibeam antennas. This paper addresses a specific system design, starting with traffic projections in the next two decades and discussing tradeoffs and design approaches for major components including: antennas, transponders, and switches. Other issues explored are selection of frequency bands, modulation, multiple access, switching methods, and techniques for servicing areas with nonuniform traffic demands. Three-major services are considered: a high-volume trunking system, a direct-to-user system, and a broadcast system for video distribution and similar functions. Estimates of payload weight and d.c. power requirements are presented. Other subjects treated are: considerations of equipment layout for servicing by an orbit transfer vehicle, mechanical stability requirements for the large antennas, and reliability aspects of the large number of transponders employed.

  4. The large bowel--a supplementary rumen?

    PubMed

    Argenzio, R A; Stevens, C E

    1984-01-01

    The rumen and the mammalian large intestine are similar in many respects. Microbial protein appears to be synthesized and degraded in the digesta of both organs in a comparable manner. The VFA end-products of carbohydrate fermentation are produced in similar concentrations. Digesta pH is maintained with buffer added by the saliva or ileal fluid, HCO3 released into the lumen and rapid absorption of the organic acids. VFA are absorbed at equivalent rates by rumen epithelium and large intestinal mucosa. Over-production of VFA produces similar adverse effects. There is a considerable amount of species variation in the relative length and volume as well as the extent of sacculation of the large intestine. The caecum is the primary site for retention of digesta and microbial fermentation in the large intestine of rabbits, rodents and a few other species. However, the proximal colon is the major site of retention and fermentation in most mammals. Absorptions of Na and VFA appear to account for absorption of most of the water removed during passage of digesta through the large intestine. A relatively slow rate of Na absorption and release of HCO3 appears to provide the fluid and buffering capacity needed for efficient microbial digestion in the rumen and in the large intestine of some species. A more rapid absorption of Na by the large intestine of other species would aid in the conservation of Na and water. The many similarities between the large intestine and the rumen suggest that further comparison can provide additional information on both the function and diseases of these two organs. The rumen has proved to be accessible to a variety of procedures useful for the study of microbial digestive processes and its epithelium has provided a non-glandular tissue for studies of inorganic ion transport as well as the transport and metabolism of VFA. Comparative studies of the large intestine also can provide a better understanding of the functions and malfunctions of the

  5. Adaptive Machining Of Large, Somewhat Flexible Parts

    NASA Technical Reports Server (NTRS)

    Gutow, David; Wagner, Garrett; Gilbert, Jeffrey L.; Deily, David

    1996-01-01

    Adaptive machining is method of machining large, somewhat flexible workpieces to close tolerances. Devised for machining precise weld lands on aft skirts of rocket nozzles, but underlying concept generally applicable to precise machining of any of large variety of workpieces deformed by thermal, gravitational, and/or machining forces. For example, in principle, method used to bore precise hole on unanchored end of long cantilever beam.

  6. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Recent advances toward silicon growth stations and improved electronic quality of multiplesilicon are discussed. These advances were made in large measure by studies in which the composition of the gas environment around the meniscus area was varied. By introducing gases such as CO2, CO, and CH4 into this region, reproducible increases in diffusion length and cell performance were realized, with the best large area (5 cm x 10 cm) cells exceeding 11% efficiency.

  7. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  8. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  9. Large Format Detector Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2006-01-01

    Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.

  10. [Endobronchial anaplastic large cell lymphoma in childhood].

    PubMed

    Escobosa Sánchez, O M; Herrero Hernández, A; Acha García, T

    2009-05-01

    Anaplastic large cell lymphoma is a very rare disease in childhood. The most common location of this lymphoma is lymph node and skin, with endobronchial involvement being extremely rare. We report a case of a 10-year-old boy diagnosed by chance with an endobronchial anaplastic large cell lymphoma, while he was being investigated for a a benign bone disease, due to the initial absence of respiratory symptoms.

  11. Optical iconic filters for large class recognition.

    PubMed

    Casasent, D; Mahalamobis, A

    1987-06-01

    Approaches are advanced for pattern recognition when a large number of classes must be identified. Multilevel encoded multiple-iconic filters are considered for this problem. Hierarchical arrangements of iconic filters and/or preprocessing stages are described. A theoretical basis for the sidelobe level and noise effects of filters designed for large class problems is advanced. Experimental data are provided for an optical character recognition case study.

  12. Predictive models of large neutrino mixing angles

    SciTech Connect

    Barr, S.M.

    1997-02-01

    Several experimental results could be interpreted as evidence that certain neutrino mixing angles are large, of order unity. However, in the context of grand unified models the neutrino angles come out characteristically to be small, like the KM angles. It is shown how to construct simple grand-unified models in which neutrino angles are not only large but completely predicted with some precision. Six models are presented for illustration. {copyright} {ital 1997} {ital The American Physical Society}

  13. On large N solution of ABJM theory

    NASA Astrophysics Data System (ADS)

    Suyama, Takao

    2010-07-01

    We investigate the large N limit of the expectation value W(λ) of a BPS Wilson loop in ABJM theory, using an integral expression of the partition function obtained recently by Kapustin et al. Certain saddle-point equations provide the correct perturbative expansion of W(λ). The large λ behavior of W(λ) is also obtained from the saddle-point equations. The result is consistent with AdS/CFT correspondence.

  14. Zone generator for Large Space Telescope technology

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1974-01-01

    A concept is presented for monitoring the optical adjustment and performance of a Large Space Telescope which consists of a 1.2m diameter turntable with a laser stylus to operate at speeds up to 30 rpm. The focus of the laser stylus is under closed loop control. A technique for scribing zones of suitable depth, width, and uniformity applicable to large telescope mirrors is also reported.

  15. Radio astronomy with very large arrray.

    PubMed

    Hjellming, R M; Bignell, R C

    1982-06-18

    The construction of the Very Large Array of radio telescopes has been completed, and this new research instrument is now being used to make radio images of astronomical objects with a resolution comparable to or better than that of ground-based optical telescopes. The role of the Very Large Array in current and future research is discussed both in principle and in terms of a sample of observing projects.

  16. Mapping the Galaxy Distribution at Large Distances

    NASA Astrophysics Data System (ADS)

    Bellanger, Christele; de Lapparent, Valerie

    1995-12-01

    We present the first results of the ESO-Sculptor Faint Galaxy Redshift Survey designed to study the large-scale galaxy distribution at large distances in the direction of the southern Galactic pole. The galaxy catalog is based on deep multicolor CCD photometry. To date, 353 galaxies with R <= 20.5 have a reliable redshift, representing a ~52% complete sample over 0.28 deg2. By its combination of angular coverage and high sampling rate, this survey provides the first detailed maps of the galaxy distribution in the redshift interval 0.1 <~ z <~ 0.5. These maps reveal a large number of sharp walls separated by vast regions devoid of galaxies with diameters <~50 h-1 Mpc (using H0 = 100 h km s-1 Mpc-1 and q0 = 0.5). We find no evidence for periodic structure on scales ~130 h-1 Mpc as suggested by Koo et al. (1993). From the ESO-Sculptor Survey, the large-scale structure at z <~ 0.5 appears to be consistent with the results of the nearby surveys (Geller & Huchra 1989). These new data underline the essential role of densely sampled redshift surveys for understanding the large-scale clustering at large distances.

  17. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  18. Large area monolithic organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Tao, Cheng; Hambsch, Mike; Pivrikas, Almantas; Velusamy, Marappan; Aljada, Muhsen; Zhang, Yuliang; Burn, Paul L.; Meredith, Paul

    2012-11-01

    Although efficiencies of > 10% have recently been achieved in laboratory-scale organic solar cells, these competitive performance figures are yet to be translated to large active areas and geometries relevant for viable manufacturing. One of the factors hindering scale-up is a lack of knowledge of device physics at the sub-module level, particularly cell architecture, electrode geometry and current collection pathways. A more in depth understanding of how photocurrent and photovoltage extraction can be optimised over large active areas is urgently needed. Another key factor suppressing conversion efficiencies in large area cells is the relatively high sheet resistance of the transparent conducting anode - typically indium tin oxide. Hence, to replace ITO with alternative transparent conducting anodes is also a high priority on the pathway to viable module-level organic solar cells. In our paper we will focus on large area devices relevant to sub-module scales - 5 cm × 5 cm monolithic geometry. We have applied a range of experimental techniques to create a more comprehensive understanding of the true device physics that could help make large area, monolithic organic solar cells more viable. By employing this knowledge, a novel transparent anode consisting of molybdenum oxide (MoOx) and silver (Ag) is developed to replace ITO and PEDOT-free large area solar cell sub-modules, acting as both a transparent window and hole-collecting electrode. The proposed architecture and anode materials are well suited to high throughput, low cost all-solution processing.

  19. Subaperture stitching interferometer for large optics

    NASA Astrophysics Data System (ADS)

    Zeng, Shengyue; Dai, Yifan; Chen, Shanyong

    2009-05-01

    Ultra-high precision measurement of the form is critical in deterministic machining of optical components. It is generally accomplished with an interferometer. However, a standard interferometer is incompetent for large convex aspherical surfaces or those with large relative apertures. Hence subaperture stitching interferometry was proposed to extend the vertical range of measurement and enhance the lateral resolution, based on the idea of "stitching pieces together". This paper presents a prototype design for subaperture stitching interferometer (SASI) for large optics. It applies to large flats (clear aperture<700mm), large concave spherical or aspherical surfaces (clear aperture<350mm, 1:2large optics. Then the multi-axis mechanical design is introduced in detail. The kinematical model of SASI is built according to the kinematics of open-loop robots. It helps to determine the stroke, resolution and accuracy of each axis. The advantages of the iterative subaperture stitching algorithm, e.g., no requirements of precise prior knowledge of subaperture alignment error, considerably facilitate the mechanical design.

  20. 26 CFR 54.4980H-2 - Applicable large employer and applicable large employer member.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... employer/controlled group). (i) Facts. For all of 2015 and 2016, Corporation Z owns 100 percent of all... employees during 2015, Corporations Z, Y, and X together are an applicable large employer for 2016. Each of Corporations Z, Y and X is an applicable large employer member for 2016. Example 2 (Applicable large...

  1. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  2. Megascours: the morphodynamics of large river confluences

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Sambrook Smith, Greg; Nicholas, Andrew; Best, Jim; Bull, Jon; Vardy, Mark; Goodbred, Steve; Haque Sarker, Maminul

    2015-04-01

    River confluences are wildly acknowledged as crucial controlling influences upon upstream and downstream morphology and thus landscape evolution. Despite their importance very little is known about their evolution and morphodynamics, and there is a consensus in the literature that confluences represent fixed, nodal points in the fluvial network. Confluences have been shown to generate substantial bed scours around five times greater than mean depth. Previous research on the Ganges-Jamuna junction has shown large river confluences can be highly mobile, potentially 'combing' bed scours across a large area, although the extent to which this is representative of large confluences in general is unknown. Understanding the migration of confluences and associated scours is important for multiple applications including: designing civil engineering infrastructure (e.g. bridges, laying cable, pipelines, etc.), sequence stratigraphic interpretation for reconstruction of past environmental and sea level change, and in the hydrocarbon industry where it is crucial to discriminate autocyclic confluence scours from widespread allocyclic surfaces. Here we present a wide-ranging global review of large river confluence planforms based on analysis of Landsat imagery from 1972 through to 2014. This demonstrates there is an array of confluence morphodynamic types: from freely migrating confluences such as the Ganges-Jamuna, through confluences migrating on decadal timescales and fixed confluences. Along with data from recent geophysical field studies in the Ganges-Brahmaputra-Meghna basin we propose a conceptual model of large river confluence types and hypothesise how these influence morphodynamics and preservation of 'megascours' in the rock record. This conceptual model has implications for sequence stratigraphic models and the correct identification of surfaces related to past sea level change. We quantify the abundance of mobile confluence types by classifying all large confluences

  3. Large Payload Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Pope, James C.

    2011-01-01

    Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure - roads, bridges, airframes, and buildings - necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider how large spacecraft are designed, and where they are manufactured, tested, or launched, could result in unforeseen cost to modify/develop infrastructure, or incur additional risk due to increased handling or elimination of key verifications. During test and verification planning for the Altair project, a number of transportation and test issues related to the large payload diameter were identified. Although the entire Constellation Program - including Altair - was canceled in the 2011 NASA budget, issues identified by the Altair project serve as important lessons learned for future payloads that may be developed to support national "heavy lift" strategies. A feasibility study performed by the Constellation Ground Operations (CxGO) project found that neither the Altair Ascent nor Descent Stage would fit inside available transportation aircraft. Ground transportation of a payload this large over extended distances is generally not permitted by most states, so overland transportation alone would not have been an option. Limited ground transportation to the nearest waterway may be permitted, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary

  4. Metrology of Large Parts. Chapter 5

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    As discussed in the first chapter of this book, there are many different methods to measure a part using optical technology. Chapter 2 discussed the use of machine vision to measure macroscopic features such as length and position, which was extended to the use of interferometry as a linear measurement tool in chapter 3, and laser or other trackers to find the relation of key points on large parts in chapter 4. This chapter looks at measuring large parts to optical tolerances in the sub-micron range using interferometry, ranging, and optical tools discussed in the previous chapters. The purpose of this chapter is not to discuss specific metrology tools (such as interferometers or gauges), but to describe a systems engineering approach to testing large parts. Issues such as material warpage and temperature drifts that may be insignificant when measuring a part to micron levels under a microscope, as will be discussed in later chapters, can prove to be very important when making the same measurement over a larger part. In this chapter, we will define a set of guiding principles for successfully overcoming these challenges and illustrate the application of these principles with real world examples. While these examples are drawn from specific large optical testing applications, they inform the problems associated with testing any large part to optical tolerances. Manufacturing today relies on micrometer level part performance. Fields such as energy and transportation are demanding higher tolerances to provide increased efficiencies and fuel savings. By looking at how the optics industry approaches sub-micrometer metrology, one can gain a better understanding of the metrology challenges for any larger part specified to micrometer tolerances. Testing large parts, whether optical components or precision structures, to optical tolerances is just like testing small parts, only harder. Identical with what one does for small parts, a metrologist tests large parts and optics

  5. Astronomy Outreach for Large and Unique Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  6. Large-scale multimedia modeling applications

    SciTech Connect

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications.

  7. Management of Large and Giant Vestibular Schwannomas

    PubMed Central

    Pai, Irumee; Bowman, James; Thomas, Nick; Kitchen, Neil; Strong, Anthony; Obholzer, Rupert; Gleeson, Michael

    2011-01-01

    The study was conducted to analyze outcomes following surgical management of large and giant vestibular schwannomas and management options for residual disease. This retrospective case note study includes patients who had undergone microsurgical resection of sporadic, large, or giant vestibular schwannomas from 1986 to 2008. Tumors are classified as large if the largest extracanalicular diameter was 3.5 cm or greater and giant if 4.5 cm or greater. The study included 45 patients (33 large, 12 giant tumors), mean tumor size 4.1 cm. Total excision was achieved in 14 cases (31.1%), near-total in 26 (57.8%), and subtotal in 5 (11.1%). Facial nerve outcome was House-Brackmann Grade I/II in 25 cases (55.6%), III/IV in 16 (35.6%), and V/VI in 4 (8.9%). No recurrence has been detected in those undergoing a complete resection. No residual tumor growth been observed in 15 of 26 who underwent near-total resection (57.7%). Of 11 patients, 10 received further treatment as their residual tumors showed growth. In the subtotal excision group, one patient died, three have demonstrated no growth, and one residual tumor has grown slightly but not required intervention. Optimal management for patients with large or giant vestibular schwannomas has yet to be determined. Management decisions must balance long term function with tumor control. PMID:22547964

  8. Large-grain pipelining on hypercube multiprocessors

    SciTech Connect

    King, Chung-Ta; Ni, Lionel M.

    1988-01-01

    A new paradigm, called large-grain pipelining, for developing efficient parallel algorithms on distributed-memory multiprocessors, e.g., hypercube machines, is introduced. Large-grain pipelining attempts to maximize the degree of overlapping and minimize the effect of communication overhead in a multiprocessor system through macro-pipelining between the nodes. Algorithms developed through large-grain pipelining to perform matrix multiplication are presented. To model the pipelined computations, an analytic model is introduced, which takes into account both underlying architecture and algorithm behavior. Through the analytical model, important design parameters, such as data partition sizes, can be determined. Experiments were conducted on a 64-node NCUBE multiprocessor. The measured results match closely with the analyzed results, which establishes the analytic model as an integral part of algorithm design. Comparison with an algorithm which does not use large-grain pipelining also shows that large-grain pipelining is an efficient scheme for achieving a greater parallelism. 14 refs., 12 figs.

  9. Astronomical large Ge immersion grating by Canon

    NASA Astrophysics Data System (ADS)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  10. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  11. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  12. Modeling of forces on large MEMS

    SciTech Connect

    Saif, M.T.A.; MacDonald, N.C.

    1995-12-31

    Considerable progress has so far been achieved in the fabrication of Micro Electro Mechanical (MEM) structures made of Single Crystal Silicon. However, a detailed mechanistic study of the forces applied on MEM structures during and after fabrication is far from completion. Such studies are essential for the design of large (few mm) MEMS made of micron size features and gaps, because they have large surface to volume ratio. The surface and interface forces play a major role in their overall performance. We model the major forces applied on the MEM structures. They are: (1) Internal forces due to intrinsic strains of thin films and mismatch of the materials thermal coefficients of expansion. Such forces may deform large MEMS and render them non-planar with limited usefulness. We study the internal stresses and the corresponding deformations of large MEMS fabricated by the SCREAM (Single Crystal Reactive Ion Etching and Metallization) process developed at Cornell. We show that large planar structures can indeed be fabricated by the process by carefully designing the cross section of beams that form the structures. The study is verified by experiments.

  13. Evolution and interaction of large interplanetary streams

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.; Burlaga, L. F.

    1985-01-01

    A computer simulation for the evolution and interaction of large interplanetary streams based on multi-spacecraft observations and an unsteady, one-dimensional MHD model is presented. Two events, each observed by two or more spacecraft separated by a distance of the order of 10 AU, were studied. The first simulation is based on the plasma and magnetic field observations made by two radially-aligned spacecraft. The second simulation is based on an event observed first by Helios-1 in May 1980 near 0.6 AU and later by Voyager-1 in June 1980 at 8.1 AU. These examples show that the dynamical evolution of large-scale solar wind structures is dominated by the shock process, including the formation, collision, and merging of shocks. The interaction of shocks with stream structures also causes a drastic decrease in the amplitude of the solar wind speed variation with increasing heliocentric distance, and as a result of interactions there is a large variation of shock-strengths and shock-speeds. The simulation results shed light on the interpretation for the interaction and evolution of large interplanetary streams. Observations were made along a few limited trajectories, but simulation results can supplement these by providing the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. The use of a quantitative nonlinear simulation model including shock merging process is crucial in the interpretation of data obtained in the outer heliosphere.

  14. Large Interface Simulation in Multiphase Flow Phenomena

    SciTech Connect

    Henriques, Aparicio; Coste, Pierre; Pigny, Sylvain; Magnaudet, Jacques

    2006-07-01

    An attempt to represent multiphase multi-scale flow, filling the gap between Direct Numerical Simulation (DNS) and averaged approaches, is the purpose of this paper. We present a kind of Large Interface (LI) simulation formalism obtained after a filtering process on local instantaneous conservation equations of the two-fluid model which distinguishes between small scales and large scales contributions. LI surface tension force is also taken into account. Small scale dynamics call for modelization and large scale for simulation. Joined to this formalism, a criterion to recognize LI's is developed. It is used in an interface recognition algorithm which is qualified on a sloshing case and a bubble oscillation under zero-gravity. This method is applied to a rising bubble in a pool that collapses at a free surface and to a square-base basin experiment where splashing and sloshing at the free surface are the main break-up phenomena. (authors)

  15. Complications of thyroidectomy for large goiter

    PubMed Central

    Berri, Toufik; Houari, Rachida

    2013-01-01

    Thyroidectomy is a routinely common practiced surgery. Morbidity and mortality from thyroid surgery are disregarded nowadays and undervalued in the literature. Perioperative risks and complications still exist for large goiters and can be life-threatening. These complications may occur during the anesthesia and intubation, intra-, or postoperatively. We set out through a case of a large cervical multinodular goiter (MNG) and a review of literature the perioperative complications and how to avoid them. During the total thyroidectomy operation, an accidental devascularisation of a parathyroid gland, a cervical hematoma which was evacuated by surgical reoperation, hemodynamic disorder and a transitory hypoparathyroidism were the postoperative complications that occurred. Surgery for large goiters remains difficult; so adequate preoperative assessment, particular attention and careful operative procedure should be followed to obtain better surgical outcomes. PMID:24847400

  16. Large-scale sparse singular value computations

    NASA Technical Reports Server (NTRS)

    Berry, Michael W.

    1992-01-01

    Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.

  17. Design of large aperture focal plane shutter

    NASA Astrophysics Data System (ADS)

    Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long

    2012-09-01

    To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.

  18. Large molecules in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Dalgarno, A.; Van Dishoeck, E. F.; Black, J. H.

    1988-01-01

    The effects of the presence of a substantial component of large molecules on the chemistry of diffuse molecular clouds are explored, and detailed models of the zeta Persei and zeta Ophiuchi clouds are constructed. The major consequence is a reduction in the abundances of singly charged atomic species. The long-standing discrepancy between cloud densities inferred from rotational and fine-structure level populations and from the ionization balance can be resolved by postulating a fractional abundance of large molecules of 1 x 10 to the -7th for zeta Persei and 6 x 10 to the -7th for zeta Ophiuchi. If the large molecules are polycyclic aromatic hydrocarbons (PAH) containing about 50 carbon atoms, they contain 1 percent of the carbon in zeta Persei and 7 percent in zeta Ophiuchi. Other consequences of the possible presence of PAH molecules are discussed.

  19. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage.

  20. Large scale preparation of pure phycobiliproteins.

    PubMed

    Padgett, M P; Krogmann, D W

    1987-01-01

    This paper describes simple procedures for the purification of large amounts of phycocyanin and allophycocyanin from the cyanobacterium Microcystis aeruginosa. A homogeneous natural bloom of this organism provided hundreds of kilograms of cells. Large samples of cells were broken by freezing and thawing. Repeated extraction of the broken cells with distilled water released phycocyanin first, then allophycocyanin, and provides supporting evidence for the current models of phycobilisome structure. The very low ionic strength of the aqueous extracts allowed allophycocyanin release in a particulate form so that this protein could be easily concentrated by centrifugation. Other proteins in the extract were enriched and concentrated by large scale membrane filtration. The biliproteins were purified to homogeneity by chromatography on DEAE cellulose. Purity was established by HPLC and by N-terminal amino acid sequence analysis. The proteins were examined for stability at various pHs and exposures to visible light.

  1. Statistical Ensemble of Large Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.

  2. Cholecystectomy: clinical experience with a large series.

    PubMed

    Ganey, J B; Johnson, P A; Prillaman, P E; McSwain, G R

    1986-03-01

    This large series of 1,035 consecutive operations with a primary diagnosis of inflammatory or calculus disease of the gallbladder included a large number of elderly patients with the greatest incidence in the seventh and eighth decades of life. Operation was performed after initial stabilization when acute illness presented and without prolonged delay of medical treatment. Cholecystectomy was almost always able to be performed successfully at the initial operation. This approach produced low rates of morbidity and mortality when compared with reports from large university centers and with reports advocating delayed operation for acute cholecystitis or planned cholecystostomy in elderly and high risk patients. Operative cholangiograms were rarely performed and rates of residual or retained common duct stones were low. Length of hospital stay was related to age and performance of a common duct exploration. Draining the subhepatic space routinely by way of a separate peritoneal stab incision and removing the drain within 48 hours produced a low rate of wound complications.

  3. Public health impact of large airports.

    PubMed

    Passchier, W; Knottnerus, A; Albering, H; Walda, I

    2000-01-01

    Large airports with the related infrastructure, businesses and industrial activities affect the health of the population living, travelling and working in the surroundings of or at the airport. The employment and contributions to economy from the airport and related operations are expected to have a beneficial effect, which, however, is difficult to quantify. More pertinent data are available on the, largely negative, health effects of environmental factors, such as air and soil pollution, noise, accident risk, and landscape changes. Information on the concurrent and cumulative impact of these factors is lacking, but is of primary relevance for public health policy. A committee of the Health Council of The Netherlands recently reviewed the data on the health impact of large airports. It was concluded that, generally, integrated health assessments are not available. Such assessments, as part of sustainable mobility policy, should accompany the further development of the global aviation system.

  4. Eyeglass. 1. Very large aperture diffractive telescopes

    SciTech Connect

    Hyde, R.A.

    1999-07-01

    The Eyeglass is a very large aperture (25{endash}100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope{close_quote}s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope{close_quote}s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band ({Delta}{lambda}/{lambda}{approximately}0.1), multiband, or continuous spectral coverage. {copyright} 1999 Optical Society of America

  5. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  6. Challenges in engineering large customized bone constructs.

    PubMed

    Forrestal, David P; Klein, Travis J; Woodruff, Maria A

    2017-06-01

    The ability to treat large tissue defects with customized, patient-specific scaffolds is one of the most exciting applications in the tissue engineering field. While an increasing number of modestly sized tissue engineering solutions are making the transition to clinical use, successfully scaling up to large scaffolds with customized geometry is proving to be a considerable challenge. Managing often conflicting requirements of cell placement, structural integrity, and a hydrodynamic environment supportive of cell culture throughout the entire thickness of the scaffold has driven the continued development of many techniques used in the production, culturing, and characterization of these scaffolds. This review explores a range of technologies and methods relevant to the design and manufacture of large, anatomically accurate tissue-engineered scaffolds with a focus on the interaction of manufactured scaffolds with the dynamic tissue culture fluid environment. Biotechnol. Bioeng. 2017;114: 1129-1139. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Large subconjunctival emphysema causing diplopia and lagophthalmos.

    PubMed

    Kaiserman, I

    2003-01-01

    To describe a patient who developed diplopia, lagophthalmos and exposure keratopathy due to a large subconjunctival emphysema. A 24-year-old man sustained an injury in his left eye from a compressed air hose. The patient complained of pain and diplopia. He underwent slit-lamp examination, funduscopy and computed tomography. Ophthalmic examination revealed a decrease in vision in the left eye to 0.5, a conjunctival laceration adjacent to the medial limbus, subconjunctival hemorrhage, a large subconjunctival emphysema, lagophthalmos, hypertropia and superficial punctate keratopathy. The posterior pole was intact as were the orbital bones. Two weeks after the injury the conjunctival emphysema, diplopia, lagophthalmos and superficial keratopathy resolved, and visual acuity improved to 1. Large subconjunctival emphysema can result in diplopia, lagophthalmos and exposure keratopathy.

  8. Multiple large xanthomas: A case report

    PubMed Central

    Zhao, Chen; Kong, Mingxiang; Cao, Li; Zhang, Qiong; Fang, Yong; Ruan, Weiwei; Dou, Xiaofan; Gu, Xiaohui; Bi, Qing

    2016-01-01

    A 23-year-old male patient presented with multiple large masses in his elbows, buttocks, knees, Achilles tendons, feet, shoulders and hands. The large masses in the elbows and buttocks measured ~6×5×5 cm and ~7×5×4 cm, respectively. The patient presented with an elevated level of low-density lipoprotein cholesterol, and had been previously diagnosed with homozygous familial hypercholesterolemia (FH) and multiple xanthomas. Local surgical excisions were performed to remove the massive xanthomas from the elbows and buttocks, and histological analysis of the surgical specimens confirmed the previous diagnosis of homozygous FH (HoFH). The aim of the present study was to report a rare case of HoFH coinciding with multiple, large and widely-distributed xanthomas and to discuss the clinical characteristics, in order to provide a better understanding of xanthomas and FH. PMID:28101197

  9. Sonic Data in Large, Shallow Holes

    NASA Astrophysics Data System (ADS)

    Market, J.; Kessler, C.

    2005-05-01

    In the past, it has been difficult to acquire reliable data in large, shallow surface holes, as it is far from an ideal environment for wireline tools. With the advent of large (9 ½") LWD sonic tools which do not need to be centralised and which log the formation mere minutes after drilling, it is possible, and in fact becoming common, to acquire good quality sonic logs almost from surface to bottom. Real time sonic pore pressure and compressional logs provide confidence in drilling and ties to seismic. There are some special considerations when logging in this environment, as the large fluid enhances certain borehole modes. Theory, modelling, and field data will be presented and discussed.

  10. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  11. Large kinetic power in FRII radio jets

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Kino, Motoki; Kawakatu, Nozomu; Isobe, Naoki; Yamada, Shoichi

    2007-10-01

    We investigate the total kinetic powers ( L j) and ages ( t age) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L j to the Eddington luminosity ( L Edd) resides in 0.02< L j/ L Edd<10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon ( E c) exceed the energy derived from the minimum energy condition ( E min ): 2< E c/ E min <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.

  12. Large Synoptic Survey Telescope mount final design

    NASA Astrophysics Data System (ADS)

    Callahan, Shawn; Gressler, William; Thomas, Sandrine J.; Gessner, Chuck; Warner, Mike; Barr, Jeff; Lotz, Paul J.; Schumacher, German; Wiecha, Oliver; Angeli, George; Andrew, John; Claver, Chuck; Schoening, Bill; Sebag, Jacques; Krabbendam, Victor; Neill, Doug; Hileman, Ed; Muller, Gary; Araujo, Constanza; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García-Marchena, Luis; Ruiz de Argandoña, Ismael; Romero, Francisco M.; Rodríguez, Ricardo; Carlos González, José; Venturini, Marco

    2016-08-01

    This paper describes the status and details of the large synoptic survey telescope1,2,3 mount assembly (TMA). On June 9th, 2014 the contract for the design and build of the large synoptic survey telescope mount assembly (TMA) was awarded to GHESA Ingeniería y Tecnología, S.A. and Asturfeito, S.A. The design successfully passed the preliminary design review on October 2, 2015 and the final design review January 29, 2016. This paper describes the detailed design by subsystem, analytical model results, preparations being taken to complete the fabrication, and the transportation and installation plans to install the mount on Cerro Pachón in Chile. This large project is the culmination of work by many people and the authors would like to thank everyone that has contributed to the success of this project.

  13. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1979-01-01

    Technology developed by NASA in conjunction with industry for potential large, deployable space antennas with applications in communication, radio astronomy and earth observation is reviewed. Concepts for deployable antennas that have been developed to the point of detail design are summarized, including the advanced sunflower precision antenna, the radial rib antenna, the maypole (hoop/column) antenna and the parabolic erectable truss antenna. The assessment of state-of-the-art deployable antenna technology is discussed, and the approach taken by the NASA Large Space Systems Technology (LSST) Program to the development of technology for large space antenna systems is outlined. Finally, the further development of the wrap-rib antenna and the maypole (hoop/column) concept, which meet mission model requirements, to satisfy LSST size and frequency requirements is discussed.

  14. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1979-01-01

    Technology developed by NASA in conjunction with industry for potential large, deployable space antennas with applications in communication, radio astronomy and earth observation is reviewed. Concepts for deployable antennas that have been developed to the point of detail design are summarized, including the advanced sunflower precision antenna, the radial rib antenna, the maypole (hoop/column) antenna and the parabolic erectable truss antenna. The assessment of state-of-the-art deployable antenna technology is discussed, and the approach taken by the NASA Large Space Systems Technology (LSST) Program to the development of technology for large space antenna systems is outlined. Finally, the further development of the wrap-rib antenna and the maypole (hoop/column) concept, which meet mission model requirements, to satisfy LSST size and frequency requirements is discussed.

  15. Unusually large sialolith of Wharton's duct

    PubMed Central

    Iqbal, Ali; Gupta, Anup K.; Natu, Subodh S.; Gupta, Atul K.

    2012-01-01

    The formation of calcific concretions in the salivary duct or glands is a common disorder, especially in the submandibular glands. Most of the salivary calculi are small in size, in contrast to those that reach several centimeters, which are reported as megaliths or giant calculi in the literature. They may occur in any of the salivary gland ducts but are most common in Wharton's duct and the submandibular gland. This report presents clinical and radiographical sign of an unusually large sialolith. There was painless swelling on the floor of the edentulous mouth and patient was unaware of it. Radiographical examination revealed large irregular radio-opaque mass superimposed on right canine and premolar areas. This case report describes a patient presenting with an unusually large submandibular gland duct sialolith, the subsequent patient management, the aetiology, diagnosis and its treatment. PMID:23483770

  16. Large screen AC Plasma Display Technology overview

    NASA Astrophysics Data System (ADS)

    Hairabedian, B.; Lorenzen, J.; Perry, C.; Pleshko, P.; Rita, R.

    This article describes IBMs newest 581 AC Plasma Display Technology which was developed to provide a large screen, multiple image-format capability. An overview of the construction features of this large screen display is given, followed by a discussion of aspects of the technology which had to be developed to satisfy manufacturability and quality requirements. Discussed are the process considerations which were satisfied to obtain a high yield high volume fabrication process, the development of new low temperature glasses for the dielectric and seal materials, and the development of a new spacer technology. The methods used to obtain the panel design with the best possible combination of operating characteristics are described, followed by discussion of a panel reliability model which predicts that the panel will operate reliably for over 350,000 hours. Finally, the logical areas of potential technology extension for large screen AC Plasma devices are presented.

  17. Large-scale nanophotonic phased array.

    PubMed

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  18. Managing conflict between large carnivores and livestock.

    PubMed

    van Eeden, Lily M; Crowther, Mathew S; Dickman, Chris R; Macdonald, David W; Ripple, William J; Ritchie, Euan G; Newsome, Thomas M

    2017-05-29

    Large carnivores are persecuted globally because they threaten human industries and livelihoods. How this conflict is managed has consequences for the conservation of large carnivores and biodiversity more broadly. Mitigating human-predator conflict should be evidence-based and accommodate people's values while protecting carnivores. Despite much research into human and large-carnivore coexistence strategies, there have been few attempts to document the success of conflict-mitigation strategies on a global scale. We conducted a meta-analysis of global research on conflict mitigation related to large carnivores and humans. We focused on conflicts that arise from the threat large carnivores pose to livestock. We first used structured and unstructured searching to identify replicated studies that used before-after or control-impact design to measure change in livestock loss as a result of implementing a management intervention. We then extracted relevant data from these studies to calculate an overall effect size for each intervention type. Research effort and focus varied among continents and aligned with the histories and cultures that shaped livestock production and attitudes toward carnivores. Livestock guardian animals most effectively reduced livestock losses. Lethal control was the second most effective control, although its success varied the most, and guardian animals and lethal control did not differ significantly. Financial incentives have promoted tolerance of large carnivores in some settings and reduced retaliatory killings. We suggest coexistence strategies be location-specific, incorporate cultural values and environmental conditions, and be designed such that return on financial investment can be evaluated. Improved monitoring of mitigation measures is urgently required to promote effective evidence-based policy. © 2017 Society for Conservation Biology.

  19. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  20. Heterothermy in large mammals: inevitable or implemented?

    PubMed

    Hetem, Robyn S; Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan

    2016-02-01

    Advances in biologging techniques over the past 20 years have allowed for the remote and continuous measurement of body temperatures in free-living mammals. While there is an abundance of literature on heterothermy in small mammals, fewer studies have investigated the daily variability of body core temperature in larger mammals. Here we review measures of heterothermy and the factors that influence heterothermy in large mammals in their natural habitats, focussing on large mammalian herbivores. The mean 24 h body core temperatures for 17 species of large mammalian herbivores (>10 kg) decreased by ∼1.3°C for each 10-fold increase in body mass, a relationship that remained significant following phylogenetic correction. The degree of heterothermy, as measured by the 24 h amplitude of body core temperature rhythm, was independent of body mass and appeared to be driven primarily by energy and water limitations. When faced with the competing demands of osmoregulation, energy acquisition and water or energy use for thermoregulation, large mammalian herbivores appear to relax the precision of thermoregulation thereby conserving body water and energy. Such relaxation may entail a cost in that an animal moves closer to its thermal limits for performance. Maintaining homeostasis requires trade-offs between regulated systems, and homeothermy apparently is not accorded the highest priority; large mammals are able to maintain optimal homeothermy only if they are well nourished, hydrated, and not compromised energetically. We propose that the amplitude of the 24 h rhythm of body core temperature provides a useful index of any compromise experienced by a free-living large mammal and may predict the performance and fitness of an animal. © 2014 Cambridge Philosophical Society.

  1. Beyond editing to writing large genomes.

    PubMed

    Chari, Raj; Church, George M

    2017-08-30

    Recent exponential advances in genome sequencing and engineering technologies have enabled an unprecedented level of interrogation into the impact of DNA variation (genotype) on cellular function (phenotype). Furthermore, these advances have also prompted realistic discussion of writing and radically re-writing complex genomes. In this Perspective, we detail the motivation for large-scale engineering, discuss the progress made from such projects in bacteria and yeast and describe how various genome-engineering technologies will contribute to this effort. Finally, we describe the features of an ideal platform and provide a roadmap to facilitate the efficient writing of large genomes.

  2. Dynamics and control of large space structures

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.; Ryan, R. S.; Scofield, H. N.; Sims, J. L.

    1984-01-01

    An attempt is made to gather data useful to investigators in the fields of large space structure dynamics and control modeling, design and testing. Attention is given to structural dynamics and its relationship to such allied engineering fields as flutter analysis, as well as to problems in the prediction of atmospheric density at orbital altitude. The first challenge posed by large space structure control is the design of control systems with natural frequencies above several major structural frequencies. The establishment of a sufficiently accurate structural model, plant excitation, and shape maintenance, are noted to be additional problems.

  3. Precision genetic engineering in large mammals.

    PubMed

    Garrels, Wiebke; Ivics, Zoltan; Kues, Wilfried A

    2012-07-01

    Precision genetic engineering based on stable chromosomal insertion of exogenous DNA in the genomes of large mammals is immensely important for the development of improved biomedical models, pharmaceutical research and an accelerated breeding progress. Precision genetic engineering requires (i) a known locus of genomic integration, (ii) a defined status of foreign DNA, (iii) that transgene expression is unaffected by neighbouring chromosomal sequences, (iv) endogenous genes are not mutated and (v) no unwanted DNA sequences are present. Recently, advanced molecular techniques exploiting exogenous enzymes have opened the possibilities for more sophisticated genetic engineering. Here, we critically review current developments of enzyme-catalysed approaches for targeted transgenesis in large mammals.

  4. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  5. Large Tabular Iceberg, South Atlantic Ocean

    NASA Image and Video Library

    1991-09-18

    This large tabular iceberg, broken off from the Antarctic Ice Sheet, was spotted in the South Atlantic Ocean (57.0S, 57.0W) southeast of the tip of South America as it was slowly being moved north and east by wind, current and tidal influences. This type of iceberg, never to be seen in the northern hemisphere, is typical for Antarctica. Although some such icebergs are as large as 100 km in length, this one measures about 35 by 69 km.

  6. Pions in large N quantum chromodynamics.

    PubMed

    Weinberg, Steven

    2010-12-31

    An effective field theory of quarks, gluons, and pions, with the number N of colors treated as large, is proposed as a basis for calculations of hadronic phenomena at moderate energies. The qualitative consequences of the large N limit are similar though not identical to those in pure quantum chromodynamics, but because constituent quark masses appear in the effective Lagrangian, the 't Hooft coupling in the effective theory need not be strong at moderate energies. To leading order in 1/N the effective theory is renormalizable, with only a finite number of terms in the Lagrangian.

  7. Large bimedial rectus recessions in congenital esotropia.

    PubMed Central

    Szmyd, S. M.; Nelson, L. B.; Calhoun, J. H.; Spratt, C.

    1985-01-01

    The success rate of large (6 and 7 mm) bimedial rectus recessions in 45 congenital esotropes with deviations of 50 prism dioptres or greater was found to be 91%. Judgment of final alignment was made six weeks postoperatively, with an average follow-up of 13 months. Large bimedial rectus recessions are an effective surgical treatment for congenital esotropia. This procedure does not significantly alter adduction, and leaves other muscles available should further surgery be necessary. These findings show that initial surgery on three or more muscles is unnecessary in congenital esotropia. PMID:3994944

  8. Formal Verification of Large Software Systems

    NASA Technical Reports Server (NTRS)

    Yin, Xiang; Knight, John

    2010-01-01

    We introduce a scalable proof structure to facilitate formal verification of large software systems. In our approach, we mechanically synthesize an abstract specification from the software implementation, match its static operational structure to that of the original specification, and organize the proof as the conjunction of a series of lemmas about the specification structure. By setting up a different lemma for each distinct element and proving each lemma independently, we obtain the important benefit that the proof scales easily for large systems. We present details of the approach and an illustration of its application on a challenge problem from the security domain

  9. Diffuse Large B-Cell Lymphoma

    PubMed Central

    Friedberg, Jonathan W.

    2008-01-01

    Synopsis Diffuse Large B-Cell Lymphoma (DLBCL) remains a curable lymphoma, with improved outcome due in large part to incorporation of rituximab in standard regimens. The disease is heterogeneous clinically, morphologically, and molecularly. Recent insights into the molecular heterogeneity of DLBCL are beginning to yield novel therapeutics with significant promise for key subsets of patients. Although CHOP chemotherapy with rituximab remains a standard therapeutic approach for most patients with DLBCL, we anticipate that novel agents will be included in treatment regimens for many patients in the near future. PMID:18954744

  10. Large fracture toughness boron-epoxy composites

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1975-01-01

    The high tensile strengths of strong interfacial bonding may be combined with the large fracture toughness of weak interfacial bonding in brittle fiber/brittle matrix composites by intermittently coating the filaments before layup so as to have random alternate weak and strong regions. Appropriate coating materials enable Cook-Gordon Mode I interfacial debonding to take place, which produces very long pull-out lengths with an associated large contribution to toughness. Unidirectional boron-epoxy composites have been so made which have toughnesses greater than 200 kJ/sq m while retaining rule of mixtures tensile strengths. Similar trends have been observed for crossply layups.

  11. Method of Making Large Area Nanostructures

    NASA Technical Reports Server (NTRS)

    Marks, Alvin M.

    1995-01-01

    A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.

  12. Large natural geophysical events: planetary planning

    SciTech Connect

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.

  13. Knowledge Discovery in Large Data Sets

    SciTech Connect

    Simas, Tiago; Silva, Gabriel; Miranda, Bruno; Ribeiro, Rita

    2008-12-05

    In this work we briefly address the problem of unsupervised classification on large datasets, magnitude around 100,000,000 objects. The objects are variable objects, which are around 10% of the 1,000,000,000 astronomical objects that will be collected by GAIA/ESA mission. We tested unsupervised classification algorithms on known datasets such as OGLE and Hipparcos catalogs. Moreover, we are building several templates to represent the main classes of variable objects as well as new classes to build a synthetic dataset of this dimension. In the future we will run the GAIA satellite scanning law on these templates to obtain a testable large dataset.

  14. Infrared digital holography for large objects investigation

    NASA Astrophysics Data System (ADS)

    Geltrude, A.; Locatelli, M.; Poggi, P.; Pelagotti, A.; Paturzo, M.; Ferraro, P.; Meucci, R.

    2011-05-01

    In this work we show several acquisition setups and techniques which make it possible to obtain holographic recording and reconstruction of large objects by means of Infrared Digital Holography (IDH). In previous works it was demonstrated that, using the long wavelength coherent radiation produced by a CO2 laser instead of visible radiation, it is possible to obtain advantages in terms of larger field of view and lower seismic noise sensitivity. The only drawback using this wavelength is represented by the low resolution of current recording devices in this spectral region. The reported methods may have industrial applications where investigation of large dimension samples is needed.

  15. [Large vessels vasculopathy in systemic sclerosis].

    PubMed

    Tejera Segura, Beatriz; Ferraz-Amaro, Iván

    2015-12-07

    Vasculopathy in systemic sclerosis is a severe, in many cases irreversible, manifestation that can lead to amputation. While the classical clinical manifestations of the disease have to do with the involvement of microcirculation, proximal vessels of upper and lower limbs can also be affected. This involvement of large vessels may be related to systemic sclerosis, vasculitis or atherosclerotic, and the differential diagnosis is not easy. To conduct a proper and early diagnosis, it is essential to start prompt appropriate treatment. In this review, we examine the involvement of large vessels in scleroderma, an understudied manifestation with important prognostic and therapeutic implications.

  16. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  17. Health care reform: perspectives from large employers.

    PubMed

    Darling, Helen

    2010-06-01

    Recently enacted health reform legislation will have mostly positive effects on large employers, as millions more Americans gain access to affordable insurance and, potentially, primary care. But the law will impose new administrative burdens and financing costs on employers, while raising concerns about provisions that could allow their lower-wage employees to obtain coverage through insurance exchanges. Given the need to restrain the rate of growth of health spending, the private sector, especially large employers, must collaborate with the public sector to drive delivery system reform. And every public program and exchange should appoint a chief value officer who reports quarterly on spending, cost drivers, and potential ways to contain costs.

  18. Identification of large space structures - Overview

    NASA Technical Reports Server (NTRS)

    Denman, Eugene; Juang, Jer-Nan; Junkins, John; Kamat, Manohar; Hasselman, T. K.

    1988-01-01

    The system identification process presently discussed for the case of large space structures uses the observed input to a system and its observed response, or output, to derive an analytical model of the system which can then be used to predict its response to future inputs. Due to their size and complexity, as well as the intrinsic difficulty of identifying the environment in which they function, large space structures will require vast amounts of information, encompassing both experimental and analytical data for identification. A status evaluation is made of the structural system identification literature to date.

  19. Ground test experiment for large space structures

    NASA Technical Reports Server (NTRS)

    Tollison, D. K.; Waites, H. B.

    1985-01-01

    In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.

  20. If θ13 is large, then what?

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu

    2013-02-01

    As indicated by the recent data obtained by the T2K and the MINOS experiments θ13 can be large, even be comparable to the Chooz limit. Assuming that it will be confirmed by ongoing reactor and accelerator experiments I discuss its possible implications in the context of how to explore the remaining unknowns in the lepton flavor mixing. While it opens wide range of possibilities to explore CP and the mass hierarchy, I emphasize that the large θ13 allows us to take "all in one" (everything in a lunch box) approach.

  1. Sclerotherapy for large hydrocoeles in Nigeria.

    PubMed

    Onu, P E

    2000-07-01

    Sclerotherapy with tetracycline hydrochloride was used to treat 99 patients with large hydrocoeles (range 300-1500 ml). The mean age of these patients was 52 years. In 55.5% of the patients one treatment was adequate. Two treatments were required in 22%; three in 10%; four in 3%; and five in 7% of the patients. In two patients sclerotherapy failed. Complications were minimal. Only 15% of the patients complained of severe pain. The overall success rate was 98%. Tetracycline sclerotherapy for large hydrocoeles is effective, safe and economical and is preferred for older patients who are at risk from anaesthetic complications.

  2. Large space structures - Fantasies and facts

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Boyer, W. J.

    1980-01-01

    A review of large space structures activities from 1973 to 1979 is presented. Long-range studies of space colonies, gigantic solar power stations and projected earth applications revived interest in space activities. Studies suggest opportunities for advanced antenna and platform applications. Matching low-thrust propulsion to large flexible vehicles will be a key technology. Current structures technology investigations include deployable and erectable structures and assembly techniques. Based on orbited structures experience, deployment reliability is a critical issue for deployable structures. For erectable structures, concepts for earth-fabricated and space-fabricated memb

  3. Large eddy simulation in the ocean

    NASA Astrophysics Data System (ADS)

    Scotti, Alberto

    2010-12-01

    Large eddy simulation (LES) is a relative newcomer to oceanography. In this review, both applications of traditional LES to oceanic flows and new oceanic LES still in an early stage of development are discussed. The survey covers LES applied to boundary layer flows, traditionally an area where LES has provided considerable insight into the physics of the flow, as well as more innovative applications, where new SGS closure schemes need to be developed. The merging of LES with large-scale models is also briefly reviewed.

  4. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  5. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  6. Structure of large dsDNA viruses

    PubMed Central

    Klose, Thomas; Rossmann, Michael G.

    2015-01-01

    Nucleocytoplasmic large dsDNA viruses (NCLDVs) encompass an ever-increasing group of large eukaryotic viruses, infecting a wide variety of organisms. The set of core genes shared by all these viruses includes a major capsid protein with a double jelly-roll fold forming an icosahedral capsid, which surrounds a double layer membrane that contains the viral genome. Furthermore, some of these viruses, such as the members of the Mimiviridae and Phycodnaviridae have a unique vertex that is used during infection to transport DNA into the host. PMID:25003382

  7. Tensor methods for large, sparse unconstrained optimization

    SciTech Connect

    Bouaricha, A.

    1996-11-01

    Tensor methods for unconstrained optimization were first introduced by Schnabel and Chow [SIAM J. Optimization, 1 (1991), pp. 293-315], who describe these methods for small to moderate size problems. This paper extends these methods to large, sparse unconstrained optimization problems. This requires an entirely new way of solving the tensor model that makes the methods suitable for solving large, sparse optimization problems efficiently. We present test results for sets of problems where the Hessian at the minimizer is nonsingular and where it is singular. These results show that tensor methods are significantly more efficient and more reliable than standard methods based on Newton`s method.

  8. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  9. Laboratory Modeling of Aspects of Large Fires,

    DTIC Science & Technology

    1984-04-30

    7 -7 g~L AD-A153 152 DNA-TR- 84-18 LABORATORY MODELING OF ASPECTS OF LARGE FIRES G.F. Carrier "URARY F.E. Fendell b DVSO R.D. Fleeter N. Got L.M...I1I TITLE (include Socurty Olassihicarion) LABORATORY MODELING OF ASPECTS OF LARGE FIRES 12. PERSONAL AUrHoR(S G.F. Carrier F.E. Fendell R.D. Fleeter N...Motorbuch Verlag.___ Caidin, M. (1960). A Torch to the Enemy: the Fire Raid on Tokyo. New York, NY: Ballantine. Carrier, G. F., Fendell , F. E., and

  10. Method and apparatus for extruding large honeycombs

    DOEpatents

    Kragle, Harry A.; Lambert, David W.; Lipp, G. Daniel

    1996-09-03

    Extrusion die apparatus and an extrusion method for extruding large-cross-section honeycomb structures from plasticized ceramic batch materials are described, the apparatus comprising a die having a support rod connected to its central portion, the support rod being anchored to support means upstream of the die. The support rod and support means act to limit die distortion during extrusion, reducing die strain and stress to levels permitting large honeycomb extrusion without die failure. Dies of optimal thickness are disclosed which reduce the maximum stresses exerted on the die during extrusion.

  11. European Extremely Large Telescope: progress report

    NASA Astrophysics Data System (ADS)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  12. Subleading soft photons and large gauge transformations

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Laddha, Alok

    2016-11-01

    Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large U(1) gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles, (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theorem in gravity in terms of Ward identities associated to large diffeomorphisms.

  13. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  14. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  15. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  16. Ultrasound Beamforming Methods for Large Coherent Apertures

    NASA Astrophysics Data System (ADS)

    Bottenus, Nick

    This dissertation investigates the use of large coherent ultrasound apertures to improve diagnostic image quality for deep clinical targets. The current generation of ultrasound scanners restrict aperture size and geometry based on hardware limitations and field of view requirements at the expense of image quality. This work posits that, without these restrictions, ultrasound could be used for higher quality non-invasive imaging. To support this claim, an experimental device was constructed to acquire in vivo liver images with a synthetic aperture spanning at least 35 degrees at a radius of 10.2 cm with a scan time under one second. Using a 2.5 MHz commercial matrix array with the device, a lateral resolution of 0.45 mm at a depth of 11.6 cm was achieved, surpassing the capabilities of existing commercial systems. This work formed the basis for an in-depth investigation of the clinical promise of large aperture imaging. Ex vivo study of volumetric imaging through the human abdominal wall demonstrated the ability of large apertures to improve target detectability at depth by significantly increasing lateral resolution, even in the presence of tissue-induced aberration and reverberation. For various abdominal wall samples studied, full-width at half-maximum resolution was increased by 1.6 to 4.3 times using a 6.4 cm swept synthetic aperture compared to conventional imaging. Harmonic plane wave imaging was shown to limit the impact of reverberation clutter from the tissue layer and produce images with the highest target detectability, up to a 45.9% improvement in contrast-to-noise ratio (CNR) over fundamental imaging. This study was corroborated by simulation of a 10 cm concave matrix array imaging through an abdominal wall based on the Visible Human Project data set. The large aperture data were processed in several ways, including in their entirety as a fully populated large array as well as mimicking the swept synthetic aperture configuration. Image quality

  17. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  18. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  19. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  20. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.