Science.gov

Sample records for large nuclear turbines

  1. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  2. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  3. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  4. Design evolution of large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1979-01-01

    During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.

  5. Upgrading of HP turbines for nuclear power stations

    SciTech Connect

    Marlow, B.A.; Brown, R.D.

    1998-12-31

    Many papers have been written on the upgrading of nuclear plant LP turbines but there are also strong reasons for the upgrading of the HP turbines. Two principal reasons are discussed in this paper. Fouling by deposition on the feedwater side of the stream generator tubes, frequently results in a reduction of pressure at the turbine stop valve and a consequent loss of power output. This loss of power can be largely offset by fitting increased capacity blading in part of the HP turbine which increases the swallowing capacity of the turbine. It is necessary to consider the increased capacity blading, bypassing of heaters and future fouling to arrive at an optimum solution. Since the design of the operating nuclear stations GEC ALSTHOM have made very significant advances in the design of steam turbine HP blading and it is now possible to upgrade the HP turbine with blades of modern design to give a substantial increase in power output. The pay back period for such a upgrade is short and the paper describes some of the Company`s successful nuclear HP upgrading in the UK. The two actions described above can be combined, or indeed, be carried out in conjunction with an LP upgrade.

  6. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  7. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  8. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  9. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  10. Meteorological aspects of siting large wind turbines

    SciTech Connect

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  11. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle. PMID:19531505

  12. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  13. Measurement of large liquid volumes by turbine meters

    SciTech Connect

    Jakubenas, P.P.

    1996-09-01

    Traditionally the petroleum industry has used turbine meters for custody transfer measurement of large volumes of low viscosity products, but more recently, the trend is to apply turbine meters to higher viscosity fluids particularly crude oils. This trend is to a great extent prompted by analysis of initial capital outlay only, rather than considering total cost of ownership, as the initial cost of the turbine meter itself is considerably less than a positive displacement meter of equal flow capacity. However, another reason why the trend is continuing is related to technological advances. This paper will address meter selection basics, turbine meter theory and the recent technological advances that may permit the use of turbine meters for applications for which heretofore they could not be considered. Also the difficult to identify operational costs that may occur when using large turbine meters on high viscosity products will be discussed.

  14. Measurement of large liquid volumes by turbine meters

    SciTech Connect

    Jakubenas, P.P.

    1995-12-01

    Traditionally the petroleum industry has used turbine meters for custody transfer measurement of large volumes of low viscosity products, but more recently, the trend is to apply turbine meters to higher viscosity fluids particularly crude oils. This trend is to a great extent prompted by analysis of initial capital outlay only, rather than considering total cost of ownership, as the initial cost of the turbine meter itself is considerably less than a positive displacement meter of equal flow capacity. However another reason why the trend is continuing is related to technological advances. This paper will address meter selection basics, turbine meter theory and the recent technological advances that may permit the use of turbine meters for applications for which heretofore they could not be considered. Also the difficult to identify operational costs that may occur when using large turbine meters on high viscosity products will be discussed.

  15. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Corrigan, R. D.

    1982-01-01

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  16. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Viterna, L. A.; Corrigan, R. D.

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  17. Wind technology development: Large and small turbines

    NASA Astrophysics Data System (ADS)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  18. DOE/NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1982-01-01

    An overview of the large wind turbine activities managed by NASA is given. These activities include resuls from the first and second generation field machines (Mod-0A, -1, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  19. Large wind turbine development in Europe

    SciTech Connect

    Zervos, A.

    1996-12-31

    During the last few years we have witnessed in Europe the development of a new generation of wind turbines ranging from 1000-1500 kW size. They are presently being tested and they are scheduled to reach the market in late 1996 early 1997. The European Commission has played a key role by funding the research leading to the development of these turbines. The most visible initiative at present is the WEGA program - the development, together with Europe`s leading wind industry players of a new generation of turbines in the MW range. By the year 1997 different European manufacturers will have introduced almost a dozen new MW machine types to the international market, half of them rated at 1.5 MW. 3 refs., 3 tabs.

  20. Large, low cost composite wind turbine blades

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  1. Large Wind Turbine Design Characteristics and R and D Requirements

    NASA Technical Reports Server (NTRS)

    Lieblein, S. (Editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  2. Large wind turbine generators. [NASA program status and potential costs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The large wind turbine portion of the Federal Wind Energy Program consists of two major project efforts: (1) the Mod-0 test bed project for supporting research technology, and (2) the large experimental wind turbines for electric utility applications. The Mod-0 has met its primary objective of providing the entire wind energy program with early operations and performance data. The large experimental wind turbines to be tested in utility applications include three of the Mod-0A (200 kW) type, one Mod-1 (2000 kW), and possibly several of the Mod-2 (2500 kW) designs. This paper presents a description of these wind turbine systems, their programmatic status, and a summary of their potential costs.

  3. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  4. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. PMID:21682397

  5. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors.

  6. Experimental Investigation of Very Large Model Wind Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Charmanski, Kyle; Wosnik, Martin

    2013-11-01

    The decrease in energy yield in large wind farms (array losses) and associated revenue losses can be significant. When arrays are sufficiently large they can reach what is known as a fully developed wind turbine array boundary layer, or fully developed wind farm condition. This occurs when the turbulence statistics and the structure of the turbulence, within and above a wind farm, as well as the performance of the turbines remain the same from one row to the next. The study of this condition and how it is affected by parameters such as turbine spacing, power extraction, tip speed ratio, etc. is important for the optimization of large wind farms. An experimental investigation of the fully developed wind farm condition was conducted using a large array of porous disks (upstream) and realistically scaled 3-bladed wind turbines with a diameter of 0.25m. The turbines and porous disks were placed inside a naturally grown turbulent boundary layer in the 6m × 2.5m × 72m test section of the UNH Flow Physics Facility which can achieve test section velocities of up to 14 m/s and Reynolds numbers δ+ = δuτ / ν ~ 20 , 000 . Power, rate of rotation and rotor thrust were measured for select turbines, and hot-wire anemometry was used for flow measurements.

  7. Low frequency acoustic emissions from large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1989-01-01

    Available test data and theoretical predictions of LF noise from large wind turbines of the type to be used for energy generation are briefly summarized. The main LF noise sources are identified as tower-wake/blade interactions and rotor-plane inflow gradients. Sound-pressure time histories, measured and calculated narrow-band and rotational noise spectra, and noise radiation patterns for the WTS-4 and WWG-0600 wind turbines are presented graphically.

  8. Superconductivity for Large Scale Wind Turbines

    SciTech Connect

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  9. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  10. Models for predicting flicker induced by large wind turbines

    SciTech Connect

    Saad-Saoud, Z.; Jenkins, N.

    1999-09-01

    Accurate models for voltage flicker prediction are required so that large wind turbines may be connected, to weak utility networks, in the confidence that excessive flicker levels will not occur. These models must work satisfactorily with different wind turbine designed so that risks to manufacturers, intending to adopt a particular type of turbine, are minimized. This paper presents a simple model for identifying critical busbars, where the levels of flicker may be high. It also describes a more complex model for accurately predicting flicker induced by operating wind turbines. The models are very flexible and were developed specifically to be coupled to an existing dynamic model of an entire wind turbine. The various models representing static and dynamic loads are described and their impact on flicker are investigated. In addition, the effects of the X/R ratio and fault level of the network are discussed. Various wind conditions and different network parameters have been simulated. Results are presented from simulations carried out using measured wind turbine power time series and data from operating wind farms.

  11. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  12. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  13. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  14. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  15. Energy potential and early operational experience for large wind turbines

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1980-01-01

    Projections for the total potential output of large wind turbines in the U.S. are reviewed. NASA has developed nine large windpowered generators, of 100 kW, 200 kW, 2 MW, and 2.5 MW capacities, with rotors 100-300 ft in diameter, and all with horizontal axes. Approximately 214,000 sq miles of the U.S. have been determined as having substantial wind regimes and terrain suitable for large wind turbine siting. This translates into 340,000 Mod 2 (2.5 MW) wind turbines producing 4.9 quads of electricity annually, equivalent to saving 2.5 billion barrels of oil/yr. The cost of electricity is seen as the critical factor in utility acceptance of large wind turbines, and the Mod 2 machines are noted to achieve the 2-4 cents/kWh (1977 dollars) COE which is necessary. Problems such as pollution, including visual, auditory, EM, and land use difficulties are considered, and solutions are indicated.

  16. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  17. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L.; Somers, Dan L.

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  18. Effects of Turbine Spacing in Very Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2015-11-01

    The Dynamic Wake Meandering model(DWM) by Larsen et al. (2007) is considered state of the art for modelling the wake behind a wind turbine. DWM assumes a quasi-steady wake deficit transported as a passive tracer by large atmospheric scales. The approach is also applied to wake interaction within wind farms, although certain aspects of the complex wake interaction are not captured, see Churchfield et al. (2014). Recent studies have shown how turbines introduce low frequencies in the wake, which could describe some of the shortcomings. Chamorro et al. (2015) identified three regions of different lengths scales. Iungo et al. (2013) related low frequencies to the hub vortex instability. Okulov et al. (2014) found Strouhal numbers in the far wake stemming from the rotating helical vortex core. Simulations by Andersen et al. (2013) found low frequencies to be inherent in the flow inside an infinite wind farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent in wind farms for certain turbine spacings and affect both power production and loads. Funded by Danish Council for Strategic Research (grant 2104-09-067216/DSF), the Nordic Consortium on Optimization and Control of Wind Farms, and EuroTech wind project. The proprietary data for Vestas' NM80 turbine has been used.

  19. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  20. Development of large radial turbine turbochargers

    SciTech Connect

    Winn, K.R.; Hirst, P.; Kay, P.

    1996-12-31

    The use of fully radial turbochargers for medium speed diesel engines have largely been restricted to distillate fuel operation at relatively modest pressure ratios. Pressures on costs per kW have forced the industry to push for increases in rating and range of operation for these machines. The development of a high pressure ratio radial turbocharger with the capability to operate reliably on heavy fuel has become a high priority. This paper discusses the development of a range of such machines to cover engine output of between 500 kW and 1.6 MW. The original design of the first turbocharger in the range, the NAPIER 047, is reviewed together with the development and operational experiences gained to date. These have been incorporated into the latest two turbochargers in the range, the NAPIER 057 and 067. The paper includes descriptions of the means taken to achieve minimum time to market and low cost of manufacture.

  1. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model

  2. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  3. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  4. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  5. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  6. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  7. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  8. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  9. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  10. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  11. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  12. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  13. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  14. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  15. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  16. An overview of large wind turbine tests by electric utilities

    NASA Technical Reports Server (NTRS)

    Vachon, W. A.; Schiff, D.

    1982-01-01

    A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable.

  17. Design of large Francis turbine using optimal methods

    NASA Astrophysics Data System (ADS)

    Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.

    2012-11-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  18. Use of small turbine-type flowmeters to measure flow in large pipes

    NASA Technical Reports Server (NTRS)

    Minkin, H. L.; Hobart, H. F.

    1972-01-01

    Measurement of mass flow in large pipes using small turbine-type flowmeters is discussed. Experiments for determining accuracy of flowmeter and applicability to various types of flow measurement are reported. Illustration of turbine flowmeter and calibration curve are included.

  19. Uncertainty of measurement for large product verification: evaluation of large aero gas turbine engine datums

    NASA Astrophysics Data System (ADS)

    Muelaner, J. E.; Wang, Z.; Keogh, P. S.; Brownell, J.; Fisher, D.

    2016-11-01

    Understanding the uncertainty of dimensional measurements for large products such as aircraft, spacecraft and wind turbines is fundamental to improving efficiency in these products. Much work has been done to ascertain the uncertainty associated with the main types of instruments used, based on laser tracking and photogrammetry, and the propagation of this uncertainty through networked measurements. Unfortunately this is not sufficient to understand the combined uncertainty of industrial measurements, which include secondary tooling and datum structures used to locate the coordinate frame. This paper presents for the first time a complete evaluation of the uncertainty of large scale industrial measurement processes. Generic analysis and design rules are proven through uncertainty evaluation and optimization for the measurement of a large aero gas turbine engine. This shows how the instrument uncertainty can be considered to be negligible. Before optimization the dominant source of uncertainty was the tooling design, after optimization the dominant source was thermal expansion of the engine; meaning that no further improvement can be made without measurement in a temperature controlled environment. These results will have a significant impact on the ability of aircraft and wind turbines to improve efficiency and therefore reduce carbon emissions, as well as the improved reliability of these products.

  20. Large HAWT (Horizontal-Axis Wind Turbine) wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1984-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine was defined and described, and numerical models of wake behavior were developed. Wind tunnel studies of single turbine wakes and turbine array wakes were used to verify the theory and further refine the numerical models. The effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain.

  1. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  2. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  3. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  4. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered: Landing limitations: Alternate airports. 135.387 Section 135.387 Aeronautics and Space....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  5. New oil coolers for large-capacity turbines produced by the ural turbine works

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Ryabchikov, A. Yu.; Aronson, K. E.; Zhelonkin, N. V.

    2014-12-01

    Results of industrial application of a new oil cooler type MB-125-165 for turbines developed at by specialists of the Ural Turbine Works are presented. Its technical specifications and design features are detailed. The results of long-term (more than 10 years) usage confirm the efficiency, reliability, and environmental safety of type MB-125-165 oil coolers.

  6. Evaluation of blade-strike models for estimating the biological performance of large Kaplan hydro turbines

    SciTech Connect

    Deng, Z.; Carlson, T. J.; Ploskey, G. R.; Richmond, M. C.

    2005-11-01

    Bio-indexing of hydro turbines has been identified as an important means to optimize passage conditions for fish by identifying operations for existing and new design turbines that minimize the probability of injury. Cost-effective implementation of bio-indexing requires the use of tools such as numerical and physical turbine models to generate hypotheses for turbine operations that can be tested at prototype scales using live fish. Blade strike has been proposed as an index variable for the biological performance of turbines. Report reviews an evaluation of the use of numerical blade-strike models as a means with which to predict the probability of blade strike and injury of juvenile salmon smolt passing through large Kaplan turbines on the mainstem Columbia River.

  7. DOE large horizontal axis wind turbine development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.

    1982-01-01

    Large wind turbine activities managed by NASA Lewis are reviewed. These activities include results from the first and second generation field machines (Mod-OA, -1, and -2), the status of the Department of Interior WTS-4 machine for which NASA is responsible for technical management, and the design phase of the third generation wind turbines (Mod-5).

  8. Innovative design approaches for large wind turbine blades : final report.

    SciTech Connect

    Not Available

    2004-05-01

    The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

  9. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  10. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  11. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  12. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  13. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  14. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  15. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  16. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  17. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and terrain. (c) A program manager or other person flying a turbine engine powered large transport... characteristics of that airplane, and considering other conditions such as landing aids and terrain. (3)...

  18. (Workshop on nuclear physics with large arrays)

    SciTech Connect

    Beene, J.R.

    1989-11-17

    The traveler attended the third and final part of the three-month-long Workshop on Nuclear Structure in the Era of New Spectroscopy, held from September through November at the Niels Bohr Institute in Copenhagen, Denmark. The third or C part of this ambitious series of workshops was titled Nuclear Physics with Large Arrays.'' The author presented four talks over a two-week period, at the invitation of the organizers.

  19. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Bir, Gunjit; Jonkman, Jason

    2007-07-01

    Offshore turbines are gaining attention as means to capture the immense and relatively calm wind resources available over deep waters. This paper examines the aeroelastic stability of a three-bladed 5MW conceptual wind turbine mounted atop a floating barge with catenary moorings. The barge platform was chosen from the possible floating platform concepts, because it is simple in design and easy to deploy. Aeroelastic instabilities are distinct from resonances and vibrations and are potentially more destructive. Future turbine designs will likely be stability-driven in contrast to the current loads-driven designs. Reasons include more flexible designs, especially the torsionally-flexible rotor blades, material and geometric couplings associated with smart structures, and hydrodynamic interactions brought on by the ocean currents and surface waves. Following a brief description of the stability concept and stability analysis approach, this paper presents results for both onshore and offshore configurations over a range of operating conditions. Results show that, unless special attention is paid, parked (idling) conditions can lead to instabilities involving side-to-side motion of the tower, edgewise motion of the rotor blades, and yawing of the platform.

  20. Methods of reducing wind power changes from large turbine arrays

    SciTech Connect

    Schlueter, R.; Dorsey, J.; Lotfalian, M.; Park, G.; Shayanfar, M.

    1983-06-01

    This paper discusses methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented to establish the factors concerning the wind turbine model and siting configuration that contribute to these variations. Detailed simulation results indicate more precisely how these factors can be exploited to minimize the WECS generation changes observed. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  1. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  2. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  3. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-08-01

    In an effort to define the desirable airfoil characteristics for large variable-speed wind turbines, a systematic study was performed using a series of airfoils designed to have similar aerodynamic properties, except for the amount of lift, which varied over a wide range. For several airfoil combinations, blade shapes were designed for a 750-kW wind turbine with a 48.8-m diameter rotor using the optimization code PROPGA together with PROPID, which is an inverse design method for horizontal-axis wind turbines. Roughness effects, including the consideration of dirty-blade performance in the blade-shape optimization process, were also considered and are discussed. The results and conclusions reveal practical design implications that should aid in the aerodynamic blade design of not only large but also other sizes of variable-speed wind turbines.

  4. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems.

  5. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Astrophysics Data System (ADS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  6. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05 nuclear symmetry energy on these pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  7. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  8. Structural fatigue test results for large wind turbine blade sections

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  9. Large wind-turbine projects in the United States wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Robbins, W. H.

    1980-01-01

    The technological development of large, horizontal-axis wind turbines (100 kW-2500 kW) is surveyed with attention to prototype projects managed by NASA. Technical feasibility has been demonstrated in utility service for systems with a rated power of up to 200 kW and a rotor diameter of 125 ft (Mod-OA). Current designs of large wind turbines such as the 2500 kW Mod-2 are projected to be cost competitive for utility applications when produced in quantity, with capital costs of 600 to 700 dollars per kW (in 1977 dollars).

  10. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  11. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Viterna, L. A.; Janetzke, D. C.

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  12. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  13. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Janetzke, D. C.

    1982-01-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  14. Sound propagation studies for a large horizontal axis wind turbine

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1985-01-01

    Systematic noise measurements in three directions with respect to the wind vector, over a range of distances to 1050 m, over a range of frequencies from 8 Hz to 2000 Hz, and for a stable wind turbine noise source (WTS-4) in windy conditions (V = 9.4 to 13.0 m/s) are presented. At frequencies above 63 Hz in the downwind and crosswind directions the sound pressure levels decay with distance according to predictions based on atmospheric absorption and spherical spreading, assuming no excess attenuation due to ground effects. In the upwind direction there is excess attenuation due to an acoustic shadow zone. The assumption of a distributed noise source leads to better noise estimates in the upwind direction. For very low frequencies 8 to 16 Hz no excess attenuation was observed in the upwind direction at distances up to 1050 m and a sound pressure level decay rate of approximately 3 dB per doubling of distance was observed in the downwind direction.

  15. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Astrophysics Data System (ADS)

    Corrigan, R. D.; Viterna, L. A.

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  16. Large Eddy Simulation study of fully developed thermal wind-turbine array boundary layers

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; Calaf, Marc; Parlange, Marc B.

    2010-05-01

    It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a "fully developed" flow regime can be established. In this asymptotic regime, changes in the stream-wise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has recently been studied using Large Eddy Simulations (LES) under neutral stability conditions (Calaf et al. Physics of Fluids 22, 2010). Related wind-tunnel experiments on the WTABL are reported in Cal et al., J. Renewable and Sustainable Energy 2, 2010). The simulations showed the existence of two log-laws, one above and one below the wind turbine region. These results confirm basic assumptions made in prior work by Frandsen (J. Wind Eng. Ind. Aerodyn. 39, 1992) and Frandsen et al. (Wind Energy 9, 2006), and have enabled the development of more accurate parameterizations of the effective roughness scale for a wind farm. Now, a suite of Large Eddy Simulations, in which wind turbines are also modeled using the classical "drag disk" concept are performed but for non-neutral conditions. The aim is to study the effects of different thermal ABL stratifications, and thus to better understand the efficiency and characteristics of large wind farms and the associated land-atmosphere interactions for realistic atmospheric flow regimes. Such studies help to unravel the physics involved in extensive aggregations of wind turbines, allowing us to design better wind farm arrangements. By considering various turbine loading factors, surface roughness values and different atmospheric stratifications, it is possible to analyze the influence of these on the induced surface roughness, and the sensible heat roughness length. These last two can be used to

  17. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  18. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    SciTech Connect

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-30

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  19. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  20. Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines

    SciTech Connect

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Large scale coherent motions around marine and hydrokinetic (MHK) machines can significantly increase the structural loading and affect the overall performance of the machines. Characterization of the approach turbulence and their impact on the instantaneous response of MHK devices is essential for improving their design and performance. This preliminary study investigates the effect of turbulence and dominant energetic coherent structures induced by a vertical cylinder on the structural load and energy production in a model MHK turbine. Results show that the power generated by the turbine is significantly reduced by the presence of the cylinder. This reduction depends on the distance from the cylinder and the level of turbulence around the rotor area.

  1. Large-eddy simulation of spectral coherence in a wind turbine wake

    NASA Astrophysics Data System (ADS)

    Jimenez, A.; Crespo, A.; Migoya, E.; Garcia, J.

    2008-01-01

    This work is mainly dedicated to the study of the characteristics of spectral coherence of turbulence fluctuations in wind turbine wakes. A computational fluid dynamics (CFD) code has been implemented using a large-eddy simulation (LES) approach, which is thought to be conceptually more suitable for studying the turbulence evolution in a wind turbine wake. Comparisons with experimental data from the Nørrekær Enge II Windfarm, in Denmark, and with an analytical model proposed by Panofsky and Dutton have been performed, and the results are found to be in reasonable agreement with both.

  2. Approximate method for calculating free vibrations of a large-wind-turbine tower structure

    NASA Technical Reports Server (NTRS)

    Das, S. C.; Linscott, B. S.

    1977-01-01

    A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.

  3. Application of two passive strategies on the load mitigation of large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Shirzadeh, Rasoul; Kühn, Martin

    2016-09-01

    This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.

  4. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    NASA Astrophysics Data System (ADS)

    Sessarego, Matias; Ramos-García, Néstor; Shen, Wen Zhong; Nørkær Sørensen, Jens

    2016-09-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

  5. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  6. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  7. Design and performance analysis of control algorithm for a floating wind turbine on a large semi-submersible platform

    NASA Astrophysics Data System (ADS)

    Kim, Kwansu; Kim, Hyungyu; Lee, Joonghyuk; Kim, Seockhyun; Paek, Insu

    2016-09-01

    A control algorithm for a floating wind turbine installed on a large semi-submersible platform is investigated in this study. The floating wind turbine is different from other typical semi-submersible floating wind turbines in that the platform is so large that the platform motion is not affected by the blade pitch control. For simulation, the hydrodynamic forces data were obtained from ANSYS/AQWA, and implemented to Bladed. For the basic pitch controller, the well-known technique to increase damping by reducing the bandwidth of the controller lower than the platform pitch mode was implemented. Also, to reduce the tower load in the pitch control region, a tower damper based on the nacelle angular acceleration signal was designed. Compared with the results obtained from an onshore wind turbine controller applied to the floating wind turbine, the floating wind turbine controller could reduce the tower moments effectively, however, the standard deviation in power increased significantly.

  8. Comparison of measured and calculated sound pressure levels around a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Willshire, William L., Jr.; Hubbard, Harvey H.

    1989-01-01

    Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment.

  9. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  10. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-01-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  11. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-05-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  12. The environmental impact of the use of large wind turbines

    NASA Astrophysics Data System (ADS)

    Manning, P. T.

    The existing data base on the environmental impact of large wind energy conversion systems (WECS) is explored. The maximum blade throw distance has been calculated at 850 m, with a 5% probability of more than 300 m. Good design and inspection procedures reduce the risk. Ice throw can be prevented by aircraft deicing techniques, but detectors are still necessary. TV interference is ameliorated by the use of composite blades and directional antennas, by relocating the nearst transmission or relay station, or by introduction of cable TV. Microwave transmission effects can be avoided by careful siting of WECS in a favorable line of sight whenever within 1 km of a transmitter. Visual impact studies have produced few adverse opinions. Noise has not proved an intractable problem, although 30 dB levels have been exceeded 2100 m downwind of the Mod 2 WECS. Further studies are necessary on the effects of heightened ground turbulence produced by large WECS. It is expected that few birds will be harmed by slowly rotating blades in the birds' natural domain, a projection confirmed by sporadic studies. Finally, aircraft collisions are regarded as unlikely and actual land use, mostly confined to rural areas, is minimal.

  13. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    PubMed

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  14. Large-Eddy Simulations of Wind Turbine Wakes Subject to Different Atmospheric Stabilities

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Lundquist, J. K.; Lee, S.; Clifton, A.

    2014-12-01

    As a byproduct of energy extraction, wind turbines create a low-speed, turbulent wake that propagate downwind. When wind turbines are situated in a group, as in a wind plant, the interactions of these wakes with other turbines are important because wake effects decrease the efficiency of the wind plant, and they increase mechanical loads on individual turbines. Wakes propagate downstream differently depending on the inflow conditions, and these conditions are heavily dominated by atmospheric stability. For example, we know that wakes are more persistent in stable conditions than in unstable conditions. Also, stable conditions often have significant wind veer which skews wakes laterally. Different levels of turbulence intensity are associated with different atmospheric stability levels, and turbulence intensity acts to diffuse wakes and to cause wake meandering. Wake physics are complex, and to understand them better, a high-resolution representation of the flow is necessary. Measurements are difficult with current sensing equipment because of the sheer size of wakes and the unsteady atmospheric environment in which they are found. Numerical simulations complement measurements and provide a high-resolution representation of the entire three-dimensional, unsteady flow field. In this work, we use large-eddy simulation (LES), the highest fidelity type of computational fluid dynamics (CFD) feasible for high-Reynolds-number wake flow. LES directly resolves the larger, energy-containing turbulent scales and models the effects of the subgrid scales that the computational mesh cannot resolve. Our solver is based on the OpenFOAM open-source CFD toolbox. Turbines are modeled using rotating actuator lines. Here, we present our LES of the wake behind a modern 1.5 MW turbine subject to different inflow atmospheric stability. We will present results of wakes subject to stable (strongly and weakly stable), neutral, and unstable conditions. We are particularly interested in how

  15. Large Eddy Simulation of wind turbines using the actuator line model and immersed boundary method

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Carrasquillo-Solís, Kenneth; Leonardi, Stefano

    2014-11-01

    Despite the growth of the energy extracted from wind turbines, the flow physics is still not fully understood even under ideal operational conditions. Large Eddy Simulations of the turbulent flow past a wind turbine in a channel have been performed. The numerical setup reproduces the experiment performed in a wind tunnel at the Norwegian University of Science and Technology (NUST). The code is based on a finite difference scheme with a fractional step and Runge-Kutta, which couples the actuator line model (ALM) and the Immersed Boundary Method (IBM). Two simulations were performed, one neglecting the tower and nacelle resulting in the rotating blades only, the other modeling both the rotating blades as well as the tower and nacelle with IBM. Results relative to the simulation with tower and nacelle have a very good agreement with experiments. Profiles of turbulent kinetic energy shows that the effect of the tower and nacelle is not confined to the hub region but extend to the entire rotor. In addition we placed the wind turbine over an undulated topography to understand how it affects the performances and wake of a wind turbine. Comparison with the results obtained for the smooth wall show an interaction between the rough wall and the wake. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. The present work is supported by the National Science Foundation (NSF), Grant IIA-1243482 (WINDINSPIRE).

  16. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    PubMed

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  17. Prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1984-01-01

    A method is presented for predicting the broadband noise spectra of large horizontal axis wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. The predicted frequency spectra are compared with measured data from several machines including the MOD-OA, the MOD-2, the WTS-4 and the U.S. Wind-power Inc. machine. Also included is a broadband noise prediction for the proposed MOD-5B. The significance of the effects of machine size, power output, trailing edge bluntness and distance to the receiver is illustrated. Good agreement is obtained between the predicted and measured far field noise spectra.

  18. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  19. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  20. A simplified model for average kinetic energy flux within large wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2015-11-01

    We investigate the kinetic energy distribution within an array of wind turbines using a 1-D model for the interactions between large-scale wind farms and the atmospheric boundary layer (ABL). Obstructed shear flow scaling is used to predict the development length of the wind farm flow as well as vertical momentum flux. Within the region of flow development, momentum and energy is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This is characterized by large dispersive fluxes. Once the flow within the farm is developed, the area - averaged velocity profile exhibits an inflection point, characteristic of obstructed shear flows. The inflected velocity profile is responsible for a characteristic turbulence eddy scale, which may be responsible for a significant amount of the vertical momentum and energy flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The model result for kinetic energy flux is compared to wind tunnel measurements. The model is useful for optimizing wind turbine spacing and layout, and for assessing the impacts of wind farms on nearby wind resources and the environment.

  1. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  2. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  3. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  4. Large-eddy simulation of turbulent flow past tri-frame configurations of hydrokinetic turbines in an open channel

    NASA Astrophysics Data System (ADS)

    Chawdhary, Saurabh; Yang, Xiaolei; Hill, Craig; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    An effective way to develop arrays of hydrokinetic turbines in streams and tidal sites is to arrange them in tri-frame configurations, where three turbines are mounted together at the apexes of a triangular frame. Turbines mounted on a tri-frame can serve as the building block for rapidly deploying multi-turbine arrays. We employ large-eddy simulation (LES) to understand wake interactions of turbines mounted on tri-frame configurations and develop design guidelines for field deployment. We employ the computational framework of Yang et al. (2013) to simulate the flow past turbines with the turbines modeled as actuator lines. The computed results are compared with experiments conducted at the Saint Anthony Falls Lab (SAFL) in terms of mean flow and turbulence characteristics. The flow fields are analyzed to elucidate the mechanisms of turbine interactions and wake evolution in tri-frame configurations and to develop design guidelines for maximizing the combined power output while reducing structural loads due to turbulent fluctuations. This work was supported by NSF grant IIP-1318201. The simulations were carried out at the Minnesota Supercomputing Institute.

  5. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined. PMID:23319713

  6. Usage of advanced thick airfoils for the outer part of very large offshore turbines

    NASA Astrophysics Data System (ADS)

    Grasso, F.; Ceyhan, O.

    2014-06-01

    Nowadays one of the big challenges in wind energy is connected to the development of very large wind turbines with 100 m blades and 8-10MW power production. The European project INNWIND.EU plays an important role in this challenge because it is focused on exploring and exploiting technical innovations to make these machines not only feasible but also cost effective. In this context, the present work investigates the benefits of adopting thick airfoils also at the outer part of the blade. In fact, if these airfoils are comparable to the existing thinner ones in terms of aerodynamics, the extra thickness would lead to a save in weight. Lightweight blades would visibly contribute to reduce the cost of energy of the turbines and make them cost effective. The reference turbine defined in INNWIND.EU project has been adjusted to use the new airfoils. The results show that the rotor performance is not sacrificed when the 24% airfoils are replaced by the ECN 30% thick airfoils, while 24% extra thickness can be obtained.

  7. Flutter performance of bend-twist coupled large-scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Hayat, Khazar; de Lecea, Alvaro Gorostidi Martinez; Moriones, Carlos Donazar; Ha, Sung Kyu

    2016-05-01

    The bend-twist coupling (BTC) is proven to be effective in mitigating the fatigue loads for large-scale wind turbine blades, but at the same time it may cause the risk of flutter instability. The BTC is defined as a feature of twisting of the blade induced by the primary bending deformation. In the classical flutter, the BTC arises from the aerodynamic loads changing with the angle of attack. In this study, the effects of the structural BTC on the flutter are investigated by considering the layup unbalances (ply angle, material and thickness of the composite laminates) in the NREL 5-MW wind turbine rotor blade of glass fiber/epoxy [02/+45/-45]S laminates. It is numerically shown that the flutter speed may decrease by about 5 percent with unbalanced ply-angle only (one side angle, from 45° to 25°). It was then demonstrated that the flutter performance of the wind turbine blade can be increased by using lighter and stiffer carbon fibers which ensures the higher structural BTC at the same time.

  8. Computational Assessment of the Aerodynamic Performance of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2011-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.

  9. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  10. Large wind turbine generator performance assessment, technology status report no. 3

    NASA Astrophysics Data System (ADS)

    Vachon, W. A.

    1981-07-01

    Detailed summaries of test results are presented for the US Department of Energy's 200-kW MOD-OA horizontal-axis WTs that were interconnected with electric utilities at various locations around the United States. A description of the progress and experiences with both the MOD-1 1.5-MW WT and the cluster of three MOD-2 2.5-MW WTs is also presented, along with a summary of plans for the DOE vertical-axis wind turbine program. A brief summary of Danish large WT programs is also provided.

  11. Large Eddy Simulation of the meandering of a wind turbine wake with stochastically generated boundary conditions

    NASA Astrophysics Data System (ADS)

    Muller, Yann-Aël; Masson, Christian; Aubrun, Sandrine

    2014-06-01

    Wind turbine wakes are known to be affected by the large atmospheric turbulent scales, which can cause trajectory variations within a wide frequency band. This phenomenon, called meandering, is suspected to be a cause of premature wear on turbines located inside wind farms. This work proposes a method to generate and apply synthetic turbulent velocity series as boundary conditions in a Large Eddy Simulation of an actuator disk in a flow with realistic turbulence characteristics. The stochastic generation method relies on the inverse Short-Time Fourier Transform (STFT) of a random vector field correlated in Fourier space according to the covariance tensor calculated from the homogeneous isotropic spectral tensor. In contrast with a single Fourier transform, the STFT allows the generation of arbitrarily large velocity fields. The generated series are used as boundary values on the inlet as well as on the lateral boundaries of the domain. This allows for sustained turbulent forcing on the whole length of the domain which is especially useful for a small computational domain relative to the size of the dominant turbulent scales.

  12. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  13. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2012-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition

  14. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  15. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  16. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    SciTech Connect

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  17. Large nuclear hikes may force user exodus

    SciTech Connect

    Barber, J.

    1984-06-18

    If continued construction on uncompleted nuclear plants causes Ohio and Michigan utility rates to jump anywhere from 44 to 97%, industry may flee the area and throw 54,000 people out of work, according to recent studies. At issue are the Midland 2 nuclear plant in Jackson, Michigan and the Zimmer Plant outside Cincinnati, which is scheduled to be converted to a coal-fired plant. Other factors would influence the job exodus, but higher power costs would have a major impact on area industries. Unemployment will also result when construction workers are no longer needed for the plants. Other areas of the country face similar power price increases. Both the Ohio and Michigan reports are based on power demand and cost projections.

  18. Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-06-01

    Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

  19. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  20. An experimental study of heat transfer in a large-scale turbine rotor passage

    SciTech Connect

    Blair, M.F. )

    1994-01-01

    An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil and for the hub endwall surface. The objective of this program was to document the effects of flow three dimensionality on the heat transfer in a rotating blade row (versus a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage, and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices an on the hub endwall by the leading-edge horseshoe vortex system.

  1. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  2. Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine

    NASA Technical Reports Server (NTRS)

    To, Wai-Ming

    2012-01-01

    This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.

  3. Large eddy simulation for predicting turbulent heat transfer in gas turbines

    PubMed Central

    Tafti, Danesh K.; He, Long; Nagendra, K.

    2014-01-01

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418

  4. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    PubMed

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost.

  5. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  6. Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.

    1980-01-01

    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

  7. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    PubMed

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418

  8. Turbines in the sky

    SciTech Connect

    Boyle, R.V.; Riple, J.C.

    1987-07-01

    Gas turbines are being investigated as power sources for the proposed Star Wars weapons flatforms. The gas turbine engine offers the best opportunity for exploiting the high-temperature potential of both nuclear and chemical combustion. The use of mature gas turbine technology and existing materials would result in highly reliable PCUs capable of meeting SDI's requirements. However, operation under the temperature limits imposed by existing materials would result in a prohibitively heavy system. Cooled blades would somewhat increase temperature capability; however the turbine's mass, though reduced, would still be unacceptably large. The greatest improvements would result from the ability to operate at temperatures of up to 2000 K, pressures up to 14 MPa, and stress up to 690 MPa.

  9. Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils

    NASA Astrophysics Data System (ADS)

    Frére, A.; Sørensen, N. N.; Hillewaert, K.; Winckelmans, G.

    2016-09-01

    This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible approaches are often limited and at large Reynolds numbers (Re ≥ 106) where wall-resolved LES is still unaffordable. At these high Re, a wall-modeled LES (WMLES) approach is thus required. In order to first validate the LES methodology, before the WMLES approach, this study presents airfoil flow simulations at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 x 104), involving laminar boundary layer separation and transition in the detached shear layer, the Eppler 387 airfoil is studied at two angles of attack. The LES results agree slightly better with the experimental chordwise pressure distribution than both XFOIL and RANS results. At high Reynolds number (Re = 1.64 x 106), the NACA4412 airfoil is studied close to stall condition. In this case, although the wall model approach used for the WMLES is very basic and not supposed to handle separation nor adverse pressure gradients, all three methods provide equivalent accuracy on averaged quantities. The present work is hence considered as a strong step forward in the use of LES at high Reynolds numbers.

  10. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  11. Long term reliability and machine operation diagnosis with fiber optic sensors at large turbine generators

    NASA Astrophysics Data System (ADS)

    Bosselmann, T.; Strack, S.; Villnow, M.; Weidner, J. R.; Willsch, M.

    2013-05-01

    The increasing quantity of renewable energy in electric power generation leads to a higher flexibility in the operation of conventional power plants. The turbo generator has to face the influence of frequent start-stop-operation on thermal movement and vibration of the stator end windings. Large indirect cooled turbo generators have been equipped with FBG strain and temperature sensors to monitor the influence of peak load operation. Fiber optic accelerometers measure the vibration of the end windings at several turbine generators since many years of operation. The long term reliability of fiber optic vibration, temperature and strain sensors has been successfully proved during years of online operation. The analysis of these data in correlation to significant operation parameter lead to important diagnostic information.

  12. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    NASA Astrophysics Data System (ADS)

    Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik

    2016-09-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.

  13. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  14. Modelling Turbine Loads during an Extreme Coherent Gust using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Storey, R. C.; Norris, S. E.; Cater, J. E.

    2014-06-01

    A group of wind turbines operating in extreme transient wind conditions has been simulated using LES and an actuator model. An extreme wind event is introduced into the simulation domain using transient boundary conditions. The event is based on the extreme coherent gust (ECG) structure from the International Wind Turbine Design Standard IEC61400-1:2005 which consists of a simultaneous gust and wind direction change. Details of the implementation are discussed with regard to adapting the analytical functions described in the standard. A recently developed actuator sector method is used to represent the wind turbines in the simulation. The actuator method is coupled to the aero-elastic wind turbine simulation code FAST to allow dynamic control of the wind turbines based on the ambient flow conditions. Standard baseline controllers are used to regulate generator torque, actuate blade pitch angle and control yaw direction. A span-wise periodic array of turbines operating in a steady atmospheric boundary layer is simulated before the introduction of the ECG structure. The convection of the wind event is analysed, along with the subsequent response of the wind turbines and loading during the wind event is quantified. The simulations demonstrate a methodology for modelling groups of turbines operating in transient wind conditions that can be used to study turbine loads or test new turbine control strategies.

  15. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  16. Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Imprexia, Cliff (Technical Monitor)

    2000-01-01

    The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.

  17. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  18. Results of a utility survey of the status of large wind turbine development

    NASA Technical Reports Server (NTRS)

    Watts, A.; Quraeshi, S.; Rowley, L. P.

    1979-01-01

    Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.

  19. Detection of low frequency impulsive noise from large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1985-01-01

    The thresholds of detection of low frequency, impulsive wind turbine sounds in the presence of background noise were examined. Seven wind turbine sounds, six of which were synthesized, were used in conjunction with three background noise conditions; quiet, 35, and 45 dB(A). The results indicate that thresholds of detection are predictable based on assumed characteristics of the auditory system. The synthesized wind turbine sounds were found to adequately represent a real recording.

  20. Effect of Derating and Shutting Down of Turbines on the Extracted Power of Large Wind Farms in Thermally-Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Adkins, K. A.

    2015-12-01

    Wind power is being increasingly employed to help meet an increasing energy demand in a more environmentally friendly manner and, consequently, large wind farms consisting of thousands of turbines have been constructed and deployed in various areas. Due to a multitude of factors, the layout of these multi-turbine arrays is not always optimized for maximum wind farm power extraction. Additionally, the shutting down or derating of certain wind turbines may impact the efficiency of large wind farms. In this study, a large eddy simulation (LES) of a fully developed wind turbine array boundary layer is performed in thermally stratified conditions. The impact on the overall plant performance, quantified by the collective extracted power of the turbines, is explored using a systematic shut down and derating of selected turbines.

  1. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  2. Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerand E.

    2010-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper

  3. Large Eddy Simulation of Wind Turbine Wake Dynamics in the Stable Boundary Layer Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Kosovic, B.; Mirocha, J. D.; Lundquist, J. K.

    2014-12-01

    To thoroughly verify the actuator disk model recently implemented in WRF for large eddy simulation (LES) of wind turbine wakes, simulations of various types of turbines and atmospheric conditions must be compared to full-scale field measurements of the real atmosphere. Here, numerical simulations are compared to nacelle-based scanning lidar measurements taken in stable atmospheric conditions during a field campaign conducted at a wind farm in the western United States. Using several wake characteristics—such as the velocity deficit, centerline location, and wake width—as metrics for model verification, the simulations show good agreement with the observations. Notably, the average velocity deficit was seen to be quite high in both the experiment and simulation, resulting from a low average wind speed and therefore high average turbine thrust coefficient. Moreover, new features—namely rotor tilt and drag from the nacelle and tower—were added to the existing actuator disk model in WRF-LES. Compared to the rotor, the effect of the tower and nacelle on the flow is relatively small but nevertheless important for an accurate representation of the entire turbine. Adding rotor tilt to the model causes the vertical location of the wake center to shift upward. Continued advancement of the actuator disk model in WRF-LES will help lead to optimized turbine siting and controls at wind farms.

  4. Helical vortex-based model of deterministic stresses for Large-Eddy-Simulation of a wind turbine wake

    NASA Astrophysics Data System (ADS)

    Bracons, Marc; Meneveau, Charles; Parlange, Marc

    2008-11-01

    When representing a wind turbine in LES using a drag disk (e.g. A. Jimenez et al. 2007), the periodic effects due to the turbine's rotating elements remain unresolved. The periodic effects on the mean flow can be represented in a simulation using deterministic stresses in the wake. In this work, based on the Biot-Savart law with a helical vortex street and various simplifications, we develop an analytical expression for the deterministic, periodic velocity fluctuations in the wake. Then, the deterministic stress tensor is obtained by the product of the approximated fluctuating components of velocity, and integration over a helical period. The resulting model is implemented within a Large Eddy Simulation of an array of wind turbines, using the scale-dependent Lagrangian dynamic model (Bou-Zeid et al. 2005). The importance of the deterministic stresses on the computed wake structure is examined by varying the strength of the helical vortices.

  5. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  6. Nucleon structure at large x: nuclear effects in deuterium

    SciTech Connect

    Wally Melnitchouk

    2010-07-01

    I review quark momentum distributions in the nucleon at large momentum fractions x. Particular attention is paid to the impact of nuclear effects in deuterium on the d/u quark distribution ratio as x -> 1. A new global study of parton distributions, using less restrictive kinematic cuts in Q^2 and W^2, finds strong suppression of the d quark distribution once nuclear corrections are accounted for.

  7. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  8. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  9. A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils

    NASA Astrophysics Data System (ADS)

    J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva

    2014-06-01

    This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.

  10. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

    PubMed

    Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin

    2016-01-01

    Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.

  11. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines

    DOE PAGES

    Bevelhimer, Mark S.; Deng, Z. Daniel; Scherelis, Constantin C.

    2016-01-06

    Underwaternoise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where soundsmore » created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. As a result, a comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.« less

  12. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

    PubMed

    Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin

    2016-01-01

    Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation. PMID:26827007

  13. Failures in large gas turbines due to liquid-metal embrittlement

    SciTech Connect

    Cameron, D.W. . Turbo Products Division)

    1994-07-01

    The failures of three gas turbine components, attributed to liquid-metal embrittlement or solid-metal-induced embrittlement, are described. High temperatures inherent in the gas turbine can aggravate these phenomenon if the necessary conditions are present. Examples chosen include a power transmission shaft, flange bolts from a cooling steam line, and a turbine rotor bolt. The respective material couples involved are 17-4PH stainless steel-copper, AISI 4130-cadmium, and IN 718-cadmium. Each case includes information on the source of the aggressive material and relevant operating environment. The implications of the failures with regard to the general failure mechanism are briefly discussed.

  14. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  15. Large-eddy simulation of the flow over a hydrokinetic turbine mounted on an erodible bed

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Khosronejad, Ali; Sotiropoulos, Fotis

    2013-11-01

    Marine and hydrokinetic (MHK) energy comprises an important source of clean and renewable energy. The beds of natural waterways are usually erodible. The hydrokinetic turbines affect the sediment transport, which, on the other hand, also influences the performance of hydrokinetic turbines. A powerful computational framework for simulating marine and hydrokinetic (MHK) turbine arrays mounted in complex river bathymetry with sediment transport has been developed and validated by our group. In this work we apply this method to simulate the turbulent flow over a hydrokinetic turbine mounted in an open channel with erodible bed. Preliminary results show qualitatively good agreement with the experiment. Detailed comparison with measurements and analysis of the simulation results will be presented in the conference. This work was supported by the University of Minnesota Initiative for Renewable Energy and the Environment IREE (grant no RO-0004-12). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  16. Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.

  17. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  18. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The economic and technical potential of wind energy in the United States is discussed. Particular attention is given to the status of wind turbine operational experience as well as the environmental posture of the technology.

  19. Thickness of the electron atmosphere in large nuclear systems

    NASA Astrophysics Data System (ADS)

    Pacheco, A. F.; Sañudo, J.

    1986-03-01

    Using the relativistic Thomas-Fermi model and the virial theorem it is found that the thickness of the electron skin outside a large nuclear system is given by S⋍6.73 n-1/3, n being the electron density inside the nucleus. On leave from Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  20. Guide to the evaluation of human exposure to noise from large wind turbines

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Shepherd, K. P.; Hubbard, H. H.; Grosveld, F.

    1982-01-01

    Guidance for evaluating human exposure to wind turbine noise is provided and includes consideration of the source characteristics, the propagation to the receiver location, and the exposure of the receiver to the noise. The criteria for evaluation of human exposure are based on comparisons of the noise at the receiver location with the human perception thresholds for wind turbine noise and noise-induced building vibrations in the presence of background noise.

  1. Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods

    NASA Astrophysics Data System (ADS)

    Pereira, R.; van Bussel, G. J. W.; Timmer, W. A.

    2014-12-01

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall control to regulate power production in replacement of the pitch system. A feasibility study is conducted using a blade element momentum code and taking the National Renewable Energy Laboratory 5 MW turbine as baseline case. Considering half of the blade span is equipped with actuators, the required change in the lift coefficient to regulate power was estimated in ΔCl = 0.7. Three actuation technologies are investigated, namely Boundary Layer Transpiration, Trailing Edge Jets and Dielectric Barrier Discharge actuators. Results indicate the authority of the actuators considered is not sufficient to regulate power, since the change in the lift coefficient is not large enough. Active stall control of Horizontal Axis Wind Turbines appears feasible only if the rotor is re-designed from the start to incorporate active-stall devices.

  2. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  3. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  4. Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Flegel, Ashlie; Giel, Paul

    2014-01-01

    Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.

  5. Large volume multiple-path nuclear pumped laser

    SciTech Connect

    Hohl, F.; Deyoung, R.J.

    1981-11-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems. Official Gazette of the U.S. Patent and Trademark Office

  6. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  7. Large eddy simulation of pressure fluctuations at off-design condition in a Francis turbine based on cavitation model

    NASA Astrophysics Data System (ADS)

    Su, W. T.; Li, X. B.; Li, F. C.; Han, W. F.; Wei, X. Z.; Guo, J.

    2013-12-01

    To study the instability of a Francis turbine at off-design operating condition, a hydraulic model was established and the flow characteristics at the off-design point were studied based on large eddy simulation (LES). The simulation was conducted for both single phase model and cavitation model. The results were compared with the experimental data. Results show that the simulation based on cavitation model can capture more channel vortex structures than single phase calculation. The result of vortex rope by cavitation model is similar to the experimental result. The dominant frequency can be obtained by these two methods, while the result based on cavitation model can capture the high frequency component at the inlet of draft tube. Great difference can be seen from the internal flow of the two simulation results. These conclusions can provide a basis for the study of instability of Francis turbine.

  8. Modeling the effect of control on the wake of a utility-scale turbine via large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Annoni, Jennifer; Seiler, Pete; Sotiropoulos, Fotis

    2014-06-01

    A model of the University of Minnesota EOLOS research turbine (Clipper Liberty C96) is developed, integrating the C96 torque control law with a high fidelity actuator line large- eddy simulation (LES) model. Good agreement with the blade element momentum theory is obtained for the power coefficient curve under uniform inflow. Three different cases, fixed rotor rotational speed ω, fixed tip-speed ratio (TSR) and generator torque control, have been simulated for turbulent inflow. With approximately the same time-averaged ω, the time- averaged power is in good agreement with measurements for all three cases. Although the time-averaged aerodynamic torque is nearly the same for the three cases, the root-mean-square (rms) of the aerodynamic torque fluctuations is significantly larger for the case with fixed ω. No significant differences have been observed for the time-averaged flow fields behind the turbine for these three cases.

  9. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Smith, Helen C. M.; Lepper, Paul; Limpenny, Sian; Rees, Jon

    2014-08-01

    Three models were applied to obtain a first assessment of some of the potential impacts of large-scale operational wind turbine arrays on the marine ecosystem in a well-mixed area in a shelf sea: a biogeochemical model, a wave propagation model and an acoustic energy flux model. The results of the models are discussed separately and together to elucidate the combined effects. Overall, all three models suggested relatively weak environmental changes for the mechanisms included in this study, however these are only a subset of all the potential impacts, and a number of assumptions had to be made. Further work is required to address these assumptions and additional mechanisms. All three models suggested most of the changes within the wind turbine array, and small changes up to several tens of km outside the array. Within the array, the acoustic model indicated the most concentrated, spatially repetitive changes to the environment, followed by the SWAN wave model, and the biogeochemical model being the most diffuse. Because of the different spatial scales of the response of the three models, the combined results suggested a spectrum of combinations of environmental changes within the wind turbine array that marine organisms might respond to. The SWAN wave model and the acoustic model suggested a reduction in changes with increasing distance between turbines. The SWAN wave model suggested that the biogeochemical model, because of the inability of its simple wave model to simulate wave propagation, over-estimated the biogeochemical changes by a factor of 2 or more. The biogeochemical model suggested that the benthic system was more sensitive to the environmental changes than the pelagic system.

  10. Evidence for a Large Natural Nuclear Reactor in Mars Past

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    2006-05-01

    It has long been known that The isotopic ratios 129 Xe/132Xe and 40Ar/36Ar are very high in Mars atmosphere relative to Earth or meteoritic backgrounds. This fact has allowed the SNC meteorites to be identified as Martian based on their trapped gases (1). However, while the isotopic anomalies explained one mystery, the origin of the SNC meteorites, they created a new mystery: the rock samples from Mars show no evidence of the large amounts of Iodine or Potassium that would give naturally give rise to the Xenon and Argon isotopic anomalies (2). In fact, the Martian meteorites are depleted in Potassium relative to earth rocks. This is added to the fact that for other isotopic systems such as 80Kr, Mars rock samples must be irradiated by neutrons at fluences of 1015 /cm2 to explain observed abundances (1) . Compounding the mystery is the fact that Mars surface layer has elevated levels of Uranium and Thorium relative to Earth and even its own rocks, as determined from SNCs (3). These anomalies can be explained if some large nuclear energy release, such as by natural nuclear reactors known to have operated on Earth (4) in in some concentrated ore body, occurred with perhaps a large volcano like explosion that spread residues over the planets surface. Based on gamma ray observations from orbit (3), and the correlations of normally uncorrelated Th and K deposits , the approximate location of this event would appear to have been in the north of Mars in a region in Acidalia Planitia centered at 45N Latitude and 15W Longitude (5). The possibility of such a large radiological event in Mars past adds impetus to Mars exploration efforts and particularly to a human mission to Mars to learn more about this possible occurrence. (1) Swindle, T. D. , Caffee, M. W., and Hohenberg, C. M., (1986) "Xenon and other Noble Gases in Shergottites" Geochimica et Cosmochimica Acta, 50, pp 1001-1015. (2) Banin, A., Clark, B.C., and Wanke, H. "Surface Chemistry and Mineralogy" (1992) in "Mars

  11. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aydin Raeis Hosseiny, Seyed; Jakobsen, Johnny

    2016-07-01

    Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.

  12. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  13. Feasibility of large-scale calorimetric efficiency measurement for wind turbine generator drivetrains

    NASA Astrophysics Data System (ADS)

    Pagitsch, Michael; Jacobs, Georg; Schelenz, Ralf; Bosse, Dennis; Liewen, Christian; Reisch, Sebastian; Deicke, Matthias

    2016-09-01

    In the course of the global energy turnaround, the importance of wind energy is increasing continuously. For making wind energy more competitive with fossil energy, reducing the costs is an important measure. One way to reach this goal is to improve the efficiency. As the major potentials have already been exploited, improvements in the efficiency are made in small steps. One of the main preconditions for enabling these development activities is the sufficiently accurate measurement of the efficiency. This paper presents a method for measuring the efficiency of geared wind turbine generator drivetrains with errors below 0.5% by directly quantifying the power losses. The presented method is novel for wind turbines in the multi- MW-class.

  14. Mesh Dependency of Turbulent Reacting Large-Eddy Simulations of a Gas Turbine Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Boudier, Guillaume; Staffelbach, Gabriel; Gicquel, Laurent Y. M.; Poinsot, Thierry J.

    Convergence of reacting LES predictions for an aeronautical gas turbine combustion chamber is analysed in terms of mesh resolution. To do so three fully unstructured meshes containing respectively 1.2, 10.6 and 43.9 million tetrahedra are used to compute this fully turbulent reacting flow. Resolution criteria obtained from the mean velocity and reacting fields depict different convergence behaviors. Reacting fields and more specifically combustion regimes are seen to be slightly grid dependent while maintaining mean global combustion quantities.

  15. Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Huang, P. G.

    2004-01-01

    During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  16. Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Huang, P. G.

    2004-01-01

    During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  17. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  18. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  19. Enhancing kinetic energy entrainment in LES of large wind farms by unconventional forcing at the turbine rotors

    NASA Astrophysics Data System (ADS)

    Verhulst, Claire; Meneveau, Charles

    2015-11-01

    Vertical entrainment of mean kinetic energy is believed to be a limiting factor for power generation in very large wind farms, which operate in the turbulent atmospheric boundary layer and experience detrimental wake effects. A new approach, meant to increase vertical entrainment and aid wake recovery, is proposed and evaluated with a preliminary ``proof of concept'' test using Large Eddy Simulation (LES) with periodic boundary conditions to obtain realistic fully developed flow. In addition to the traditional actuator thrust force, a synthetic vertical force is applied at the turbine rotors to force high-speed flow downward and low-speed flow upward. The ratio of the vertical force and the thrust force, held constant within each case, ranges from 0 to 1 across six cases and is applied independently at each turbine. The proposed approach is found to increase the power extraction and mean kinetic energy entrainment significantly, by up to 95% when the vertical force is similar in magnitude to the thrust force. The effect of the forcing scheme on the mean velocity field is considered in detail. In addition, a quadrant analysis is performed to determine how the synthetic forcing changes the statistical characteristics of the mean kinetic energy entrainment within the wind farm. This work was supported by NSF grant 1243482 (the WINDINSPIRE project).

  20. Optimizing liquid effluent monitoring at a large nuclear complex.

    PubMed

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk. PMID:15160897

  1. Optimizing liquid effluent monitoring at a large nuclear complex.

    PubMed

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  2. Synchronization of the ERDA-NASA 100 LkW wind turbine generator with large utility networks

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Gilbert, L. J.

    1977-01-01

    The synchronizing of a wind turbine generator against an infinite bus under random conditions is studied. With a digital computer, complete solutions for rotor speed, generator power angle, electromagnetic torque, wind turbine torque, wind turbine blade pitch angle, and armature current are obtained and presented by graphs.

  3. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    SciTech Connect

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  4. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  5. Sheep: The First Large Animal Model in Nuclear Transfer Research

    PubMed Central

    Czernik, Marta; Zacchini, Federica; Iuso, Domenico; Scapolo, Pier Augusto

    2013-01-01

    Abstract The scope of this article is not to provide an exhaustive review of nuclear transfer research, because many authoritative reviews exist on the biological issues related to somatic and embryonic cell nuclear transfer. We shall instead provide an overview on the work done specifically on sheep and the value of this work on the greater nuclear transfer landscape. PMID:24033140

  6. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  7. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    SciTech Connect

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  8. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  9. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  10. Observation of the Mold-Filling Process of a Large Hydro-Turbine Guide Vane Casting

    NASA Astrophysics Data System (ADS)

    Kang, Jinwu; Long, Haimin; Li, Yongjie; You, Rui; Hao, Xiaokun; Nie, Gang; Wang, Tianjiao; Zhang, Chengchun

    2015-02-01

    The mold-filling process has a determining effect on the quality of castings, and it has always been a hot but difficult research topic. The authors developed a wireless monitoring system for the mold-filling process of castings based on a contact time method and an observation system based on heat-resistant high-speed cameras. By using these two systems, the filling process of a turbine guide vane casting with a stepped gating system was investigated. The filling profile of the casting was recorded, and the filling time of nine typical positions was acquired. These results show that at the beginning, the liquid steel flowed out from the top ingate, which was designed to be the last to fill. The numerical simulation of the filling of the guide vane was performed, and the outflow from the top ingate were predicted. Finally, the gating system of the casting was improved with enlarged sprue. The new design features bigger sprue to ingate ratio; therefore, it could avoid the overflow from the top ingate and realize stable filling.

  11. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  12. Cracked shaft detection on large vertical nuclear reactor coolant pump

    NASA Technical Reports Server (NTRS)

    Jenkins, L. S.

    1985-01-01

    Due to difficulty and radiation exposure associated with examination of the internals of large commercial nuclear reactor coolant pumps, it is necessary to be able to diagnose the cause of an excessive vibration problem quickly without resorting to extensive trial and error efforts. Consequently, it is necessary to make maximum use of all available data to develop a consistent theory which locates the problem area in the machine. This type of approach was taken at Three Mile Island, Unit #1, in February 1984 to identify and locate the cause of a continuously climbing vibration level of the pump shaft. The data gathered necessitated some in-depth knowledge of the pump internals to provide proper interpretation and avoid misleading conclusions. Therefore, the raw data included more than just the vibration characteristics. Pertinent details of the data gathered is shown and is necessary and sufficient to show that the cause of the observed vibration problem could logically only be a cracked pump shaft in the shaft overhang below the pump bearing.

  13. Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Clarkson, Rory; Durant, Adam; Cassiani, Massimo; Stohl, Andreas

    2016-04-01

    Airborne particles from explosive volcanic eruptions are a major safety threat for aviation operations. The fine fraction of the emitted particles (<63 microns diameter) may remain in the atmosphere for days, or even weeks, and can affect commercial air traffic routes. Over the past century, there have been a considerable number of aircraft encounters with drifting volcanic ash clouds. Particles ingested into the engine cause erosion of upstream surfaces of compressor fan blades and rotor-path components, and can also cause contamination or blockage of electrical systems and the fuel system such as fuel nozzles and air bleed filters. Ash particles that enter the hot-section of the engine (combustor and turbine stages; temperature between 1400-1800°C) are rapidly heated above the glass transition temperature (about 650-1000°C) and become soft (or form a melt) and can stick as re-solidified deposits on nozzle guide vanes. The glass deposits change the internal aerodynamic airflow in the engine and can affect the cooling capability of the different components by clogging the cooling inlets/outlets, which can lead to a loss of power or flame-out. The nature of volcanic ash ingestion is primarily influenced by the fan at the front of the engine which produces the thrust that drives the aircraft. The ingested air is split between the core (compressor/combustor/turbine) and bypass (thrust) at a ratio of typically between, 1:5-10 on modern engines. Consequently, the ash particles are fractionated between the core and bypass by the geometry and dynamics of the fan blades. This study uses computational fluid dynamics (CFD) simulations of particle-laden airflows into a turbofan engine under different atmospheric and engine operation conditions. The main aim was to investigate the possible centrifugal effect of the fan blades as a function of particle size, and to relate this to the core intake concentration. We generated a generic 3D axial high-bypass turbofan engine using

  14. Large amplitude collective nuclear motion and soliton concept

    SciTech Connect

    Kartavenko, V.G. |

    1993-12-31

    An application of a soliton theory methods to some nonlinear problems in low and intermediate energies (E {approx} 10--100MeV/nucleon) nucleus - nucleus collisions are presented. Linear and nonlinear excitations of the nuclear density are investigated in the framework of nuclear hydrodynamics. The problem of dynamical instability and clusterization phenomena in a breakup of excited nuclear systems are considered from the points of view of a soliton concept.

  15. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    SciTech Connect

    Alonso, Juan J.; Iaccarino, Gianluca

    2013-08-25

    The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A

  16. Synchronization of the ERDA-NASA 100 kW wind turbine generator with large utility networks

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Gilbert, L. J.

    1977-01-01

    The synchronizing of a wind turbine generator against an infinite bus under random conditions is studied for the first time. With a digital computer, complete solutions for rotor speed, generator power angle, electromagnetic torque, wind turbine torque, wind turbine blade pitch angle, and armature current are obtained and presented by graphs. Experiments have been recently performed on the ERDA-NASA 100 kW wind turbine. Experimental results matched computer study results very closely and confirmed that the synchronization can be accomplished by means of the existing speed control system and an automatic synchronizer.

  17. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    SciTech Connect

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier.

  18. Wimpy wind turbines

    NASA Astrophysics Data System (ADS)

    Clar, Robert

    2011-03-01

    Your news article on Spain's plan to build the world's largest wind turbine (January p9) stated that "a wind farm consisting of 65 turbines [at 15 MW each] would generate the same amount of power as a typical nuclear plant".

  19. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  20. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Janetzke, D. C.

    1977-01-01

    Three large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind and downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: the blade shank, the hub shaft, and the yaw drive. Blade axis coning and rotor axis tilt were found to have little effect on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  1. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  2. Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.

    1979-01-01

    Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.

  3. Effect of blade profile on the performance of a large-scale Wells turbine for wave-energy conversion

    NASA Astrophysics Data System (ADS)

    Takao, Manabu; Thakker, Ajit; Abdulhadi, Rahil; Setoguchi, Toshiaki

    2006-03-01

    The aim of this study is to clarify the effect of rotor blade profile on the performance of the Wells turbine operated at high Reynolds number. In the study, four kinds of blade profile were selected with regard to the blade profile of the Wells turbine. The types of blade profile are as follows: NACA0020, NACA0015, CA9, and HSIM 15-262123-1576. In order to determine the optimum rotor blade profile of the turbine, experimental investigations have been performed for two solidities by model testing and numerical simulation. As a result, it has been concluded that a suitable choice, namely the preferable rotor geometry, is the blade profile of NACA0015. Furthermore, it has been found that the critical Reynolds number of the turbine is around 4×105.

  4. Large-Eddy Simulations of Plasma Flow Control on a GOE735 Wind Turbine Airfoil

    NASA Astrophysics Data System (ADS)

    Czulak, Alexander; Franck, Jennifer

    2015-11-01

    Active flow control using plasma actuation was studied for the GOE735 airfoil and compared to non-actuated baseline cases using numerical simulations. This investigation considers two-dimensional simulations at a Reynolds number of 1,000 using direct numerical simulation (DNS) as well as three-dimensional simulations at a Reynolds number of 50,000 and 100,000 using large-eddy simulation (LES). Plasma actuation is applied in terms of a source term within the boundary layer close to the airfoil surface. Angles of attack of 0°, 5° and 15° were considered, and control is shown to be effective at increasing the lift coefficient, decreasing the drag coefficient and reducing the root mean squared deviation of both lift and drag. An analysis of the flow physics reveals that the actuated cases delay the point of separation, reduce the wake width and diminish the size and strength of the shed vortices. For this particular airfoil, there are significant differences in Reynolds number in terms of the baseline flow, control effectiveness and performance factors such as lift and drag.

  5. Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2013-01-01

    Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.

  6. The effects of Reynolds number, rotor incidence angle and surface roughness on the heat transfer distribution in a large-scale turbine rotor passage

    NASA Technical Reports Server (NTRS)

    Blair, M. F.

    1991-01-01

    A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.

  7. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  8. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  9. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    SciTech Connect

    Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke; Ito, Hideki; Shimonohara, Nozomi; Tsuji, Takahiro; Nakajima, Noriko; Suzuki, Yoshio; Matsuo, Koma; Nakagawa, Hidemi; Sata, Tetsutaro; Katano, Harutaka

    2010-03-15

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal in any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.

  10. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    SciTech Connect

    Mirocha, J. D.; Kosovic, B.; Aitken, M. L.; Lundquist, J. K.

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  11. Small turbines, big unknown

    SciTech Connect

    Gipe, P.

    1995-07-01

    While financial markets focus on the wheeling and dealing of the big wind companies, the small wind turbine industry quietly keeps churning out its smaller but effective machines. Some, the micro turbines, are so small they can be carried by hand. Though worldwide sales of small wind turbines fall far short of even one large windpower plant, figures reach $8 million to $10 million annually and could be as much as twice that if batteries and engineering services are included.

  12. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  13. Turbinate surgery

    MedlinePlus

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery ... There are several types of turbinate surgery: Turbinectomy: All or part of the lower turbinate is taken out. This can be done in several different ways, but sometimes a ...

  14. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  15. Coalescing Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  16. Coalescing Wind Turbine Wakes

    SciTech Connect

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  17. Coalescing Wind Turbine Wakes

    DOE PAGES

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  18. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  19. The effects of Reynolds number, rotor incidence angle, and surface roughness on the heat transfer distribution in a large-scale turbine rotor passage

    NASA Technical Reports Server (NTRS)

    Blair, Michael F.; Anderson, Olof L.

    1989-01-01

    A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an

  20. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  1. Formation of large target residues in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W.; Aleklett, K.; Sihver, L.; Xu, Z.; Seaborg, G.T.

    1987-04-01

    We have used radiochemical techniques to measure the yields, angular distributions and velocity spectra of the large (A/sub frag/ greater than or equal to 2/3 A/sub tgt/) target residues from the fragmentation of /sup 197/Au by intermediate energy /sup 12/C, /sup 20/Ne, /sup 32/S, /sup 40/Ar, /sup 84/Kr, and /sup 139/La projectiles. The fragment moving frame angular distributions are asymmetric for the lighter projectiles (C-Ar). The fragment velocity spectra are Maxwellian for the Kr induced reactions and non-Maxwellian for the reactions induced by the lighter ions. We interpret these results in terms of a change in the dominant fragment production mechanism(s) from one(s) involving a fast non-equilibrium process for the lighter ions to a slow, equilibrium process for Kr. Comparison of the measured yields and angular distributions with calculations made using a Boltzmann transport equation with appropriate modifications for Pauli blocking, etc., show excellent agreement between data and theory. 12 refs., 12 figs.

  2. Response measurements for two building structures excited by noise from a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.

  3. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  4. Cytomegalovirus Primary Envelopment Occurs at Large Infoldings of the Inner Nuclear Membrane▿

    PubMed Central

    Buser, Christopher; Walther, Paul; Mertens, Thomas; Michel, Detlef

    2007-01-01

    We have investigated the morphogenesis of human and murine cytomegalovirus by transmission electron microscopy after high-pressure freezing, freeze substitution, and plastic embedding. We observed large tubular infoldings of the inner nuclear membrane that were free of lamina and active in primary envelopment and subsequent transport of capsids to the nuclear periphery. Semiquantitative determinations of the enlarged inner nuclear membrane area and the location of the primary envelopment of nucleocapsids demonstrated that this structure represents a virus-induced specialized membrane domain at which the particles are preferentially enveloped. This is a previously undescribed structural element relevant in cytomegalovirus morphogenesis. PMID:17192309

  5. Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport.

    PubMed

    Snow, Chelsi J; Dar, Ashraf; Dutta, Anindya; Kehlenbach, Ralph H; Paschal, Bryce M

    2013-05-13

    The RanGTPase acts as a master regulator of nucleocytoplasmic transport by controlling assembly and disassembly of nuclear transport complexes. RanGTP is required in the nucleus to release nuclear localization signal (NLS)-containing cargo from import receptors, and, under steady-state conditions, Ran is highly concentrated in the nucleus. We previously showed the nuclear/cytoplasmic Ran distribution is disrupted in Hutchinson-Gilford Progeria syndrome (HGPS) fibroblasts that express the Progerin form of lamin A, causing a major defect in nuclear import of the protein, translocated promoter region (Tpr). In this paper, we show that Tpr import was mediated by the most abundant import receptor, KPNA2, which binds the bipartite NLS in Tpr with nanomolar affinity. Analyses including NLS swapping revealed Progerin did not cause global inhibition of nuclear import. Rather, Progerin inhibited Tpr import because transport of large protein cargoes was sensitive to changes in the Ran nuclear/cytoplasmic distribution that occurred in HGPS. We propose that defective import of large protein complexes with important roles in nuclear function may contribute to disease-associated phenotypes in Progeria.

  6. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  7. Automatic track recognition for large-angle minimum ionizing particles in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Fukunaga, S.; Ishida, H.; Matsumoto, T.; Matsuo, T.; Mikado, S.; Nishimura, S.; Ogawa, S.; Shibuya, H.; Sudou, J.; Ariga, A.; Tufanli, S.

    2014-12-01

    We previously developed an automatic track scanning system which enables the detection of large-angle nuclear fragments in the nuclear emulsion films of the OPERA experiment. As a next step, we have investigated this system's track recognition capability for large-angle minimum ionizing particles (1.0 <= |tan θ| <= 3.5). This paper shows that, for such tracks, the system has a detection efficiency of 95% or higher and reports the achieved angular accuracy of the automatically recognized tracks. This technology is of general purpose and will likely contribute not only to various analyses in the OPERA experiment, but also to future experiments, e.g. on low-energy neutrino and hadron interactions, or to future research on cosmic rays using nuclear emulsions carried by balloons.

  8. Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases

    SciTech Connect

    Zeydina, O.; Koning, A.J.; Soppera, N.; Raffanel, D.; Bossant, M.; Dupont, E.; Beauzamy, B.

    2014-06-15

    Automated methods are presented for the verification of large experimental and evaluated nuclear reaction databases (e.g. EXFOR, JEFF, TENDL). These methods allow an assessment of the overall consistency of the data and detect aberrant values in both evaluated and experimental databases.

  9. Guidance for a large tabletop exercise for a nuclear power plant

    SciTech Connect

    Weinstein, E.D.; Bates, E.F.; Adler, M.V.; Gant, K.S.

    1995-03-01

    Tabletop exercises are held to discuss issues related to the response of organizations to an emergency event. This document describes in task format the planning, conduct, and reporting of lessons learned for a large interagency tabletop. A sample scenario, focus areas, and discussion questions based on a simulated accident at a commercial nuclear power plant are provided.

  10. Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America

    SciTech Connect

    Cotrell, J.; Musial, W.; Hughes, S.

    2006-05-01

    The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

  11. Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine of thermal and nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.

    2016-03-01

    The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.

  12. Effects of Large Nuclear Quadrupoles on Dielectric Properties of Glasses at Very Low Temperatures

    NASA Astrophysics Data System (ADS)

    Luck, A.; Fleischmann, A.; Reiser, A.; Enss, C.

    2014-12-01

    The universal behaviour of amorphous solids at low temperatures, governed by atomic tunneling systems as described by the standard tunneling model, has long been a generally accepted fact. In the last years, however, measurements of dielectric two-pulse polarization echoes have revealed that nuclear quadrupole moments involved in atomic tunneling systems can cause specific material-dependent effects in magnetic fields. We have performed measurements of the dielectric properties of the two multicomponent glasses N-KZFS11 and HY-1, containing several percent of tantalum oxide and holmium oxide respectively. As 181Ta and 165Ho both carry very large nuclear quadrupole moments, these glasses are ideal candidates to study the influence of nuclear quadrupole moments on the properties of glasses at very low temperatures. Our measurements not only show unique dielectric behaviour in both glasses, but also differ significantly from various predictions of the standard tunneling model.

  13. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    SciTech Connect

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-03-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers.

  14. Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure

    SciTech Connect

    Ormand, W E; Navratil, P

    2003-08-18

    We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.

  15. Advances in the Hopkinson bar testing of irradiated/non-irradiated nuclear materials and large specimens.

    PubMed

    Albertini, Carlo; Cadoni, Ezio; Solomos, George

    2014-05-13

    A brief review of the technological advances of the Hopkinson bar technique in tension for the study of irradiated/non-irradiated nuclear materials and the development of this technology for large specimens is presented. Comparisons are made of the dynamic behaviour of non-irradiated and irradiated materials previously subjected to creep, low cycle fatigue and irradiation (2, 10 and 30 displacements per atom). In particular, complete results of the effect of irradiation on the dynamic mechanical properties of AISI304L steel, tested at 20, 400 and 550°C are presented. These high strain rate tests have been performed with a modified Hopkinson bar (MHB), installed inside a hot cell. Examples of testing large nuclear steel specimens with a very large Hopkinson bar are also shown. The results overall demonstrate the capability of the MHB to efficiently reproduce the material stress conditions in case of accidental internal and external dynamic loadings in nuclear reactors, thus contributing to the important process of their structural assessment.

  16. Large-x connections of nuclear and high-energy physics

    DOE PAGES

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  17. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells.

    PubMed

    Feric, Marina; Brangwynne, Clifford P

    2013-10-01

    The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control.

  18. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    SciTech Connect

    Clemens, Noel

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  19. Nuclear suppression at large forward rapidities in d-Au collisions at relativistic and ultrarelativistic energies

    SciTech Connect

    Nemchik, J.; Petracek, V.; Potashnikova, I. K.; Sumbera, M.

    2008-08-15

    We study a strong suppression of the relative production rate (d-Au)/(p-p) for inclusive high-p{sub T} hadrons of different species at large forward rapidities (large Feynman x{sub F}). The model predictions calculated in the light-cone dipole approach are in a good agreement with the recent measurements by the BRAHMS and STAR Collaborations at the BNL Relativistic Heavy Ion Collider. We predict a similar suppression at large p{sub T} and large x{sub F} also at lower energies, where no effect of coherence is possible. This allows us to exclude the saturation models or the models based on Color Glass Condensate from interpretation of nuclear effects.

  20. Nuclear suppression at large forward rapidities in d-Au collisions at relativistic and ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Nemchik, J.; Petráček, V.; Potashnikova, I. K.; Šumbera, M.

    2008-08-01

    We study a strong suppression of the relative production rate (d-Au)/(p-p) for inclusive high-pT hadrons of different species at large forward rapidities (large Feynman xF). The model predictions calculated in the light-cone dipole approach are in a good agreement with the recent measurements by the BRAHMS and STAR Collaborations at the BNL Relativistic Heavy Ion Collider. We predict a similar suppression at large pT and large xF also at lower energies, where no effect of coherence is possible. This allows us to exclude the saturation models or the models based on Color Glass Condensate from interpretation of nuclear effects.

  1. Steam Turbines

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  2. Density of saturated nuclear matter at large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.; Datta, Ishaun

    2014-06-01

    We exhibit the existence of stable, saturated nuclear matter in the large Nc and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in Nc via a repulsive interaction due to the Pauli exclusion principle and at subleading order in 1/Nc via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered-cubic or a hexagonal-close-packed symmetry with baryon densities of O ({α˜smq[nuclear matter is independent of the lightest glueball mass and scalar-glueball-baryon coupling in the extreme large Nc limit or heavy quark limit (or both), which we define precisely in this work.

  3. Root causes and impacts of severe accidents at large nuclear power plants.

    PubMed

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  4. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  5. Root causes and impacts of severe accidents at large nuclear power plants.

    PubMed

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities. PMID:23423737

  6. Microscopic description of large amplitude collective motion in the nuclear astrophysics context

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Tanimura, Yusuke; Scamps, Guillaume; Simenel, Cédric

    2015-08-01

    In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional (TD-EDF) theory. This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state-of-the-art effective interactions has opened new perspectives. In the present paper, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.

  7. Assessment of RELAP5/MOD2 against a turbine trip from 100% power in the Vandellos II nuclear power plant

    SciTech Connect

    Llopis, C.; Perez, J.; Mendizabal, R.

    1993-06-01

    An assessment of RELAP5/MOD2 cycle 36.04 against a turbine trip from 100% power in the Vandellos II NPP (Spain) is presented. The work is inscribed in the framework of the Spanish contribution to ICAP Project. The model used in the simulation consists of a single loop, a steam generator and a steam line up to the steam header all of them enlarged on a scale of 3:1; and full-scaled reactor vessel and pressurizer. The results of calculations have been in reasonable agreement with plant measurements. An additional study has been performed to check the ability of a model in which all the plant components are full-scaled to reproduce the transient. A second study has been performed using the Homogeneous Equilibrium Model in the pressurizer, trying to elucidate the influence of the velocity slip in the primary depressurization rate.

  8. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  9. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  10. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  11. Studies of Mini-Turbines

    NASA Astrophysics Data System (ADS)

    Chan, Stacey; Endo, Masaki; Romanko, Michael; Williamson, Chk

    2013-11-01

    Urban environments are inaccessible to large wind turbines of the classical ``windmill'' design. By exploring small-scale vertical-axis wind turbines (VAWTs), wind energy can possibly be harvested from the constrained spaces within cities. We present a comprehensive study of blade offset pitch angle and relative blade size (ratio of blade chordlength/turbine diameter, c/D). We find that the optimal pitch angle for a symmetric blade is the angle at which the midpoint chordline is tangent to the turbine circumference. Also, a turbine with conventional blades of small c/D ratio (c/D = 0.12) - typical of large scale turbines - do not operate well at low Reynolds numbers. On the other hand, the maximum coefficient of power for turbines with larger c/D ratio (c/D = 0.36) is much higher than for the conventional small-blades. As blade size increases, the operating range of TSR (Tip Speed Ratio) also increases, making large-chord turbines more robust to the prevailing wind conditions. Surprisingly, the regime of TSR for maximum power extracted, at these low Reynolds numbers, corresponds with small or even negative power predictions, based on streamtube theory.

  12. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  13. Large nuclear vacuoles in spermatozoa negatively affect pregnancy rate in IVF cycles

    PubMed Central

    Ghazali, Shahin; Talebi, Ali Reza; Khalili, Mohammad Ali; Aflatoonian, Abbas; Esfandiari, Navid

    2015-01-01

    Background: Recently, motile sperm organelle morphology examination (MSOME) criteria as a new real time tool for evaluation of spermatozoa in intracytoplasmic sperm injection (ICSI) cycles has been considered. Objective: The aim was to investigate the predictive value of MSOME in in vitro fertilization (IVF) in comparison to ICSI cycles and evaluation of the association between MSOME parameters and traditional sperm parameters in both groups. Materials and Methods: This is a cross sectional prospective analysis of MSOME parameters in IVF (n=31) and ICSI cycles (n=35). MSOME parameters were also evaluated as the presence of vacuole (none, small, medium, large or mix); head size (normal, small or large); cytoplasmic droplet; head shape and acrosome normality. In sub-analysis, MSOME parameters were compared between two groups with successful or failed clinical pregnancy in each group. Results: In IVF group, the rate of large nuclear vacuole showed significant increase in failed as compared to successful pregnancies (13.81±9.7vs7.38±4.4, respectively, p=0.045) while MSOME parameters were the same between successful and failed pregnancies in ICSI group. Moreover, a negative correlation was noticed between LNV and sperm shape normalcy. In ICSI group, a negative correlation was established between cytoplasmic droplet and sperm shape normalcy. In addition, there was a positive correlation between sperm shape normalcy and non-vacuolated spermatozoa. Conclusion: The high rate of large nuclear vacuoles in sperm used in IVF cycles with failed pregnancies confirms that MSOME, is a helpful tool for fine sperm morphology assessment, and its application may enhance the assisted reproduction technology success rates. PMID:26494990

  14. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  15. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  16. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  17. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  18. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    SciTech Connect

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.

  19. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  20. Precise measurement of the nuclear dependence of the EMC effect at large x

    NASA Astrophysics Data System (ADS)

    Daniel, Aji

    Experiment E03-103, carried out in Hall C at the Thomas Jefferson National Accelerator Facility, measuring inclusive electron scattering cross sections from nuclear targets over a broad range of x (0.3 < x < 1) up to Q2 ≈ 8 GeV 2. The bulk of the data were taken at a beam energy of 5.8 GeV, with beam currents ranging from 30 to 80 muA. This dissertation describes the experiment in detail, and presents the extracted EMC ratios for the cryogenic targets 3He, 4He and solid targets Be, C, Cu, and Au. Our data provide the first measurement of the EMC effect in 3He at x > 0.4, and improve the known precision of the existing measurements of the effect in 4He and other nuclear targets at large x. The data have also been analyzed in terms of the structure function FA2 to examine the scaling of the inelastic scattering in x and xi.

  1. Turbine design review text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Three-volume publication covers theoretical, design, and performance aspects of turbines. Volumes cover thermodynamic and fluid-dynamic concepts, velocity diagram design, turbine blade aerodynamic design, turbine energy losses, supersonic turbines, radial-inflow turbines, turbine cooling, and aerodynamic performance testing.

  2. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  3. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  4. Evidence for an inhibitory feedback loop regulating simian virus 40 large T-antigen fusion protein nuclear transport.

    PubMed Central

    Seydel, U; Jans, D A

    1996-01-01

    Nuclear protein import is central to eukaryotic cell function. It is dependent on ATP, temperature and cytosolic factors, and requires specific targeting sequences called nuclear localization signals (NLSs). Nuclear import kinetics was studied in vitro using digitonin-permeabilized cells of the HTC rat hepatoma cell line and a fluorescently labelled beta-galactosidase fusion protein carrying amino acids 111-135 of the simian virus 40 large T-antigen (T-ag), including the NLS. Nuclear accumulation was rapid, reaching steady-state after about 80 min at 37 degrees C (t1/2 at about 17 min). Surprisingly, maximal nuclear concentration was found to be directly proportional to the concentration of the cytosolic extract and of cytoplasmic T-ag protein. Neither preincubation of cells for 1 h at 37 degrees C before the addition of T-ag protein nor the addition of fresh transport medium after 1 h and continuation of the incubation for another hour affected the maximal nuclear concentration. If cells were allowed to accumulate T-ag protein for 1 h before the addition of fresh transport medium containing different concentrations of T-ag protein and incubated for a further hour, the maximal nuclear concentration did not change unless the concentration of T-ag protein in the second transport mixture exceeded that in the first, in which case the nuclear concentration increased. Nuclear import of T-ag thus appeared (i) to be strictly unidirectional over 2 h at 37 degrees C and (ii) to be regulated by an inhibitory feedback loop, whereby the cytosolic concentration of protein appears to determine directly the precise end point of nuclear accumulation. This study represents the first characterization of this previously undescribed mechanism of regulation of nuclear protein import. PMID:8670127

  5. Using turbine flowmeters to measure multiphase flow

    SciTech Connect

    Cole, J.H.; Fincke, J.R.

    1997-07-01

    Numerous ways of measuring multiphase flow are under research investigation. However, the concept of using turbine flowmeters has been largely overlooked. Testing of drag turbine mass flowmeter prototypes demonstrated that fluid flow past a turbine rotor produces a drag force that is proportional to momentum flux. Simultaneous measurements of momentum flux and velocity allow the extraction of density. Use of this type of meter to measure homogenized two-phase flow with void fractions below 90% appears feasible. Further mass turbine flowmeter research is encouraged. Drag turbine test data strongly suggests that a turbine flowmeter can be developed into a mass flowmeter by installing pressure taps across the rotor and using the differential pressure measurement to infer momentum flux. Also, using diamond film force sensing would allow the fabrication of a more compact, rugged, and faster-responding drag turbine mass flowmeter than is possible with alternative force sensing methods.

  6. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. Turbulence in vertical axis wind turbine canopies

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  8. Revised-Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California

    SciTech Connect

    Adams, W C

    2007-12-07

    During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

  9. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  10. Unifying Algebraic and Large-Scale Shell-Model Approaches in Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, Jerry P.

    1997-04-01

    The shell model is the most robust theory for addressing nuclear structure questions. Unfortunately, it is only as good as the input hamiltonian and the appropriateness of the selected model space, and both of these elements usually prove to be a significant challenge. There are three basic theories: 1) algebraic models, boson and fermion, which focus on symmetries, exact and approximate, of a hamiltonian and usually use model spaces that are severely truncated; 2) numerically oriented schemes that accommodate larger spaces but rely on special techniques and algorithms for producing convergent results; and 3) models that employ statistical concepts, like statistical spectroscopy of the 70s and 80s and Monte Carlo methods of the 90s, schemes that are not limited by the usual dimensionality considerations. These three approaches and their various realizations and extensions, with their pluses and minuses, will be considered. In addition, opportunities that exist for defining a scheme that employs the best of all three approaches to yield a symmetry adapted theory that is not limited to simplified spaces and hamiltonians and yet remains tractable even for large-scale calculations of the type that are required for testing a theory against experimental data and for predicting new physical phenomena will be explored. Special attention will be focused on unifying themes linking the shell-model with the simpler and yet highly successful mean-field and collective-model theories. As a example of the latter, some recent results using the symplectic shell model will be presented.

  11. Large-angle production of charged pions with incident pion beams on nuclear targets

    NASA Astrophysics Data System (ADS)

    Apollonio, M.; Artamonov, A.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M. G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Capua, E. Di; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gößling, C.; Gómez-Cadenas, J. J.; Grant, A.; Graulich, J. S.; Grégoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martín-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G. B.; Morone, M. C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-12-01

    Measurements of the double-differential π± production cross section in the range of momentum 100⩽p⩽800 MeV/c and angle 0.35⩽θ⩽2.15 rad using π± beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d2σ/dpdθ at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  12. Large-angle production of charged pions with incident pion beams on nuclear targets

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  13. Clines of nuclear DNA markers suggest a largely neolithic ancestry of the European gene pool.

    PubMed

    Chikhi, L; Destro-Bisol, G; Bertorelle, G; Pascali, V; Barbujani, G

    1998-07-21

    Comparisons between archaeological findings and allele frequencies at protein loci suggest that most genes of current Europeans descend from populations that have been expanding in Europe in the last 10, 000 years, in the Neolithic period. Recent mitochondrial data have been interpreted as indicating a much older, Paleolithic ancestry. In a spatial autocorrelation study at seven hypervariable loci in Europe (four microsatellites, two larger, tandem-repeat loci, and a sequence polymorphism) broad clinal patterns of DNA variation were recognized. The observed clines closely match those described at the protein level, in agreement with a possible Near Eastern origin for the ancestral population. Separation times between populations were estimated on the basis of a stepwise mutation model. Even assuming low mutation rates and long generation times, we found no evidence for population splits older than 10,000 years, with the predictable exception of Saami (Lapps). The simplest interpretation of these results is that the current nuclear gene pool largely reflects the westward and northward expansion of a Neolithic group. This conclusion is now supported by purely genetic evidence on the levels and patterns of microsatellite diversity, rather than by correlations of biological and nonbiological data. We argue that many mitochondrial lineages whose origin has been traced back to the Paleolithic period probably reached Europe at a later time.

  14. Further progress for a fast scanning of nuclear emulsions with Large Angle Scanning System

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Tioukov, V.; Vladymyrov, M.

    2014-02-01

    The LASSO (Large Angle Scanning System for OPERA) is a scanning system designed in the framework of the OPERA experiment as a result of several R&Ds aimed to improve the performance of the European Scanning System (ESS) by increasing the scanning speed, the angular acceptance and the efficiency in microtrack reconstruction. The novel Continuous Motion (CM) scanning approach allows to double the ESS nominal speed without any changes in the hardware set-up. The LASSO modular design makes the system easily adaptable to new hardware. The novel microtrack reconstruction algorithm has been developed to be efficient in both standard Stop&Go (SG) and CM modes, performing a number of corrections during the processing like corrections for vibrations, optical distortions, field of view curvature. As an intermediate step it reconstructs silver grains positions inside emulsion layer to make a transition from 2D images to real 3D traces of a charged particle. This allows the algorithm to have no internal limits on the slope of microtracks being equally efficient on all angles. The LASSO has been used for about one year for mass production scanning of emulsion films of OPERA, Muon Radiography and also of films employed to study nuclear fragmentation of ion beams used in medical physics. More than 50000 cm2 of the emulsion surface have been analyzed during this period.

  15. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital

    PubMed Central

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-01-01

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely. PMID:27077874

  16. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    PubMed

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  17. Turbine engine

    SciTech Connect

    Greer, D.

    1988-02-16

    In a turbine propulsion engine, an elongated motor is described including a power means and having a drive shaft projecting therefrom. A first compressor includes an elongated rotatable first casing coaxially mounted upon the motor having a fuel inlet for pressure feeding of fuel lengthwise of the first compressor. A second compressor includes a casing coaxially mounted upon and along the first compressor casing secured to the motor having an air inlet at its forward end for feeding high velocity compressed air lengthwise of the second compressor casing. An intermediate diverging casing at one end is peripherally connected to the second compressor casing having inner and outer diffusor chambers communicating respectively with the compressor for receiving high velocity vaporized fuel and compressed air. A turbine casing at one end is peripherally connected to the intermediate casing and at its other end having a converging exhaust outlet. An elongated combustion chamber of circular cross-section rotatably mounted and spaced within and journaled upon the turbine casing; an engine shaft extending axially through the combustion chamber, journaled upon the turbine casing and axially connected to the drive shaft.

  18. The small turbine revolution

    SciTech Connect

    Williams, P.L.

    1995-07-01

    Until the mid-1960s, improvements in technology and economies of scale made each new generating unit installed less expensive than the previous one. Later, bigger was still better. Larger units cost less per kilowatt than smaller units. Today, that may be changing. In some situations, distributed generation -the use of small, dispersed units (usually gas turbines) in the place of large central stations- can be the most attractive option.

  19. Transition in Turbines

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.

  20. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  1. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  2. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source (< 1 km) and close local (1-40 km) distances. The rarely reported Secondary Shock (SS) phenomenon was clearly observed at the all sensors. A novel empirical relationship for the new air-blast parameter - SS time delay - versus distance (both scaled by the cubic root of estimated TNT equivalent charge) was developed and analyzed. The scaled SS delays were found clearly separated for 2009 and 2011 shots, thus demonstrating dependence on the type of explosives with different detonation velocity. Additional acoustic and seismic records from very large (> 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the

  3. Mass production of the large-sized nuclear plate for J-PARC E07

    NASA Astrophysics Data System (ADS)

    Ito, Hiroki; Nakazama, Kazuma; Hoshino, Kaoru; Yoshida, Jyunya; Tint, Khin Than; Soe, Mint Kyaw; Kinbara, Shinji; Mishina, Akihiro; Endo, Yoko; Kobayashi, Hidetaka; J-PARC E07 Collaboration

    2014-09-01

    In J-PARC E07, about 102 double lambda hypernuclei will be detected, which is 10 times or more than that of the KEK PS-E373 experiment. Therefore, it is necessary for large-scale emulsion plates to avoid time-consuming job for exchange emulsion stack in beam exposure. We also use huge amount of emulsion gel with weight of 2.1 t, which is about 3 times' quantity used for E373. Nuclear emulsion plate is made of photographic emulsion gel as a dry film. Melted gel in 40°C is poured on a thin polystyrene film in the size of 710 × 700 mm2. These sheets were dried slowly for two days in drying cabinet under 28°C and RH. 75%. After drying, the surface was coated by thin gelatin layer with 0.3 μm thickness. Regarding the 2nd face, it was poured and coated in the same manner. Finally we dry it well under 25°C and RH. 60% and cut into four 350 × 345 mm2 plates. We evaluated the performance about these plates. The length of upper, lower, right-hand and left-hand side are 345.08 +/- 0.05 mm, 345.23 +/- 0.13 mm, 350.03 +/- 0.04 mm, and 350.80 +/- 0.05 mm, respectively. The density is 3.676 +/- 0.032 g/cm3, enough quality for the experiment.

  4. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  5. On the Fatigue Analysis of Wind Turbines

    SciTech Connect

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  6. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA.

    PubMed

    Asemaninejad, Asma; Weerasuriya, Nimalka; Gloor, Gregory B; Lindo, Zoë; Thorn, R Greg

    2016-01-01

    Metabarcoding has become an important tool in the discovery of biodiversity, including fungi, which are the second most speciose group of eukaryotes, with diverse and important ecological roles in terrestrial ecosystems. We have designed and tested new PCR primers that target the D1 variable region of nuclear large subunit (LSU) ribosomal DNA; one set that targets the phylum Ascomycota and another that recovers all other fungal phyla. The primers yield amplicons compatible with the Illumina MiSeq platform, which is cost-effective and has a lower error rate than other high throughput sequencing platforms. The new primer set LSU200A-F/LSU476A-R (Ascomycota) yielded 95-98% of reads of target taxa from environmental samples, and primers LSU200-F/LSU481-R (all other fungi) yielded 72-80% of target reads. Both primer sets have fairly low rates of data loss, and together they cover a wide variety of fungal taxa. We compared our results with these primers by amplifying and sequencing a subset of samples using the previously described ITS3_KYO2/ITS4_KYO3 primers, which amplify the internal transcribed spacer 2 (ITS2) of Ascomycota and Basidiomycota. With approximately equivalent read depth, our LSU primers recovered a greater number and phylogenetic diversity of sequences than the ITS2 primers. For instance, ITS3_KYO2/ITS4_KYO3 primers failed to pick up any members of Eurotiales, Mytilinidiales, Pezizales, Saccharomycetales, or Venturiales within Ascomycota, or members of Exobasidiomycetes, Microbotryomycetes, Pucciniomycetes, or Tremellomycetes within Basidiomycota, which were retrieved in good numbers from the same samples by our LSU primers. Among the OTUs recovered using the LSU primers were 127 genera and 28 species that were not obtained using the ITS2 primers, although the ITS2 primers recovered 10 unique genera and 16 species that were not obtained using either of the LSU primers These features identify the new primer sets developed in this study as useful

  7. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA

    PubMed Central

    Gloor, Gregory B.; Lindo, Zoë

    2016-01-01

    Metabarcoding has become an important tool in the discovery of biodiversity, including fungi, which are the second most speciose group of eukaryotes, with diverse and important ecological roles in terrestrial ecosystems. We have designed and tested new PCR primers that target the D1 variable region of nuclear large subunit (LSU) ribosomal DNA; one set that targets the phylum Ascomycota and another that recovers all other fungal phyla. The primers yield amplicons compatible with the Illumina MiSeq platform, which is cost-effective and has a lower error rate than other high throughput sequencing platforms. The new primer set LSU200A-F/LSU476A-R (Ascomycota) yielded 95–98% of reads of target taxa from environmental samples, and primers LSU200-F/LSU481-R (all other fungi) yielded 72–80% of target reads. Both primer sets have fairly low rates of data loss, and together they cover a wide variety of fungal taxa. We compared our results with these primers by amplifying and sequencing a subset of samples using the previously described ITS3_KYO2/ITS4_KYO3 primers, which amplify the internal transcribed spacer 2 (ITS2) of Ascomycota and Basidiomycota. With approximately equivalent read depth, our LSU primers recovered a greater number and phylogenetic diversity of sequences than the ITS2 primers. For instance, ITS3_KYO2/ITS4_KYO3 primers failed to pick up any members of Eurotiales, Mytilinidiales, Pezizales, Saccharomycetales, or Venturiales within Ascomycota, or members of Exobasidiomycetes, Microbotryomycetes, Pucciniomycetes, or Tremellomycetes within Basidiomycota, which were retrieved in good numbers from the same samples by our LSU primers. Among the OTUs recovered using the LSU primers were 127 genera and 28 species that were not obtained using the ITS2 primers, although the ITS2 primers recovered 10 unique genera and 16 species that were not obtained using either of the LSU primers These features identify the new primer sets developed in this study as useful

  8. Plan Turbines 3 & 4, Side View Turbines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plan - Turbines 3 & 4, Side View - Turbines 3 & 4, Section A-A - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  9. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  10. Wind turbine

    SciTech Connect

    Traudt, R.F.

    1986-12-30

    This patent describes a wind turbine device having a main rotatable driven shaft, elongated blades operatively mounted on the main shaft for unitary rotation with the main shaft. The blade extends substantially radially away from the main shaft and is adapted to fold downwind under naturally occurring forces and simultaneously feather in direct response to the folding movement. A means associated with the blades is included for increasing the rate of fold relative to the rate of feather as the speed of rotation increases.

  11. Using the procedure of spectral projection for reactivity determination in physically large nuclear reactors

    SciTech Connect

    Cherezov, A. L. Schukin, N. V.; Semyonov, A. A.; Solov'yov, D. A.

    2011-12-15

    The reactivity determination methods which are based on the neutron field reconstruction procedure and the spectral-projection method are analyzed. The approximate methods of reactivity determination which can be used in practice are offered. The efficiency of the proposed methods in comparison to that of the methods applied in operation of nuclear power plants is demonstrated using computational models.

  12. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  13. Numerical Modeling of Thermal Pollution of Large Water Bodies from Thermal and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Lyakhin, Yury; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Currently, the major manufacturers of electrical energy are the thermal and nuclear power plants including the cooling ponds in the processing chains. For a wide range of both environmental and technological problems, the evaluation of the temperature fields in the cooling ponds at certain critical values of hydrological and meteorological parameters is important. The present paper deals with the evaluation of the thermal effect of one of the largest thermal power plant in Europe - Perm GRES - to its cooling pond which is the Kama Reservoir. Since the area of the possible impact is rather large and the reservoir itself is characterized by a very complex morphometry, numerical modeling of thermal spot propagation in the Kama River due to the discharge of warm water by Perm GRES for the entire area in the 3D-formulation with the desired detail setting morphometric characteristics of the water body meets very serious difficulties. Because of that, to solve the problem, a combined scheme of calculations based on the combination of hydrodynamic models in 2D and 3D formulations was used. At the first stage of the combined scheme implementation, 2D hydrodynamical model was developed for all possible area, using software SMS v.11.1. The boundary and initial conditions for this model were formulated on the basis of calculations made using 1D hydrodynamical model developed and applied for the entire Kama Reservoir. Application of 2D hydrodynamical model for solving the problem under consideration was needed to obtain the necessary information for setting the boundary conditions for the 3D model. Software package ANSYS Fluent v.6.3 was used for the realization of 3D model. 3D modeling was performed for different wind speeds and directions and quantitative characteristics of the discharge of warm water. To verify the models, the data of the detailed field measurements in the zones of thermal pollution of the Kama reservoir due to impact of the Perm GRES were used. A

  14. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model, volume 1

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.

  15. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  16. Local heat-transfer measurements on a large scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STANS boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  17. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  18. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  19. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 2: Heat transfer data tabulation. 15 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.

  20. Rotating housing turbine

    DOEpatents

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  1. Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system.

    PubMed

    Motohashi, Tomoko; Shimojima, Tsukasa; Fukagawa, Tatsuo; Maenaka, Katsumi; Park, Enoch Y

    2005-01-21

    Silkworm is one of the most attractive hosts for large-scale production of eukaryotic proteins as well as recombinant baculoviruses for gene transfer to mammalian cells. The bacmid system of Autographa californica nuclear polyhedrosis virus (AcNPV) has already been established and widely used. However, the AcNPV does not have a potential to infect silkworm. We developed the first practical Bombyx mori nuclear polyhedrosis virus bacmid system directly applicable for the protein expression of silkworm. By using this system, the green fluorescence protein was successfully expressed in silkworm larvae and pupae not only by infection of its recombinant virus but also by direct injection of its bacmid DNA. This method provides the rapid protein production in silkworm as long as 10 days, is free from biohazard, thus will be a powerful tool for the future production factory of recombinant eukaryotic proteins and baculoviruses. PMID:15596136

  2. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    SciTech Connect

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point.

  3. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  4. Large scale densification of a nuclear waste ceramic by hot isostatic pressing

    SciTech Connect

    Hoenig, C.L.; Larker, H.T.

    1983-12-01

    Experimental results show that loaded bellows steel canisters, evacuated and sealed, can be cold-isostatically pressed before HIP from an initial density of 26 to 46% theoretical. Calcined powders are hygroscopic and may require degassing at 600 degrees C under vaccum, and residual gas, unless removed, is an impediment to HIP densification. Results also show that degassed synroc D powder in 50 kg quantities can be HIP densified to greater than 97% theoretical density at 1100 degrees C, 150 MPa, for 5h in a bellows canister without radial buckling. The authors believe that on the basis of this preliminary study, full-scale nuclear waste monoliths can be produced by HIP.

  5. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery. PMID:11186038

  6. Large-Scale Weibull Analysis of H-451 Nuclear- Grade Graphite Specimen Rupture Data

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Walker, Andrew; Baker, Eric H.; Murthy, Pappu L.; Bratton, Robert L.

    2012-01-01

    A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens excised from a single extruded graphite log. Strength variation was compared with specimen location, size, and orientation relative to the parent body. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and to investigate the strength distribution. The CARES/Life and WeibPar codes were used to investigate issues regarding the size effect, Weibull parameter consistency, and nonlinear stress-strain response. Overall, the Weibull distribution described the behavior of the pooled data very well. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV (Gen IV) high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Extensive appendixes are provided with this report to show all aspects of the rupture data and analytical results.

  7. Nuclear waste calorimeter for very large drums with 385 litres sample volume

    SciTech Connect

    Jossens, G.; Mathonat, C.; Bachelet, F.

    2015-03-15

    Calorimetry is a very precise and well adapted tool for the classification of drums containing nuclear waste material depending on their level of activities (low, medium, high). A new calorimeter has been developed by SETARAM Instrumentation and the CEA Valduc in France. This new calorimeter is designed for drums having a volume bigger than 100 liters. It guarantees high operator safety by optimizing drum handling and air circulation for cooling, and optimized software for direct measurement of the quantity of nuclear material. The LVC1380 calorimeter makes it possible to work over the range 10 to 3000 mW, which corresponds to approximately 0.03 to 10 g of tritium or 3 to 955 g of {sup 241}Pu in a volume up to 385 liters. This calorimeter is based on the heat flow measurement using Peltier elements which surround the drum in the 3 dimensions and therefore measure all the heat coming from the radioactive stuff whatever its position inside the drum. Calorimeter's insulating layers constitute a thermal barrier designed to filter disturbances until they represent less than 0.001 Celsius degrees and to eliminate long term disturbances associated, for example, with laboratory temperature variations between day and night. A calibration device based on Joule effect has also been designed. Measurement time has been optimized but remains long compared with other methods of measurement such as gamma spectrometry but its main asset is to have a good accuracy for low level activities.

  8. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery.

  9. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  10. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 3: Heat transfer data tabulation 65 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    This is Volume 3 - Heat Transfer Data Tabulation (65 percent Axial Spacing) of a combined experimental and analytical program which was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approximately 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators.

  11. Land-based turbine casting initiative

    SciTech Connect

    Mueller, B.A.; Spicer, R.A.

    1995-10-01

    The Advanced Turbine Systems (ATS) program has set goals which include a large-scale utility turbine efficiency that exceeds 60 percent (LHV) on natural gas and an industrial turbine system heat rate improvement of 15 percent. To meet these goals, technological advances developed for aircraft gas turbine engines need to be applied to land based gas turbines. These technological advances include: directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. Equiaxed and directionally solidified castings are employed in current land based power generation equipment. These castings do not possess the ability to meet the efficiency targets as outlined above. The production use of premium single crystal components with complex internal cooling schemes in the latest generation of alloys is necessary to meet the ATS goals. However, at present, the use of single crystal components with complex internal cooling schemes is restricted to industrial sized or aeroderivative engines, and prototype utility sized components.

  12. Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer. Part 1: The Boundary-Layer Simulation

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Pascheke, Frauke

    2014-04-01

    Measurements have been made in both a neutral and a stable boundary layer as part of an investigation of the wakes of wind turbines in an offshore environment, in the EnFlo stratified flow wind tunnel. The working section is long enough for the flow to have become very nearly invariant with streamwise distance. In order to be systematic, the flow profile generators of Irwin-type spires and surface roughness were the same for both neutral and stable conditions. Achieving the required profiles by adjusting the flow generators, even for neutral flow, is a highly iterative art, and the present results indicate that it will be no less iterative for a stable flow (as well as there being more conditions to meet), so this was not attempted in the present investigation. The stable-case flow conformed in most respects to Monin-Obukhov similarity in the surface layer. A linear temperature profile was applied at the working section inlet, resulting in a near-linear profile in the developed flow above the boundary layer and `strong' imposed stability, while the condition at the surface was `weak'. Aerodynamic roughness length (mean velocity) was not affected by stability even though the roughness Reynolds number , while the thermal roughness length was much smaller, as is to be expected. The neutral case was Reynolds-number independent, and by inference, the stable case was also Reynolds-number independent.

  13. Somatic cell nuclear transfer and transgenesis in large animals: current and future insights.

    PubMed

    Galli, C; Lagutina, I; Perota, A; Colleoni, S; Duchi, R; Lucchini, F; Lazzari, G

    2012-06-01

    Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.

  14. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species.

    PubMed

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G; O'Brien, Stephen J; Johnson, Warren E

    2006-02-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2-telomeric region vs. D2-centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species.

  15. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species.

    PubMed

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G; O'Brien, Stephen J; Johnson, Warren E

    2006-02-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2-telomeric region vs. D2-centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species. PMID:16380222

  16. Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois.

    PubMed

    Constant, F; Guillomot, M; Heyman, Y; Vignon, X; Laigre, P; Servely, J L; Renard, J P; Chavatte-Palmer, P

    2006-07-01

    Somatic nuclear transfer (NT) in cattle is often complicated by fetal oversize (i.e., large offspring syndrome), hydrallantois, and placentomegaly in late gestation. The aims of this work were to obtain data on the placentome structure in NT-recipient cows with hydrallantois (NTH) and to relate these with fetal and placental weights to better understand the abnormalities observed in NTH pregnancies during the third trimester. Pregnant cows were slaughtered between Gestation Days 180 and 280. The fetuses were weighed, and the placentomes were numbered and weighed. Placentomes were examined by histologic and stereological techniques. Macroscopic data showed that placental overgrowth preceded fetal overgrowth, and the ratio of the fetal to the total placentome weight in the NTH group was lower than that in controls after Gestation Day 220. This suggests that placental overgrowth is due to placental default rather than due to fetal overgrowth, as shown also by stereological analysis showing primary deregulation of the growth of cotyledonary tissues. Observed alterations, such as thinning of the maternal epithelium within placentomes and increased trophoblastic surface, could be secondary adaptations. Thus, placental growth deregulations would be due to modifications of the expression of placental factors. Various examples of placental deficiency were observed, suggesting that some fetal abnormalities observed in NTH calves, such as enlarged heart, enlarged umbilical cord, and abdominal ascites, are consequences of placental dysfunction. Therefore, the condition described by the term "large offspring syndrome" might better be described by "large placenta syndrome," because this syndrome affects an average of 50% of late-gestation NT pregnancies. No conclusion can be drawn from this work on apparently normal pregnancies.

  17. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer.

    PubMed

    Liu, J; Wang, Y; Su, J; Luo, Y; Quan, F; Zhang, Y

    2013-08-01

    Total five ear skin fibroblast lines (named F1, F2, F3, F4 and F5) from different newborn Holstein cows have been used as nuclear donor cells for producing cloned cows by somatic cell nuclear transfer (SCNT). The effects of these cell lines on both in vitro and in vivo developmental rates of cloned embryos, post-natal survivability and incidence of large offspring syndrome (LOS) were examined in this study. We found that the different cell lines possessed the same capacity to support pre-implantation development of cloned embryos, the cleavage and blastocyst formation rates ranged from 80.2 ± 0.9 to 84.5 ± 2.5% and 28.5 ± 0.9 to 33.3 ± 1.4%, respectively. However, their capacities to support the in vivo development of SCNT embryos showed significant differences (p < 0.05). The pregnancy rates at 90 and 240 day were significantly lower in groups F2 (4.9% and 3.3%) and F3 (5.4% and 5.4%) compared to groups F1 (23.3% and 16.3%), F4 (25.7% and 18.6%) and F5 (25.9% and 19.8%) (p < 0.05). The cloning efficiency was significantly higher in group F5 than those in group F1, F2, F3 and F4 (9.3% vs 4.1%, 1.2%, 2.0% and 5.0%, respectively, p < 0.05). Moreover, large offspring syndrome (LOS) incidence in group F5 was significantly lower than those in other groups (p < 0.05). All cloned offspring from cell line F1, F2, F3 and F4 showed LOS and gestation length delay, while all cloned offspring from F5 showed normal birthweight and gestation length. We concluded that the nuclear donor cell lines have significant impact on the in vivo development of cloned embryos and the incidence of LOS in cloned calves.

  18. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2016-07-12

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  19. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2012-01-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5-MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  1. Mathematical model for the analysis of wind-turbine wakes

    NASA Astrophysics Data System (ADS)

    Liu, M.-K.; Yocke, M. A.; Myers, T. C.

    1983-02-01

    The concept of wind farms with clustered wind turbines at a given site seems to offer an attractive means for extracting wind power on a large scale. Techniques for minimizing the effect of upstream wind-turbine wakes on downstream wind turbines are needed to optimize overall performance of the wind-turbine array. A numerical model for prediction of the interaction of the wind turbine with the prevailing wind flow is described. The model is based on a numerical solution of the three-dimensional Navier-Stokes equations for the planetary boundary layer with the hydrostatic approximation. Three different hypothetical wind-turbine configurations are analyzed to demonstrate the utility of this model. Model predictions from the present study compare favorably with the basic characteristics of measured wind-turbine wakes.

  2. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  3. Large-scale simulations of buoyancy-driven turbulent nuclear burning.

    SciTech Connect

    Townsley, D. M.; Bair, R. A.; Dubey, A.; Fisher, R. T.; Hearn, N. C.; Lamb, D. Q.; Riley, K. M.

    2009-01-01

    An critical uncertainty in modeling thermonuclear supernovae is the degree of enhancement of the burning rate by turbulence during the subsonic burning (deflagration) phase. As turbulent combustion in the laboratory is still an active area of research, this remains a challenging problem. A unique feature of turbulent combustion in supernovae is that the driving of the turbulence arises from the strong buoyancy of the burned material. We discuss the large-scale fully three dimensional studies under way. These studies have the goals of characterizing the essential length scales of flame surface structure and thereby developing specific requirements that models of small-scale structure must meet. We discuss some preliminary results of our study concerning the scale-dependence of flame surface structure.

  4. Turbine Imaging Technology Assessment

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  5. Large transverse momenta in nuclear interaction at E{sub 0} > 10{sup 16} eV detected in stratosphere

    SciTech Connect

    Managadze, A. K. Osedlo, V. I.; Roganova, T. M.; Sveshnikova, L. G.; Galkin, V. I.; Rakobolskaya, I. V.; Goncharova, L. A.; Kotelnikov, K. A.; Polukhina, N. G.

    2007-01-15

    A gamma-hadron superfamily of cosmic-rays created by a primary cosmic-ray particle with energy above 10{sup 16} eV was detected at an altitude of 30 km by a stratospheric balloon-borne emulsion chamber. Being of superhigh energy, this event is the unique example in the world statistics of practically pure nuclear interactions in the energy range unattainable for modern accelerators. The present analysis allowed one to estimate the interaction height above the chamber and transverse momenta of the secondaries produced in the interaction. The mean value of transverse momenta appears to be very large ( > 2.5 GeV/c)

  6. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    SciTech Connect

    Jimenez, Edward Steven,

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  7. Bilateral inferior turbinate osteoma

    PubMed Central

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  8. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  9. Bilateral inferior turbinate osteoma.

    PubMed

    Sahemey, R; Warfield, A T; Ahmed, S

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma.A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively.To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  10. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  11. The marriage of gas turbines and coal

    SciTech Connect

    Bajura, R.A.; Webb, H.A.

    1991-09-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost.

  12. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  13. Revealing the large nuclear dust structures in NGC 1068 with MIDI/VLTI

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Jaffe, W.; Burtscher, L.; Tristram, K. R. W.; Meisenheimer, K.

    2014-05-01

    Aims: The aim of this paper is to understand the relation in active galactic nuclei (AGNs) between the small obscuring torus and dusty structures at larger scales (5-10 pc). Methods: The dusty structures in AGNs are best observed in the mid-infrared. To achieve the necessary spatial resolution (20-100 millarcsec) we use ESO's Mid-Infrared Interferometer (MIDI) with the 1.8 m Auxiliary Telescopes. We use the chromatic phases in the data to improve the spatial fidelity of the analysis. Results: We present interferometric data for NGC 1068 obtained in 2007 and 2012. We find no evidence of source variability. Many (u,v) points show non-zero chromatic phases indicating significant asymmetries. Gaussian model fitting of the correlated fluxes and chromatic phases provides a three-component best fit with estimates of sizes, temperatures, and positions of the components. A large, warm, offcenter component is required at a distance approximately 90 mas to the northwest at a position angle (PA) of ~-18°. Conclusions: The dust at 5-10 pc in the polar region contributes four times more to the mid-infrared flux at 12 μm than the dust located at the center. This dust may represent the inner wall of a dusty cone. If similar regions are heated by the direct radiation from the nucleus, then they will contribute substantially to the classification of many Seyfert galaxies as Type 2. Such a region is also consistent in other Seyfert galaxies (the Circinus galaxy, NGC 3783, and NGC 424). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 080.B-0928 and 089.B-0099. Based on data obtained from the ESO Science Archive Facility.Appendices are available in electronic form at http://www.aanda.orgThe reduced visibilities (UVFITS tables) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A71

  14. Turbine turbobrake systems

    NASA Astrophysics Data System (ADS)

    Goodisman, Michael I.

    Short duration rotating turbine facilities are a recent development in the field of turbine research. Turbine braking devices can be used to maintain the turbine at the desired test speed, resulting in a longer usable test time. The Isentropic Light Piston Cascade at the Defence Research Agency in Pyestock will perform heat transfer and aerodynamic tests on the first stage of a Rolls-Royce turbine (MT1) linked to a new type of brake, the 'axial turbo brake'. The axial turbo brake is driven by the turbine's exhaust gas and is isolated from the turbine by a choked throat. The turbo brake's power absorption must be controlled to match the power developed by the turbine stage for a constant speed run. Both the turbo brake blade shape and novel power control system were developed from tests on a 0.17 scale test rig. The turbo brake's braking is controlled through by-pass of flow over the blade tips and partial blockage of the turbo brake's exit annulus. Also described is the mechanical design, development and manufacture of the full size turbo brake, turbine disc and turbine blades, which have been successfully spun tested to their overspeed condition. Finally, a theory for self-pumping turbo brakes is developed. These devices would have additional applications because they do not require a supply of high pressure gas to drive them.

  15. Development of next generation 1500C class advanced combustion turbines

    SciTech Connect

    Aoki, S.; Tskuda, Y.; Akita, E.; Tomita, Y.

    1998-07-01

    The full load test run of the 501G combustion turbine has just finished at Takasago combined cycle plant in MHI, Japan. The 501G has power output of 230MW at turbine inlet temperature of 1,500 C and can achieve combined net efficiency of 52%. The NO{sub x} level proved to be less than 25 ppm. The 501G and 701G1 combustion turbines are large heavy-duty single shaft combustion turbines which combine the proven reliability and efficiency of the F series with the latest low NO{sub x} combustion technology and the state-of-the-art cooling technique. As the full load test run has proved, it is a highly advanced designed turbine with documented high temperature, low NO{sub x} and high efficiency. This combined with time proven design concepts has created a new powerful combustion turbine, which will satisfy the large combustion turbine power generation needs for the next decades. The 501G turbine is the 60Hz, 3,600 rpm heavy duty combustion turbine rated at 230MW at a turbine inlet of 1,500 C fired on natural gas fuel. The combined cycle net efficiency is 58%. Verification tests for various components have been conducted through the last 3 years and since February '97 a full scale-full load test is being performed to verify the high performance, reliability and maintainability. The 701G1 is a 3,000 rpm combustion turbine designed for the 50 Hz power generation utilities and industrial service. The first 701G1 gas turbine is expected to begin commercial operation in 1999 in Tohoku Electric Power Co. Higashi Nilgata Power Plant No.4, in Japan. This paper describes the features of the next generation 1,500 C class advanced combustion turbines. Aerodynamic, cooling and mechanical design improvement is discussed along with the evolutionary changes based on time proven design concepts.

  16. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  17. The 200-kilowatt wind turbine project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.

  18. 30. VICTOR WATER TURBINE, STILWELLBIERCE CO., DAYTON, OHIO. SIMILAR TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VICTOR WATER TURBINE, STILWELL-BIERCE CO., DAYTON, OHIO. SIMILAR TURBINE TO LEFT (DOUBLE TURBINE SYSTEM), PHOTO TAKEN FROM PENSTOCK. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  19. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2009-09-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

  20. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2016-09-01

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. We argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flow field in two-dimensions. In this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.

  1. Vertical Axis Wind Turbine

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  2. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    SciTech Connect

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  7. Hermetic turbine generator

    DOEpatents

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  8. Large-scale time-resolved digital particle image velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Timmerman, B. H.; Skeen, A. J.; Bryanston-Cross, P. J.; Graves, M. J.

    2009-07-01

    The development of a highly configurable triple digital particle image velocimetry (DPIV) system is described, which is capable of acquiring both continuous, statistically independent measurements at up to 14 Hz and time-resolved PIV data at MHz rates. The system was used at QinetiQ's Noise Test Facility (NTF) as part of the EU-funded CoJeN programme to obtain measurements from high subsonic (Mach <= 0.9), hot (~500 °C), large (1/10th) scale coaxial jet flows at a standoff distance of ~1 m. High-resolution time-averaged velocity and turbulence data were obtained for complete coaxial engine exhaust plumes down to 4 m (20 jet diameters) from the nozzle exit in less than 1 h. In addition, the system allowed volumetric data to be obtained, enabling fast assessment of spatial alignment of nozzle configurations. Furthermore, novel six-frame time-series data-capture is demonstrated up to 330 kHz, used to calculate time-space correlations within the exhaust, allowing for study of spatio-temporal developments in the jet, associated with jet-noise production. The highly automated system provides synchronization triggers for simultaneous acquisition from different measurement systems (e.g. LDA) and is shown to be versatile, rugged, reliable and portable, operating remotely in a hostile environment. Data are presented for three operating conditions and two nozzle geometries, providing a database to be used to validate CFD models of coaxial jet flow.

  9. 17. VIEW SOUTHEAST OF 450 HP TURBINE IN BASEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW SOUTHEAST OF 450 HP TURBINE IN BASEMENT OF GRANITEVILLE MILL. THE MAIN BEARING OF THE TURBINE IS AT LEFT CENTER OF THE PHOTOGRAPH. A LOMBARD REGULATOR CAN BE SEEN AT THE LEFT CENTER REAR. THE LARGE HANDWHEEL AT THE LEFT CENTER IS GEARED TO A SECTIONAL GEAR AT THE CENTER OF THE PHOTOGRAPH AND IS USED TO MANUALLY OPEN THE GATES AND ALLOW WATER INTO THE TURBINE. THE SMALL PULLEY ON THE END OF THE MAIN SHAFT NORMALLY WOULD HAVE A BELT CONNECTING IT TO A PULLEY ON THE LOMBARD REGULATOR. THIS BELT TRANSMITTED TURBINE SPEED (RPM) TO THE LOMBARD WHICH WOULD OPEN OR CLOSE THE GATES TO KEEP TURBINE SPEED CONSTANT UNDER VARYING LOADS. THIS TURBINE WAS INSTALLED IN THE REFIT OF 1912. - Graniteville Mill, Marshall Street, Graniteville, Aiken County, SC

  10. Serum nuclear magnetic resonance-based metabolomics and outcome in diffuse large B-cell lymphoma patients - a pilot study.

    PubMed

    Stenson, Martin; Pedersen, Anders; Hasselblom, Sverker; Nilsson-Ehle, Herman; Karlsson, Bengt Göran; Pinto, Rui; Andersson, Per-Ola

    2016-08-01

    The prognosis for diffuse large B-cell lymphoma (DLBCL) patients with early relapse or refractory disease is dismal. To determine if clinical outcome correlated to diverse serum metabolomic profiles, we used (1)H nuclear magnetic resonance (NMR) spectroscopy and compared two groups of DLBCL patients treated with immunochemotherapy: i) refractory/early relapse (REF/REL; n=27) and ii) long-term progression-free (CURED; n = 60). A supervised multivariate analysis showed a separation between the groups. Among discriminating metabolites higher in the REF/REL group were the amino acids lysine and arginine, the degradation product cadaverine and a compound in oxidative stress (2-hydroxybutyrate). In contrast, the amino acids aspartate, valine and ornithine, and a metabolite in the glutathione cycle, pyroglutamate, were higher in CURED patients. Together, our data indicate that NMR-based serum metabolomics can identify a signature for DLBCL patients with high-risk of failing immunochemotherapy, prompting for larger validating studies which could lead to more individualized treatment of this disease. PMID:26887805

  11. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    PubMed

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  12. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  13. Infrasound emission generated by wind turbines

    NASA Astrophysics Data System (ADS)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  14. Nuclear Jacobi and Poincaré transitions at high spins and temperatures: Account of dynamic effects and large-amplitude motion

    NASA Astrophysics Data System (ADS)

    Mazurek, K.; Dudek, J.; Maj, A.; Rouvel, D.

    2015-03-01

    We present a theoretical analysis of the competition between the so-called nuclear Jacobi and Poincaré shape transitions as a function of spin at high temperatures. The latter condition implies the method of choice, a realistic version of the nuclear liquid drop model, here the Lublin-Strasbourg drop model. We address specifically the fact that the Jacobi and Poincaré shape transitions are accompanied by the flattening of the total nuclear energy landscape as a function of the relevant deformation parameters, which enforces large-amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schrödinger equation whose solutions are used to calculate the most probable deformations associated with the nuclear Jacobi and Poincaré transitions. We discuss selected aspects of the new description focusing on the critical-spin values for both types of these transitions.

  15. Wind turbine on line in Hawaii

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    The largest wind machine in the United States started generating electricity in late July in Hawaii. The Mod-5B wind-powered turbine, located on the northern tip of the island of Oahu, is rated at 3.2 megawatts and is expected to generate enough clean electricity to supply the needs of 1300 homes. The machine was developed at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio, and paid for by the Department of Energy.The turbine is based on new technology that allows its 320-ft (˜100-m) rotor to operate at variable speeds to suit changing wind conditions. It is the result of 15 years of federally sponsored research at NASA-Lewis. Conventional turbines operate at a fixed speed. After 6 months of tests, Mod-5B will be taken over and operated by the Hawaiian Electric Company, under a sales agreement with NASA. The turbine was located at the northend of Oahu primarily because of the high incidence of steady trade winds in that part of the Hawaiian chain. Renewable energy sources like the turbine are also desirable in Hawaii because of the high cost of electricity on the islands, which is principally the result of the need to import all diesel fuel and a prohibition on nuclear power plants in the state.

  16. Broad band sound from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.; Grosveld, F. W.

    1981-01-01

    Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction.

  17. Method and equipment for induction surface hardening of the leading edges of turbine blades

    SciTech Connect

    Sorokina, T.M.; Dymchenko, V.V.

    1988-01-01

    Methodology and equipment for hardening the leading edges of blades for large nuclear reactor steam turbines was investigated using blades made of 15Kh11MF hardened and tempered steel. A machine was designed and built for hardening the blade leading edges with a vacuum-tube oscillator and 66,000 Hz frequency. The electrical parameters of the induction heating were recorded. Hardening of the actual blades made it possible to obtain a hardened case with a depth of 1-3 mm and up to 5 mm in the lower portion of the blade and increased erosion resistance.

  18. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  19. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  20. Dynamic computer simulation of the Fort St. Vrain steam turbines

    SciTech Connect

    Conklin, J.C.

    1983-01-01

    A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

  1. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV

  2. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  3. Ceramic turbine nozzle

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  4. Ceramic turbine nozzle

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  5. Ceramic Cerami Turbine Nozzle

    DOEpatents

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  6. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1975-01-01

    The suitability of eleven types of nuclear fission reactors in combination with five potential energy conversion systems for use in geosynchronous power plants is evaluated. Gas turbine, potassium Rankine liquid metal MHD, and thermionic energy conversion systems are considered. The existing technology of reactors in near-term, intermediate-term, and long-term classes is discussed, together with modifications for use in large-scale power production in space. Unless the temperature is high enough for MHD, reactors which heat gases are generally more suitable for use with gas turbines. Those which heat liquid metals will be more useful for potassium Rankine or liquid metal MHD conversion systems.

  7. Host turbine heat transfer overview

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1984-01-01

    Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.

  8. Cooled snubber structure for turbine blades

    SciTech Connect

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  9. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  10. Feasibility of pulse combustion in micro gas turbines

    NASA Astrophysics Data System (ADS)

    Honkatukia, Juha; Saari, Esa; Knuuttila, Timo; Larjola, Jaakko; Backman, Jari

    2012-10-01

    In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas turbine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8...12 % with an optimal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In contrary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uniform flow, if several parallel combustors are used and triggered alternately in a proper way. Almost all the compression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the efficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation.

  11. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  12. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  13. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.

    PubMed

    Karsten, Richard; Swan, Amanda; Culina, Joel

    2013-02-28

    Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.

  14. Estimating turbine limit load

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1993-01-01

    A method for estimating turbine limit-load pressure ratio from turbine map information is presented and demonstrated. It is based on a mean line analysis at the last-rotor exit. The required map information includes choke flow rate at all speeds as well as pressure ratio and efficiency at the onset of choke at design speed. One- and two-stage turbines are analyzed to compare the results with those from a more rigorous off-design flow analysis and to show the sensitivities of the computed limit-load pressure ratios to changes in the key assumptions.

  15. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  16. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  17. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  18. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  19. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  20. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  1. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  2. Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    PubMed Central

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  3. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  4. Airfoils for wind turbine

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    2000-05-30

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  5. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  6. Turbines in the ocean

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-10-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  7. Braking System for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  8. New Siemens Research Turbine - time lapse

    SciTech Connect

    2009-01-01

    The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines — in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

  9. Variables in turbine erosion

    NASA Technical Reports Server (NTRS)

    Baughman, J. R.; Spies, R.

    1970-01-01

    Study of impact erosion in the operation of turbomachinery is undertaken to predict the results for particular designs. The test program investigates the effects of turbine stator blade shape, rotor blade shape, and variations in test conditions.

  10. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  11. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  12. Turbine nozzle positioning system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  13. Turbine nozzle positioning system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  14. Turbine instabilities: Case histories

    NASA Technical Reports Server (NTRS)

    Laws, C. W.

    1985-01-01

    Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.

  15. Concurrent use of data base and graphics computer workstations to provide graphic access to large, complex data bases for robotics control of nuclear surveillance and maintenance

    SciTech Connect

    Dalton, G.R.; Tulenko, J.S.; Zhou, X. )

    1990-06-01

    The University of Florida is part of a multiuniversity research effort, sponsored by the US Department of Energy which is under way to develop and deploy an advanced semi-autonomous robotic system for use in nuclear power stations. This paper reports on the development of the computer tools necessary to gain convenient graphic access to the intelligence implicit in a large complex data base such as that in a nuclear reactor plant. This program is integrated as a man/machine interface within the larger context of the total computerized robotic planning and control system. The portion of the project described here addresses the connection between the three-dimensional displays on an interactive graphic workstation and a data-base computer running a large data-base server program. Programming the two computers to work together to accept graphic queries and return answers on the graphic workstation is a key part of the interactive capability developed.

  16. Radial turbine cooling

    NASA Astrophysics Data System (ADS)

    Roelke, Richard J.

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  17. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  18. From medium-sized to megawatt turbines...

    SciTech Connect

    Dongen, W. van

    1996-12-31

    One of the world`s first 500 kW turbines was installed in 1989 in the Netherlands. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first 500 kW turbines with steel rotor blades and rotor diameter of 34 m, several design modifications followed, e.g. the rotor diameter was increased to 35 m and a tip brake was added. Later polyester blades were introduced and the rotor diameter was increased with 5 in. The drive train was also redesigned. Improvements on the 500 kW turbine concept has resulted in decreased cost, whereas annual energy output has increased to approx. 1.3 million kWh. Wind energy can substantially contribute to electricity supply. Maximum output in kiloWatthours is the target. Further improvement of the existing technology and implementation of flexible components may well prove to be a way to increase energy output, not only in medium or large sized wind turbines. 7 figs.

  19. Proper installation ensures turbine meter accuracy

    SciTech Connect

    Peace, D.W.

    1995-07-01

    Turbine meters are widely used for natural gas measurement and provide high accuracy over large ranges of operation. However, as with many other types of flowmeters, consideration must be given to the design of the turbine meter and the installation piping practice to ensure high-accuracy measurement. National and international standards include guidelines for proper turbine meter installation piping and methods for evaluating the effects of flow disturbances on the design of those meters. Swirl or non-uniform velocity profiles, such as jetting, at the turbine meter inlet can cause undesirable accuracy performance changes. Sources of these types of flow disturbances can be from the installation piping configuration, an upstream regulator, a throttled valve, or a partial blockage upstream of the meter. Test results on the effects of swirl and jetting on different types of meter designs and sizes emphasize the need to consider good engineering design for turbine meters, including integral flow conditioning vanes and adequate installation piping practices for high accuracy measurement.

  20. Shoosing the appropriate size wind turbine

    SciTech Connect

    Lynette, R.

    1996-12-31

    Within the past several years, wind turbines rated at 400 kW and higher have been introduced into the market, and some manufacturers are developing machines rated at 750 - 1,000+ kW. This raises the question: What is the appropriate size for utility-grade wind turbines today? The answer depends upon the site where the machines will be used and the local conditions. The issues discussed in the paper are: (1) Site-Related (a) Visual, noise, erosion, television interference, interference with aviation (b) Siting efficiency (2) Logistics (a) Adequacy of roads and bridges to accept large vehicles (b) Availability and cost of cranes for erection and maintenance (c) Capability of local repair/overhauls (3) Cost Effectiveness (a) Capital costs (1) Wind Turbine (2) Infrastructure costs (b) Maintenance costs (4) Technical/Financial Risk. 1 fig., 1 tab.

  1. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  2. LES of turbulent flow past axial flow turbines and turbine arrays: Model development and validation

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Kang, Seokkoo; Yang, Xiaolei; Chamorro, Leonardo; Hill, Craig

    2012-11-01

    We present recent progress towards the numerical simulation of turbulent flows past axial-flow wind and hydrokinetic turbines and farms. For simulating multi-turbine arrays, we combine turbine parameterization approaches (actuator disk and actuator line models) with our curvilinear-immersed boundary (CURVIB) LES model. Simulations are carried out both for aligned and staggered wind farms and the computed results are compared with wind tunnel experiments carried out at the St. Anthony Falls Laboratory (SAFL) atmospheric boundary layer wind tunnel. Turbine geometry resolving simulations also employ the CURVIB-LES solver with a wall model and very fine computational grids. Simulations are reported for a complete model marine turbine mounted at the bottom of a straight open channel and the computed results are compared with laboratory experiments obtained in the SAFL Main Channel. The simulated flowfields are analyzed to elucidate the structure of the turbine wake, identify large-scale instabilities, and quantify the mechanisms of turbulence production in the near and far wakes. This work was supported by US Department of Energy (Grant No. DE-EE0002980, DE-EE0005482), Xcel Energy (Grant No. RD3-42), Verdant Power, Initiative for Renewable Energy & the Environment (Grant No. RO-0004-12), and Minnesota Supercomputing Institute.

  3. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    development of improved parameterizations of wind turbines in high-resolution numerical models, such as large-eddy simulations (LES).

  4. Understanding Trends in Wind Turbine Prices Over the Past Decade

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2011-10-26

    Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the wind industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.

  5. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  6. Siting guidelines for utility application of wind turbines. Final report

    SciTech Connect

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  7. Turbine Design and Application, Volume 3

    NASA Technical Reports Server (NTRS)

    Glassman, A. J. (Editor)

    1975-01-01

    Turbine technology concepts for thermodynamic and fluid dynamics are presented along with velocity diagrams, losses, mechanical design, operation and performance. Designs discussed include: supersonic turbines, radial-inflow turbines, and turbine cooling.

  8. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  9. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  10. Design optimization of a portable, micro-hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Schleicher, W. Chris

    Marine and hydrokinetic (MHK) technology is a growing field that encompasses many different types of turbomachinery that operate on the kinetic energy of water. Micro hydrokinetics are a subset of MHK technology comprised of units designed to produce less than 100 kW of power. A propeller-type hydrokinetic turbine is investigated as a solution for a portable micro-hydrokinetic turbine with the needs of the United States Marine Corps in mind, as well as future commercial applications. This dissertation investigates using a response surface optimization methodology to create optimal turbine blade designs under many operating conditions. The field of hydrokinetics is introduced. The finite volume method is used to solve the Reynolds-Averaged Navier-Stokes equations with the k ω Shear Stress Transport model, for different propeller-type hydrokinetic turbines. The adaptive response surface optimization methodology is introduced as related to hydrokinetic turbines, and is benchmarked with complex algebraic functions. The optimization method is further studied to characterize the size of the experimental design on its ability to find optimum conditions. It was found that a large deviation between experimental design points was preferential. Different propeller hydrokinetic turbines were designed and compared with other forms of turbomachinery. It was found that the rapid simulations usually under predict performance compare to the refined simulations, and for some other designs it drastically over predicted performance. The optimization method was used to optimize a modular pump-turbine, verifying that the optimization work for other hydro turbine designs.

  11. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  12. 76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER (SEE ALSO, DRAWING No. 12 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  13. 40. VIEW OF TURBINE HALL LOOKING SOUTHWEST AT WESTINGHOUSEPARSONS TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. VIEW OF TURBINE HALL LOOKING SOUTHWEST AT WESTINGHOUSE-PARSONS TURBINE NUMBER 2. THIS UNIT WAS INSTALLED IN 1925. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  14. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  15. Turbine inner shroud and turbine assembly containing such inner shroud

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  16. Effect of the tip speed ratio in the power production of aligned wind turbines

    NASA Astrophysics Data System (ADS)

    Carrasquillo, Kenneth; Santoni, Christian; Rotea, Mario; Li, Yaoyu; Leonardi, Stefano

    2014-11-01

    The increased demand for wind energy had led to a constant increase in the size of wind turbines and subsequently of the wind farms. A drawback of using large arrays of wind turbines is the decrease in efficiency due to the wake interference. For example, the second row of turbines extracts about 15% less power than the first row. Previous studies indicated that the power production of the entire wind farm is not maximized if the turbines work at their optimum tip speed ratio (TSR). In fact, reducing the TSR on the upwind turbines with respect to an optimum value, the momentum deficit decreases and the downwind turbines power production increases. Although the power production on the upwind turbines decreases, the power production of the entire wind plant may increase. Large Eddy Simulations of the turbulent flow over three NREL5MW aligned turbines have been performed. The most downwind turbine is kept at maximum power production with TSR =7.5, while the TSR of the other two turbines is varied. The effect of the TSR on power production and its fluctuations will be discussed. The UTDWF code is used to perform the simulations, which is based on a finite difference scheme with the Line Actuator to model the turbine blades and the Immersed Boundary Method for the tower and nacelle. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. This work was supported by the NSF, Grant IIA-1243482 (WINDINSPIRE).

  17. NUCLEAR PHYSICS Resonances-Excitation Calculation Studies Investigation of Δ(3, 3) in Ground State of 90Zr Cold Finite Heavy Nucleus at Equilibrium and Under Large Compression

    NASA Astrophysics Data System (ADS)

    Mohammed, H. E. Abu-Sei'leek

    2011-01-01

    A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.

  18. Combined gas turbine-Rankine turbine power plant

    SciTech Connect

    Earnest, E.R.

    1981-05-19

    A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

  19. A possible approach to large-scale laboratory testing for acute radiation sickness after a nuclear detonation.

    PubMed

    Adalja, Amesh A; Watson, Matthew; Wollner, Samuel; Toner, Eric

    2011-12-01

    After the detonation of an improvised nuclear device, several key actions will be necessary to save the greatest number of lives possible. Among these tasks, the identification of patients with impending acute radiation sickness is a critical problem that so far has lacked a clear solution in national planning. We present one possible solution: the formation of a public-private partnership to augment the capacity to identify those at risk for acute radiation sickness. PMID:21988186

  20. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  1. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  2. Meteorological Controls on Wind Turbine Wakes

    SciTech Connect

    Barthelmie, RJ; Hansen, KS; Pryor, SC

    2013-04-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient is high, wake losses are proportionally larger and decrease to be virtually undetectable at wind speeds above rated wind speeds. Wind direction is also critical. Not only does it determine the effective spacing between turbines but also the wind speed distribution is primarily determined by synoptic forcing and typically has a predominant direction from which wind speeds tend to be higher (from southwest for much of the central United States and northern Europe). Two other interlinked variables, turbulence intensity (TI), and atmospheric stability also dictate wake losses. Quantifying, understanding, modeling, and predicting this complex and interdependent system is therefore critical to understanding and modeling wind farm power losses due to wakes, and to optimizing wind farm layout. This paper quantifies the impact of these variables on the power loss due to wakes using data from the large offshore wind farms located at Horns Rev and Nysted in Denmark.

  3. New 200 MW class 501G combustion turbine

    SciTech Connect

    Southall, L.; McQuiggan, G.

    1996-07-01

    The 501G 60-Hz combustion turbine has been developed jointly by Westinghouse Electric Corporation, Mitsubishi Heavy Industries, Ltd., and FiatAvio. It continues a long line of large heavy-duty single-shaft combustion turbines by combining the proven efficient and reliable concepts of the 501F with the latest advances in aero technology via the Westinghouse Alliance with Rolls-Royce. The output of the 501G is over 230 MW with a combined cycle net efficiency of 58 percent. This makes the 501G the largest 60-Hz combustion turbine in the world and also the most efficient.

  4. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2011-12-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  5. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  6. Steam generators, turbines, and condensers. Volume six

    SciTech Connect

    Not Available

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

  7. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  8. Wind turbine spoiler

    DOEpatents

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  9. Turbine nozzle attachment system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  10. Turbine nozzle attachment system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  11. Wind turbine spoiler

    DOEpatents

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  12. Variable stator radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  13. Upgrading jet turbine technology

    SciTech Connect

    Valenti, M.

    1995-12-01

    This article describes a joint government/industry program that is developing a new breed of turbine components, including bearings, blades, and seals, to double the propulsion capacity of both military and commercial jet engines. Although the tensions of the Cold War have receded with the demise of the Soviet Union, the US continually seeks to improve the operational readiness of its weapon systems. The challenge facing the Pentagon today is maintaining US technological superiority in the face of post-Cold War budget cuts. A model program for doing so is the joint government/industry Integrated High Performance Turbine Engine Technology program, or IHPTET (pronounced ip-tet). The goal of the IHPTET program is to develop technologies that will double the propulsion capability of military turbine engines by the turn of the century.

  14. Wind Turbine Acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  15. Gas turbine sealing apparatus

    SciTech Connect

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  16. Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca).

    PubMed

    Sharma, Prashant P; González, Vanessa L; Kawauchi, Gisele Y; Andrade, Sónia C S; Guzmán, Alejandra; Collins, Timothy M; Glover, Emily A; Harper, Elizabeth M; Healy, John M; Mikkelsen, Paula M; Taylor, John D; Bieler, Rüdiger; Giribet, Gonzalo

    2012-10-01

    Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia remain contentious, owing to conflicting morphological and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus mitochondrial genes has also impeded consensus on the type of molecular data best suited for investigating bivalve relationships. To arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-encoding genes-ATP synthase β, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II-for resolving the basal relationships of Bivalvia. We sampled all five major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using maximum likelihood and Bayesian approaches. To investigate the robustness of the phylogenetic signal embedded in the data, we implemented additional datasets wherein length variability and/or third codon positions were eliminated. Results obtained include (a) the clade (Nuculanida+Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the monophyly of Pteriomorphia; (c) the clade (Archiheterodonta+Palaeoheterodonta); (d) the monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) the monophyly of Heteroconchia, i.e., (Palaeoheterodonta+Archiheterodonta+Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative of signal robustness in these four genes. The inferred tree topology corresponds closely to those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene phylogenies.

  17. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  18. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  19. Radial inflow turbine study

    NASA Astrophysics Data System (ADS)

    Hamid, S.; Elder, R. L.

    1992-03-01

    The radial inflow turbine is a primary component used both in small gas turbines and turbochargers. Better understanding of the flow processes occurring within the small passages of the machine could well result in the improved design of units. As most of the detailed aerodynamics is still ill-defined, a joint research project with the objective of improving our understanding has been instigated by Cranfield, the US Army and Turbomach (San Diego). This document gives the seventh report on the project and describes progress and measurements taken.

  20. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  1. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  2. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  4. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  5. Refurbishing steam turbines

    SciTech Connect

    Valenti, M.

    1997-12-01

    Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

  6. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  7. Genetic variation in nuclear and mitochondrial markers supports a large sex difference in lifetime reproductive skew in a lekking species

    PubMed Central

    Verkuil, Yvonne I; Juillet, Cedric; Lank, David B; Widemo, Fredrik; Piersma, Theunis

    2014-01-01

    Sex differences in skews of vertebrate lifetime reproductive success are difficult to measure directly. Evolutionary histories of differential skew should be detectable in the genome. For example, male-biased skew should reduce variation in the biparentally inherited genome relative to the maternally inherited genome. We tested this approach in lek-breeding ruff (Class Aves, Philomachus pugnax) by comparing genetic variation of nuclear microsatellites (θn; biparental) versus mitochondrial D-loop sequences (θm; maternal), and conversion to comparable nuclear (Ne) and female (Nef) effective population size using published ranges of mutation rates for each marker (μ). We provide a Bayesian method to calculate Ne (θn = 4Neμn) and Nef (θm = 2Nefμm) using 95% credible intervals (CI) of θn and θm as informative priors, and accounting for uncertainty in μ. In 96 male ruffs from one population, Ne was 97% (79–100%) lower than expected under random mating in an ideal population, where Ne:Nef = 2. This substantially lower autosomal variation represents the first genomic support of strong male reproductive skew in a lekking species. PMID:25478153

  8. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  9. Turbine meters for liquid measurement

    SciTech Connect

    Wass, D.J.; Allen, C.R.

    1995-12-01

    Liquid turbine meters operate in response to fundamental engineering principles, Operation with a single moving part produces excellent longevity and reliability. Liquid turbine meters display wide rangeability, high accuracy, excellent repeatability, low pressure drop and moderate cost. Liquid turbine meters may be applied to many different fluids with different physical properties and corrosive tendencies. The marriage of liquid turbine meters to electronic instruments allows instantaneous flow calculations and produces the flexibility to display data, store data, transmit data in the most convenient form. Liquid turbine meters should be the first flow measurement instrument considered for liquid measurement applications.

  10. Turbine meters for liquid measurement

    SciTech Connect

    Yon, M.C.

    1984-04-01

    Turbine meters presently used for liquid measurement are presented here. Through the evolution of technology, the turbine meter has maintained its reliability and ruggedness while attaining a high degree of accuracy. The paper attempts to explain the basic principles involved with the utilization of turbine meters, as well as the application of the meter by the aerospace industry, petroleum industry, and petrochemical industry. The use of turbine meters for custody transfer of refined products and pipeline systems, tankers and barge loading or unloading of crude oil has brought the turbine meter to worldwide recognition as a primary register for the exchange of energy.

  11. Nuclear and Q{sup 2} dependence of quaselastic (e,e{prime}p) scattering at large momentum transfer

    SciTech Connect

    Jackson, H.E.; Geesaman, D.F.; Jones, C.E.

    1995-08-01

    An experiment was completed at the Stanford Linear Accelerator Center in which measurements of the (e,e{prime}p) coincidence quasielastic cross section in nuclei were extended to the largest possible Q{sup 2} attainable with the Nuclear Physics Injector and the End Station A spectrometers. Coincidence measurements of the quasielastic (e,e{prime}p) cross section were made on nuclei from carbon to gold in the Q{sup 2} range of 1-7 (GeV/c){sup 2}. Several papers describing the results were published or submitted. Analysis of the data is in its final stages. In summary, the cross section for quasielastic {sup 12}C(e,e{prime}p) scattering was measured at momentum transfer Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q{sup 2} is observed. Cross sections were reported for the reaction {sup 2}H(e,e{prime}p)n for momentum transfers in the range 1.2 {<=}Q{sup 2}{<=}6.8 (GeV/c){sup 2} and for missing momenta from 0 to 250 MeV/c. The longitudinal-transverse interference structure function was separated at Q{sup 2}=1.5 (GeV/c){sup 2}. The observables were compared to calculations performed in nonrelativistic and relativistic frameworks. The data are best described by a fully relativistic calculation. The A-dependence of the quasielastic A(e,e{prime}p) reaction was studied with {sup 2}H, C, Fe, and Au nuclei at momentum transfers Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The nuclear transparency T A,Q{sup 2}, a measure of the average probability that the struck proton escapes from the nucleu A without interaction, was extracted. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as color transparency. No significant rise within errors is seen for any of the nuclei studied.

  12. Wind turbine wake tracking and its correlations with wind turbine monitoring sensors. Preliminary results

    NASA Astrophysics Data System (ADS)

    Aubrun, S.; Torres Garcia, E.; Boquet, M.; Coupiac, O.; Girard, N.

    2016-09-01

    Within the frame of the French project ANR SMARTEOLE, a 6-month measurement campaign has been set-up in the north of France to study the wake behaviour of two wind turbines, with an original set-up using: one ground based scanning LIght Detection And Ranging system (LIDAR), 2 nacelle-mounted LIDARs and a nacelle-embedded 2-axis inclinometer. The present paper will give first insight into the results and describe the different post-processing strategies used to prepare the data to be cross-correlated; within the project the final objective is to characterise the influence of the large-scale atmospheric turbulent eddies on the overall wind turbine nacelle displacement and wind turbine wake behaviour.

  13. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  14. Properties of wind turbine wakes under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Xie, Shengbai; Archer, Cristina

    2015-11-01

    Large-eddy simulations (LES) are performed to study the properties of wind turbine wakes under various atmospheric stability conditions. The Wind Turbine and Turbulence Simulator (WiTTS), a 4th-order finite-difference LES code is used for stable, neutral, and unstable conditions. The Coriolis forcing is also considered. Three cases are studied: isolated turbine, finite-size turbine array, and infinite wind farm. The results show strong correlations with stability. For the stable condition, the power extraction by an isolated turbine is highest, but the wake is also longest, thus the relative performance inside the array is lowest. In contrast, although the single-turbine power extraction is low for the unstable condition, the performance of downstream turbines is improved due to faster wake recovery. The wake shape is distorted by the stability-related wind veering. Therefore, the self-similar Gaussian wake deficit is not accurate. Here, a new wake model is proposed for correction. The infinite wind-farm case shows that the temperature near the ground is warmed by about 1 K for the stable condition, but the influence is almost negligible for the unstable and neutral conditions. For all conditions, the near-ground shear stress is reduced.

  15. Tiny bubbles challenge giant turbines: Three Gorges puzzle.

    PubMed

    Li, Shengcai

    2015-10-01

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element 'draft-tube' that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700-1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences. PMID:26442144

  16. Tiny bubbles challenge giant turbines: Three Gorges puzzle

    PubMed Central

    Li, Shengcai

    2015-01-01

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element ‘draft-tube’ that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700–1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences. PMID:26442144

  17. Crescentic ramp turbine stage

    NASA Technical Reports Server (NTRS)

    Lee, Ching-Pang (Inventor); Tam, Anna (Inventor); Kirtley, Kevin Richard (Inventor); Lamson, Scott Henry (Inventor)

    2007-01-01

    A turbine stage includes a row of airfoils joined to corresponding platforms to define flow passages therebetween. Each airfoil includes opposite pressure and suction sides and extends in chord between opposite leading and trailing edges. Each platform includes a crescentic ramp increasing in height from the leading and trailing edges toward the midchord of the airfoil along the pressure side thereof.

  18. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  19. Turbine blade damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1984-01-01

    Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.

  20. Turbine imaging technology assessment

    SciTech Connect

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  1. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  2. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  3. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  4. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  5. Blade for turbine engine

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Babu, Michael (Inventor); Murdock, James R. (Inventor)

    2004-01-01

    A blade for a turbine engine having a centerline. The blade comprises: a root section extending at an angle relative to the centerline; and an airfoil section extending from the root section. The root section is directly adjacent said airfoil section. In other words, the blade is neckless. The blade is part of a rotor assembly, and is preferably a fan blade.

  6. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  7. Turbine blade tip gap reduction system

    DOEpatents

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  8. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  9. Flameless Combustion for Gas Turbines

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  10. Development of design and simulation model and safety study of large-scale hydrogen production using nuclear power.

    SciTech Connect

    Gelbard, Fred; Oh, Seungmin; Rodriguez, Salvador B.; Revankar, Shripad T.; Gauntt, Randall O.; Cole, Randall K., Jr.; Espinosa, Flor; Drennen, Thomas E.; Tournier, Jean-Michel; Hogan, Kevin; Archuleta, Louis; Malczynski, Leonard A.; Vierow, Karen; McFadden, Katherine Letizia; Martin, William Joseph; El-Genk, Mohamed S.; Louie, David L. Y.

    2007-10-01

    Before this LDRD research, no single tool could simulate a very high temperature reactor (VHTR) that is coupled to a secondary system and the sulfur iodine (SI) thermochemistry. Furthermore, the SI chemistry could only be modeled in steady state, typically via flow sheets. Additionally, the MELCOR nuclear reactor analysis code was suitable only for the modeling of light water reactors, not gas-cooled reactors. We extended MELCOR in order to address the above deficiencies. In particular, we developed three VHTR input models, added generalized, modular secondary system components, developed reactor point kinetics, included transient thermochemistry for the most important cycles [SI and the Westinghouse hybrid sulfur], and developed an interactive graphical user interface for full plant visualization. The new tool is called MELCOR-H2, and it allows users to maximize hydrogen and electrical production, as well as enhance overall plant safety. We conducted validation and verification studies on the key models, and showed that the MELCOR-H2 results typically compared to within less than 5% from experimental data, code-to-code comparisons, and/or analytical solutions.

  11. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  12. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  13. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  14. SMART POWER TURBINE

    SciTech Connect

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably

  15. Turbine repair process, repaired coating, and repaired turbine component

    SciTech Connect

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  16. Taming hurricanes with arrays of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Archer, Cristina L.; Kempton, Willett

    2014-03-01

    Hurricanes are causing increasing damage to many coastal regions worldwide. Offshore wind turbines can provide substantial clean electricity year-round, but can they also mitigate hurricane damage while avoiding damage to themselves? This study uses an advanced climate-weather computer model that correctly treats the energy extraction of wind turbines to examine this question. It finds that large turbine arrays (300+ GW installed capacity) may diminish peak near-surface hurricane wind speeds by 25-41 m s-1 (56-92 mph) and storm surge by 6-79%. Benefits occur whether turbine arrays are placed immediately upstream of a city or along an expanse of coastline. The reduction in wind speed due to large arrays increases the probability of survival of even present turbine designs. The net cost of turbine arrays (capital plus operation cost less cost reduction from electricity generation and from health, climate, and hurricane damage avoidance) is estimated to be less than today’s fossil fuel electricity generation net cost in these regions and less than the net cost of sea walls used solely to avoid storm surge damage.

  17. Nuclear structure effects of the nuclei {sup 152,154,156}Dy at high excitation energy and large angular momentum

    SciTech Connect

    Martin, V.; Egido, J.L.

    1995-06-01

    Using the finite-temperature Hartree-Fock-Bogoliubov formalism we analyze the properties of the nuclei {sup 152,154,156}Dy at the quasicontinuum region from {ital I}=0{h_bar} to 70{h_bar} and excitation energy up to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among others. The role of shape fluctuations is studied in the frame of classical statistics and we find large effects on several observables. A very rich structure is found in terms of excitation energy and angular momentum.

  18. COGEMA Experience on Retrieving and Automatically Remote Cutting Large Metallic Structures Using Special Saw During Nuclear Decommissioning Operations

    SciTech Connect

    Bodin, F.; Barandas, C.

    2002-02-26

    Used spent fuel baskets have been stored in the La Hague North-West concrete-lined pits until decommissioning. In 1998, COGEMA decided to retrieve, cut and condition these spent fuel baskets. This paper describes the experience gained, since the start up of this operation in 1999, discusses resulting dosimetry and waste produced, during retrieving and remotely cutting of LL activity large metallic structures. This process result in significantly lower exposures to workers in the D and D operations. In addition the work was carried out in an environmentally safe manner with reasonable financial costs.

  19. PREFACE: Francis-99 Workshop 1: steady operation of Francis turbines

    NASA Astrophysics Data System (ADS)

    Cervantes, Michel; Hasmukhlal Trivedi, Chiragkumar; Dahlhaug, Ole-Gunnar; Nielsen, Torbjörn

    2015-01-01

    Francis-99 is a set of upcoming workshops jointly organized by the Norwegian University of Science and Technology (NTNU), Norway and Luleå University of Technology (LTU), Sweden in the same spirit as the previous Turbine-99 workshops. The Francis-99 workshops aim during the coming years to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. Three workshops are initially planned: - Workshop 1: steady operation of Francis turbines (December 2014) - Workshop 2: transient operation of Francis turbines (December 2016) - Workshop 3: FSI of Francis turbines (December 2018) A high head Francis turbine model, named the Tokke model, has been designed and experimentally investigated at the Water Power Laboratory, NTNU. The complete geometry of the model and mesh are now freely available on the site www.francis-99.org together with a large set of experimental pressure and velocity measurements. The organisers expect this geometry to become with time a reference test case to the hydraulic community for research and development on high head Francis turbines and the workshops a meeting place to discuss developments, potentials, issues... on a common and open test case. The present proceeding contains the papers presented at the first workshop at NTNU the 15th and 16th of December 2014. 50 participants were present at the workshop and a total of 14 papers were presented. A large variety of codes and models were used highlighting different issues in the simulation of high Francis turbines. The editors: Prof. Michel J. Cervantes (LTU, NTNU) Dr. Chirag Trivedi (NTNU) Prof O.G. Dahlhaug (NTNU) Prof. T. Nielsen (NTNU)

  20. Respiratory and olfactory turbinal size in canid and arctoid carnivorans.

    PubMed

    Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-12-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637