On the evolution of jet energy and opening angle in strongly coupled plasma
NASA Astrophysics Data System (ADS)
Chesler, Paul M.; Rajagopal, Krishna
2016-05-01
We calculate how the energy and the opening angle of jets in {N} = 4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet /dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet /dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that {N} = 4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the {N} = 4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.
On the evolution of jet energy and opening angle in strongly coupled plasma
Chesler, Paul M.; Rajagopal, Krishna
2016-05-17
We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say themore » opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Adam; Connaughton, Valerie; Briggs, Michael S.
We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate themore » probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesler, Paul M.; Rajagopal, Krishna
We calculate how the energy and the opening angle of jets in N = 4SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say themore » opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N = 4SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N = 4SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. In conclusion, we close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.« less
High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade < or = 2 in 3 or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the 2 groups did not differ in terms of sex, refraction, intraocular pressure, or cup-to-disk ratio (all, P > or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.
High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geltman, S.
Recent measurements on CO{sub 2}-laser-assisted electron-atom collisions have shown large inconsistencies with the Kroll-Watson formula for small-angle scattering. We have carried out a detailed study to compare the predictions of Kroll-Watson theory (for both single and multimode fields) with those of conventional perturbation theory for stimulated free-free transitions. It is found that for {ital E}{sub 0}/2{omega}{sup 2}{lt}1, where perturbation theory is valid, there are large differences with the Kroll-Watson theory. Comparisons of experimental variations with respect to scattering angle and electron energy show much better agreement with perturbation theory than with Kroll-Watson theory. A study of the angular variations inmore » perturbation theory shows that use of the {open_quote}{open_quote}outgoing{close_quote}{close_quote} wave final state gives much better agreement with experiment than does the {open_quote}{open_quote}ingoing{close_quote}{close_quote} wave final state, which is different from the choice made in early bremsstrahlung theory. {copyright} {ital 1996 The American Physical Society.}« less
Practical Tests with the "auto Control Slot." Part II : Discussion
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Practical Tests with the "auto Control Slot." Part I : Lecture
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Effect of aperture geometry on heat transfer in tilted partially open cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.M.; Chakroun, W.
1999-11-01
Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less
Large-angle cosmic microwave background anisotropies in an open universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.
1994-01-01
If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Open-angle glaucoma; Chronic glaucoma; Chronic open-angle glaucoma; Primary open-angle glaucoma; Closed-angle glaucoma; Narrow-angle glaucoma; Angle-closure glaucoma; Acute glaucoma; Secondary glaucoma; Congenital glaucoma; Vision ...
Linkage studies in primary open angle glaucoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramopoulos, D.; Grigoriadu, M.; Kitsos, G.
1994-09-01
Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals.more » Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.« less
Flow field and performance characteristics of combustor diffusers: A basic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hestermann, R.; Kim, S.; Ben Khaled, A.
1995-10-01
Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less
Brief, Gerrett; Lammich, Tobias; Nagel, Edgar; Pfennigsdorf, Sabine; Spraul, Christoph W; Ho, Selwyn
2010-01-01
Objective To assess the efficacy and tolerability of a fixed combination of bimatoprost and timolol (BTFC) in a large patient sample in a clinical setting. Methods In this multicenter, observational, noncontrolled, open-label study, patients (n = 1862) with primary open-angle glaucoma or ocular hypertension were treated with BTFC. Assessments were made at baseline, six weeks, and three months. Results Prior to starting BTFC, 92.3% of patients were taking other ocular hypotensive medications. In the overall group at three months, mean intraocular pressure was reduced from baseline (21.7 ± 4.5 mmHg and 21.8 ± 4.9 mmHg for the right and left eye, respectively) to 16.1 ± 3.0 mmHg for each eye (P < 0.0001). The majority of patients (92%) reported no adverse events. The most commonly reported adverse events (in >1% of patients) were eye irritation, and ocular and conjunctival hyperemia. Adherence to treatment was generally better than (35.4%) or the same as (57.5%) with prior therapy. BTFC tolerability was rated as excellent or good by 92.3% of physicians and 85.8% of patients. Conclusions In a large group of patients with primary open-angle glaucoma or ocular hypertension, treatment with BTFC was associated with consistent reductions in IOP, improved adherence to treatment, and good tolerability. PMID:20957059
On the 'flip-flop' instability of Bondi-Hoyle accretion flows
NASA Technical Reports Server (NTRS)
Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich
1991-01-01
A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.
The Properties of Extragalactic Radio Jets
NASA Astrophysics Data System (ADS)
Finke, Justin
2018-01-01
I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heon, E.; Sheth, B.P.; Kalenak, J.W.
1994-09-01
Genetic factors have been implicated in a variety of types of glaucoma including primary open-angle glaucoma, infantile glaucoma, pigmentary glaucoma, and juvenile open-angle glaucoma. We previously mapped the disease-causing gene for one type of juvenile open angle glaucoma to chromosome 1q21-31. Weatherill and Hart (1969) and Pearce (1983) each noted the association of iris hypoplasia and early-onset autosomal dominant glaucoma. We recently had the opportunity to study a large family (12 affected members) with this phenotype. Affected individuals developed glaucoma at an average age of 30 years. These patients also have a strikingly underdeveloped iris stroma which causes a peculiarmore » eye color. Linkage analysis was able to completely exclude the 1q glaucoma locus from involvement in the disorder that affects this family. A complete clinical description of the family and linkage results at additional candidate loci will be presented.« less
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Optimizing water permeability through the hourglass shape of aquaporins
Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric
2013-01-01
The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650
Measurement of the dipole in the cross-correlation function of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less
A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.
Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue
2016-10-01
Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.
Ertas, Burak; Gunaydin, Rıza Onder; Unal, Omer Faruk
2015-04-01
To share our experience involving seven patients with type II first branchial cleft anomalies (hereafter, type II anomalies), to determine whether the location of the external fistula openings of the anomalies are associated with the location of the facial nerve tract, and elucidate the relationship between the location of the fistula opening and the facial nerve. The medical records of seven patients who underwent surgery from 2005 to 2013 for type II anomalies were retrospectively examined. The relationship between the fistula opening and the facial nerve was evaluated in each patient with respect to whether the fistula opening was superior or inferior to the mandibular angle. All patients underwent partial parotidectomy, facial nerve exposure, and total excision of the mass together with connection of a small cuff of the external auditory canal skin to the fistula tract. The fistula tracts were located medially to the facial nerve in two patients, and both fistulae had openings inferior to the mandibular angle. The fistula tracts were located laterally to the facial nerve in the remaining five patients: one patient had no external opening, one had an opening inferior to the mandibular angle, and the remaining three had openings superior to the mandibular angle. Because type II anomalies are rare, their diagnosis is difficult. Surgery of such lesions is challenging and associated with a high risk due to their proximity to the facial nerve. We believe that the location of the fistula opening may help to identify the relationship between the anomalous lesion and facial nerve. Studies involving larger series of cases are needed to confirm our hypothesis; however, because of the rarity of this specific anomaly, it will not be easy to compile a large number of cases. We believe that our study will encourage further investigation on this subject. Copyright © 2014. Published by Elsevier Ireland Ltd.
Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure
Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S
2012-01-01
Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393
Friction Angles of Open-Graded Aggregates from Large-Scale Direct Shear Testing : TechBrief
DOT National Transportation Integrated Search
2013-07-08
State and local transportation agencies frequently use opengraded aggregates for wall, roadway, and bridge construction. The primary advantages of using this type of material in wall and abutment applications are ease of constructability, lighter in-...
... damage. The types of glaucoma include the following: Open-angle glaucoma Open-angle glaucoma is the most common form of ... angle formed by the cornea and iris remains open, but the trabecular meshwork is partially blocked. This ...
Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm
NASA Astrophysics Data System (ADS)
Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.
2016-08-01
Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.
A fracture criterion for widespread cracking in thin-sheet aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.
1993-01-01
An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.
Edge contact angle and modified Kelvin equation for condensation in open pores.
Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin
2017-08-01
We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.
NASA Astrophysics Data System (ADS)
Stens, C.; Riedelbauch, S.
2017-04-01
Due to a more fluctuating energy production caused by renewable energies such as wind and solar power, the number of changes between operating points in pumped storage power plants has increased over the last years. To further increase available regulating power, it is desirable to speed up these changes of operation conditions in Hydro units. Previous studies showed that CFD is well capable of predicting the flow phenomena in the machine under unsteady conditions for a large guide vane opening angle. The present paper investigates the benefits of nearly closed guide vanes during the transition. Results are compared between the two different angles as well as between simulation and measurement.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Open-angle glaucoma in patients with diabetic retinopathy at the Puerto Rico Medical Center.
Cruz-lñigo, Yousef; Izquierdo, Natalio J; García, Omar; Pérez, Raúl
2012-01-01
The association of open-angle glaucoma (OAG) with diabetes mellitus remains controversial. We report on the frequency of open-angle glaucoma in patients having diabetic retinopathy in a population of the Puerto Rico Medical Center. A cross-sectional study of 1,442 patients was done. Only the chart of patients 40 years-of-age and older, with a diagnosis of diabetic retinopathy and/or open-angle glaucoma were included. Descriptive analysis was done. Unadjusted and gender-adjusted logistic regression analyses were used to estimate risk of developing open-angle glaucoma in patients with diabetic retinopathy for each subsequent decade. 1,040 patients were diagnosed with diabetic retinopathy from July 1, 2004 to June 30, 2009. Also, 402 patients were diagnosed with open-angle glaucoma from July 1, 2007 to June 30, 2009. Of the 1,040 patients with diabetic retinopathy, 64 patients (6.15%) also had OAG. According to our gender-adjusted logistic regression analysis the estimated risk of developing open-angle glaucoma for patients 40 years-of-age with diabetic retinopathy increased for each subsequent decade until the seventh decade, odds ratio = 5.07 (95% confidence interval: 1.62-15.86). Thereafter, it decreased, odds ratio = 2.07 (95% confidence interval: 0.36-11.82). Our findings suggest that Puerto Rico patients between 40 to 79 years of age with diabetic retinopathy have an increased risk of developing open-angle glaucoma with each subsequent decade. Screening for open-angle glaucoma in patients with diabetic retinopathy is of utmost importance in the aging Puerto Rico population to prevent blindness.
Hot spots in the microwave sky
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Juszkiewicz, Roman
1987-01-01
Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.
NASA Astrophysics Data System (ADS)
Liu, Lei; Huang, Chuanhui; Yu, Ping; Zhang, Lei
2017-10-01
To improve the dynamic characteristics and cavitation characteristics of large-flow pilot operated check valve, consider the pilot poppet as the research object, analyses working principle and design three different kinds of pilot poppets. The vibration characteristics and impact characteristics are analyzed. The simulation model is established through flow field simulation software. The cavitation characteristics of large-flow pilot operated check valve are studied and discussed. On this basis, high-pressure large-flow impact experimental system is used for impact experiment, and the cavitation index is discussed. Then optimal structure is obtained. Simulation results indicate that the increase of pilot poppet half cone angle can effectively reduce the cavitation area, reducing the generation of cavitation. Experimental results show that the pressure impact is not decreasing with increasing of pilot poppet half cone angle in process of unloading, but the unloading capacity, response speed and pilot poppet half cone angle are positively correlated. The impact characteristics of 60° pilot poppet, and its cavitation index is lesser, which indicates 60° pilot poppet is the optimal structure, with the theory results are basically identical.
Kaushik, Sushmita; Jain, Rajeev; Pandav, Surinder Singh; Gupta, Amod
2006-09-01
To compare the ultrasound biomicroscopic measurement of the anterior chamber angle in Asian Indian eyes, with the angle width estimated by gonioscopy. Patients with open and closed angles attending a glaucoma clinic were recruited for the study. Temporal quadrants of the angles of patients were categorized by gonioscopy as Grade 0 to Grade 4, using Shaffer's classification. These angles were quantified by ultrasound biomicroscopy (UBM) using the following biometric characteristics: Angle opening distance at 250 micro (AOD 250) and 500 micro (AOD 500) from the scleral spur and trabecular meshwork-ciliary process distance (TCPD). The angles were further segregated as "narrow angles" (Schaffer's Grade 2 or less) and "open angles" (Schaffer's Grade 3 and 4). The UBM measurements were computed in each case and analyzed in relation to the gonioscopic angle evaluation. One hundred and sixty three eyes of 163 patients were analyzed. One hundred and six eyes had "narrow angles" and 57 eyes had "open angles" on gonioscopy. There was a significant difference among the mean UBM measurements of each angle grade estimated by gonioscopy (P < 0.001). The Pearson correlation coefficient between all UBM parameters and gonioscopy grades was significant at the 0.01 level. The mean AOD 250, AOD 500 and TCPD in narrow angles were 58+/-49 micro, 102+/-84 micro and 653+/-124 respectively, while it was 176+/-47 micro, 291+/-62 micro and 883+/-94 micro in eyes with open angles (P < 0.001) respectively. The angle width estimated by gonioscopy correlated significantly with the angle dimensions measured by UBM. Gonioscopy, though a subjective test, is a reliable method for estimation of the angle width.
Speciation Mapping of Environmental Samples Using XANES Imaging
Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...
Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J
2018-06-01
To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.
Handling Qualities of a Capsule Spacecraft During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Bilimoria, Karl D.; Mueller, Eric R.
2010-01-01
A piloted simulation was conducted to study handling qualities for capsule spacecraft entering the Earth s atmosphere. Eight evaluation pilots, including six pilot astronauts, provided Cooper-Harper ratings, workload ratings, and qualitative comments. The simulation began after descending through the atmospheric entry interface point and continued until the drogue parachutes deployed. There were two categories of piloting tasks, both of which required bank angle control. In one task category, the pilot followed a closed-loop bank angle command computed by the backup guidance system to manage g-loads during entry. In the other task category, the pilot used intuitive rules to determine the desired bank angle independently, based on an open-loop schedule of vertical speed, Mach, and total energy specified at several range-to-target gates along the entry trajectory. Pilots were able to accurately track the bank angle guidance commands and steered the capsule toward the recovery site with essentially the same range error as the benchmark autopilot trajectory albeit with substantially higher propellant usage, and the handling qualities for this task were satisfactory. Another key result was that the complex piloting task of atmospheric entry could be performed satisfactorily, even in the presence of large dispersions, by controlling bank angle to follow a simple open-loop schedule.
Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α.
Delaforge, Elise; Milles, Sigrid; Bouvignies, Guillaume; Bouvier, Denis; Boivin, Stephane; Salvi, Nicola; Maurin, Damien; Martel, Anne; Round, Adam; Lemke, Edward A; Jensen, Malene Ringkjøbing; Hart, Darren J; Blackledge, Martin
2015-12-09
Influenza A RNA polymerase complex is formed from three components, PA, PB1, and PB2. PB2 is independently imported into the nucleus prior to polymerase reconstitution. All crystallographic structures of the PB2 C-terminus (residues 536-759) reveal two globular domains, 627 and NLS, that form a tightly packed heterodimer. The molecular basis of the affinity of 627-NLS for importins remained unclear from these structures, apparently requiring large-scale conformational changes prior to importin binding. Using a combination of solution-state NMR, small-angle neutron scattering, small-angle X-ray scattering (SAXS), and Förster resonance energy transfer (FRET), we show that 627-NLS populates a temperature-dependent dynamic equilibrium between closed and open states. The closed state is stabilized by a tripartite salt bridge involving the 627-NLS interface and the linker, that becomes flexible in the open state, with 627 and NLS dislocating into a highly dynamic ensemble. Activation enthalpies and entropies associated with the rupture of this interface were derived from simultaneous analysis of temperature-dependent chemical exchange saturation transfer measurements, revealing a strong temperature dependence of both open-state population and exchange rate. Single-molecule FRET and SAXS demonstrate that only the open-form is capable of binding to importin α and that, upon binding, the 627 domain samples a dynamic conformational equilibrium in the vicinity of the C-terminus of importin α. This intrinsic large-scale conformational flexibility therefore enables 627-NLS to bind importin through conformational selection from a temperature-dependent equilibrium comprising both functional forms of the protein.
Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A
2011-11-01
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.
A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu
2015-11-01
We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less
Shabsigh, Muhammad; Lawrence, Cassidy; Rosero-Britton, Byron R; Kumar, Nicolas; Kimura, Satoshi; Durda, Michael Andrew; Essandoh, Michael
2016-01-01
Mitral stenosis (MS) after mitral valve (MV) repair is a slowly progressive condition, usually detected many years after the index MV surgery. It is defined as a mean transmitral pressure gradient (TMPG) >5 mmHg or a mitral valve area (MVA) <1.5 cm(2). Pannus formation around the mitral annulus or extending to the mitral leaflets is suggested as the main mechanism for developing delayed MS after MV repair. On the other hand, early stenosis is thought to be a direct result of an undersized annuloplasty ring. Furthermore, in MS following ischemic mitral regurgitation (MR) repair, subvalvular tethering is the hypothesized pathophysiology. MS after MV repair has an incidence of 9-54%. Several factors have been associated with a higher risk for developing MS after MV repair, including the use of flexible Duran annuloplasty rings versus rigid Carpentier-Edwards rings, complete annuloplasty rings versus partial bands, small versus large anterior leaflet opening angle, and anterior leaflet tip opening length. Intraoperative echocardiography can measure the anterior leaflet opening angle, the anterior leaflet tip opening dimension, the MVA and the mean TMPG, and may help identify patients at risk for developing MS after MV repair.
Shabsigh, Muhammad; Lawrence, Cassidy; Rosero-Britton, Byron R.; Kumar, Nicolas; Kimura, Satoshi; Durda, Michael Andrew; Essandoh, Michael
2016-01-01
Mitral stenosis (MS) after mitral valve (MV) repair is a slowly progressive condition, usually detected many years after the index MV surgery. It is defined as a mean transmitral pressure gradient (TMPG) >5 mmHg or a mitral valve area (MVA) <1.5 cm2. Pannus formation around the mitral annulus or extending to the mitral leaflets is suggested as the main mechanism for developing delayed MS after MV repair. On the other hand, early stenosis is thought to be a direct result of an undersized annuloplasty ring. Furthermore, in MS following ischemic mitral regurgitation (MR) repair, subvalvular tethering is the hypothesized pathophysiology. MS after MV repair has an incidence of 9–54%. Several factors have been associated with a higher risk for developing MS after MV repair, including the use of flexible Duran annuloplasty rings versus rigid Carpentier–Edwards rings, complete annuloplasty rings versus partial bands, small versus large anterior leaflet opening angle, and anterior leaflet tip opening length. Intraoperative echocardiography can measure the anterior leaflet opening angle, the anterior leaflet tip opening dimension, the MVA and the mean TMPG, and may help identify patients at risk for developing MS after MV repair. PMID:27148540
Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi
2014-10-01
We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.
NASA Astrophysics Data System (ADS)
Ye, Dong; Sun, Zhaowei; Wu, Shunan
2012-08-01
The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.
Gyre formation within embayments of a large lake (Lake Geneva, Switzerland)
NASA Astrophysics Data System (ADS)
Razmi, A.; Barry, D.; Bouffard, D.; Le Dantec, N.; Lemmin, U.; Wuest, A.
2013-12-01
Numerical simulations were carried out to examine gyre formation within open, wide lacustrine embayments. The present study was motivated by observed differences in gyre formation within two open and wide embayments (located at Vidy and Morges in Lake Geneva, Switzerland). These two embayments are located within about 3 km of each other on the northern shore of Lake Geneva, and are subjected to similar pelagic currents. Vidy is deeper and has a greater aspect ratio than Morges. The flow field in the embayments was modeled using a previously validated 3D hydrodynamic model (Delft3D-FLOW). The model solved the Reynolds-Averaged Navier-Stokes equations, combined with a k-ɛ turbulence closure in σ (lakebed-following) coordinates. Our study focused on the influence of the embayment geometry on the (uniform) longshore (pelagic) current, specifically the occurrence and magnitude of circulation within the embayment. We built a set of numerical experiments using synthetic embayments, and systematically examined embayment geometry, thereby capturing the differences between the Vidy and Morges embayments. The numerical experiments considered single rectilinear embayments with different aspect ratios (i.e., 1-6), depth, shore-parallel flow rates, and embayment corner angle between 0°-50°. The circulation magnitude changes abruptly for an angle of about 40°. Embayments with angles greater than 40° have much greater circulation then those with lesser angles, other factors remaining the same. Of the factors considered (i.e., aspect ratio, offshore current velocity, corner angle, bottom slope, and viscosity), bottom slope and the viscosity have almost no impact on embayment circulation. For uniform offshore current patterns, gyres form in embayments with large aspect ratios (up to ~3). For the Vidy and Morges embayments, the results showed that gyre formation is more likely in Morges due to its smaller aspect ratio, a finding that is supported by field data gathered in drifter studies. For example, simultaneous drifter releases in 2011 showed parallel-to-shore currents in the Vidy embayment and a gyre in Morges. KEYWORDS: Hydrodynamics; Open Embayment; Flow Separation; Gyre; Topography; Lake Geneva.
Hsia, Yen C; Moghimi, Sasan; Coh, Paul; Chen, Rebecca; Masis, Marisse; Lin, Shan C
2017-07-01
To evaluate intraocular pressure (IOP) change after cataract surgery in eyes with open-angle glaucoma (OAG) and its relationship to angle and anterior segment parameters measured by anterior segment optical coherence tomography (AS-OCT). University of California, San Francisco, California, USA. Prospective case series. Eyes were placed into a narrow-angle group or open-angle group based on gonioscopy grading. Biometric parameters were measured using AS-OCT (Visante) preoperatively, and IOP 4 months after surgery was obtained. The IOP change and its relationship to AS-OCT parameters were evaluated. Eighty-one eyes of 69 patients were enrolled. The mean age of the patients was 76.8 years. The preoperative IOP was 15.02 mm Hg on 1.89 glaucoma medications. The average mean deviation of preoperative visual field was -4.58 dB. The mean IOP reduction was 2.1 mm Hg (12.8%) from a preoperative mean of 15.0 mm Hg. The IOP reduction was significantly greater in eyes with narrow angles than in eyes with open angles (20.4% versus 8.0%) (P = .002). In multivariate analysis, preoperative IOP (β = -0.53, P < .001, R 2 = 0.40), angle-opening distance at 500 mm (β = 5.83, P = .02, R 2 = 0.45), angle-opening distance at 750 mm (β = 5.82, P = .001, R 2 = 0.52), and lens vault (β = -0.002, P = .009, R 2 = 0.47) were associated with IOP reduction postoperatively. In eyes with OAG, IOP reduction after cataract surgery was greater in eyes with narrower angles. Preoperative IOP, angle-opening distance, and lens vault were predictors for IOP reduction. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
A Generalized Maxwell Model for Creep Behavior of Artery Opening Angle
Zhang, W.; Guo, X.; Kassab, G. S.
2009-01-01
An artery ring springs open into a sector after a radial cut. The opening angle characterizes the residual strain in the unloaded state, which is fundamental to understanding stress and strain in the vessel wall. A recent study revealed that the opening angle decreases with time if the artery is cut from the loaded state, while it increases if the cut is made from the no-load state due to viscoelasticity. In both cases, the opening angle approaches the same value in 3 hours. This implies that the characteristic relaxation time is about 10,000 sec. Here, the creep function of a generalized Maxwell model (a spring in series with six Voigt bodies) is used to predict the temporal change of opening angle in multiple time scales. It is demonstrated that the theoretical model captures the salient features of the experimental results. The proposed creep function may be extended to study the viscoelastic response of blood vessels under various loading conditions. PMID:19045526
Caldwell, Michael S.; Bee, Mark A.
2014-01-01
The ability to reliably locate sound sources is critical to anurans, which navigate acoustically complex breeding choruses when choosing mates. Yet, the factors influencing sound localization performance in frogs remain largely unexplored. We applied two complementary methodologies, open and closed loop playback trials, to identify influences on localization abilities in Cope’s gray treefrog, Hyla chrysoscelis. We examined localization acuity and phonotaxis behavior of females in response to advertisement calls presented from 12 azimuthal angles, at two signal levels, in the presence and absence of noise, and at two noise levels. Orientation responses were consistent with precise localization of sound sources, rather than binary discrimination between sources on either side of the body (lateralization). Frogs were unable to discriminate between sounds arriving from forward and rearward directions, and accurate localization was limited to forward sound presentation angles. Within this region, sound presentation angle had little effect on localization acuity. The presence of noise and low signal-to-noise ratios also did not strongly impair localization ability in open loop trials, but females exhibited reduced phonotaxis performance consistent with impaired localization during closed loop trials. We discuss these results in light of previous work on spatial hearing in anurans. PMID:24504182
The distinction between juvenile and adult-onset primary open-angle glaucoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggs, J.L.; Haines, J.L.; Damji, K.F.
1996-01-01
Because of the significant differences between the juvenile and adult forms of open-angle glaucoma, especially with regard to inheritance, prevalence, severity, and age of onset, we read with interest the recent publication by Morissette et al., describing a pedigree with a phenotype that overlaps the distinctive features of juvenile-onset open-angle glaucoma (JOAG) and adult-onset primary open-angle glaucoma (usually abbreviated as POAG or COAG). These authors conclude that a gene mapped to human chromosome 1q21-q31 (GLC1A) can be responsible for both juvenile and adult forms of open-angle glaucoma. The implications of such a result could be extremely important, in light ofmore » the high prevalence of the adult form of the disease. However, while the data presented in this report suggest that variable expressivity of the GLC1A gene may lead to a broader range of onset for this form of juvenile glaucoma, these data do not identify the GLC1A gene as an important cause of POAG. To prevent misleading interpretations of this and similar studies, we wish to clarify the distinction between the juvenile and adult forms of open-angle glaucoma. 8 refs.« less
Tsuji, Takashi; Matsumoto, Morio; Nakamura, Masaya; Ishii, Ken; Fujita, Nobuyuki; Chiba, Kazuhiro; Watanabe, Kota
2017-09-01
The aim of the present study was to investigate the factors associated with C5 palsy by focusing on radiological parameters using multivariable analysis. The authors retrospectively assessed 190 patients with cervical spondylotic myelopathy treated by open-door laminoplasty. Four radiographic parameters-the number of expanded lamina, C3-C7 angle, lamina open angle and space anterior to the spinal cord-were evaluated to clarify the factors associated with C5 palsy. Of the 190 patients, 11 developed C5 palsy, giving an overall incidence of 5.8%. Although the number of expanded lamina, lamina open angle and space anterior to the spinal cord were significantly larger in C5 palsy group than those in non-palsy group, a multiple logistic regression analysis revealed that only the space anterior to the spinal cord (odds ratio 2.60) was a significant independent factor associated with C5 palsy. A multiple linear regression analysis indicated that the lamina open angle was associated with the space anterior to the spinal cord and the analysis identified the following equation: space anterior to the spinal cord (mm) = 1.54 + 0.09 × lamina open angle (degree). A cut-off value of 53.5° for the lamina open angle predicted the development of C5 palsy with a sensitivity of 72.7% and a specificity of 83.2%. The larger postoperative space anterior to the spinal cord, which was associated with the lamina open angle, was positively correlated with the higher incidence of C5 palsy.
Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves
NASA Astrophysics Data System (ADS)
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei
2018-05-01
Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.
Stray light field dependence for large astronomical space telescopes
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Bowers, Charles W.
2017-09-01
Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.
Zebardast, Nazlee; Kavitha, Srinivasan; Krishnamurthy, Palaniswamy; Friedman, David S; Nongpiur, Monisha E; Aung, Tin; Quigley, Harry A; Ramulu, Pradeep Y; Venkatesh, Rengaraj
2016-12-01
To compare anterior segment optical coherence tomography (ASOCT) angle morphology before and after laser peripheral iridotomy (LPI) in a cohort of South Indian subjects with primary angle-closure suspect (PACS) or primary angle-closure/primary angle-closure glaucoma (PAC/PACG) and to examine baseline parameters associated with angle widening. Prospective observational study. A total of 244 subjects aged ≥30 years with PACS or PAC/PACG in at least 1 eye. The ASOCT images and angle gonioscopic grades were analyzed for all subjects at baseline and 2 weeks after LPI. Multivariable linear and logistic regression models were used to determine predictors of angle widening (change in mean angle opening distance [AOD750]) and angle opening (all 4 quadrants with trabecular meshwork [TM] visible on gonioscopy after LPI). Change in ASOCT parameters with LPI and baseline predictors of angle widening. Laser peripheral iridotomy resulted in angle widening on ASOCT with significant increases in AOD750, angle recess area, and trabecular iris surface area (P < 0.05 for all). Gonioscopically, 44.7% of all subjects had open angles in all 4 quadrants after LPI, with a greater percentage of angles open in the PACS group compared with the PAC/PACG group (52.4% vs. 36.4%; P = 0.01). In multivariable regression analyses, greater postoperative angle widening as defined by change in AOD750 was associated with shorter baseline AOD750 and axial length, and greater baseline anterior chamber depth, iris curvature, and lens vault (P ≤ 0.002 for all). Gonioscopic angle opening after LPI was more common with wider baseline angle width (modified Shaffer grade) and lower cup-to-disc ratio (P < 0.001 for both). In a South Indian population with PACS or PAC/PACG, LPI results in significant anterior chamber angle widening seen on both ASOCT and gonioscopy, although some degree of persistent iridotrabecular contact was present in approximately half of PACS eyes and approximately two thirds of PAC/PACG eyes on gonioscopy. The greatest widening by ASOCT was observed in eyes with features most consistent with greater baseline pupillary block. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Cervantes, H.; Sotolongo-Costa, O.; Gaggero-Sager, L. M.
Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results showmore » that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.« less
Undetected angle closure in patients with a diagnosis of open-angle glaucoma.
Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K
2017-08-01
The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib
2015-07-01
The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)
2002-01-01
This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.
Wiggs, Janey L.; Auguste, Josette; Allingham, R. Rand; Flor, Jason D.; Pericak-Vance, Margaret A.; Rogers, Kathryn; LaRocque, Karen R.; Graham, Felicia L.; Broomer, Bob; Del Bono, Elizabeth; Haines, Jonathan L.; Hauser, Michael
2005-01-01
Objective: To determine whether mutations in the optineurin gene contribute to susceptibility to adult-onset primary open-angle glaucoma. Methods: The optineurin gene was screened in 86 probands with adult-onset primary open-angle glaucoma and in 80 age-matched control subjects. Exons 4 and 5, containing the recurrent mutations identified in patients with normal-tension glaucoma, were sequenced in all individuals studied, while the remaining exons were screened for DNA sequence variants with denaturing high-performance liquid chromatography. Results: The recurrent mutation, Met98Lys, previously found to be associated with an increased risk of disease was found in 8 (9%) of 86 probands. We also found the Met98Lys mutation in 10% of individuals from a control population of similar age, sex, and ethnicity. Consistent segregation of the mutation with the disease was not demonstrated in any of the 8 families. No other DNA changes altering the amino acid structure of the protein were found. Conclusion: The mutations in the optineurin gene associated with normal-tension glaucoma are not associated with adult-onset primary open-angle glaucoma in this patient population. Clinical Relevance: Genetic abnormalities that render the optic nerve susceptible to degeneration are excellent candidates for genetic factors that could contribute to adult-onset primary open-angle glaucoma. Mutations in optineurin have been associated with normal-tension glaucoma, but are not associated with disease in patients with adult-onset primary open-angle glaucoma. This result may indicate that normal-tension glaucoma is not necessarily part of the phenotypic spectrum of adult open-angle glaucoma. PMID:12912697
NASA Astrophysics Data System (ADS)
Pomoni, Elli; Rastelli, Leonardo
2012-10-01
We consider an instance of the AdS/CFT duality where the bulk theory contains an open string tachyon, and study the instability from the viewpoint of the boundary field theory. We focus on the specific example of the AdS5 × S 5 background with two probe D7 branes intersecting at general angles. For generic angles supersymmetry is completely broken and there is an open string tachyon between the branes. The field theory action for this system is obtained by coupling to {N}=4 super Yang-Mills two {N}=2 hyper multiplets in the fundamental representation of the SU( N) gauge group, but with different choices of embedding of the two {N}=2 subalgebras into {N}=4 . On the field theory side we find a one-loop Coleman-Weinberg instability in the effective potential for the fundamental scalars. We identify a mesonic operator as the dual of the open string tachyon. By AdS/CFT, we predict the tachyon mass for small 't Hooft coupling (large bulk curvature) and confirm that it violates the AdS stability bound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M.
Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members ofmore » this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).« less
Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei
2018-03-01
Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal Control of Airfoil Flow Separation using Fluidic Excitation
NASA Astrophysics Data System (ADS)
Shahrabi, Arireza F.
This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of Cμ as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.
Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.
Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin
2015-12-01
To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at baseline. Copyright © 2015 American Academy of Ophthalmology. All rights reserved.
Fan, Dapeng; Wang, Wei; Hildebrand, Kevin A; Fan, Cun-Yi
2016-09-09
With the exception of normal anatomic changes in the medial collateral ligament and radial head, other factors related to carrying angle changes have not been systematically studied. We reviewed patients who underwent open arthrolysis of the elbow, and evaluated if open arthrolysis could change carrying angle. We then identified factors associated with carrying angle changes. Fifty patients with a minimum of 24 months of follow-up after open arthrolysis were evaluated retrospectively. Preoperative and postoperative carrying angles were compared. The carrying angles of 36 elbows in 36 patients were unchanged after surgery (Group A), while the carrying angles of 14 elbows in 14 patients increased postoperatively (Group B). In Group A, mean postoperative extension and flexion were 7° (range 0-24°) and 125° (range 10-135°) respectively, while mean postoperative pronation and supination were 60° (range 50-80°) and 65° (range 30-85°), respectively. In Group B, mean postoperative extension and flexion were 25° (range 0-40°) and 128° (range 60-138°), while mean postoperative pronation and supination were 65° (range 45-85°) and 60° (range 45-75°), respectively. No significant difference in range of motion and Mayo Elbow Performance Score was observed between the two groups. During open arthrolysis, humeral trochlea debridement and techniques for improving forearm rotation could increase carrying angle. However, this had no impact on elbow functional recovery.
Obstructive sleep apnoea syndrome in patients with primary open-angle glaucoma.
Balbay, Ege G; Balbay, Oner; Annakkaya, Ali N; Suner, Kezban O; Yuksel, Harun; Tunç, Murat; Arbak, Peri
2014-10-01
To investigate the prevalence of obstructive sleep apnoea syndrome in patients with primary open-angle glaucoma. Case series. School of Medicine, Düzce University, Turkey. Twenty-one consecutive primary open-angle glaucoma patients (12 females and 9 males) who attended the out-patient clinic of the Department of Ophthalmology between July 2007 and February 2008 were included in this study. All patients underwent polysomnographic examination. The prevalence of obstructive sleep apnoea syndrome was 33.3% in patients with primary open-angle glaucoma; the severity of the condition was mild in 14.3% and moderate in 19.0% of the subjects. The age (P=0.047) and neck circumference (P=0.024) in patients with obstructive sleep apnoea syndrome were significantly greater than those without the syndrome. Triceps skinfold thickness in glaucomatous obstructive sleep apnoea syndrome patients reached near significance versus those without the syndrome (P=0.078). Snoring was observed in all glaucoma cases with obstructive sleep apnoea syndrome. The intra-ocular pressure of patients with primary open-angle glaucoma with obstructive sleep apnoea syndrome was significantly lower than those without obstructive sleep apnoea syndrome (P=0.006 and P=0.035 for the right and left eyes, respectively). There was no significant difference in the cup/disc ratio and visual acuity, except visual field defect, between primary open-angle glaucoma patients with and without obstructive sleep apnoea syndrome. Although it does not provide evidence for a cause-effect relationship, high prevalence of obstructive sleep apnoea syndrome in patients with primary open-angle glaucoma in this study suggests the need to explore the long-term results of coincidence, relationship, and cross-interaction of these two common disorders.
Fingert, John H.; Robin, Alan L.; Scheetz, Todd E.; Kwon, Young H.; Liebmann, Jeffrey M.; Ritch, Robert; Alward, Wallace L.M.
2016-01-01
Purpose To investigate the role of TANK-binding kinase 1 (TBK1) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. Methods In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas—juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)—using a quantitative polymerase chain reaction assay. Results No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. Conclusions TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma. PMID:27881886
Fingert, John H; Robin, Alan L; Scheetz, Todd E; Kwon, Young H; Liebmann, Jeffrey M; Ritch, Robert; Alward, Wallace L M
2016-08-01
To investigate the role of TANK-binding kinase 1 ( TBK1 ) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas-juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)-using a quantitative polymerase chain reaction assay. No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma.
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
46 CFR 172.065 - Damage stability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...
46 CFR 172.065 - Damage stability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...
Beebe, David C; Shui, Ying-Bo; Siegfried, Carla J; Holekamp, Nancy M; Bai, Fang
2014-05-01
Oxygen levels in the eye are generally low and tightly regulated. Oxygen enters the eye largely by diffusion from retinal arterioles and through the cornea. In intact eyes, oxygen from the retinal arterioles diffuses into the vitreous body. There is a decreasing oxygen gradient from the retina to the lens, established by oxygen consumption by ascorbate in the vitreous fluid and lens metabolism. Age-related degeneration of the vitreous body or removal during vitrectomy exposes the posterior of the lens to increased oxygen, causing nuclear sclerotic cataracts. Lowering oxygen in the vitreous, as occurs in patients with ischemic diabetic retinopathy, protects against cataracts after vitrectomy. Vitrectomy and cataract surgery increase oxygen levels at the trabecular meshwork and with it the risk of open angle glaucoma. Two additional risk factors for glaucoma, African heritage and having a thinner cornea, are also associated with increased oxygen in the anterior chamber angle. Preservation of the vitreous body and the lens, two important oxygen consumers, would protect against nuclear sclerotic cataracts and open angle glaucoma. Delaying removal of the lens for as long as possible after vitrectomy would be an important step in delaying ocular hypertension and glaucoma progression.
Biomarkers in primary open angle glaucoma.
Kokotas, Haris; Kroupis, Christos; Chiras, Dimitrios; Grigoriadou, Maria; Lamnissou, Klea; Petersen, Michael B; Kitsos, George
2012-12-01
Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘ open angle ’ and ‘ closed angle ’ glaucoma.Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma(POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
Large Angle Optical Access in a Sub-Kelvin Cryostat
NASA Astrophysics Data System (ADS)
Hähnle, S.; Bueno, J.; Huiting, R.; Yates, S. J. C.; Baselmans, J. J. A.
2018-05-01
The development of lens-antenna-coupled aluminum-based microwave kinetic inductance detectors (MKIDs) and on-chip spectrometers needs a dedicated cryogenic setup to measure the beam patterns of the lens-antenna system over a large angular throughput and broad frequency range. This requires a careful design since the MKID has to be cooled to temperatures below 300 mK to operate effectively. We developed such a cryostat with a large opening angle θ = ± 37.8° and an optical access with a low-pass edge at 950 GHz . The system is based upon a commercial pulse tube cooled 3 K system with a ^4He -^3He sorption cooler to allow base temperatures below 300 mK . A careful study of the spectral and geometric throughput was performed to minimize thermal loading on the cold stage, allowing a base temperature of 265 mK . Radio-transparent multi-layer-insulation was employed as a recent development in filter technology to efficiently block near-infrared radiation.
Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S
2010-01-01
The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).
Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome 1 q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, J.E.; Lichter, P.R.; Torrez, D.
1994-01-01
A large Caucasian family is presented, in which a juvenile-onset form of open-angle glaucoma is transmitted in an autosomal dominant fashion. Sixteen affected family members were identified from 31 at-risk individuals descended from the affected founder. Affected patients developed high intraocular pressures (sometimes >40 mm Hg) within the first 2 decades of life. Linkage analysis between the disease phenotype and 12 microsatellite repeat markers located on chromosome 1 q gave a maximum lod score of 8.38 at a recombination fraction of zero for marker D1S210. Analysis of recombinant haplotypes suggests a total inclusion region of about 14 cM between markersmore » D1S194 and D1S218 at 1q21-q31. This represents the second juvenile-glaucoma family, in which the disease has been mapped to the long arm of chromosome 1. 57 refs., 2 figs., 3 tabs.« less
46 CFR 174.207 - Damaged stability criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sinkage, heel, and trim, must be below the lower edge of an opening through which progressive flooding may... of this subpart; or (v) Side scuttle of the non-opening type. (2) Angle of heel. The angle of heel...
Goyushov, Samir; Tözüm, Melek Didem; Tözüm, Tolga Fikret
2018-05-25
To determine the shape, position, vertical height, surrounding bone characteristics, and opening angle of mental foramen (MF) using dental cone beam computed tomography (CBCT). A retrospective study was performed on 663 patients. CBCT records analyzed for the shape, position, and surrounding bone measurements of the MF using Simplant 3D software (Hasselt, Belgium). Opening angle of MF was also assessed. Kruskal-Wallis and Mann-Whitney U tests were employed to test significant differences between parameters, genders and ages. All mental foramina were visualized. Regarding location, 49.2% of the MFs were located between first and second premolars, 7.7 distal and 39.7% coincident to the apex of the mandibular second premolar. The mean MF opening angle was 45.4° on the right side, and 45.9° on the left. There were no statistically differences between gender groups with regard to the opening angle degrees. This study may provide useful information about variations in the position, shape and size, angle of mental foramen, which may help the practitioners to perform safer mental nerve blocks and surgical procedures.
Nguyen, Donna; Minnal, Vandana R.
2016-01-01
Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300
NASA Astrophysics Data System (ADS)
Behr, Bradford
2005-09-01
Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.
Glaucoma anterior chamber morphometry based on optical Scheimpflug images.
Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis
2010-01-01
To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.
Peripapillary schisis in open-angle glaucoma.
Dhingra, N; Manoharan, R; Gill, S; Nagar, M
2017-03-01
PurposeTo report clinical features, topographic findings and outcome of 10 eyes with peripapillary schisis in open-angle glaucoma.Patients and methodsA retrospective review of patients with open-angle glaucoma who were noted to have peripapillary schisis on optical coherence tomography (OCT) were included. Serial peripapillary and macula infrared and OCT images, visual acuity, visual fields, and schisis appearance were reviewed.ResultsTen eyes of nine patients with open-angle glaucoma were detected to have the presence of peripapillary schisis. Nerve fibre layer schisis was detected in all eyes and one eye had an associated macular schisis. None of the eyes had an acquired pit of the optic nerve or pathological myopia. The mean intraocular pressures at detection was 18.3±4.3 mm Hg and the schisis resolved in four eyes after a mean follow-up of 21.2±8.8 months. Visual field worsening was noted in 4 of the 10 eyes and the resolution of schisis resulted in significant reduction in the retinal nerve fibre layer (RNFL) thickness.ConclusionsPeripapillary schisis detected during the normal course of open-angle glaucoma can resolve spontaneously and rarely involves the macula. Its resolution leads to reduction in RNFL thickness; therefore, caution is advised while interpreting serial scans.
Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S
2011-07-01
To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.
Luna-Pizarro, Daniel; Amato, Dante; Arellano, Francisco; Hernández, Armando; López-Rojas, Pablo
2006-09-01
To compare the percutaneous patellar osteosynthesis system (PPOS) technique with open surgery for patella fractures. Randomized controlled trial. Referral orthopedic and trauma center. Fifty-three patients with displaced patellar fractures. Stabilization and fixation of patellar fractures with PPOS or open surgery. Knee-flexion and -extension angles, pain, surgical time, and assessment of knee function based on the Knee Society Clinical Rating Scale (KSCRS). Comparison of PPOS and open-surgery groups at 4 weeks showed the following: pain, 3.7 +/- 1.6 versus 6.2 +/- 1.4 arbitrary units, P < 0.001; flexion angle, 46 +/- 20.7 versus 12.7 +/- 6.0 degrees, P < 0.001; extension angle, -2.5 versus -3.8 degrees, P < 0.001. At 8 weeks, the following was demonstrated: pain, 1.3 +/- 1.6 versus 4.1 +/- 2.1 arbitrary units, P < 0.001; flexion angle, 87 +/- 17.3 versus 34 +/- 26 degrees, P < 0.001; extension angle, 0 versus -3 degrees, P < 0.001. Surgical time was 35.3 +/- 7.8 versus 66.2 +/- 14.1 minutes, P < 0.001. KSCRS assessment was 84 +/- 4 versus 70 +/- 8, P < 0.001 at 8 weeks; 85 +/- 2 versus 73 +/- 8, P < 0.001 at 12 months; and 85 +/- 1 versus 82 +/- 7, P = 0.246 at 24 months. Frequency of total complications (infections, fragment displacement, and wire-related pain) was significantly lower in the PPOS than in the open-surgery group (P < 0.02). PPOS for patella fractures was associated with shorter surgical time, less pain, better mobility angles, higher functional score up to 2 years, and a lower incidence of complications than open surgery.
Sokolis, Dimitrios P; Savva, Giannis D; Papadodima, Stavroula A; Kourkoulis, Stavros K
2017-03-01
The biomechanical response of the human aorta varies with axial location, but little is known about the respective variation of residual strains. Such data are available for common lab animals, but in the traditional opening angle measurement the aorta is considered as an ideal cylinder and average residual strains are measured, so that the spatial variations of local residual strains are not determined. The present study provides opening angle and residual strain data throughout the course and around the circumference of the aorta harvested during autopsy. Opening angle showed notable topographical variation; the highest value was at the top of aortic arch, declining abruptly toward the ascending aorta and to a near-constant value in the descending aorta, and rising in the abdominal aorta. The variation of curvature and of external but not internal residual stretch resembled that of opening angle. Extensive residual stress and wall thickness differences were evidenced among quadrants, with the more pre-stressed being also the thicker quadrants. Gender had overall minor effects, but aging led to increased parameters, occurring earlier in the distal aorta but at later stages becoming predominant proximally. Differences in caliber were pronounced in older subjects, unlike those in opening angle, residual stretches, and thickness that were striking in middle-aged subjects. By contrast, curvature decreased with aging in relation to the smaller percentwise opening angle differences. Detailed knowledge of the zero-stress/no-load geometry of the human aortic wall is critical for an in-depth understanding of aortic physiology, while providing the basis for comparison with disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grover, Davinder S; Smith, Oluwatosin; Fellman, Ronald L; Godfrey, David G; Gupta, Aditi; Montes de Oca, Ildamaris; Feuer, William J
2018-05-01
The purpose of this study was to provide 24-month follow-up on surgical success and safety of an ab interno circumferential 360-degree trabeculotomy. Chart review of patients who underwent a gonioscopy-assisted transluminal trabeculotomy (GATT) procedure was performed by 4 of the authors (D.S.G., O.S., R.L.F., and D.G.G.). The surgery was performed in adults with various types of open-angle glaucoma with preoperative intraocular pressures (IOPs) of ≥18 mm Hg. In total, 198 patients aged 24 to 89 years underwent the GATT procedure with at least 18 months follow-up. Patients with primary open-angle glaucoma had an average IOP decrease of 9.2 mm Hg at 24 months with an average decrease of 1.43 glaucoma medications. The mean percentage of IOP decrease in these primary open-angle glaucoma groups at 24 months was 37.3%. In secondary open-angle glaucoma, at 24 months there was an average decrease in IOP of 14.1 mm Hg on an average of 2.0 fewer medications. The mean percentage of IOP decrease in the secondary open-angle glaucoma groups at 24 months was 49.8%. The cumulative proportion of failure at 24 months ranged from 0.18 to 0.48, depending on the group. In all 6 study groups, at all 5 postoperative time points (3, 6, 12, 18, and 24 mo) the mean IOP and reduction in glaucoma medications was significantly reduced from baseline (P<0.001) with the exception of one time point. The 24-month results demonstrate that GATT is relatively safe and effective in treating various forms of open-angle glaucoma. The long-term results for GATT are relatively equivalent to those previously reported for GATT and ab externo trabeculotomy studies.
Griffith, Joseph F; Goldberg, Jeffrey L
2016-03-01
To determine the frequency of optical coherence tomography (OCT) examinations compared with clinical examinations and visual field (VF) tests in patients with 5 types of glaucoma. A retrospective, longitudinal cohort study was conducted of 5154 patients treated between 2003 and 2010 at a single academic medical center. Patients were classified using billing records as having primary open-angle glaucoma, low-tension open-angle glaucoma (NTG), pigmentary open-angle glaucoma, chronic angle-closure glaucoma, or pseudoexfoliation glaucoma. Analysis of variance, χ test, and exact χ test were performed to identify associations between glaucoma type and test frequency. Pigmentary open-angle glaucoma and NTG patients had a higher rate of undergoing at least 2 VFs (94.4%, 94.9%), and chronic angle-closure glaucoma patients had a lower rate of undergoing at least 2 OCTs (25.3%) than all other glaucoma types. NTG patients also had the highest rate of undergoing at least 2 OCTs and at least 2 VFs (36.6%). Overall, the rate of clinical examinations (2.68 examinations/y) exceeded the rates of OCTs (1.39 examinations/y), which exceeded the rate of VF tests (1.24 tests/y). There were no differences in OCT frequency between glaucoma types (0.91 to 1.63 OCTs/y). Within each glaucoma diagnosis, patients had clinical examinations more frequently than OCTs and clinical examinations more frequently than VFs. Primary open-angle glaucoma and pseudoexfoliation glaucoma patients also had OCTs more frequently than VFs. More patients had at least 2 VF tests than at least 2 OCTs (4481 vs. 1679). The relative use of clinical examinations, VF testing, and OCT imaging varies among glaucoma diagnoses.
Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow
NASA Astrophysics Data System (ADS)
Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori
2015-06-01
We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.
NASA Astrophysics Data System (ADS)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-10-01
Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.
Bedi, Asheesh; Zaltz, Ira; De La Torre, Katrina; Kelly, Bryan T
2011-07-01
Whether open or arthroscopic techniques are employed, the goal of femoroacetabular impingement (FAI) surgery is to achieve impingement-free range of motion. While arthroscopic approaches have improved and gained popularity, an objective evaluation of the surgical correction achieved with this approach compared with open surgery remains to be defined in the literature. This study was undertaken to compare the efficacy of arthroscopic osteoplasty and open surgical dislocation in treating FAI dysmorphology in a consecutive series of patients. Cohort study; Level of evidence, 3. Surgical treatment was performed in 60 male patients under 40 years of age for symptomatic FAI refractory to nonoperative management. Patients were matched (not randomized) to treatment groups: 30 patients (15 left and 15 right hips) underwent arthroscopic cam and/or rim osteoplasty with labral debridement and/or refixation by an arthroscopic surgeon; and 30 (14 left and 16 right hips) underwent open surgical dislocation, cam and/or rim osteoplasty, and labral debridement or refixation by a hip preservation surgeon. Anteroposterior (AP) pelvis and extended-neck (Dunn) lateral radiographs were obtained and the depth of resection and arc of resection were measured by assessment of anterior femoral head-neck offset, AP and lateral α angle, and β angle on preoperative and postoperative radiographs. In the arthroscopic group, the extended-neck lateral α angle was reduced by a mean of 17.2° (28.3%, P < .05), AP α angle was reduced by a mean of 12.6° (16.8%), anterior head-neck offset improved 5.0 mm (111%, P < .05), and β angle increased by a mean of 23.1°. In the open dislocation group, the extended-neck lateral α angle was reduced by a mean of 21.2° (30.7%, P < .05), AP α angle was reduced by a mean of 20.1° (25.7%), anterior head-neck offset improved 6.56 mm (108%, P < .05), and β angle increased by a mean of 18.35°. Arthroscopic osteoplasty can restore head-neck offset and achieve similar depth, arc, and proximal-distal resection with comparable efficacy to open surgical dislocation for anterior and anterosuperior cam and focal rim impingement deformity. The open technique, however, may allow greater correction of posterosuperior loss of femoral offset and may be favorable for FAI patterns that demonstrate considerable proximal femoral deformity on AP radiographs.
NASA Astrophysics Data System (ADS)
ElJack, Eltayeb
2017-05-01
In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
PLATEAU IRIS--DIAGNOSIS AND TREATMENT.
Stefan, Cornel; Iliescu, Daniela Adriana; Batras, Mehdi; Timaru, Cristina Mihaela; De Simone, Algerino
2015-01-01
The objective of our study was to review the current knowledge on the diagnosis and treatment options of plateau iris configuration and syndrome. Relevant publications on plateau iris that were published until 2014. Plateau iris syndrome is a form of primary angle closure glaucoma caused by a large or anteriorly positioned ciliary body that leads to mechanical obstruction of trabecular meshwork. This condition is most often found in younger patients. Plateau iris has been considered an abnormal anatomic variant of the iris that can be diagnosed on ultrasound biomicroscopy or optical coherence tomography of anterior segment. Patients with plateau iris syndrome can be recognized by the lack of response in angle opening after iridotomy. The treatment of choice in these cases is argon laser peripheral iridoplasty.
Reversible Self-Actuated Thermo-Responsive Pore Membrane
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-01-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563
Reversible Self-Actuated Thermo-Responsive Pore Membrane
NASA Astrophysics Data System (ADS)
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-12-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.
All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.
Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu
2013-12-15
We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun; Seong, Gong Je
2017-03-01
To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R²=0.404). Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors.
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun
2017-01-01
Purpose To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. Materials and Methods This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. Results In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R2=0.404). Conclusion Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors. PMID:28120576
Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.
Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei
2018-06-01
Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.
Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Price, Jared S.; Sheng, Xing; Meulblok, Bram M.; Rogers, John A.; Giebink, Noel C.
2015-02-01
Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.
Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics.
Price, Jared S; Sheng, Xing; Meulblok, Bram M; Rogers, John A; Giebink, Noel C
2015-02-05
Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.
Lin, Shan C.; Masis, Marisse; Porco, Travis C.; Pasquale, Louis R.
2017-01-01
Purpose To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. Methods This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. Results We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P<.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P<.001) in the wide-angle group (P=.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P<.001) reduction vs 2.5±3 mm Hg (16%, P<.001) in the wide-angle group (P=.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year (P<.05 for all). Conclusions In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option. PMID:29147104
Lin, Shan C; Masis, Marisse; Porco, Travis C; Pasquale, Louis R
2017-08-01
To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P <.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P <.001) in the wide-angle group ( P =.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P <.001) reduction vs 2.5±3 mm Hg (16%, P <.001) in the wide-angle group ( P =.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year ( P <.05 for all). In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option.
Chen, Li-Wei; Lan, Yu-Wen; Hsieh, Jui-Wen
2016-06-01
To evaluate the morphologic characteristics of optic neuropathy and its association with visual field (VF) defects in primary open-angle glaucoma (POAG) eyes with high myopia. In this cross-sectional study, we reviewed data from 375 Taiwanese patients (375 eyes) of POAG, ages 20 to 60 years. Optic disc photographs were used for planimetric measurements of morphologic variables. The myopic refraction was divided into high myopia (<-6.0 D) and nonhigh myopia (moderate myopia to hyperopia). The optic disc area was classified as moderate (1.59 to 2.85 mm), large, and small. Differences in characteristics between groups, correlations with the disc area, and factors associated with VF defects were determined. Of the 142 highly myopic eyes, 33 (23%) had a large disc, 26 (18%) had a small disc, and 55 (39%) had a tilted disc. Large discs had a higher cup-to-disc (C/D) area ratio and a higher tilt ratio; small discs had a smaller rim area and a lower tilt ratio (all P<0.05). Characteristics associated with high myopia included a smaller rim area, a higher C/D area ratio, and a lower tilt ratio (all P<0.001). In logistic regression, the refraction, the C/D area ratio, the rim area, and the tilt ratio (all P<0.05) were associated with VF defects. In Taiwanese individuals with POAG, our study found that tilted, large, or small discs were prevalent in highly myopic eyes. Of these characteristics, only the disc tilt and high myopia by itself were associated with the severity of glaucomatous optic neuropathy.
Some Characteristics of Fuel Sprays from Open Nozzles
NASA Technical Reports Server (NTRS)
Rothrock, A M; Lee, D W
1930-01-01
The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice.
Mondal, Lakshmikanta; Baidya, Krishnapada; Choudhury, Himadri; Roy, Rupam
2013-06-01
The purpose of the study was to evaluate the progression of glaucomatous field damage in patients with stable primary open angle glaucoma after an attack of myocardial infarction. In this case control study, 62 open angle glaucoma patients were selected and regularly followed up. Among 62 patients, 9 had an attack of myocardial infarction. The intra-ocular pressure and visual field progression of both the groups (myocardial infarction versus no myocardial infarction) were analysed. Three (33.3%) out of 9 patients who had suffered from myocardial infarction showed progressive visual field loss whereas only 9 (16.9%) out of 53 patients who did not suffer from myocardial infarction, showed progressive field changes. Both the groups had stable target intra-ocular pressure between 14 and 16 mm Hg. Myocardial infarction may adversely influence the progression of primary open angle glaucoma which is suspected to result from ischaemia induced neuronal loss and only control of intraocular pressure is not the only solution. We have to look for other drugs that prevents ischaemia induced neuronal damage.
MOJAVE - XIV. Shapes and opening angles of AGN jets
NASA Astrophysics Data System (ADS)
Pushkarev, A. B.; Kovalev, Y. Y.; Lister, M. L.; Savolainen, T.
2017-07-01
We present 15 GHz stacked VLBA images of 373 jets associated with active galactic nuclei (AGNs) having at least five observing epochs within a 20 yr time interval 1994-2015 from the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) programme and/or its precursor, the 2-cm VLBA Survey. These data are supplemented by 1.4 GHz single-epoch VLBA observations of 135 MOJAVE AGNs to probe larger scale jet structures. The typical jet geometry is found to be close to conical on scales from hundreds to thousands of parsecs, while a number of galaxies show quasi-parabolic streamlines on smaller scales. A true jet geometry in a considerable fraction of AGNs appears only after stacking epochs over several years. The jets with significant radial accelerated motion undergo more active collimation. We have analysed total intensity jet profiles transverse to the local jet ridgeline and derived both apparent and intrinsic opening angles of the flows, with medians of 21.5° and 1.3°, respectively. The Fermi LAT-detected gamma-ray AGNs in our sample have, on average, wider apparent and narrower intrinsic opening angle, and smaller viewing angle than non-LAT-detected AGNs. We have established a highly significant correlation between the apparent opening angle and gamma-ray luminosity, driven by Doppler beaming and projection effects.
Gravity field error analysis for pendulum formations by a semi-analytical approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico
2017-03-01
Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.
Hong's grading for evaluating anterior chamber angle width.
Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul
2012-11-01
To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.
Diffo Kaze, Arnaud; Maas, Stefan; Hoffmann, Alexander; Pape, Dietrich
2017-12-01
This study aimed to investigate, by means of finite element analysis, the effect of a drill hole at the end of a horizontal osteotomy to reduce the risk of lateral cortex fracture while performing an opening wedge high tibial osteotomy (OWHTO). The question was whether drilling a hole relieves stress and increases the maximum correction angle without fracture of the lateral cortex depending on the ductility of the cortical bone. Two different types of osteotomy cuts were considered; one with a drill hole (diameter 5 mm) and the other without the hole. The drill holes were located about 20 mm distally to the tibial plateau and 6 mm medially to the lateral cortex, such that the minimal thickness of the contralateral cortical bone was 5 mm. Based on finite element calculations, two approaches were used to compare the two types of osteotomy cuts considered: (1) Assessing the static strength using local stresses following the idea of the FKM-guideline, subsequently referred to as the "FKM approach" and (2) limiting the total strain during the opening of the osteotomy wedge, subsequently referred to as "strain approach". A critical opening angle leading to crack initiation in the opposite lateral cortex was determined for each approach and was defined as comparative parameter. The relation to bone aging was investigated by considering the material parameters of cortical bones from young and old subjects. The maximum equivalent (von-Mises) stress was smaller for the cases with a drill hole at the end of the osteotomy cut. The critical angle was approximately 1.5 times higher for the specimens with a drill hole compared to those without. This corresponds to an average increase of 50%. The calculated critical angle for all approaches is below 5°. The critical angle depends on the used approach, on patient's age and assumed ductility of the cortical bone. Drilling a hole at the end of the osteotomy reduces the stresses in the lateral cortex and increases the critical opening angle prior to cracking of the opposite cortex in specimen with small correction angles. But the difference from having a drill hole or not is not so significant, especially for older patients. The ductility of the cortical bone is the decisive parameter for the critical opening angle.
Nawabi, Danyal H.; Wentzel, Catherine; Ranawat, Anil S.; Bedi, Asheesh; Kelly, Bryan T.
2015-01-01
Objectives: Historically, tears of the gluteus medius tendon were repaired via an open approach yielding excellent outcomes. With the advent of hip arthroscopy, endoscopic techniques have been developed to repair abductor tears which have shown favorable early outcomes. The open technique may still be preferred for large tears with retraction (>4cm), but there is a paucity of data comparing open and endoscopic approaches. The purpose of this study was to compare the outcomes of open and endoscopic repair of full-thickness tears of the gluteus medius tendon. We hypothesized that the outcomes of the two approaches would be similar but that the open technique would have shorter surgical times. Methods: Between March 2010 and June 2012, 1267 patients (1518 hips) undergoing a hip preservation procedure were prospectively entered into a registry. From this cohort, we identified 27 patients (30 hips) that had undergone repair of the gluteus medius tendon with a minimum of 2 years follow-up. Nine patients (9 hips) had an open repair and 18 patients (21 hips) had an endoscopic repair. Patient-reported outcome scores, including the Modified Harris Hip Score (mHHS), the Hip Outcome Score-Activity of Daily Living (HOS-ADL), and the Sport-specific Subscale (HOS-SSS) were obtained preoperatively and at 1, 2, and 3 years postoperatively. Surgery time was obtained using operating room records. The femoral neck shaft angle (FNSA) and lateral center-edge angle (LCEA) were measured on preoperative radiographs. Continuous and categorical variables were compared between endoscopic and open abductor repair patients using independent-samples t-tests and chi-square or Fisher's exact tests (as appropriate), respectively. Given the limited sample size, no adjusted or matched analyses were performed. Results: The mean age (±SD) of the open and endoscopic groups was 62.0 ± 9.9 years and 51.6 ± 13.6 years respectively (p=0.05). There were 6 females (67%) in the open group and 17 females (94%) in the endoscopic group (p=0.09). Seven hips (78%) in the open group had varus necks (FNSA30°) compared to 15 hips (54%) in the endoscopic group (p=0.93). At a mean follow-up of 38.1 months (range, 24-87 months), there were large (> 35 points) and significant improvements (p0.8). One patient (11.1%) in the open group had a poor clinical outcome compared to 2 patients (11.1%) in the endoscopic group that required revision abductor repairs at 5 and 24 months respectively. The mean surgical time was 98.7 ± 21.3 minutes in the open and 122.0 ± 26.8 minutes in the endoscopic group (p=0.003). Conclusion: This study demonstrates that an open gluteus medius tendon repair results in a significant improvement in clinical outcome, that is similar to the scores seen after endoscopic repair. Varus femoral necks and acetabular overcoverage are common features of hips with abductor tears and may be useful diagnostic aids. The surgical time for an open technique is significantly shorter than the endoscopic technique. We recommend an open technique where an intra-articular hip arthroscopy is not required, or in those patients with large and retracted tears.
Residual Stress Assessment in Thin Angle Ply Tubes
NASA Astrophysics Data System (ADS)
Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.
2003-05-01
This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.
Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey
NASA Astrophysics Data System (ADS)
He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.
2018-05-01
Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.
1995-03-24
Outlined with gold stripes are the hinged nose strakes, modifications made to NASA's F-18 HARV (High Alpha Research Vehicle) at the Dryden Flight Research Center, Edwards, California. Actuated Nose Strakes for Enhanced Rolling (ANSER) were installed to fly the third and final phase in the HARV flight test project. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Early wind tunnel tests indicated that the strakes would be as effective in yaw control at high angles of attack as rudders are at lower angles. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.
PLATEAU IRIS – DIAGNOSIS AND TREATMENT
Stefan, Cornel; Iliescu, Daniela Adriana; Batras, Mehdi; Timaru, Cristina Mihaela; De Simone, Algerino
2015-01-01
Objectives: The objective of our study was to review the current knowledge on the diagnosis and treatment options of plateau iris configuration and syndrome. Systematic review methodology: Relevant publications on plateau iris that were published until 2014. Conclusions: Plateau iris syndrome is a form of primary angle closure glaucoma caused by a large or anteriorly positioned ciliary body that leads to mechanical obstruction of trabecular meshwork. This condition is most often found in younger patients. Plateau iris has been considered an abnormal anatomic variant of the iris that can be diagnosed on ultrasound biomicroscopy or optical coherence tomography of anterior segment. Patients with plateau iris syndrome can be recognized by the lack of response in angle opening after iridotomy. The treatment of choice in these cases is argon laser peripheral iridoplasty PMID:27373109
46 CFR 172.150 - Survival conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... waterline, in the final condition of sinkage, heel, and trim, must be below the lower edge of openings such.... (5) Side scuttles of the non-opening type. (b) Heel angle. (1) Except as described in paragraph (b)(2) of this section, the maximum angle of heel must not exceed 15 degrees (17 degrees if no part of the...
46 CFR 172.150 - Survival conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... waterline, in the final condition of sinkage, heel, and trim, must be below the lower edge of openings such.... (5) Side scuttles of the non-opening type. (b) Heel angle. (1) Except as described in paragraph (b)(2) of this section, the maximum angle of heel must not exceed 15 degrees (17 degrees if no part of the...
Ocular Biometrics of Myopic Eyes With Narrow Angles.
Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay
2016-02-01
The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Mat Noor, Fazimah; Mohamad, Zaleha; Amran Madlan, Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Ahmad, Sufizar; Nasrull Abdol Rahman, Mohd; Salleh, Salihatun Md; Sadikin, Azmahani; Mahzan, Shahruddin; Nor, Nik Hisyamudin Muhd
2017-10-01
This paper presents the effect of triggering angles constructed on the top of hybrid woven kenaf/aluminium hollow cylinders on the energy absorption performances. The crushing performances of aluminium tubes can be found widely in open literature. However, lack number of work on the hybridizing the aluminium tubes with woven kenaf fibre is found. Woven kenaf mats are produced and bathed with polymeric resin before they are wrapped around the aluminium tubes twice. Different fibre orientations, ±θ° are used where θ = 0, 15, 30 and 45. Once the hybrid composite hardened, one of their end are chamfered using different angles of 0°, 30°, 45° and 60°. The tubes are quasi-statically compressed in order to obtain their force-displacement responses and crashworthiness parameters are extracted and discussed with the relation of fibre orientations and chamfering angles. It is found that the chamfering angles are only affected the force-displacement curves during the first stage of elastic deformation whereas there is no obvious effect in the second stage. However, varying the fibre orientations are slightly increased the force-displacement curves especially when the fibre is orientated with 30°. Based on the fracture mechanism observations, most of composite experienced large fragmentation indicating that the composites absorbed the crushing energy ineffectively.
Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.
Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A
2016-11-30
Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.
A new fast scanning system for the measurement of large angle tracks in nuclear emulsions
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.
2015-11-01
Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.
Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra
NASA Astrophysics Data System (ADS)
Russell, Emily R.; Menon, Govind
2016-06-01
We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.
Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
2001-01-01
A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
1995-01-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
Characteristics of Upper Quadrant Posture of Young Women with Temporomandibular Disorders
Uritani, Daisuke; Kawakami, Tetsuji; Inoue, Tomohiro; Kirita, Tadaaki
2014-01-01
[Purpose] This study aimed to investigate the characteristics of upper quadrant posture of young women with temporomandibular disorders. [Subjects] The participants were 19 female patients with temporomandibular disorders (patient group: mean age, 30.1 years) and 14 controls (control group: mean age, 24.6 years). [Methods] Outcome measures were the neck inclination angle (formed by a line connecting C7 and the ear tragus with a horizontal line), the angle of the shoulder (formed by a line connecting C7 and the acromial angle with a horizontal line), the cranial rotation angle (formed by a line connecting the ear tragus and the corner of the eye with a horizontal line), and the neck-length/shoulder-width ratio [the ratio of the neck length (from C7 to the tragus) to the width of the shoulder between the acromial angle]. The maximum range of mouth opening was measured using a scale. [Results] The neck inclination angle and maximum range of mouth opening were significantly smaller in the patient group than in the control group. No significant differences were observed in the other outcome measures between the two groups. [Conclusion] Temporomandibular disorders with limited mouth opening in young females are associated with the head position relative to the trunk. PMID:25276038
Saho, Tatsunori; Onishi, Hideo
2016-07-01
In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.
NASA Technical Reports Server (NTRS)
Ford, Donald B. (Inventor)
2004-01-01
A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.
Heterogeneous growth-induced prestrain in the heart
Genet, M.; Rausch, M.; Lee, L.C.; Choy, S.; Zhao, X.; Kassab, G.S.; Kozerke, S.; Guccione, J.M.; Kuhl, E.
2015-01-01
Even when entirely unloaded, biological structures are not stress-free, as shown by Y.C. Fung’s seminal opening angle experiment on arteries and the left ventricle. As a result of this prestrain, subject-specific geometries extracted from medical imaging do not represent an unloaded reference configuration necessary for mechanical analysis, even if the structure is externally unloaded. Here we propose a new computational method to create physiological residual stress fields in subject-specific left ventricular geometries using the continuum theory of fictitious configurations combined with a fixed-point iteration. We also reproduced the opening angle experiment on four swine models, to characterize the range of normal opening angle values. The proposed method generates residual stress fields which can reliably reproduce the range of opening angles between 8.7±1.8 and 16.6 ± 13.7 as measured experimentally. We demonstrate that including the effects of prestrain reduces the left ventricular stiffness by up to 40%, thus facilitating the ventricular filling, which has a significant impact on cardiac function. This method can improve the fidelity of subject-specific models to improve our understanding of cardiac diseases and to optimize treatment options. PMID:25913241
Refraction and scattering of sound by a shear layer
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.
1980-01-01
The angle and amplitude changes for acoustic waves refracted by a circular open jet shear layer were determined. The generalized refraction theory was assessed experimentally for on axis and off axis acoustic source locations as source frequency varied from 1 kHz to 10 kHz and free stream Mach number varied from 0.1 to 0.4. Angle and amplitude changes across the shear layer show good agreement with theory. Experiments confirm that the refraction theory is independent of shear layer thickness, acoustic source frequency, and source type. A generalized theory is, thus, available for correcting far field noise data acquired in open jet test facilities. The effect of discrete tone scattering by the open jet turbulent shear layer was also studied. Scattering effects were investigated over the same Mach number range as frequency varied from 5 kHz to 15 kHz. Attenuation of discrete tone amplitude and tone broadening were measured as a function of acoustic source position and radiation angle. Scattering was found to be stronger at angles close to the open jet axis than at 90 deg, and becomes stronger as the acoustic source position shifts downstream. A scattering analysis provided an estimate of the onset of discrete tone scattering.
Retrobulbar hemodynamic parameters in men and women with open angle glaucoma.
Marjanović, Ivan; Marjanović, Marija; Gvozdenović, Ranko; Risović, Dušica
2014-12-01
Several factors may have influence on systemic circulation. Additionally, peripheral circulation also demonstrates sex differences, in young women presenting significantly lower finger blood flow in comparison to men of the same age, a finding that disappears in women after menopause. The aim of this study was to compare the retrobulbar hemodynamic parameters measured by means of color Doppler imaging in women and men with open-angle glaucoma and elevated intraocular pressure. A total of 52 eyes from 52 open-angle glaucoma (OAG) patients, with elevated intraocular pressure (lOP), were included in this cross-sectional study. Peak-systolic velocity (PSV), end-diastolic velocity (EDV), and Pourcelot resistivity index (RI) were assessed in the ophtalmic artery (OA), central retinal artery (CRA), and posterior cilliary arteries (PCA). IOP was measured both with Goldmann Applanation tonometer (GAT) and with the dynamic contour tonometer (DCT), three times respectively. Ocular pulse amplitude (OPA) appeared during the DCT measurement. The retrobulbar hemodynamic parameters did not show any difference between men and post-menopausal women. The results of our study did not find any difference between sexes in patients with open-angle glaucoma and elevated intraocular pressure.
Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
Weiland, Nathan T; Zinn, Ben T
2003-11-01
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.
Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming
2017-12-22
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.
Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case
Ao, Dongyang; Hu, Cheng; Tian, Weiming
2017-01-01
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917
NASA Astrophysics Data System (ADS)
Fan, Dazhi; Liu, Guili; Wei, Lin
2018-06-01
Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
: "\\f106"; /* open - switch to fa-angle-up */ } @media(min-width:768px) { /* top level open */ } } /* top level open hover */ .navbar-dark .navbar-nav > li.open > a:hover, .navbar-dark .navbar-nav :768px) { /* top level open hover desktop*/ .navbar-dark .navbar-nav > li.open > a:hover, .navbar
Relationship between iris surface features and angle width in Asian eyes.
Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu
2014-10-23
To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Runckel, Jack F.; Reid, Charles F, Jr.
1961-01-01
Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included.
A mechanical analysis of conduit arteries accounting for longitudinal residual strains.
Wang, Ruoya; Gleason, Rudolph L
2010-04-01
Identification of an appropriate stress-free reference configuration is critically important in providing a reasonable prediction of the intramural stress distribution when performing biomechanical analyses on arteries. The stress-free state is commonly approximated as a radially cut ring that typically opens into a nearly circular sector, relieving much of the circumferential residual strains that exist in the traction-free configuration. An opening angle is often used to characterize this sector. In this study, we first present experimental results showing significant residual deformations in the longitudinal direction of two commonly studied arteries in the pig: the common carotid artery and the left anterior descending coronary artery. We concluded that a radially cut ring cannot completely describe the stress-free state of the arteries. Instead, we propose the use of a longitudinal opening angle, in conjunction with the traditional circumferential opening angle, to experimentally quantify the stress-free state of an artery. Secondly, we propose a new kinematic model to account for the addition of longitudinal residual strains through employing the longitudinal opening angle and performed a stress analysis. We found that with the inclusion of longitudinal residual strains in the stress analysis, the predicted circumferential stress gradient was decreased by 3-fold and the predicted longitudinal stress gradient was increased by 5.7-fold. Thus, inclusion of longitudinal residual strains has a significant effect on the predicted stress distribution in arteries.
Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi
2018-01-01
To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P < 0.05, paired t test) smaller than when measured without fixation lamp. Internal fixation lamp of the anterior segment OCT makes the pupil constrict and angle wider. When using AS-OCT with usual setting with internal fixation lamp on with eyes in which the anterior chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.
Watts, John D.
2003-06-17
Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Davydova, N G; Kuznetsova, T P; Borisova, S A; Abdulkadyrova, M Zh
2006-01-01
The paper presents the results of an investigation of the effect of the nootropic agents pantogam and nooclerine on visual functions in patients with primary open-angle glaucoma. These agents have been found to have a beneficial effect on the functional activity of the retina and optic nerve, light sensitivity, hemo- and hydrodynamics of the eye.
Evangelho, Karine; Mogilevskaya, Maria; Losada-Barragan, Monica; Vargas-Sanchez, Jeinny Karina
2017-12-30
Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma, ischemia and impact of metabolic toxins, which triggers an inflammatory process and secondary degeneration in the ONH.
NASA Astrophysics Data System (ADS)
Lou, R.; Xu, Y. F.; Zhao, L.-X.; Han, Z.-Q.; Guo, P.-J.; Li, M.; Wang, J.-C.; Fu, B.-B.; Liu, Z.-H.; Huang, Y.-B.; Richard, P.; Qian, T.; Liu, K.; Chen, G.-F.; Weng, H. M.; Ding, H.; Wang, S.-C.
2017-12-01
While recent advances in band theory and sample growth have expanded the series of extremely large magnetoresistance (XMR) semimetals in transition-metal dipnictides T m P n2 (T m =Ta , Nb; P n =P , As, Sb), the experimental study on their electronic structure and the origin of XMR is still absent. Here, using angle-resolved photoemission spectroscopy combined with first-principles calculations and magnetotransport measurements, we performed a comprehensive investigation on MoAs2, which is isostructural to the T m P n2 family and also exhibits quadratic XMR. We resolve a clear band structure well agreeing with the predictions. Intriguingly, the unambiguously observed Fermi surfaces (FSs) are dominated by an open-orbit topology extending along both the [100] and [001] directions in the three-dimensional Brillouin zone. We further reveal the trivial topological nature of MoAs2 by bulk parity analysis. Based on these results, we examine the proposed XMR mechanisms in other semimetals, and conclusively ascribe the origin of quadratic XMR in MoAs2 to the carriers motion on the FSs with dominant open-orbit topology, innovating in the understanding of quadratic XMR in semimetals.
Balouch, F; Jalalian, E; Nikkheslat, M; Ghavamian, R; Toopchi, Sh; Jallalian, F; Jalalian, S
2013-01-01
Statement of Problem: Various impression techniques have different effects on the accuracy of final cast dimensions. Meanwhile; there are some controversies about the best technique. Purpose: This study was performed to compare two kinds of implant impression methods (open tray and closed tray) on 15 degree angled implants. Materials and Method: In this experimental study, a steel model with 8 cm in diameter and 3 cm in height were produced with 3 holes devised inside to stabilize 3 implants. The central implant was straight and the other two implants were 15° angled. The two angled implants had 5 cm distance from each other and 3.5 cm from the central implant. Dental stone, high strength (type IV) was used for the main casts. Impression trays were filled with poly ether, and then the two impression techniques (open tray and closed tray) were compared. To evaluate positions of the implants, each cast was analyzed by CMM device in 3 dimensions (x,y,z). Differences in the measurements obtained from final casts and laboratory model were analyzed using t-Test. Results: The obtained results indicated that closed tray impression technique was significantly different in dimensional accuracy when compared with open tray method. Dimensional changes were 129 ± 37μ and 143.5 ± 43.67μ in closed tray and open tray, while coefficient of variation in closed- tray and open tray were reported to be 27.2% and 30.4%, respectively. Conclusion: Closed impression technique had less dimensional changes in comparison with open tray method, so this study suggests that closed tray impression technique is more accurate. PMID:24724130
Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan
2018-04-11
Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2014-12-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.
Holographic Jet Shapes and their Evolution in Strongly Coupled Plasma
NASA Astrophysics Data System (ADS)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke
2017-11-01
Recently our group analyzed how the probability distribution for the jet opening angle is modified in an ensemble of jets that has propagated through an expanding cooling droplet of plasma [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. Each jet in the ensemble is represented holographically by a string in the dual 4+1- dimensional gravitational theory with the distribution of initial energies and opening angles in the ensemble given by perturbative QCD. In [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], the full string dynamics were approximated by assuming that the string moves at the speed of light. We are now able to analyze the full string dynamics for a range of possible initial conditions, giving us access to the dynamics of holographic jets just after their creation. The nullification timescale and the features of the string when it has nullified are all results of the string evolution. This emboldens us to analyze the full jet shape modification, rather than just the opening angle modification of each jet in the ensemble as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. We find the result that the jet shape scales with the opening angle at any particular energy. We construct an ensemble of dijets with energies and energy asymmetry distributions taken from events in proton-proton collisions, opening angle distribution as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], and jet shape taken from proton-proton collisions and scaled according to our result. We study how these observables are modified after we send the ensemble of dijets through the strongly-coupled plasma.
Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns
ERIC Educational Resources Information Center
Host, Erin; Baynham, Emily; McMaster, Heather
2015-01-01
Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…
The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28
NASA Technical Reports Server (NTRS)
Little, B. H., Jr.; Cubbage, James J., Jr.
1961-01-01
An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
Minimally Invasive and Open Distal Chevron Osteotomy for Mild to Moderate Hallux Valgus.
Brogan, Kit; Lindisfarne, Edward; Akehurst, Harold; Farook, Usama; Shrier, Will; Palmer, Simon
2016-11-01
Minimally invasive surgical (MIS) techniques are increasingly being used in foot and ankle surgery but it is important that they are adopted only once they have been shown to be equivalent or superior to open techniques. We believe that the main advantages of MIS are found in the early postoperative period, but in order to adopt it as a technique longer-term studies are required. The aim of this study was to compare the 2-year outcomes of a third-generation MIS distal chevron osteotomy with a comparable traditional open distal chevron osteotomy for mild-moderate hallux valgus. Our null hypothesis was that the 2 techniques would yield equivalent clinical and radiographic results at 2 years. This was a retrospective cohort study. Eighty-one consecutive feet (49 MIS and 32 open distal chevron osteotomies) were followed up for a minimum 24 months (range 24-58). All patients were clinically assessed using the Manchester-Oxford Foot Questionnaire. Radiographic measures included hallux valgus angle, the intermetatarsal angle, hallux interphalangeal angle, metatarsal phalangeal joint angle, distal metatarsal articular angle, tibial sesamoid position, shape of the first metatarsal head, and plantar offset. Statistical analysis was done using Student t test or Wilcoxon rank-sum test for continuous data and Pearson chi-square test for categorical data. Clinical and radiologic postoperative scores in all domains were substantially improved in both groups (P < .001), but there was no statistically significant difference in improvement of any domain between open and MIS groups (P > .05). There were no significant differences in complications between the 2 groups ( > .5). The midterm results of this third-generation technique show that it was a safe procedure with good clinical outcomes and comparable to traditional open techniques for symptomatic mild-moderate hallux valgus. Level III, retrospective comparative study. © The Author(s) 2016.
Crack Coalescence in Molded Gypsum and Carrara Marble
NASA Astrophysics Data System (ADS)
Wong, N.; Einstein, H. H.
2007-12-01
This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).
The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates
Klein, Ronald; Klein, Barbara E. K.
2013-01-01
Purpose. To examine prevalence of five age-related eye conditions (age-related cataract, AMD, open-angle glaucoma, diabetic retinopathy [DR], and visual impairment) in the United States. Methods. Review of published scientific articles and unpublished research findings. Results. Cataract, AMD, open-angle glaucoma, DR, and visual impairment prevalences are high in four different studies of these conditions, especially in people over 75 years of age. There are disparities among racial/ethnic groups with higher age-specific prevalence of DR, open-angle glaucoma, and visual impairment in Hispanics and blacks compared with whites, higher prevalence of age-related cataract in whites compared with blacks, and higher prevalence of late AMD in whites compared with Hispanics and blacks. The estimates are based on old data and do not reflect recent changes in the distribution of age and race/ethnicity in the United States population. There are no epidemiologic estimates of prevalence for many visually-impairing conditions. Conclusions. Ongoing prevalence surveys designed to provide reliable estimates of visual impairment, AMD, age-related cataract, open-angle glaucoma, and DR are needed. It is important to collect objective data on these and other conditions that affect vision and quality of life in order to plan for health care needs and identify areas for further research. PMID:24335069
Open-angle glaucoma in the Petit Basset Griffon Vendeen.
Bedford, Peter G C
2017-03-01
To report the prevalence and clinical characteristics of an open-angle glaucoma in Petit Basset Griffon Vendeen (PBGV) dogs in the United Kingdom (UK). At breed society clinics extending over a 6-year period, 366 dogs of varying ages and both sexes were clinically examined for signs of glaucoma using slit-lamp biomicroscopy, indirect and direct ophthalmoscopy, tonometry, and gonioscopy. The prevalence of glaucoma was 10.4% (38 dogs). Clinical signs of the disease presented from 3 years of age onwards, the commonest initial feature being the elevation of intraocular pressure (IOP) in 15 dogs (39.4%). In addition to elevated IOP, another 13 dogs (34.2%) presented with other features of glaucoma, some with lens subluxation and globe enlargement and all with possible or known vision defects. In the remaining 10 dogs (26.3%), phacodonesis or lens subluxation was observed before subsequent elevation of IOP. High prevalence and similarity to the primary open-angle glaucoma (POAG) seen in the Beagle and Elkhound breeds indicate that an open-angle glaucoma is present in the PBGV in the UK and that this disease may be genetically determined in this breed. Although increased IOP is the commonest early diagnostic feature, lens instability prior to an increase in IOP may be part of the clinical picture. © 2016 American College of Veterinary Ophthalmologists.
Kocatürk, Tolga; Bekmez, Sinan; Katrancı, Merve; Çakmak, Harun; Dayanır, Volkan
2015-01-01
To evaluate visual field progression with trend and event analysis in open angle glaucoma patients under treatment. Fifteen year follow-up results of 408 eyes of 217 glaucoma patients who were followed at Adnan Menderes University, Department of Ophthalmology between 1998 and 2013 were analyzed retrospectively. Visual field data were collected for Mean Deviation (MD), Visual Field Index (VFI), and event occurrence. There were 146 primary open-angle glaucoma (POAG), 123 pseudoexfoliative glaucoma (XFG) and 139 normal tension glaucoma (NTG) eyes. MD showed significant change in all diagnostic groups (p<0.001). The difference of VFI between first and last examinations were significantly different in POAG (p<0.001), and XFG (p<0.003) but not in NTG. VFI progression rates were -0.3, -0.43, and -0.2 % loss/year in treated POAG, XFG, and NTG, respectively. The number of empty triangles were statistically different between POAG-NTG (p=0.001), and XFG-NTG (p=0.002) groups. The number of half-filled (p=0.002), and full-filled (p=0.010) triangles were significantly different between XFG-NTG groups. Functional long-term follow-up of glaucoma patients can be monitored with visual field indices. We herein report our fifteen year follow-up results in open angle glaucoma.
Economic impact of primary open-angle glaucoma in Australia.
Dirani, Mohamed; Crowston, Jonathan G; Taylor, Penny S; Moore, Peter T; Rogers, Sophie; Pezzullo, M Lynne; Keeffe, Jill E; Taylor, Hugh R
2011-01-01
Glaucoma is the World's leading cause of irreversible blindness, and poses serious public health and economic concerns. Review. Published randomized trials and population-based studies since 1985. We report the economic impact of primary open-angle glaucoma and model the effect of changes in detection rates and management strategies. The cost-effectiveness of different interventions to prevent vision loss from primary open-angle glaucoma was measured in terms of financial cost (Australian dollars) and disability-adjusted life years. The prevalence of glaucoma in Australia is expected to increase from 208 000 in 2005 to 379 000 in 2025 because of the aging population. Health system costs over the same time period are estimated to increase from $AU355 million to $AU784 million. Total costs (health system costs, indirect costs and costs of loss of well-being) will increase from $AU1.9 billion to $AU4.3 billion in Australia. Primary open-angle glaucoma poses a significant economic burden, which will increase substantially by 2025. This dynamic model provides a valuable tool for ongoing policy formulation and determining the economic impact of interventions to better prevent visual impairment and blindness from glaucoma. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.
Investigation of Blade Angle of an Open Cross-Flow Runner
NASA Astrophysics Data System (ADS)
Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi
2015-04-01
The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.
Lee, Roland Y; Huang, Guofu; Porco, Travis C; Chen, Yi-Chun; He, Mingguang; Lin, Shan C
2013-12-01
To evaluate the capability of iris thickness parameters to explain the difference in primary angle-closure glaucoma prevalence among the different racial groups. In this prospective study, 436 patients with open and narrow angles that met inclusion criteria were consecutively recruited from the UCSF general ophthalmology and glaucoma clinics to receive anterior segment optical coherence tomography imaging under standardized dark conditions. Images from 11 patients were removed due to poor visibility of the scleral spurs and the remaining images were analyzed using the Zhongshan Angle Assessment Program to assess the following measurements for the nasal and temporal angle of the anterior chamber: iris thickness at 750 and 2000 μm from the scleral spurs and the maximum iris thickness at middle one third of the iris. Iris thickness parameters were compared among and within the following 5 different racial groups: African Americans, Caucasian Americans, Hispanic Americans, Chinese Americans, and Filipino-Americans. In comparing iris parameters among the open-angle racial groups, significant differences were found for nasal iris thickness at 750 and 2000 μm from the scleral spurs in which Chinese Americans displayed the highest mean value (P=0.01, P<0.0001). Among the narrow-angle racial groups, significant difference was found for nasal iris thickness at 2000 μm from the scleral in which Chinese Americans showed the highest mean value (P<0.0001). Significant difference was also found for temporal maximum iris thickness at middle one third of the iris in which African Americans exhibited the highest mean value (P=0.021). Iris thickness was modeled as a function of angle status using linear mixed-effects regression, adjusting for age, sex, pupil diameter, spherical equivalent, ethnicity, and the use of both eyes in patients. The iris thickness difference between the narrow-angle and open-angle groups was significant (P=0.0007). Racial groups that historically showed higher prevalence of primary angle-closure glaucoma possess thicker irides.
Dastiridou, Anna; Marion, Kenneth; Niemeyer, Moritz; Francis, Brian; Sadda, Srinivas; Chopra, Vikas
2018-04-11
To investigate the effects of ambient light level variation on spectral domain anterior segment optical coherence tomography (SD-ΟCT)-derived anterior chamber angle metrics in Caucasians versus Asians. Caucasian (n = 24) and Asian participants of Chinese ancestry (n = 24) with open angles on gonioscopy had one eye imaged twice at five strictly controlled, ambient light levels. Ethnicity was self-reported. Light levels were strictly controlled using a light meter at 1.0, 0.75, 0.5, 0.25, and 0 foot candle illumination levels. SD-OCT 5-line raster scans at the inferior 270° irido-corneal angle were measured by two trained, masked graders from the Doheny Image Reading Center using customized Image-J software. Schwalbe's line-angle opening distance (SL-AOD) and SL-trabecular iris space area (SL-TISA) in different light meter readings (LMRs) between the two groups were compared. Baseline light SL-AOD and SL-TISA measured 0.464 ± 0.115mm/0.351 ± 0.110mm 2 and 0.344 ± 0.118mm/0.257 ± 0.092mm 2 , respectively, in the Caucasian and the Asian group. SL-AOD and SL-TISA in each LMR were significantly larger in the Caucasian group compared to the Asian group (p < 0.05). Despite this difference in angle size between the groups, there were no statistically significant differences in the degree of change in angle parameters from light to dark (% changes in SL-AOD or SL-TISA between the two groups were statistically similar with all p-values >0.3). SL-based angle dimensions using SD-OCT are sensitive to changes in ambient illumination in participants with Caucasian and Asian ancestry. Although Caucasian eyes had larger baseline angle opening under bright light conditions, the light-to-dark change in angle dimensions was similar in the two groups.
Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles
Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.
2009-01-01
Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461
Andersson, Seppo; Wang, Yurong; Pönni, Raili; Hänninen, Tuomas; Mononen, Marko; Ren, Haiqing; Serimaa, Ritva; Saranpää, Pekka
2015-04-01
We studied in detail the mean microfibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree (Ginkgo biloba L.). The orientation of cellulose microfibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using X-ray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean microfibril angle, varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1-3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2L layer confirmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The microfibril angle remained large over the 14 annual rings. The entire stem disc, with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers. © 2015 Institute of Botany, Chinese Academy of Sciences.
Clustangles: An Open Library for Clustering Angular Data.
Sargsyan, Karen; Hua, Yun Hao; Lim, Carmay
2015-08-24
Dihedral angles are good descriptors of the numerous conformations visited by large, flexible systems, but their analysis requires directional statistics. A single package including the various multivariate statistical methods for angular data that accounts for the distinct topology of such data does not exist. Here, we present a lightweight standalone, operating-system independent package called Clustangles to fill this gap. Clustangles will be useful in analyzing the ever-increasing number of structures in the Protein Data Bank and clustering the copious conformations from increasingly long molecular dynamics simulations.
MDTRA: a molecular dynamics trajectory analyzer with a graphical user interface.
Popov, Alexander V; Vorobjev, Yury N; Zharkov, Dmitry O
2013-02-05
Most of existing software for analysis of molecular dynamics (MD) simulation results is based on command-line, script-guided processes that require the researchers to have an idea about programming language constructions used, often applied to the one and only product. Here, we describe an open-source cross-platform program, MD Trajectory Reader and Analyzer (MDTRA), that performs a large number of MD analysis tasks assisted with a graphical user interface. The program has been developed to facilitate the process of search and visualization of results. MDTRA can handle trajectories as sets of protein data bank files and presents tools and guidelines to convert some other trajectory formats into such sets. The parameters analyzed by MDTRA include interatomic distances, angles, dihedral angles, angles between planes, one-dimensional and two-dimensional root-mean-square deviation, solvent-accessible area, and so on. As an example of using the program, we describe the application of MDTRA to analyze the MD of formamidopyrimidine-DNA glycosylase, a DNA repair enzyme from Escherichia coli. Copyright © 2012 Wiley Periodicals, Inc.
Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin
2018-04-27
Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.
Passive rejection of heat from an isotope heat source through an open door
NASA Technical Reports Server (NTRS)
Burns, R. K.
1971-01-01
The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.
[Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma].
Araie, Makoto
2011-03-01
Pathogenesis of open-angle glaucoma involves both pressure-dependent damaging factors and pressure-independent damaging factors. The high prevalence of open-angle glaucoma with normal pressure (normal-tension glaucoma) in Japan implies that treatment of pressure-independent damaging factors in Japanese open-angle glaucoma patients is of importance. In an attempt to investigate the roles of pressure-independent damaging factors in open-angle glaucoma, we carried out basic and clinical studies and obtained the following results. 1. The rate of deterioration of visual field after trabeculectomy in normal tension glaucoma patients with post-operative intraocular pressure (IOP) of 10 mmHg was found to be -0.25 dB/year of mean deviation (MD), suggesting that contribution of pressure-independent damaging factors to the deterioration of MD in open-angle glaucoma is around -0.25 dB/year of mean deviation (MD). 2. Experiments using isolated purified cultured retinal ganglion cells (RGCs) indicated that calcium-channel blockers and some of antiglaucoma drugs showed neuroprotective effects on RGCs at concentrations of 0.01 microM or higher. 3. In mice, damage to RGCs resulted in secondary degeneration of neurons and activation of glial cells in the lateral geniculate nucleous (LGN) and superior colliculus, and these secondary changes in the central nervous system (CNS) due to RGC damage was partly ameliorated by systemic administration of memantine. 4. Mice experimental high IOP glaucoma models could be established using laser irradiation of the limbal area, and the usefulness of Tonolab in IOP measurements of mice eye was confirmed. 5. Monkey experimental high IOP glaucoma models revealed that in the glaucomatous optic nerve head vaso-constrictive reactions to an alpha-1 agonist was abolished, while vasodilative reaction to a prostaglandin FP receptor agonist was retained. 6. In monkeys with experimental high IOP glaucoma, secondary damage to neurons in the LGN and the glial reaction to it were also found, similar to the mice experiments. In living monkeys the glial reaction in the LGN could be observed by means of positron emission tomography. 7. In the LGN of monkeys with experimental high IOP glaucoma, the M-cell system was preferentially damaged in the early stage, while in the later stages both the M- and P-cell systems were damaged. 8. In a single-instituted prospective double-blinded clinical trial, oral administration of nilvadipine at 4 mg/day, a DHP calcium-channel blocker, was found to significantly retard the visual field progression in normal tension glaucoma patients over 3 years, while significantly increasing the choroidal and optic nerve blood flow by about 35%. 9. A multi-instituted prospective double-blinded clinical trial in normal tension glaucoma patients revealed that the rate of MD deterioration under monotherapy with either topical nipradilol or timolol was around -0.05 dB/year, thought to be considerably slower than -0.25 dB/year, the commonly estimated rate of MD deterioration by pressure-independent damaging factors. The current results indicate the possibility of treatment of pressure-independent damaging factors of open-angle glaucoma in Japanese open-angle glaucoma patients with oral nilvadipine and topical anti-glaucoma agents.
See, Jovina L S; Chew, Paul T K; Smith, Scott D; Nolan, Winifred P; Chan, Yiong‐Huak; Huang, David; Zheng, Ce; Foster, Paul J; Aung, Tin; Friedman, David S
2007-01-01
Aim Using the anterior segment optical coherence tomography (AS‐OCT) to quantify changes in anterior segment morphology going from light to dark and following laser iridotomy (LI). Methods Prospective observational study. 17 consecutive subjects without peripheral anterior synechiae undergoing LI were evaluated using gonioscopy and AS‐OCT. Angle configuration including angle opening distance (AOD) at 500 microns anterior to the scleral spur, AOD500, trabecular‐iris space area up to 750 microns from the scleral spur, TISA750 and the increase in angle opening going from dark to light conditions was determined. Results Both mean AOD500 and TISA750 increased nearly threefold going from dark to light. Both also significantly increased following LI (p<0.001) as did gonioscopic grading of the angle in all quadrants (p<0.001, McNemar's test). Angles were more than twice as wide on average in the dark after LI than before LI (p<0.05). Both the mean absolute change and the mean proportionate change in AOD500 and TISA750 when going from light to dark were greater after LI than before (p<0.05). Conclusion Increased illumination as well as LI resulted in significant widening of the anterior chamber angle. AS‐OCT (which does not require a water bath and can be performed with the patient at the slit lamp) identified similar magnitude changes as those previously reported using ultrasound biomicroscopy (UBM). Furthermore, the angle appears to open more both in absolute terms and and proportionate terms in response to illumination after LI. PMID:17504852
Visual Disability Among Juvenile Open-angle Glaucoma Patients.
Gupta, Viney; Ganesan, Vaitheeswaran L; Kumar, Sandip; Chaurasia, Abadh K; Malhotra, Sumit; Gupta, Shikha
2018-04-01
Juvenile onset primary open-angle glaucoma (JOAG) unlike adult onset primary open-angle glaucoma presents with high intraocular pressure and diffuse visual field loss, which if left untreated leads to severe visual disability. The study aimed to evaluate the extent of visual disability among JOAG patients presenting to a tertiary eye care facility. Visual acuity and perimetry records of unrelated JOAG patients presenting to our Glaucoma facility were analyzed. Low vision and blindness was categorized by the WHO criteria and percentage impairment was calculated as per the guidelines provided by the American Medical Association (AMA). Fifty-two (15%) of the 348 JOAG patients were bilaterally blind at presentation and 32 (9%) had low vision according to WHO criteria. Ninety JOAG patients (26%) had a visual impairment of 75% or more. Visual disability at presentation among JOAG patients is high. This entails a huge economic burden, given their young age and associated social responsibilities.
NASA Astrophysics Data System (ADS)
Zhirov, Dmitry; Klimov, Sergey
2015-04-01
The Kovdor baddeleyite-apatite-magnetite deposit (KBAMD) is represented by a large vertical ore body and is located in the southwestern part of the Kovdor ultramafic-alkaline central-type intrusion. The intrusion represents a concentrically zoned complex of rocks with an oval shape in plan, and straight zoning, which complies with the injection and displacement of each of further magma phases from the center towards the periphery. The operation of the deposit in open pits started in 1962, and nowadays, it has produced over 500,000,000 tons of ore. This is one of the largest open pits in the Kola region, which is ca. 2 km long, 1.8 km wide, and over 400 m deep. Regular structural studies has been carried out since late 1970. A unique massif of spatial data has been accumulated so far to include over 25,000 measurements of fissures and faults from the surface, ca. 20,000 measurements of fissures in the oriented drill core (over 18 km) etc. Using this data base the 3D model of fault and fissures structure was designed. The analysis of one has resulted in the identification of a series of laws and features, which are necessary to be taken into account when designing a deep open pit and mining is carried out. These are mainly aspects concerning the origin, kinematics, mechanics and ratio of spatial extension of various fault systems, variation of their parameters at deep horizons, features of a modern stress field in the country rocks, etc. The 3D model has allowed to divide the whole fracture / fissure systems of the massif rocks into 2 large groups: prototectonic system of joints, including cracks of 'liquid magmatic (carbonatite stage) contraction genesis', and newly formed faults due to the superimposed tectonic stages. With regard to the deposit scale, these are characterized as intraformational and transformational, respectively. Each group shows a set (an assemblage) of fault systems with unique features and signs, as well as regular interconnections. The prototectonic assemblage of fissures includes the following main systems: 2-3 subsystems Rd of radial with angle of dip within 65-90° (median at 78°), two subsystems S of a circular subvertical (tangential, crossing Rd) with angle of dip within 60-90° (74°), and two diagonal-conic ones: a centriclinal C dipping towards the center of the intrusion at angles of 25-55° (43°), and a periclinal P dipping from the center of the intrusion at angles of 5-35° (18°). The system of subhorizontal joints L (angle of dip within 0-12°) at deep horizons is insignificantly manifested. All the prototectonic systems are regularly interrelated, and vary asymuthal features according to the law of axial symmetry (when moving around the vertical axis of symmetry passed through the geometric center of the carbonatite intrusion). The superimposed tectonics of post-ore stages forms a few large faults and systems of rupture discontinuities. A few (up to 3) variously oriented displacements are documented in the field on kinematic features (slide furrows, oriented cleavages). They were used for reconstruction of stresses and tectonic evolution. The superimposed tectonic faulting has heterogeneous (local) distribution in the rocks of the deposit, and slight predictability of main parameters. This study was supported by the Russian Scientific Fund (project nos. 14-17-00751).
Smart Kirigami open honeycombs in shape changing actuation and dynamics
NASA Astrophysics Data System (ADS)
Neville, R. M.; Scarpa, F.; Leng, J.
2017-04-01
Kirigami is the ancient Japanese art of cutting and folding paper, widespread in Asia since the 17th century. Kirigami offers a broader set of geometries and topologies than classical fold/valleys Origami, because of the presence of cuts. Moreover, Kirigami can be readily applied to a large set of composite and smart 2D materials, and can be used to up-scaled productions with modular molding. We describe the manufacturing and testing of a topology of Kirigami cellular structures defined as Open Honeycombs. Open Honeycombs (OHs) can assume fully closed shape and be alike classical hexagonal centresymmetric honeycombs, or can vary their morphology by tuning the opening angle and rotational stiffness of the folds. We show the performance of experimental PEEK OHs with cable actuation and morphing shape characteristics, and the analogous morphing behavior of styrene SMPs under combined mechanical and thermal loading. We also show the dynamic (modal analysis) behavior of OHs configurations parameterized against their geometry characteristics, and the controllable modal density characteristics that one could obtain by tuning the topology and folding properties.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon
2017-09-28
See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.
NASA Astrophysics Data System (ADS)
Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan
We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B; Wong, R; Lam, W
Purpose: To develop a practical method for routine QA of the MLC of a Tomotherapy unit using ArcCheck. Methods: Two standard test plans were used in this study. One was a helical test, in which the central leaves No. 32 and 33 opened simultaneously for 277.8ms at projections centered at 0°, 120° and 240° gantry angles. The other test plan was a static test with the gantry angle set at 0°, 45°, 90° and 135° respectively and leaves No. 32 and 33 opened sequentially for total 20s which was further divided into eleven or ten segments at each beam angle.more » The ArcCheck was isocentrically set up and adjusted for couch sag. Movie files which took a snapshot exposure every 50ms were recorded. The start/stop time of leaf open was decided by the ramp-up/ramp-down of the detectors. Results: The percentage differences between measured and planned leaf open time were calculated to be within 0.5% in all the tests. In static test, if leaves are synchronized perfectly, the sum of the two detectors’ signals after normalization should equal one when the leaves are in transition. Our results showed mean values of 0.982, 0.983, 0.978 and 0.995 at static gantry angle 0°, 45°, 90° and 135° respectively. Conclusion: A method for estimating the Tomotherapy binary MLC leaf open time using ArcCheck is proposed and proved to be precise enough to verify the planned leaf open time as small as 277.8ms. This method also makes the observation and quantification of the synchronization of leaves possible.« less
Experimental assessment of theory for refraction of sound by a shear layer
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.
1978-01-01
The refraction angle and amplitude changes associated with sound transmission through a circular, open-jet shear layer were studied in a 0.91 m diameter open jet acoustic research tunnel. Free stream Mach number was varied from 0.1 to 0.4. Good agreement between refraction angle correction theory and experiment was obtained over the test Mach number, frequency and angle measurement range for all on-axis acoustic source locations. For off-axis source positions, good agreement was obtained at a source-to-shear layer separation distance greater than the jet radius. Measureable differences between theory and experiment occurred at a source-to-shear layer separation distance less than one jet radius. A shear layer turbulence scattering experiment was conducted at 90 deg to the open jet axis for the same free stream Mach numbers and axial source locations used in the refraction study. Significant discrete tone spectrum broadening and tone amplitude changes were observed at open jet Mach numbers above 0.2 and at acoustic source frequencies greater than 5 kHz. More severe turbulence scattering was observed for downstream source locations.
Zero-stress states of human pulmonary arteries and veins.
Huang, W; Yen, R T
1998-09-01
The zero-stress states of the pulmonary arteries and veins from order 3 to order 9 were determined in six normal human lungs within 15 h postmortem. The zero-stress state of each vessel was obtained by cutting the vessel transversely into a series of short rings, then cutting each ring radially, which caused the ring to spring open into a sector. Each sector was characterized by its opening angle. The mean opening angle varied between 92 and 163 degrees in the arterial tree and between 89 and 128 degrees in the venous tree. There was a tendency for opening angles to increase as the sizes of the arteries and veins increased. We computed the residual strains based on the experimental measurements and estimated the residual stresses according to Hooke's law. We found that the inner wall of a vessel at the state in which the internal pressure, external pressure, and longitudinal stress are all zero was under compression and the outer wall was in tension, and that the magnitude of compressive stress was greater than the magnitude of tensile stress.
Modelling the large-scale redshift-space 3-point correlation function of galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2017-08-01
We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.
Does hemipelvis structure and position influence acetabulum orientation?
Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej
2016-03-16
Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.
Nongpiur, Monisha E; Aboobakar, Inas F; Baskaran, Mani; Narayanaswamy, Arun; Sakata, Lisandro M; Wu, Renyi; Atalay, Eray; Friedman, David S; Aung, Tin
2017-03-01
Baseline anterior segment imaging parameters associated with incident gonioscopic angle closure, to our knowledge, are unknown. To identify baseline quantitative anterior segment optical coherence tomography parameters associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline. Three hundred forty-two participants aged 50 years or older were recruited to participate in this prospective, community-based observational study. Participants underwent gonioscopy and anterior segment optical coherence tomography imaging at baseline and after 4 years. Custom image analysis software was used to quantify anterior chamber parameters from anterior segment optical coherence tomography images. Baseline anterior segment optical coherence tomography measurements among participants with gonioscopically open vs closed angles at follow-up. Of the 342 participants, 187 (55%) were women and 297 (87%) were Chinese. The response rate was 62.4%. Forty-nine participants (14.3%) developed gonioscopic angle closure after 4 years. The mean age (SD) at baseline of the 49 participants was 62.9 (8.0) years, 15 (30.6%) were men, and 43 (87.8%) were Chinese. These participants had a smaller baseline angle opening distance at 750 µm (AOD750) (0.15 mm; 95% CI, 0.12-0.18), trabecular iris surface area at 750 µm (0.07 mm2; 95% CI, 0.05-0.08), anterior chamber area (30 mm2; 95% CI, 2.27-3.74), and anterior chamber volume (24.32 mm2; 95% CI, 18.20-30.44) (all P < .001). Baseline iris curvature (-0.08; 95% CI, -0.12 to -0.04) and lens vault (LV) measurements (-0.29 mm; 95% CI, -0.37 to -0.21) were larger among these participants ( all P < .001). A model consisting of the LV and AOD750 measurements explained 38% of the variance in gonioscopic angle closure occurring at 4 years, with LV accounting for 28% of this variance. For every 0.1 mm increase in LV and 0.1 mm decrease in AOD750, the odds of developing gonioscopic angle closure was 1.29 (95% CI, 1.07-1.57) and 3.27 (95% CI, 1.87-5.69), respectively. In terms of per SD change in LV and AOD750, this translates to an odds ratio of 2.14 (95% CI, 2.48-12.34) and 5.53 (95% CI, 1.22-3.77), respectively. A baseline LV cut-off value of >0.56 mm had 64.6% sensitivity and 84.0% specificity for identifying participants who developed angle closure. These findings suggest that smaller AOD750 and larger LV measurements are associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline.
On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
NASA Astrophysics Data System (ADS)
Embréus, O.; Stahl, A.; Fülöp, T.
2018-02-01
Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.
Cowan, Lisa A; Khine, Kay T; Chopra, Vikas; Fazio, Doreen T; Francis, Brian A
2015-01-01
To illustrate 3 cases of chronic open-angle glaucoma secondary to the neodymium-yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis procedure for symptomatic vitreous floaters. Observational case series. Location of the study was the Doheny Eye Institute. Three eyes of 2 patients who developed chronic open-angle glaucoma after Nd:YAG vitreolysis for symptomatic floaters presenting with very high intraocular pressure (IOP >40 mm Hg) were selected. The time from the laser treatment to the onset of elevated pressure ranges from 1 week to 8 months. There was no associated inflammation, steroid use, or other identifiable cause of chronic IOP elevation. All eyes were treated initially with glaucoma medication, followed by selective laser trabeculoplasty (SLT) and eventually glaucoma surgery (Trabectome) in 2 eyes for disease management. In all eyes, intraocular pressures were eventually stabilized within a normal pressure range from 18 to 38 months following Nd:YAG vitreolysis. At the latest follow-up post surgery, all eyes had intraocular pressures of 22 mm Hg or less with or without medications. Secondary open-angle glaucoma is a complication of Nd:YAG vitreolysis for symptomatic floaters that may present with an increase in intraocular pressure immediately, or many months after the surgery. Furthermore this complication may be permanent and require chronic medical therapy or glaucoma surgery. Copyright © 2015 Elsevier Inc. All rights reserved.
46 CFR 42.20-12 - Conditions of equilibrium.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take... angle of heel. The angle of heel due to unsymmetrical flooding does not exceed 15 degrees. If no part of the deck is immersed, an angle of heel of up to 17 degrees may be accepted. (d) Metacentric height...
46 CFR 42.20-12 - Conditions of equilibrium.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take... angle of heel. The angle of heel due to unsymmetrical flooding does not exceed 15 degrees. If no part of the deck is immersed, an angle of heel of up to 17 degrees may be accepted. (d) Metacentric height...
Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design
NASA Astrophysics Data System (ADS)
Pereira, Jason L.
The shrouded-rotor configuration has emerged as the most popular choice for rotary-wing Micro Air Vehicles (MAVs), because of the inherent safety of the design and the potential for significant performance improvements. However, traditional design philosophies based on experience with large-scale ducted propellers may not apply to the low-Reynolds-number (˜20,000) regime in which MAVs operate. An experimental investigation of the effects of varying the shroud profile shape on the performance of MAV-scale shrouded rotors has therefore been conducted. Hover tests were performed on seventeen models with a nominal rotor diameter of 16 cm (6.3 in) and various values of diffuser expansion angle, diffuser length, inlet lip radius and blade tip clearance, at various rotor collective angles. Compared to the baseline open rotor, the shrouded rotors showed increases in thrust by up to 94%, at the same power consumption, or reductions in power by up to 62% at the same thrust. These improvements surpass those predicted by momentum theory, due to the additional effect of the shrouds in reducing the non-ideal power losses of the rotor. Increasing the lip radius and decreasing the blade tip clearance caused performance to improve, while optimal values of diffuser angle and length were found to be 10 and 50% of the shroud throat diameter, respectively. With the exception of the lip radius, the effects of changing any of the shrouded-rotor parameters on performance became more pronounced as the values of the other parameters were changed to degrade performance. Measurements were also made of the wake velocity profiles and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip clearance, resulting in lower induced power losses. For high net shroud thrust, a favorable pressure distribution over the inlet was seen to be more important than in the diffuser. Strong suction pressures were observed above the blade-passage region on the inlet surface; taking advantage of this phenomenon could enable further increases in thrust. However, trade studies showed that, for a given overall aircraft size limitation, and ignoring considerations of the safety benefits of a shroud, a larger-diameter open rotor is more likely to give better performance than a smaller-diameter shrouded rotor. The open rotor and a single shrouded-rotor model were subsequently tested at a single collective in translational flight, at angles of attack from 0° (axial flow) to 90° (edgewise flow), and at various advance ratios. In axial flow, the net thrust and the power consumption of the shrouded rotor were lower than those of the open rotor. In edgewise flow, the shrouded rotor produced greater thrust than the open rotor, while consuming less power. Measurements of the shroud surface pressure distributions illustrated the extreme longitudinal asymmetry of the flow around the shroud, with consequent pitch moments much greater than those exerted on the open rotor. Except at low airspeeds and high angles of attack, the static pressure in the wake did not reach ambient atmospheric values at the diffuser exit plane; this challenges the validity of the fundamental assumption of the simple-momentum-theory flow model for short-chord shrouds in translational flight.
Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin
2010-06-01
To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P < .0001, Wilcoxon signed rank test). Overall, gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.
Charlesworth, Jac C; Dyer, Thomas D; Stankovich, Jim M; Blangero, John; Mackey, David A; Craig, Jamie E; Green, Catherine M; Foote, Simon J; Baird, Paul N; Sale, Michèle M
2005-10-01
The purpose of this study was to identify genetic contributions to primary open-angle glaucoma (POAG) through investigations of two quantitative components of the POAG phenotype. Genome-wide multipoint variance-components linkage analyses of maximum recorded intraocular pressure (IOP) and maximum vertical cup-to-disc ratio were conducted on data from a single, large Australian POAG pedigree that has been found to segregate the myocilin Q368X mutation in some individuals. Multipoint linkage analysis of maximum recorded IOP produced a peak LOD score of 3.3 (P = 0.00015) near marker D10S537 on 10q22, whereas the maximum cup-to-disc ratio produced a peak LOD score of 2.3 (P = 0.00056) near markers D1S197 to D1S220 on 1p32. Inclusion of the myocilin Q368X mutation as a covariate provided evidence of an interaction between this mutation and the IOP and cup-to-disc ratio loci. Significant linkage has been identified for maximum IOP and suggestive linkage for vertical cup-to-disc ratio. Identification of genes contributing to the variance of these traits will enhance understanding of the pathophysiology of POAG as a whole.
Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions
NASA Astrophysics Data System (ADS)
Telnov, V. I.
2018-03-01
At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.
Open inflation in the landscape
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro
2011-08-01
The open inflation scenario is attracting a renewed interest in the context of the string landscape. Since there are a large number of metastable de Sitter vacua in the string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Although the deviation of Ω0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large-angle CMB anisotropies can be significant for tensor-type perturbation in the open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. On the other hand, if such a rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. Furthermore, the amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, although even the dominant quadrupole component is suppressed by the factor (1-Ω0)2, one can construct some models in which the deviation of Ω0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.
Kyari, Fatima; Entekume, Gabriel; Rabiu, Mansur; Spry, Paul; Wormald, Richard; Nolan, Winifred; Murthy, Gudlavalleti V S; Gilbert, Clare E
2015-12-12
Glaucoma is the leading cause of irreversible blindness worldwide. There tends to be a lower reporting of glaucoma in Africa compared to other blinding conditions in global burden data. Research findings of glaucoma in Nigeria will significantly increase our understanding of glaucoma in Nigeria, in people of the West African diaspora and similar population groups. We determined the prevalence and types of glaucoma in Nigeria from the Nigeria National Blindness and Visual Impairment cross-sectional Survey of adults aged ≥40 years. Multistage stratified cluster random sampling with probability-proportional-to-size procedures were used to select a nationally representative sample of 15,027 persons aged ≥40 years. Participants had logMAR visual acuity measurement, FDT visual function testing, autorefraction, A-scan biometry and optic disc assessment. Participants with visual acuity of worse than 6/12 or suspicious optic discs had detailed examination including Goldmann applanation tonometry, gonioscopy and fundus photography. Disc images were graded by Moorfields Eye Hospital Reading Centre. Glaucoma was defined using International Society of Geographical and Epidemiological Ophthalmology criteria; and classified into primary open-angle or primary angle-closure or secondary glaucoma. Diagnosis of glaucoma was based on ISGEO classification. The type of glaucoma was determined by gonioscopy. A total of 13,591 participants in 305 clusters were examined (response rate 90.4 %). Optic disc grading was available for 25,289 (93 %) eyes of 13,081 (96 %) participants. There were 682 participants with glaucoma; a prevalence of 5.02 % (95 % CI 4.60-5.47). Among those with definite primary glaucoma that had gonioscopy (n = 243), open-angle glaucoma was more common (86 %) than angle-closure glaucoma (14 %). 8 % of glaucoma was secondary with the commonest causes being couching (38 %), trauma (21 %) and uveitis (19 %). Only 5.6 % (38/682) of participants with glaucoma knew they had the condition. One in every 5 persons with glaucoma (136;20 %) was blind i.e., visual acuity worse than 3/60. Nigeria has a high prevalence of glaucoma which is largely open-angle glaucoma. A high proportion of those affected are blind. Secondary glaucoma was mostly as a consequence of procedures for cataract. Public health control strategies and high quality glaucoma care service will be required to reduce morbidity and blindness from glaucoma.
Dental and skeletal components of Class II open bite treatment with a modified Thurow appliance
Jacob, Helder Baldi; dos Santos-Pinto, Ary; Buschang, Peter H.
2014-01-01
Introduction Due to the lack of studies that distinguish between dentoalveolar and basal changes caused by the Thurow appliance, this clinical study, carried out by the School of Dentistry - State University of São Paulo/Araraquara, aimed at assessing the dental and skeletal changes induced by modified Thurow appliance. Methods The sample included an experimental group comprising 13 subjects aged between 7 and 10 years old, with Class II malocclusion and anterior open bite, and a control group comprising 22 subjects similar in age, sex and mandibular plane angle. Maxillary/mandibular, horizontal/vertical, dental/skeletal movements (ANS, PNS, U1, U6, Co, Go, Pog, L1, L6) were assessed, based on 14 landmarks, 8 angles (S-N-ANS, SNA, PPA, S-N-Pog, SNB, MPA, PP/MPA, ANB) and 3 linear measures (N-Me, ANS-Me, S-Go). Results Treatment caused significantly greater angle decrease between the palatal and the mandibular plane of the experimental group, primarily due to an increase in the palatal plane angle. ANB, SNA and S-N-ANS angles significantly decreased more in patients from the experimental group. PNS was superiorly remodeled. Lower face height (ANS-Me) decreased in the experimental group and increased in the control group. Conclusions The modified Thurow appliance controlled vertical and horizontal displacements of the maxilla, rotated the maxilla and improved open bite malocclusion, decreasing lower facial height. PMID:24713556
Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments.
Brady, Parrish C; Gilerson, Alexander A; Kattawar, George W; Sullivan, James M; Twardowski, Michael S; Dierssen, Heidi M; Gao, Meng; Travis, Kort; Etheredge, Robert Ian; Tonizzo, Alberto; Ibrahim, Amir; Carrizo, Carlos; Gu, Yalong; Russell, Brandon J; Mislinski, Kathryn; Zhao, Shulei; Cummings, Molly E
2015-11-20
Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish's skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokaras, D.; Nordlund, D.; Weng, T.-C.
2012-04-15
We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with themore » Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.« less
NASA Astrophysics Data System (ADS)
Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.
2016-11-01
Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.
Caça, Ihsan; Simsek, Hüseyin; Unlü, Kaan; Ari, Seyhmus; Keklikçi, Ugur
2006-01-01
We compared latanoprost monotherapy therapy with timolol/ dorzolamide in patients with primary open-angle glaucoma to evaluate the effects on intraocular pressure (IOP) and occurrence of adverse events. IOP and topical side effects were evaluated at the beginning, first, and third months. Mean IOP was decreased at the third month. The most common side effect was hyperemia (43.6%). We concluded that latanoprost reduces IOP better than fixed combination and its topical side effects are tolerable.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.
2014-01-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188
Static balance according to hip joint angle of unsupported leg during one-leg standing.
Cha, Ju-Hyung; Kim, Jang-Joon; Ye, Jae-Gwan; Lee, Seul-Ji; Hong, Jeong-Mi; Choi, Hyun-Kyu; Choi, Ho-Suk; Shin, Won-Seob
2017-05-01
[Purpose] This study aimed to determine static balance according to hip joint angle of the unsupported leg during one-leg standing. [Subjects and Methods] Subjects included 45 healthy adult males and females in their 20s. During one-leg standing on the non-dominant leg, the position of the unsupported leg was classified according to hip joint angles of point angle was class. Static balance was then measured using a force plate with eyes open and closed. The total length, sway velocity, maximum deviation, and velocity on the mediolateral and anteroposterior axes of center of pressure were measured. [Results] In balance assessment with eyes open, there were significant differences between groups according to hip joint angle, except for maximum deviation on the anteroposterior axis. In balance assessment with eyes closed, there were significant differences between total length measurements at 0° and 30°, 60° and between 30° and 90°. There were significant differences between sway velocity measurements at 0° and 30° and between 30° and 90°. [Conclusion] Thus, there were differences in static balance according to hip joint angle. It is necessary to clearly identify the hip joint angle during one-leg standing testing.
2017-09-02
A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942
iStent trabecular micro-bypass stent for open-angle glaucoma
Le, Kim; Saheb, Hady
2014-01-01
Trabecular micro-bypass stents, commonly known as iStents, are micro-invasive glaucoma surgery (MIGS) devices used to treat open-angle glaucoma. Like other MIGS procedures that enhance trabecular outflow, the iStent lowers intraocular pressure (IOP) by creating a direct channel between the anterior chamber and Schlemm’s canal. iStents are typically implanted at the time of phacoemulsification for patients with open-angle glaucoma and visually significant cataracts. This review summarizes the published data regarding the efficacy, safety, and cost considerations of trabecular micro-bypass stents. Most studies found statistically significant reductions in mean IOP and ocular medication use after combined phacoemulsification with single or double iStent implantation. The devices were found to be very safe, with a safety profile similar to that of cataract surgery. Complications were infrequent, with the most common complications being temporary stent obstruction or malposition, which resolved with observation or secondary procedures. Future studies are needed to evaluate long-term outcomes, patient satisfaction, cost effectiveness, and expanded indications. PMID:25284980
Orbital-plane precessional resonances for binary black-hole systems
NASA Astrophysics Data System (ADS)
Kesden, Michael; Zhao, Xinyu; Gerosa, Davide
2016-03-01
We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.
Sheybani, Arsham; Dick, H Burkhard; Ahmed, Iqbal I K
2016-07-01
To evaluate the intraocular pressure (IOP) lowering effect of the XEN140 microfistula gel stent implant for the surgical treatment of open-angle glaucoma. Forty-nine eyes of 49 patients with an IOP>18 mm Hg and ≤35 mm Hg were studied in a prospective nonrandomized multicenter cohort trial of the surgical implantation of the XEN140 implant in patients with open-angle glaucoma. Complete success was defined as a postoperative IOP≤18 mm Hg with ≥20% reduction in IOP at 12 months without any glaucoma medications. Failure was defined as vision loss of light perceptions vision or worse, need for additional glaucoma surgery, or <20% reduction of IOP from baseline. The average age was 64.3 (28.1 to 86.9) years old. Twenty-one eyes had prior failed trabeculectomy with mitomycin C surgery. IOP at 12 months decreased from a mean of 23.1 (±4.1) mm Hg to 14.7 (±3.7) mm Hg for a 36.4% reduction in IOP from baseline. The number of patients at 12 months who achieved an IOP≤18 mm Hg and ≥20% reduction in IOP was 40 (89%). The number of patients who achieved an IOP≤18 mm Hg and ≥20% reduction in IOP without antiglaucoma medications was 18 (40%). The XEN140 gel stent lowers IOP with few complications when implanted for the surgical treatment of open-angle glaucoma.
Murphy, C G; Johnson, M; Alvarado, J A
1992-12-01
We tested the hypothesis that obstruction of the juxtacanalicular tissues, by melanin granules in pigmentary glaucoma and by other impermeable material in primary open angle glaucoma, leads to the development of a chronic glaucomatous condition. The distribution and concentration of melanin and other impermeable materials in the juxtacanalicular tissues and elsewhere in the trabecular meshwork was determined in 13 specimens. Six specimens were from patients with pigmentary glaucoma, two from patients with pigment dispersion syndrome, and three from patients with primary open angle glaucoma, as well as two from normal subjects. The effect of these materials on flow resistance was estimated using two hydrodynamic models. In model A, the electron-lucent spaces of the juxtacanalicular tissue were assumed to be open spaces, while in model B, these spaces and spaces filled with ground substance were assumed to be gel filled. In pigmentary glaucoma, 3.5% of the pigment was found in the juxtacanalicular tissue, while 96.5% was found in the corneoscleral and uveoscleral tissues. Permeabilities calculated according to model A were much higher than those expected from estimates of outflow facility in all groups, in agreement with the previous report of Ethier et al. The gel-filled spaces available for fluid flow, as determined by model B, showed no statistically demonstrable differences (pigmentary glaucoma, 32.9%; primary open angle glaucoma, 36.6%; pigment dispersion syndrome, 43.4%; normal, 44.1%). Furthermore, the amount of pigment present in the juxtacanalicular tissue was determined to have a negligible influence on permeability. Thus, the development of the chronic glaucomatous condition cannot be directly attributed to pigment accumulation in the juxtacanalicular tissue in pigmentary glaucoma.
Sun, Xiang-Yao; Zhang, Xi-Nuo; Hai, Yong
2017-05-01
This study evaluated differences in outcome variables between percutaneous, traditional, and paraspinal posterior open approaches for traumatic thoracolumbar fractures without neurologic deficit. A systematic review of PubMed, Cochrane, and Embase was performed. In this meta-analysis, we conducted online searches of PubMed, Cochrane, Embase using the search terms "thoracolumbar fractures", "lumbar fractures", ''percutaneous'', "minimally invasive", ''open", "traditional", "posterior", "conventional", "pedicle screw", "sextant", and "clinical trial". The analysis was performed on individual patient data from all the studies that met the selection criteria. Clinical outcomes were expressed as risk difference for dichotomous outcomes and mean difference for continuous outcomes with 95 % confidence interval. Heterogeneity was assessed using the χ 2 test and I 2 statistics. There were 4 randomized controlled trials and 14 observational articles included in this analysis. Percutaneous approach was associated with better ODI score, less Cobb angle correction, less Cobb angle correction loss, less postoperative VBA correction, and lower infection rate compared with open approach. Percutaneous approach was also associated with shorter operative duration, longer intraoperative fluoroscopy, less postoperative VAS, and postoperative VBH% in comparison with traditional open approach. No significant difference was found in Cobb angle correction, postoperative VBA, VBA correction loss, Postoperative VBH%, VBH correction loss, and pedicle screw misplacement between percutaneous approach and open approach. There was no significant difference in operative duration, intraoperative fluoroscopy, postoperative VAS, and postoperative VBH% between percutaneous approach and paraspianl approach. The functional and the radiological outcome of percutaneous approach would be better than open approach in the long term. Although trans-muscular spatium approach belonged to open fixation methods, it was strictly defined as less invasive approach, which provided less injury to the paraspinal muscles and better reposition effect.
Micromirror with large-tilting angle using Fe-based metallic glass.
Lee, Jae-Wung; Lin, Yu-Ching; Kaushik, Neelam; Sharma, Parmanand; Makino, Akihiro; Inoue, Akihisa; Esashi, Masayoshi; Gessner, Thomas
2011-09-01
For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900 μm and torsion bar dimensions length 250 μm, width 30 μm and thickness 2.5 μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2 T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1 mT to the mirror when 93 mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.
Glaucoma and clinical characteristics in Vietnamese Americans.
Peng, Pai-Huei; Manivanh, Richard; Nguyen, Ngoc; Weinreb, Robert N; Lin, Shan C
2011-08-01
To assess the proportions of glaucoma types and clinical characteristics in Vietnamese Americans in a single-center, retrospective study. Medical charts of Vietnamese-American patients who visited a single private practice in Northern California from 1998-2007 were reviewed. The main outcome measures included the distribution and characteristics of glaucoma types, and clinical parameters associated with the presence of various glaucomas. Data from 2247 patients aged 18-98 years were reviewed. Glaucoma was determined for 305 patients (13.6%). Among this group, 54.8% had primary open-angle glaucoma (POAG), 26.9% had primary angle-closure glaucoma (PACG), 13.4% had mixed mechanism glaucoma (MMG), and 4.9% had secondary glaucoma. In the MMG group (41 patients), 27 patients who initially had open angles developed narrow angles and underwent laser peripheral iridotomy (LPI) with a mean follow up of 6.4 years from the time of iridotomy. The other 13 patients had glaucoma progression with open angles after LPI. One POAG patient had neovascular glaucoma due to retinal vein occlusion several years later. Compared to the PACG group, the MMG group had significantly lower baseline intraocular pressure (25.0 vs. 20.2 mmHg, p = 0.007) but with no difference in biometry. POAG is the major type of glaucoma in this clinic-based Vietnamese population. However, Vietnamese appear to have a relatively higher proportion of PACG than Caucasians and those of African descent. It is recommended that gonioscopy be part of the regular eye check-up for adult Vietnamese patients.
Kirilenko, M Yu; Tikunova, E V; Sirotina, S S; Polonikov, A V; Bushueva, O Yu; Churnosov, M I
Primary open-angle glaucoma (POAG) is a multifactorial disease, etiopathogenesis of which largely depends on growth factors. Possessing a variety of medical and biological effects, these cytokines may influence the development and progression of POAG. to reveal the role of genetic polymorphisms of growth factors in predisposition to developing POAG that is refractory to local hypotensive therapy. The object of the study were 162 patients with stage II-III POAG, in whom local hypotensive therapy was inefficient, 90 patients with stage II-III POAG well controlled on local hypotensive therapy, and 191 controls. The material for the study was venous blood taken from the cubital vein of a proband. Isolation of genomic DNA was performed by phenol-chloroform extraction. Analysis of genetic polymorphisms of growth factors was performed through allelic discrimination. For that, synthesis of DNA was carried out via polymerase chain reaction (PCR). It is found that the T IGFR-1 genetic variant (OR=1.34) and a combination of the C VEGF-A and T IGFR-1 genetic variants (OR=1.90) are risk factors of developing POAG that is refractory to local hypotensive therapy. A statistical model for predicting such a risk has been proposed that includes: VEGF-A с.-958C>T genetic marker (rs 833,061), age, concomitant non-inflammatory ocular diseases, microvascular changes in the conjunctiva, the degree of pigmentation of the angle of the anterior chamber, and pseudoexfoliative syndrome. Recognition accuracy of the model is 90.42%. The T IGFR-1 genetic variant and a combination of the C VEGF-A and T IGFR-1 genetic variants increase the risk of developing POAG that is refractory to local hypotensive therapy.
Tubular-Type Hydroturbine Performance for Variable Guide Vane Opening by CFD
NASA Astrophysics Data System (ADS)
Kim, Y. T.; Nam, S. H.; Cho, Y. J.; Hwang, Y. C.; Choi, Y. D.; Nam, C. D.; Lee, Y. H.
Micro hydraulic power generation which has output of less or equal to 100kW is attracting considerable attention. This is because of its small, simple, renewable, and large amount of energy resources. By using a small hydro power generator of which main concept is based on using differential water pressures in pipe lines, energy which was initially wasted by use of a reducing valve at an end of the pipeline, is collected by a turbine in the hydro power generator. A propeller shaped hydroturbine has been used in order to make use of this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydroturbine, output power, head, and efficiency characteristics due to the guide vane opening angle are examined in detail. Moreover, influences of pressure, tangential and axial velocity distributions on turbine performance are investigated by using a commercial CFD code.
Nazarova, G A; Konchugova, T V; Iurova, O V; Sichinava, N V; Turova, E A; Rassulova, M A; Morozova, N E
2013-01-01
The objective of the present study was to estimate the effectiveness of the peptide drug cortexin used to treat primary open angle glaucoma. It was shown that endonasal electrophoresis of cortexin resulted in more pronounced positive changes in the dynamics of clinical, functional, perimetric, and electrophysiological characteristics compared with intramuscular administration of the same drug to the patients of the control group. This difference was apparent both immediately after the termination of the treatment and during the long-term follow-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagawa, T.; Sakagami, H.; Nagatomo, H.
In inertial confinement fusion, the implosion process is important in forming a high-density plasma core. In the case of a fast ignition scheme using a cone-guided target, the fuel target is imploded with a cone inserted. This scheme is advantageous for efficiently heating the imploded fuel core; however, asymmetric implosion is essentially inevitable. Moreover, the effect of cone position and opening angle on implosion also becomes critical. Focusing on these problems, the effect of the asymmetric implosion, the initial position, and the opening angle on the compression rate of the fuel is investigated using a three-dimensional pure hydrodynamic code.
[Thinking about the present primary open angle glaucoma early diagnosis concepts and methods].
Ren, Zeqin
2014-05-01
Early diagnosis of primary open-angle glaucoma has not been clear and consistent in concepts and methods. At present, according to the pathophysiology process of optic nerve damage and its detection technology, early diagnosis on the concept still belongs to the early clinical diagnosis instead of preclinical diagnosis, and on the method depends on the fundus as morphological index combined with the visual field as functional index. The direction of early clinical diagnosis mainly lies in exploring more effective diagnosis index, rather than blindly adopt new diagnostic technology.
Complications and Reoperations in Mandibular Angle Fractures.
Chen, Collin L; Zenga, Joseph; Patel, Ruchin; Branham, Gregory
2018-05-01
Mandible angle fractures can be repaired in a variety of ways, with no consensus on the outcomes of complications and reoperation rates. To analyze patient, injury, and surgical factors, including approach to the angle and plating technique, associated with postoperative complications, as well as the rate of reoperation with regard to mandible angle fractures. Retrospective cohort study analyzing the surgical outcomes of patients with mandible angle fractures between January 1, 2000, and December 31, 2015, who underwent open reduction and internal fixation. Patients were eligible if they were aged 18 years or older, had 3 or less mandible fractures with 1 involving the mandibular angle, and had adequate follow-up data. Patients with comminuted angle fractures, bilateral angle fractures, and multiple surgical approaches were excluded. A total of 135 patients were included in the study. All procedures were conducted at a single, large academic hospital located in an urban setting. Major complications and reoperation rates. Major complications included in this study were nonunion, malunion, severe malocclusion, severe infection, and exposed hardware. Of 135 patients 113 (83.7%) were men; median age was 29 years (range, 18-82 years). Eighty-seven patients (64.4%) underwent the transcervical approach and 48 patients (35.6%) received the transoral approach. Fifteen (17.2%) patients in the transcervical group and 9 (18.8%) patients in the transoral group experienced major complications (difference, 1%; 95% CI, -8% to 10%). Thirteen (14.9%) patients in the transcervical group and 8 (16.7%) patients in the transoral group underwent reoperations (difference, 2%; 95% CI, -13% to 17%). Active smoking had a significant effect on the rate of major complications (odds ratio, 4.04; 95% CI, 1.07 to 15.34; P = .04). During repair of noncomminuted mandibular angle fractures, both of the commonly used approaches-transcervical and transoral-can be used during treatment with equal rates of complication and risk of reoperation. For a patient undergoing surgery for mandibular angle fracture, smoking status is more likely to predict surgical outcomes rather than how the surgeon chooses to approach and fixate the fracture. 3.
Ritch, R; Solomon, L D
1992-01-01
A patient with Weill-Marchesani syndrome and angle-closure glaucoma had persistent appositional closure after laser iridotomy that was unrelieved by topical application of either miotic or cycloplegic agents. Argon laser peripheral iridoplasty successfully opened the angle. The patient's sister also had Weill-Marchesani syndrome and angle closure unrelieved by laser iridotomy. Angle closure in Weill-Marchesani syndrome and the response to laser iridotomy and treatment with either miotic or cycloplegic agents may be complex and depends on the relative proportion of pupillary block as a mechanism underlying the angle closure, the functional status of the zonular apparatus, and the degree of angle crowding by the peripheral iris in the presence or absence of peripheral anterior synechiae.
Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G
2014-09-01
Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderate
Equilibrium configurations of the conducting liquid surface in a nonuniform electric field
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2011-01-01
Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.
Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; McKinney, Jonathan C.; Narayan, Ramesh
2009-07-01
Unconfined relativistic outflows from rotating, magnetized compact objects are often well modeled by assuming that the field geometry is approximately a split-monopole at large radii. Earlier work has indicated that such an unconfined flow has an inefficient conversion of magnetic energy to kinetic energy. This has led to the conclusion that ideal magnetohydrodynamical (MHD) processes fail to explain observations of, e.g., the Crab pulsar wind at large radii where energy conversion appears efficient. In addition, as a model for astrophysical jets, the monopole field geometry has been abandoned in favor of externally confined jets since the latter appeared to be generically more efficient jet accelerators. We perform time-dependent axisymmetric relativistic MHD simulations in order to find steady-state solutions for a wind from a compact object endowed with a monopole field geometry. Our simulations follow the outflow for 10 orders of magnitude in distance from the compact object, which is large enough to study both the initial "acceleration zone" of the magnetized wind as well as the asymptotic "coasting zone." We obtain the surprising result that acceleration is actually efficient in the polar region, which develops a jet despite not being confined by an external medium. Our models contain jets that have sufficient energy to account for moderately energetic long and short gamma-ray burst (GRB) events (~1051-1052 erg), collimate into narrow opening angles (opening half-angle θ j ≈ 0.03 rad), become matter-dominated at large radii (electromagnetic energy flux per unit matter energy flux σ < 1), and move at ultrarelativistic Lorentz factors (γ j ~ 200 for our fiducial model). The simulated jets have γ j θ j ~ 5-15, so they are in principle capable of generating "achromatic jet breaks" in GRB afterglow light curves. By defining a "causality surface" beyond which the jet cannot communicate with a generalized "magnetic nozzle" near the axis of rotation, we obtain approximate analytical solutions for the Lorentz factor that fit the numerical solutions well. This allows us to extend our results to monopole wind models with arbitrary magnetization. Overall, our results demonstrate that the production of ultrarelativistic jets is a more robust process than previously thought.
Lee, Dae-Hee; Park, Sung-Chul; Park, Hyung-Joon; Han, Seung-Beom
2016-12-01
Open-wedge high tibial osteotomy (HTO) cannot always accurately correct limb alignment, resulting in under- or over-correction. This study assessed the relationship between soft tissue laxity of the knee joint and alignment correction in open-wedge HTO. This prospective study involved 85 patients (86 knees) undergoing open-wedge HTO for primary medial osteoarthritis. The mechanical axis (MA), weight-bearing line (WBL) ratio, and joint line convergence angle (JLCA) were measured on radiographs preoperatively and after 6 months, and the differences between the pre- and post-surgery values were calculated. Post-operative WBL ratios of 57-67 % were classified as acceptable correction. WBL ratios <57 and >67 % were classified as under- and over-corrections, respectively. Preoperative JLCA correlated positively with differences in MA (r = 0.358, P = 0.001) and WBL ratio (P = 0.003). Difference in JLCA showed a stronger correlation than preoperative JLCA with differences in MA (P < 0.001) and WBL ratio (P < 0.001). Difference in JLCA was the only predictor of both difference in MA (P < 0.001) and difference in WBL ratio (P < 0.001). The difference between pre- and post-operative JLCA differed significantly between the under-correction, acceptable-correction, and over-correction groups (P = 0.033). Preoperative JLCA, however, did not differ significantly between the three groups. Neither preoperative JLCA nor difference in JLCA correlated with change in posterior slope. Preoperative degree of soft tissue laxity in the knee joint was related to the degree of alignment correction, but not to alignment correction error, in open-wedge HTO. Change in soft tissue laxity around the knee from before to after open-wedge HTO correlated with both correction amount and correction error. Therefore, a too large change in JLCA from before to after open-wedge osteotomy may be due to an overly large reduction in JLCA following osteotomy, suggesting alignment over-correction during surgery. II.
Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.
2018-05-01
Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.
The ONR-602 experiment and investigation of particle precipitation near the equator
NASA Technical Reports Server (NTRS)
Miah, M. A.
1991-01-01
The global precipitation of radiation belt particles at low altitude was investigated, using the ONR-602 experiment on board U.S. Air Force mission S81-1. A combination of a main telescope, beginning analysis at a few MeV/nucleon, and a monitor system, giving results below 1 MeV/nucleon, was designed for measuring particle phenomena characterized by almost any energy spectrum. The monitor provides an indication of the presence of the particles at low energy, while the main telescope gives detailed flux and composition data for the higher energy events. Results of the instrument performance analysis indicate that, at the equator, the monitor telescope has the peak efficiency for particles of about 90 deg pitch angles. The large opening angle of 75 deg makes it possible to detect omnidirectional flux of quasi-trapped particles. The high-energy cosmic-ray background count is found to be very insignificant. It is demonstrated that the particle counting rates for the low-energy threshold have been almost entirely due to protons.
Wieding, Jan; Lindner, Tobias; Bergschmidt, Philipp; Bader, Rainer
2015-04-01
Open-porous titanium scaffolds for large segmental bone defects offer advantages like early weight-bearing and limited risk of implant failure. The objective of this experimental study was to determine the biomechanical behavior of novel open-porous titanium scaffolds with mechanical-adapted properties in vivo. Two types of the custom-made, open-porous scaffolds made of Ti6Al4V (Young's modulus: 6-8 GPa and different pore sizes) were implanted into a 20 mm segmental defect in the mid-diaphysis of the metatarsus of sheep, and were stabilized with an osteosynthesis plate. After 12 and 24 weeks postoperatively, torsional testing was performed on the implanted bone and compared to the contralateral non-treated side. Maximum torque, maximum angle, torsional stiffness, fracture energy, shear modulus and shear stress were investigated. Furthermore, bone mineral density (BMD) of the newly formed bone was determined. Mechanical loading capabilities for both scaffolds were similar and about 50% after 12 weeks (e.g., max. torque of approximately 20 Nm). A further increase after 24 weeks was found for most of the investigated parameters. Results for torsional stiffness and shear modulus as well as bone formation depended on the type of scaffold. Increased BMD after 24 weeks was found for one scaffold type but remained constant for the other one. The present data showed the capability of mechanically adapted open-porous titanium scaffolds to function as bone scaffolds for large segmental defects and the influence of the scaffold's stiffness. A further increase in the biomechanical stability can be assumed for longer observation periods of greater than six months. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blood Pressure, Perfusion Pressure, and Open-Angle Glaucoma: The Los Angeles Latino Eye Study
Memarzadeh, Farnaz; Ying-Lai, Mei; Chung, Jessica; Azen, Stanley P.
2010-01-01
Purpose. To examine the cross-sectional relationship between blood pressure, perfusion pressure, and prevalence of open angle glaucoma (OAG) in an adult Latino population. Methods. Participants aged 40 years and older (N = 6130) from the Los Angeles Latino Eye Study (LALES), a large, population-based study of self-identified adult Latinos, underwent an interviewer-administered questionnaire and a complete ocular and clinical examination. Logistic regression was used to evaluate the covariate-adjusted association of OAG with systolic, diastolic, and mean blood pressures and perfusion pressures. Covariates included age, intraocular pressure, history of glaucoma treatment including medications and surgery, and history of blood pressure and treatment of blood pressure including use of medications. Results. Low systolic (odds ratio [OR] = 2.5), diastolic (OR = 1.9), and mean (OR = 3.6) perfusion pressures and low diastolic blood pressure (OR = 1.9) were associated with a higher prevalence of OAG in LALES participants. Higher systolic blood pressure and mean arterial blood pressure were associated with a higher prevalence of OAG. There was no relationship between the prevalence of OAG and the presence of a history of cardiovascular disease. Conclusions. Low diastolic, systolic and mean perfusion pressures, low diastolic blood pressure, and high systolic and mean arterial blood pressures are associated with a higher prevalence of OAG in adult Latinos. PMID:20089880
RESOLVING THE GEOMETRY OF THE INNERMOST RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algaba, J. C.; Lee, S. S.; Nakamura, M.
2017-01-01
In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archivalmore » data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.« less
Nolan, Winifred P; See, Jovina L; Chew, Paul T K; Friedman, David S; Smith, Scott D; Radhakrishnan, Sunita; Zheng, Ce; Foster, Paul J; Aung, Tin
2007-01-01
To evaluate noncontact anterior segment optical coherence technology (AS-OCT) as a qualitative method of imaging the anterior chamber angle and to determine its ability to detect primary angle closure when compared with gonioscopy in Asian subjects. Prospective observational case series. Two hundred three subjects were recruited from glaucoma clinics in Singapore with diagnoses of primary angle closure, primary open-angle glaucoma, ocular hypertension, or cataract. Both eyes (if eligible) of each patient were included in the study. Exclusion criteria were pseudophakia or previous glaucoma surgery. Images of the nasal, temporal, and inferior angles were obtained with AS-OCT in dark and then light conditions. Gonioscopic angle width was graded using the Spaeth classification for each quadrant in low lighting conditions. Angle closure was defined by AS-OCT as contact between the peripheral iris and angle wall anterior to the scleral spur and by gonioscopy as a Spaeth grade of 0 degree (posterior trabecular meshwork not visible). Comparison of the 2 methods in detecting angle closure was done by eye and by individual. Sensitivities and specificities of AS-OCT were calculated using gonioscopy as the reference standard. Complete data were available for 342 eyes of 200 patients. Of the patients, 70.9% had a clinical diagnosis of treated or untreated primary angle closure. Angle closure in > or =1 quadrants was detected by AS-OCT in 142 (71%) patients (228 [66.7%] eyes) and by gonioscopy in 99 (49.5%) patients (152 [44.4%] eyes). The inferior angle was closed more frequently than the nasal or temporal quadrants using both AS-OCT and gonioscopy. When performed under dark conditions, AS-OCT identified 98% of those subjects found to have angle closure on gonioscopy (95% confidence interval [CI], 92.2-99.6) and led to the characterization of 44.6% of those found to have open angles on gonioscopy to have angle closure as well. With gonioscopy as the reference standard, specificity of AS-OCT in the dark was 55.4% (95% CI, 45.2-65.2) for detecting individuals with angle closure. Anterior segment OCT is a rapid noncontact method of imaging angle structures. It is highly sensitive in detecting angle closure when compared with gonioscopy. More persons are found to have closed angles with AS-OCT than with gonioscopy.
Ocular Pseudoexfoliation and Cardiovascular Disease: A National Cross-Section Comparison Study
French, Dustin D; Margo, Curtis E; Harman, Lynn E
2012-01-01
Background: Pseudoexfoliation is a systemic disorder characterized by the deposition of extracellular matrix material. The microfibrillar material that gives rise to the condition is visible clinically in the anterior segment of the eye, and is also found in other tissues, including blood vessels, skin, gallbladder, kidneys, lungs, and heart. Aims: The present study aims to determine whether ocular pseudoexfoliation is associated with selected cardiovascular diseases. Materials and Methods: A cross-section comparison study was conducted with the help of the Veterans Health Administration databases, using the International Classification of Diseases, Ninth revision, Clinical Modification for pseudoexfoliation of lens capsule and pseudoexfoliation glaucoma. Selected cardiovascular diseases and risk factors for cardiovascular disease were identified using the appropriate medical codes. Patients with primary open-angle glaucoma, chronic sinusitis, and benign prostatic hyperplasia served as the comparison groups. A logistic regression model was used to control for age, gender, race, and major cardiovascular risk factors. Results: There were 6,046 case patients with pseudoexfoliation; approximately half were diagnosed with pseudoexfoliation glaucoma. Various stages of ischemic heart disease, cardiomyopathy, and aortic aneurysm were significantly associated with ocular pseudoexfoliation, after controlling for age, gender, race, and major cardiovascular risk factors. Associations, in general, were less demonstrable relative to the primary open-angle glaucoma comparison group. Conclusion: Associations of ocular pseudoexfoliation with cardiovascular diseases were generally fewer and less pronounced when compared to patients with primary open-angle glaucoma. These results add to the results of earlier studies, which suggest that open-angle glaucoma itself might be a risk factor for certain cardiovascular disorders. PMID:23112968
Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma.
Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anisalsadat
2016-10-01
To compare visual field defect patterns between pigmentary glaucoma and primary open-angle glaucoma. Retrospective, comparative study. Patients with diagnosis of primary open-angle glaucoma (POAG) and pigmentary glaucoma (PG) in mild to moderate stages were enrolled in this study. Each of the 52 point locations in total and pattern deviation plot (excluding 2 points adjacent to blind spot) of 24-2 Humphrey visual field as well as six predetermined sectors were compared using SPSS software version 20. Comparisons between 2 groups were performed with the Student t test for continuous variables and the Chi-square test for categorical variables. Thirty-eight eyes of 24 patients with a mean age of 66.26 ± 11 years (range 48-81 years) in the POAG group and 36 eyes of 22 patients with a mean age of 50.52 ± 11 years (range 36-69 years) in the PG group were studied. (P = 0.00). More deviation was detected in points 1, 3, 4, and 32 in total deviation (P = 0.03, P = 0.015, P = 0.018, P = 0.023) and in points 3, 4, and 32 in pattern deviation (P = 0.015, P = 0.049, P = 0.030) in the POAG group, which are the temporal parts of the field. It seems that the temporal area of the visual field in primary open-angle glaucoma is more susceptible to damage in comparison with pigmentary glaucoma.
Holló, Gábor
2017-07-01
To present a case of early primary open-angle glaucoma in which retinal nerve fiber layer thickness (RNFLT), ganglion cell complex (GCC), and visual field progression were accompanied with significant progression of peripapillary angioflow vessel density (PAFD) measured with optical coherence tomographic angiography. A 68-year-old female patient who was under topical intraocular pressure (IOP) lowering medication for 20 years for ocular hypertension of the right and preperimetric primary open-angle glaucoma of the left eye (with reproducible inferotemporal and superotemporal neuroretinal rim and RNFL loss) was prospectively imaged with the AngioVue OCT for RNFLT, GCC thickness, and PAFD, and investigated with the Octopus Normal G2 visual field test on the same days at 6-month intervals for 18 months, while the IOP of the left eye escaped from control. IOP of the left eye fluctuated between 14 and 30 mm Hg in the study period. RNFLT, GCC thickness, and peripapillary PAFD all decreased significantly (linear regression analysis, P=0.030, 0.040, and 0.020, respectively), and a significant 2.1 dB/y progression was seen for a superior visual field cluster. The RNFLT, peripapillary PAFD, and visual field of the right eye remained normal and unchanged. In our case IOP elevation, glaucomatous visual field conversion, and structural progression were accompanied with significant progressive decrease of peripapillary PAFD. The simultaneous thinning of RNFLT and GCC and decrease of peripapillary PAFD suggest that PAFD may potentially be an additional indicator of early progression in primary open-angle glaucoma.
Agarwal, Prakashchand; Sathyan, P; Saini, VK
2014-01-01
ABSTRACT Aim: To compare the difference of retinal macular thickness and macular volume using optical coherence tomography (OCT) in primary open angle glaucoma (POAG) patients with the normal subjects. Materials and methods: This observational case control study included primary open angle glaucoma (POAG) patients (n = 124 eyes) and healthy subjects in the control group (n = 124 eyes). All subjects underwent detailed history, general and systemic exami -nation. Complete ocular examination included best corrected visual acuity (BCVA), slit lamp examination, intraocular pressure (IOP), central corneal thickness, gonioscopy, dilated fundus biomicroscopy. Field analysis was done by white on white Humphrey Field Analyzer (Carl Zeiss). Optical coherence tomography imaging of macular area was performed using Stratus OCT (OCT 3, Version 4, Carl Zeiss Inc, Dublin, California, USA). In both these groups, parameters analyzed were macular thickness, inner macular thicknesses (IMT), outer macular thicknesses (OMT), central macular thick ness (CMT) and total macular volume (TMV). Results: The POAG group had significantly decreased values of TMV, OMT and IMT, compared to control group, while there was no difference in CMT, presumably due to absence of ganglion cells in the central part. Thus, macular thickness and volume parameters may be used for making the diagnosis of glaucoma especially in patients with abnormalities of disc. Conclusion: Macular thickness parameters correlated well with the diagnosis of glaucoma. How to cite this article: Sharma A, Agarwal P, Sathyan P, Saini VK. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography. J Current Glau Prac 2014;8(1):10-14. PMID:26997801
Wostyn, Peter; Killer, Hanspeter Esriel; De Deyn, Peter Paul
2017-07-01
The underlying pathophysiology of primary open-angle glaucoma remains unclear, but the lamina cribrosa seems to be the primary site of injury, and raised intraocular pressure is a major risk factor. In recent years, a decreased intracranial pressure, leading to an abnormally high trans-lamina cribrosa pressure difference, has gained interest as a new risk factor for glaucoma. New research now lends support to the hypothesis that a paravascular transport system is present in the eye analogous to the recently discovered 'glymphatic system' in the brain, which is a functional waste clearance pathway that promotes elimination of interstitial solutes, including β-amyloid, from the brain along paravascular channels. Given that β-amyloid has been reported to increase by chronic elevation of intraocular pressure in glaucomatous animal models and to cause retinal ganglion cell death, the discovery of a paravascular clearance system in the eye may provide powerful new insights into the pathophysiology of primary open-angle glaucoma. In this review, we provide a new conceptual framework for understanding the pathogenesis of primary open-angle glaucoma, present supporting preliminary data from our own post-mortem study and hypothesize that the disease may result from restriction of normal glymphatic flow at the level of the lamina cribrosa owing to a low intracranial pressure and/or a high trans-lamina cribrosa pressure gradient. If confirmed, this viewpoint could offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities
NASA Technical Reports Server (NTRS)
Burkholder, R. J.; Pathak, P. H.
1989-01-01
Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.
A flavor symmetry model for bilarge leptonic mixing and the lepton masses
NASA Astrophysics Data System (ADS)
Ohlsson, Tommy; Seidl, Gerhart
2002-11-01
We present a model for leptonic mixing and the lepton masses based on flavor symmetries and higher-dimensional mass operators. The model predicts bilarge leptonic mixing (i.e., the mixing angles θ12 and θ23 are large and the mixing angle θ13 is small) and an inverted hierarchical neutrino mass spectrum. Furthermore, it approximately yields the experimental hierarchical mass spectrum of the charged leptons. The obtained values for the leptonic mixing parameters and the neutrino mass squared differences are all in agreement with atmospheric neutrino data, the Mikheyev-Smirnov-Wolfenstein large mixing angle solution of the solar neutrino problem, and consistent with the upper bound on the reactor mixing angle. Thus, we have a large, but not close to maximal, solar mixing angle θ12, a nearly maximal atmospheric mixing angle θ23, and a small reactor mixing angle θ13. In addition, the model predicts θ 12≃ {π}/{4}-θ 13.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. V.; Ivanov, P. B.
2011-08-01
In this paper we derive equations describing the dynamics and stationary configurations of a twisted fully relativistic thin accretion disc around a slowly rotating black hole. We assume that the inclination angle of the disc is small and that the standard relativistic generalization of the α model of accretion discs is valid when the disc is flat. We find that similar to the case of non-relativistic twisted discs the disc dynamics and stationary shapes can be determined by a pair of equations formulated for two complex variables describing the orientation of the disc rings and velocity perturbations induced by the twist. We analyse analytically and numerically the shapes of stationary twisted configurations of accretion discs having non-zero inclinations with respect to the black hole equatorial plane at large distances r from the black hole. It is shown that the stationary configurations depend on two parameters - the viscosity parameter α and the parameter ?, where δ* is the opening angle (δ*˜h/r, where h is the disc half-thickness and r is large) of a flat disc and a is the black hole rotational parameter. When a > 0 and ? the shapes depend drastically on the value of α. When α is small the disc inclination angle oscillates with radius with amplitude and radial frequency of the oscillations dramatically increasing towards the last stable orbit, Rms. When α has a moderately small value the oscillations do not take place but the disc does not align with the equatorial plane at small radii. The disc inclination angle either is increasing towards Rms or exhibits a non-monotonic dependence on the radial coordinate. Finally, when α is sufficiently large the disc aligns with the equatorial plane at small radii. When a < 0 the disc aligns with the equatorial plane for all values of α. The results reported here may have implications for determining the structure and variability of accretion discs close to Rms as well as for modelling of emission spectra coming from different sources, which are supposed to contain black holes.
The directivity of the sound radiation from panels and openings.
Davy, John L
2009-06-01
This paper presents a method for calculating the directivity of the radiation of sound from a panel or opening, whose vibration is forced by the incidence of sound from the other side. The directivity of the radiation depends on the angular distribution of the incident sound energy in the room or duct in whose wall or end the panel or opening occurs. The angular distribution of the incident sound energy is predicted using a model which depends on the sound absorption coefficient of the room or duct surfaces. If the sound source is situated in the room or duct, the sound absorption coefficient model is used in conjunction with a model for the directivity of the sound source. For angles of radiation approaching 90 degrees to the normal to the panel or opening, the effect of the diffraction by the panel or opening, or by the finite baffle in which the panel or opening is mounted, is included. A simple empirical model is developed to predict the diffraction of sound into the shadow zone when the angle of radiation is greater than 90 degrees to the normal to the panel or opening. The method is compared with published experimental results.
Laser-driven interactions and resultant instabilities in materials with high dielectric constant
NASA Astrophysics Data System (ADS)
Rajpoot, Moolchandra; Dixit, Sanjay
2015-07-01
An analytical investigation of nonlinear interactions resulting in parametric amplification of acoustic wave is made by obtaining the dispersion relation using hydrodynamic model of inhomogeneous plasma by applying large static field at an arbitrary angle with the pump wave. The investigation shows that many early studies have neglected dependence of dielectric constant on deformation of materials but deformation of materials does infect depends on the dielectric constant of medium. Thus we have assumed to high dielectric material like BaTiO3 which resulted in substantially high growth rate of threshold electric field which opens a new dimension to study nonlinear interactions and instabilities.
Vection in patients with glaucoma.
Tarita-Nistor, Luminita; Hadavi, Shahriar; Steinbach, Martin J; Markowitz, Samuel N; González, Esther G
2014-05-01
Large moving scenes can induce a sensation of self-motion in stationary observers. This illusion is called "vection." Glaucoma progressively affects the functioning of peripheral vision, which plays an important role in inducing vection. It is still not known whether vection can be induced in these patients and, if it can, whether the interaction between visual and vestibular inputs is solved appropriately. The aim of this study was to investigate vection responses in patients with mild to moderate open-angle glaucoma. Fifteen patients with mild to moderate glaucoma and 15 age-matched controls were exposed to a random-dot pattern at a short viewing distance and in a dark room. The pattern was projected on a large screen and rotated clockwise with an angular speed of 45 degrees per second to induce a sensation of self-rotation. Vection latency, vection duration, and objective and subjective measures of tilt were obtained in three viewing conditions (binocular, and monocular with each eye). Each condition lasted 2 minutes. Patients with glaucoma had longer vection latencies (p = 0.005) than, but the same vection duration as, age-matched controls. Viewing condition did not affect vection responses for either group. The control group estimated the tilt angle as being significantly larger than the actual maximum tilt angle measured with the tilt sensor (p = 0.038). There was no relationship between vection measures and visual field sensitivity for the glaucoma group. These findings suggest that, despite an altered visual input that delays vection, the neural responses involved in canceling the illusion of self-motion remain intact in patients with mild peripheral visual field loss.
Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS.
Ali, Mazhar N; Schoop, Leslie M; Garg, Chirag; Lippmann, Judith M; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S P
2016-12-01
Magnetoresistance (MR), the change of a material's electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual "butterfly"-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 10 5 percent at 9 T and 2 K at a 45° angle between the applied current ( I || a ) and the applied field (90° is H || c ). Approaching 90°, a "dip" is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
NASA Astrophysics Data System (ADS)
Ahmadi, Ali; Seyedi Hosseininia, Ehsan
2017-06-01
This paper discusses the formation of stable arches in granular materials by using a series of laboratory tests. To this aim, a developed trapdoor apparatus is designed to find dimensions of arches formed over the door in cohesionless aggregates. This setup has two new important applications. In order to investigate the maximum width of the opening generated exactly on the verge of failure, the door can be open to an arbitrary size. In addition, the box containing granular materials (or base angle) is able to be set on optional angles from zero to 90 degrees with respect to the horizontal. Therefore, it is possible to understand the effect of different levels of gravity accelerations on the formed arches. It is observed that for all tested granular materials, increasing the door size and decreasing the base angle, both cause to increase the width and height of the arch. Moreover, the shape of all arches is governed by a parabola. Furthermore, the maximum door width is approximately five to 8.6 times the particle size, depending on the internal friction angle of materials and the base angle.
Peterson, Jeffrey R.; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Rigi, Mohammed; Feldman, Robert M.; Bell, Nicholas P.
2016-01-01
Purpose Define criteria for iris-related parameters in an adult open angle population as measured with swept source Fourier domain anterior segment optical coherence tomography (ASOCT). Methods Ninety-eight eyes of 98 participants with open angles were included and stratified into 5 age groups (18–35, 36–45, 46–55, 56–65, and 66–79 years). ASOCT scans with 3D mode angle analysis were taken with the CASIA SS-1000 (Tomey Corporation, Nagoya, Japan) and analyzed using the Anterior Chamber Analysis and Interpretation software. Anterior iris surface length (AISL), length of scleral spur landmark (SSL) to pupillary margin (SSL-to-PM), iris contour ratio (ICR = AISL/SSL-to-PM), pupil radius, radius of iris centroid (RICe), and iris volume were measured. Outcome variables were summarized for all eyes and age groups, and mean values among age groups were compared using one-way analysis of variance. Stepwise regression analysis was used to investigate demographic and ocular characteristic factors that affected each iris-related parameter. Results Mean (±SD) values were 2.24 mm (±0.46), 4.06 mm (±0.27), 3.65 mm (±0.48), 4.16 mm (±0.47), 1.14 (±0.04), 1.51 mm2 (±0.23), and 38.42 μL (±4.91) for pupillary radius, RICe, SSL-to-PM, AISL, ICR, iris cross-sectional area, and iris volume, respectively. Both pupillary radius (P = 0.002) and RICe (P = 0.027) decreased with age, while SSL-to-PM (P = 0.002) and AISL increased with age (P = 0.001). ICR (P = 0.54) and iris volume (P = 0.49) were not affected by age. Conclusion This study establishes reference values for iris-related parameters in an adult open angle population, which will be useful for future studies examining the role of iris changes in pathologic states. PMID:26815917
Peterson, Jeffrey R; Blieden, Lauren S; Chuang, Alice Z; Baker, Laura A; Rigi, Mohammed; Feldman, Robert M; Bell, Nicholas P
2016-01-01
Define criteria for iris-related parameters in an adult open angle population as measured with swept source Fourier domain anterior segment optical coherence tomography (ASOCT). Ninety-eight eyes of 98 participants with open angles were included and stratified into 5 age groups (18-35, 36-45, 46-55, 56-65, and 66-79 years). ASOCT scans with 3D mode angle analysis were taken with the CASIA SS-1000 (Tomey Corporation, Nagoya, Japan) and analyzed using the Anterior Chamber Analysis and Interpretation software. Anterior iris surface length (AISL), length of scleral spur landmark (SSL) to pupillary margin (SSL-to-PM), iris contour ratio (ICR = AISL/SSL-to-PM), pupil radius, radius of iris centroid (RICe), and iris volume were measured. Outcome variables were summarized for all eyes and age groups, and mean values among age groups were compared using one-way analysis of variance. Stepwise regression analysis was used to investigate demographic and ocular characteristic factors that affected each iris-related parameter. Mean (±SD) values were 2.24 mm (±0.46), 4.06 mm (±0.27), 3.65 mm (±0.48), 4.16 mm (±0.47), 1.14 (±0.04), 1.51 mm2 (±0.23), and 38.42 μL (±4.91) for pupillary radius, RICe, SSL-to-PM, AISL, ICR, iris cross-sectional area, and iris volume, respectively. Both pupillary radius (P = 0.002) and RICe (P = 0.027) decreased with age, while SSL-to-PM (P = 0.002) and AISL increased with age (P = 0.001). ICR (P = 0.54) and iris volume (P = 0.49) were not affected by age. This study establishes reference values for iris-related parameters in an adult open angle population, which will be useful for future studies examining the role of iris changes in pathologic states.
Glaucoma Blindness at a Tertiary Eye Care Center.
Stone, Jordan S; Muir, Kelly W; Stinnett, Sandra S; Rosdahl, Jullia A
2015-01-01
Glaucoma is an important cause of irreversible blindness. This study describes the characteristics of a large, diverse group of glaucoma patients and evaluates associations between demographic and clinical characteristics and blindness. Data were gathered via retrospective chart review of patients (N = 1,454) who were seen between July 2007 and July 2010 by glaucoma service providers at Duke Eye Center. Visual acuity and visual field criteria were used to determine whether patients met the criteria for legal blindness. Descriptive and comparative statistical analyses were performed on the glaucoma patients who were not blind (n = 1,258) and those who were blind (n = 196). A subgroup analysis of only those patients with primary open-angle glaucoma was also performed. In this tertiary care population, 13% (n = 196) of glaucoma patients met criteria for legal blindness, nearly one-half of whom (n = 94) were blind from glaucoma, and another one-third of whom (n = 69) had glaucoma-related blindness. The most common glaucoma diagnosis at all levels of vision was primary open-angle glaucoma. A larger proportion of black patients compared with white patients demonstrated vision loss; the odds ratio (OR) for blindness was 2.25 (95% CI, 1.6-3.2) for black patients compared with white patients. The use of systemic antihypertensive medications was higher among patients who were blind compared with patients who were not blind (OR = 2.1; 95% CI, 1.4-3.1). A subgroup analysis including only patients with primary open-angle glaucoma showed similar results for both black race and use of systemic antihypertensive medications. The relationship between use of systemic antihypertensive medications and blindness was not different between black patients and white patients (interaction P = .268). Data were based on chart review, and associations may be confounded by unmeasured factors. Treated systemic hypertension may be correlated with blindness, and the cause cannot be explained solely by race. In addition, this study demonstrated that there is continued disparity between black patients and white patients with regards to blindness from glaucoma. ©2015 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.
Glaucoma Blindness at a Tertiary Eye Care Center
Stone, Jordan S.; Muir, Kelly W.; Stinnett, Sandra S.; Rosdahl, Jullia A.
2016-01-01
BACKGROUND Glaucoma is an important cause of irreversible blindness. This study describes the characteristics of a large, diverse group of glaucoma patients and evaluates associations between demographic and clinical characteristics and blindness. METHODS Data were gathered via retrospective chart review of patients (N = 1,454) who were seen between July 2007 and July 2010 by glaucoma service providers at Duke Eye Center. Visual acuity and visual field criteria were used to determine whether patients met the criteria for legal blindness. Descriptive and comparative statistical analyses were performed on the glaucoma patients who were not blind (n = 1,258) and those who were blind (n = 196). A subgroup analysis of only those patients with primary open-angle glaucoma was also performed. RESULTS In this tertiary care population, 13% (n = 196) of glaucoma patients met criteria for legal blindness, nearly one-half of whom (n = 94) were blind from glaucoma, and another one-third of whom (n = 69) had glaucoma-related blindness. The most common glaucoma diagnosis at all levels of vision was primary open-angle glaucoma. A larger proportion of black patients compared with white patients demonstrated vision loss; the odds ratio (OR) for blindness was 2.25 (95% CI, 1.6–3.2) for black patients compared with white patients. The use of systemic antihypertensive medications was higher among patients who were blind compared with patients who were not blind (OR = 2.1; 95% CI, 1.4–3.1). A subgroup analysis including only patients with primary open-angle glaucoma showed similar results for both black race and use of systemic antihypertensive medications. The relationship between use of systemic antihypertensive medications and blindness was not different between black patients and white patients (interaction P = .268). LIMITATIONS Data were based on chart review, and associations may be confounded by unmeasured factors. CONCLUSIONS Treated systemic hypertension may be correlated with blindness, and the cause cannot be explained solely by race. In addition, this study demonstrated that there is continued disparity between black patients and white patients with regards to blindness from glaucoma. PMID:26509509
Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1.
Aptel, Florent; Aryal-Charles, Nishal; Giraud, Jean-Marie; El Chehab, Hussam; Delbarre, Maxime; Chiquet, Christophe; Romanet, Jean-Paul; Renard, Jean-Paul
2015-12-01
To evaluate the visual field rate of progression of patients with treated ocular hypertension (OHT) and primary open-angle glaucoma (POAG) in clinical practice, using the mean deviation (MD) and the visual field index (VFI). Non-interventional cohort study. From a large multicentre database representative of the French population, 441 eyes of 228 patients with treated OHT or POAG followed up at least 6 years with Humphrey 24.2 Sita-Standard visual field examination at least twice a year were identified. From initial data, eyes were classified in five groups: 121 with OHT, 188 with early glaucoma (MD greater than -6 dB), 45 with moderate glaucoma (MD -6 to -12 dB), 41 with advanced glaucoma (MD -12 to -18 dB) and 46 with severe glaucoma (MD less than -18 dB). Rate of progression during the follow-up period was calculated using the trend analysis of the Guided Progression Analysis software. The mean duration of follow-up was 8.4 ± 2.7 years and the mean number of visual field, 18.4 ± 3.5. In eyes with OHT, rate of progression was -0.09 dB/year (-0.17%VFI/year). In eyes with POAG, rate of progression was -0.32 dB/year (-0.83%VFI/year) in eyes with early glaucoma, -0.52 dB/year (-1.81%VFI/year) in moderate glaucoma, -0.54 dB/year (-2.35%VFI/year) in advanced glaucoma and -0.45 dB/year (-1.97%VFI/year) in severe glaucoma. In eyes with POAG, a significant progression (p < 0.05) was detected in 159 of 320 eyes (49.7%) with trend analysis and 117 of 320 eyes (36.6%, likely progression) or 183 of 320 eyes (57.2%, possible and likely progression) with event analysis. Primary open-angle glaucoma is a progressive disease in the majority of patients despite cautioned treatment and follow-up. The rate of progression varies greatly among subjects. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.
Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme
2017-01-01
In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
Large displacement spherical joint
Bieg, Lothar F.; Benavides, Gilbert L.
2002-01-01
A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.
Graft Angle its Relationship to Tomato Plant Survival
USDA-ARS?s Scientific Manuscript database
Growing plants that can withstand the rigors of open field production is imperative. This study examines the relationship of tensile strength to graft angle and plant survival. Tomato seedlings of ‘FL47’ and ‘Rutgers’ were used as scions on ‘Roma’ rootstock under greenhouse and healing chamber con...
Hydraulic droplet coarsening in open-channel capillaries
NASA Astrophysics Data System (ADS)
Warren, Patrick B.
2016-11-01
Over a range of liquid-solid contact angles, an open-channel capillary with curved or angled sides can show a maximum in the Laplace pressure as a function of the filling state. Examples include double-angle wedges, grooves scored into flat surfaces, steps on surfaces, and the groove between touching parallel cylinders. The liquid in such a channel exhibits a beading instability if the channel is filled beyond the Laplace pressure maximum. The subsequent droplet coarsening takes place by hydraulic transport through the connecting liquid columns that remain in the groove. A mean-field scaling argument predicts the characteristic droplet radius R ˜t1 /7 , as a function of time t . This is confirmed by one-dimensional simulations of the coarsening kinetics. Some remarks are also made on the spreading kinetics of an isolated drop deposited in such a channel.
Catadioptric planar compound eye with large field of view.
Deng, Huaxia; Gao, Xicheng; Ma, Mengchao; Li, Yunyang; Li, Hang; Zhang, Jin; Zhong, Xiang
2018-05-14
The planar compound eye has the advantages of simple structure and no requirement for complex relay optical elements, but the field of view (FOV) is very difficult to expand. Overcoming the limitation of FOV, especially with simple structures, is a great challenge for the development of planar compound eyes. Different from the existing designs that only considering refraction, this article proposes a catadioptric planar compound eye based on the reflection and refraction to expand the FOV. In the proposed design, the incident light from a large angle is reflected into the lenslet array by two rotationally symmetric mirrors whose surface equations are optimized by mathematical and optical softwares. The FOV of the proposed catadioptric planar compound eye theoretically can reach 96.6°, which is much wider than the opening record of 70°. Moreover, no distortion of the imaging system can be obtained theoretically in this design. Simulation results show a linearity of better than 99% for the most of the incident angles. The verification experiments show that the FOV of the proposed device can reach 90.7° while the FOV of the corresponding planar compound eye without mirrors is 41.6°. The proposed catadioptric planar compound eye has the great potential in monitoring, detection and virtual reality since the FOV has been widen significantly.
Ishida, Takayoshi; Ono, Takashi
2014-09-01
To describe the orthodontic treatment of a nongrowing 30-year-old woman with asymmetric severe skeletal Class II malocclusions (asymmetric Angle Class II), large overjet (16 mm), large overbite (8 mm), two congenitally missing mandibular incisors (presenting a deciduous anterior tooth), and signs and symptoms of temporomandibular joint disorder (TMD). We used novel improved super-elastic Ni-Ti alloy wires (ISWs) combined with Ni-Ti alloy coil springs, power hooks, and a zygomatic implant as reinforced anchorage to provide a constant and continuous mild force to the dentition. We successfully distalized maxillary molars, premolars, and retracted anterior teeth and corrected the asymmetric Angle Class II molar relationship using this system of zygomatic anchorage in conjunction with ISWs, Ni-Ti alloy open-coil springs, and crimpable power hook. The maxillary molars were distalized, and postero-occlusal relationships were improved to achieve Class I canine and molar relationships on both sides. Intrusion of the upper molars made the mandibular plane close. Ideal overbite and overjet relationships were established. Facial esthetics were improved with decreased upper and lower lip protrusion, and no symptoms of TMD were observed after treatment. The orthodontic treatment described here is a promising anchorage technique alternative to traditional techniques to improve severe skeletal Class II with TMD.
NASA Astrophysics Data System (ADS)
Puzyrev, Vladimir; Torres-Verdín, Carlos; Calo, Victor
2018-05-01
The interpretation of resistivity measurements acquired in high-angle and horizontal wells is a critical technical problem in formation evaluation. We develop an efficient parallel 3-D inversion method to estimate the spatial distribution of electrical resistivity in the neighbourhood of a well from deep directional electromagnetic induction measurements. The methodology places no restriction on the spatial distribution of the electrical resistivity around arbitrary well trajectories. The fast forward modelling of triaxial induction measurements performed with multiple transmitter-receiver configurations employs a parallel direct solver. The inversion uses a pre-conditioned gradient-based method whose accuracy is improved using the Wolfe conditions to estimate optimal step lengths at each iteration. The large transmitter-receiver offsets, used in the latest generation of commercial directional resistivity tools, improve the depth of investigation to over 30 m from the wellbore. Several challenging synthetic examples confirm the feasibility of the full 3-D inversion-based interpretations for these distances, hence enabling the integration of resistivity measurements with seismic amplitude data to improve the forecast of the petrophysical and fluid properties. Employing parallel direct solvers for the triaxial induction problems allows for large reductions in computational effort, thereby opening the possibility to invert multiposition 3-D data in practical CPU times.
Fat fraction bias correction using T1 estimates and flip angle mapping.
Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A
2014-01-01
To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
WIMP detection and slow ion dynamics in carbon nanotube arrays.
Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D
2016-01-01
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.
The Research of the Parallel Computing Development from the Angle of Cloud Computing
NASA Astrophysics Data System (ADS)
Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun
2017-10-01
Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.
Measurement of surface tension and viscosity by open capillary techniques
Rye,Robert R. , Yost,Frederick G.
1998-01-01
An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the
The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies
NASA Technical Reports Server (NTRS)
Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon
2017-01-01
Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
NASA Technical Reports Server (NTRS)
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
NASA Astrophysics Data System (ADS)
Gupta, Nitant; Sasikala, S.; Mahadik, D. B.; Rao, A. V.; Barshilia, Harish C.
2012-10-01
A novel method to fabricate multifunctional indium tin oxide (ITO) coatings is discussed. Superhydrophobic ITO coatings are fabricated by radio frequency balanced magnetron sputter deposition of indium-tin alloy on glass substrates followed by complete oxidation of the samples in air. The chemical nature and structure of the coatings are verified by X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Field emission scanning electron microscopic studies of the coatings display rod-like and blob-like microstructures, together with fractal-like nanostructures infused on top. Microscale roughness of the ITO coatings is measured by three-dimensional profilometry and is found to be in the range of 0.1-3 μm. Thus the presence of micro- and nano- sized structures result in dual-scale roughness. The variation in the contact angle with the deposition time is studied using a contact angle goniometer. High water contact angles (>160°) and low contact angle hysteresis (5°) are obtained at an optimum microscale roughness. The ITO coatings also exhibit other functional properties, such as low sheet resistance and semi-transparent behaviour in the visible region. The loss in the transparency of the ITO coatings is attributed to the presence of higher scale of roughness. The photoluminescence measurements show large photoemission in the visible region. It is expected that further improvements in the multifunctional properties of transparent conducting oxides will open new frontiers in designing novel materials with exotic properties.
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes
Sato, Tatsuhiko
2016-01-01
A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.
Sato, Tatsuhiko
2016-01-01
A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).
NASA Astrophysics Data System (ADS)
Son, Min; Radhakrishnan, Kanmaniraja; Yoon, Youngbin; Koo, Jaye
2017-06-01
A pintle injector is a movable injector capable of controlling injection area and velocities. Although pintle injectors are not a new concept, they have become more notable due to new applications such as planet landers and low-cost engines. However, there has been little consistent research on pintle injectors because they have many design variations and mechanisms. In particular, simulation studies are required for bipropellant applications. In this study, combustion simulation was conducted using methane and oxygen to determine the effects of injection condition and geometries upon combustion characteristics. Steady and two-dimensional axisymmetric conditions were assumed and a 6-step Jones-Lindstedt mechanism with an eddy-dissipation concept model was used for turbulent kinetic reaction. As a result, the results with wide flame angles showed good combustion performances with a large recirculation under the pintle tip. Under lower mass flow-rate conditions, the combustion performance got worse with lower flame angles. To solve this problem, decreasing the pintle opening distance was very effective and the flame angle recovered. In addition, a specific recirculation zone was observed near the post, suggesting that proper design of the post could increase the combustion performance, while the geometry without a recirculation zone had the poor performance.
On the spatial coherence of temperature within and above a vineyard under drainage conditions
NASA Astrophysics Data System (ADS)
Everard, K.; Giometto, M. G.; Christen, A.; Oldroyd, H. J.; Parlange, M. B.
2017-12-01
We show that turbulent exchange within vineyards under nighttime drainage conditions is controlled by large-scale coherent structures arising from a mixing-layer type instability at the canopy top, h. A combination of measurements and large-eddy simulations (LESs) are here used to characterize the onset and development of such structures as a function of the approaching wind angle over an organized canopy during drainage flows. Measurements were carried out over a west-facing 7° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The vineyard canopy had an average height of h = 2.3 m, with parallel rows oriented in the local downslope direction (i.e. east-west). The set-up consisted of an array of five vertically arranged ultrasonic anemometers at z/h = 0.19, 0.39, 0.65, 1.02, and 2.06, and a 2-D grid of 40 fine-wire thermocouples arranged at the same heights as the ultrasonic anemometer array on 8 separate masts extending in the upslope direction at locations up to x/h = 13.91 from the flux tower. To complement observations, pressure-driven open-channel flow LESs are performed over a regular domain where vegetation is accounted for via a space dependent drag force. The drainage flow regime is emulated via a tuned pressure-gradient forcing, and different approaching wind angles are considered. Linear stability analyses show that the most unstable mode at the canopy top strongly depends on the approaching wind angle. Space-lagged correlations from measurements show that the lifetime of such eddies within the canopy also depends on the approaching wind direction, with longer lifetimes observed when wind angles are directed along the vine-rows. LESs are compared with measured quantities to ensure matching, and then used to investigate in detail the influence of the above-canopy wind vectors on eddy lifetimes. The impact of the observed coherent structures on momentum and heat exchange coefficients are also discussed.
NASA Astrophysics Data System (ADS)
Xanthos, Savvas; Gong, Minwei; Andreopoulos, Yiannis
2010-01-01
Further analysis of the experimental data of the velocity gradient tensor first published by Xanthos et al. [J. Fluid Mech. 584, 301 (2007)] has been carried out and new results are reported here to provide additional insights on the effects of expansion waves interacting with isotropic turbulence. The flow field was generated by the reflection of an incoming shock wave at the open end of a large scale shock tube facility which interacted with the induced flow behind the incident shock wave which passed through a turbulence generating grid. In the present configuration the interaction is free from streamline curvature effects, which cause additional effects on turbulence. The strength of the applied expansive straining was 240 s-1. Rectangular pattern grids of different mesh sizes were used to generate isotropic and homogeneous turbulence with turbulent Reynolds number Reλ based on Taylor's microscale between 450 and 488. Lateral vorticity fluctuations and fluctuations of enstrophy and all stretching vector components are drastically reduced during the interaction. Residual attenuation in the postinteraction flow field was found only in the lateral vorticity fluctuations and in the longitudinal stretching term S11Ω1. Helicity and the helicity angle were computed from the data and the orientation angle of the vorticity vector in reference to the velocity vector was determined. Large fluctuations of the helicity angle were observed which extend from 0° to 180° with most probable values close to 30° and 130° and a mean value of 85°. Rotational dissipation rate was found to be high at these angles. The time-dependent signals of enstrophy, vortex stretching/tilting vector, and dissipation rate were found to exhibit a rather strong intermittent behavior which is characterized by high amplitude bursts followed by low level activities. It was found that the observed strong dissipative events are mostly associated with strong activities in the longitudinal stretching S11Ω1 rather than with events in the lateral components.
NASA Astrophysics Data System (ADS)
Li, Yugang; Fu, Gaoyong
2018-01-01
A floater allowing large-angle motion supporting a large payload (wind turbine and nacelle) with large aerodynamic loads high above the water surface is a great challenge because of the raised center of gravity and large overturning moment. In this paper, the conversion formulas between Euler angles and quaternions were derived, the research offered an efficient methodology without singularity to compute large-angle rigid body rotations of a FOWT, which laid the foundation for quaternion-based attitude kinematic model introduced to describe the dynamic response of the FOWT system and further solution.
Ocular surface disease incidence in patients with open-angle glaucoma.
Radenković, Marija; Stanković-Babić, Gordana; Jovanović, Predrag; Djordjević-Jocić, Jasmina; Trenkić-Božinović, Marija
2016-01-01
Ocular surface disease (OSD) is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbances, tear film instability with potential damage to the ocular surface, accompanied by increased tear film osmolarity and inflammation of the ocular surface. It is a consequence of disrupted homeostasis of lacrimal functional unit. The main pathogenetic mechanism stems from tear hyperosmolarity and tear film instability. The etiological classification is hyposecretory (Sy-Sjögren and non-Sjögren) and evaporative (extrinsic and intrinsic) form. Delphi panel classification grades disease stages. Antiglaucoma topical therapy causes exacerbation or occurrence of symptoms of dry eye due to main ingredients or preservatives (benzalkonium chloride – BAK), which are dose- and time-dependent. BAK reduces the stability of the lipid layer of tears, the number of goblet cells, induces apoptosis and inflammatory infiltration. The aim of this study was the analysis of the OSD incidence in open-angle glaucoma patients caused by topical medicamentous therapy. Retrospective analysis of examined patients with open-angle glaucoma was used. Increased incidence of moderate and advanced OSD Index degrees in the group of primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma. According to the Delphi Panel Scale the most common grade is IIb (POAG and pseudoexfoliative glaucoma). Evaporative form of OSD prevailed in all treatment groups. High percentage of dry eye in patients with higher concentrations of preservatives applied was noticed. OSD should be timely diagnosed and treated. Dry eye has an impact on surgical outcome and postoperative visual acuity, and in order to improve patient compliance and quality of life, symptoms of dry eye should be addressed and medications with lower concentrations of preservatives should be applied.
Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo
2017-01-01
The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.
Marjanović, Ivan; Martinez, Antonio; Marjanović, Marija; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija
2013-01-01
An altered perfusion of the optic nerve head has been proposed as a pathogenic factor of glaucoma. The aim of this study was to evaluate the changes of the hemodynamic parameters in the retrobulbar arterial circulation after decrease of the elevated intraocular pressure (IOP) in women and men with primary open angle glaucoma. The study included 60 patients (33 males and 27 females) older than 50 years, with diagnosed and treated primary open angle glaucoma (77 eyes of 39 patients had increased IOP, > 25 mm Hg).They were examined at the Clinic of Eye Diseases (complete ophthalmologic exam) and Clinic of Neurology, Clinical Center of Serbia, Belgrade, from December 2009 to December 2010. Imaging of hemodynamic parameters of three retrobulbar arterial vessels: ophthalmic, central retinal and posterior ciliary arteries with color Doppler was performed. Among women, hemodynamic arterial parameter of the peak-systolic velocity was increased in the central retinal artery and decreased in the ophthalmic artery and posterior ciliary arteries; end-diastolic velocity was increased in all three retrobulbar vascular levels; Pourcelot resistivity index was increased, but pulsatility index was decreased in all three vessels. Among men, peak-systolic velocity, end-diastolic velocity and pulsatility index were decreased in all three vessels; resistivity index was increased in the ophthalmic artery, but decreased in the central retinal artery and posterior ciliary arteries. There was a significant change of the ophthalmic artery pulsatility index in women, and the end-diastolic velocity of the ophthalmic artery in men. There was a difference of the retrobulbar arterial circulation between women and men with primary open angle glaucoma after decrease of the elevated intraocular pressure.The role of vascular factors in the supply of the optic disc neuroretinal rim is important.
Hip arthroscopy versus open surgical dislocation for femoroacetabular impingement
Zhang, Dagang; Chen, Long; Wang, Guanglin
2016-01-01
Abstract Background: This meta-analysis aims to evaluate the efficacy and safety of hip arthroscopy versus open surgical dislocation for treating femoroacetabular impingement (FAI) through published clinical trials. Methods: We conducted a comprehensive literature search using PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases for relevant studies on hip arthroscopy and open surgical dislocation as treatment options for FAI. Results: Compared with open surgical dislocation, hip arthroscopy resulted in significantly higher Nonarthritic Hip Scores (NAHS) at 3- and 12-month follow-ups, a significant improvement in NAHS from preoperation to 3 months postoperation, and a significantly lower reoperation rate. Open surgical dislocation resulted in a significantly improved alpha angle by the Dunn view in patients with cam osteoplasty from preoperation to postoperation, compared with hip arthroscopy. This meta-analysis demonstrated no significant differences in the modified Harris Hip Score, Hip Outcome Score-Activities of Daily Living, or Hip Outcome Score-Sport Specific Subscale at 12 months of follow-up, or in complications (including nerve damage, wound infection, and wound dehiscence). Conclusion: Hip arthroscopy resulted in higher NAHS and lower reoperation rates, but had less improvement in alpha angle in patients with cam osteoplasty, than open surgical dislocation. PMID:27741133
The Opening of the Arctic: Establishing a New Security Perimeter for the United States
2013-02-14
Eastern oil is projected to come to an end by 2032. British Petroleum, in its annual energy outlook, predicts growth in biofuel supplies and...Inclination angles for GPS and Galileo satellites are 55 and 56 degrees respectively while GLONASS inclination angles are marginally better at 65
Miniaturized haploscope for testing binocular vision
NASA Technical Reports Server (NTRS)
Decker, T. A.
1973-01-01
Device can reproduce virtually all binocular stimulus conditions (target configuration, vergence angle, and accommodative distance) used to test binocular performance. All subsystems of electronic controls are open-loop and solid-state-controlled and, with the exception of vergence angle drive, utilize dc stepping motors as prime movers. Arrangement is also made for readouts of each variable.
Arodola, Olayide A; Soliman, Mahmoud E S
2016-11-01
The flap region in aspartic proteases is a unique structural feature to this class of enzymes, and found to have a profound impact on protein overall structure, function, and dynamics. Understanding the structure and dynamic behavior of the flap regions is crucial in the design of selective inhibitors against aspartic proteases. Cathepsin-D, an aspartic protease enzyme, has been implicated in a long list of degenerative diseases as well as breast cancer progression. Presented herein, for the first time, is a comprehensive description of the conformational flap dynamics of cathepsin-D using a comparative 50 ns "multiple" molecular dynamics simulations. Diverse collective metrics were proposed to accurately define flap dynamics. These are distance d1 between the flap tips residues (Gly79 and Met301); dihedral angle ϕ; in addition to TriCα angles Gly79-Asp33-Asp223, θ1 , and Gly79-Asp223-Met301, θ2 . The maximum distance attained throughout the simulation was 17.42 and 11.47 Å for apo and bound cathepsin-D, respectively, while the minimum distance observed was 8.75 and 6.32 Å for apo and bound cathepsin-D, respectively. The movement of the flap as well as the twist of the active pocket can properly be explained by measuring the angle, θ1 , between Gly79-Asp33-Met301 and correlating it with the distance Cα of the flap tip residues. The asymmetrical opening of the binding cavity was best described by the large shift of -6.26° to +20.94° in the dihedral angle, ϕ, corresponding to the full opening of the flap at a range of 31-33 ns. A wide-range of post-dynamic analyses was also applied in this report to supplement our findings. We believe that this report would augment current efforts in designing potent structure-based inhibitors against cathepsin-D in the treatment of breast cancer and other degenerative diseases. J. Cell. Biochem. 117: 2643-2657, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.
2018-04-01
An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a significant influence on their field emission properties. The comparisons of these theoretical findings to the experimental observations confirm the adequacy of the proposed model.
Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2010-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features
Klatt, K; Schmidt, E; Scheuerle, A F
2008-04-01
The Ocular Hypertension Treatment Study (OHTS) has shown that analyzing changes of the optic disc configuration is superior to evaluating visual field findings for the early detection of primary open angle glaucoma. The Confocal Scanning Laser Ophthalmoscopy Ancillary Study (CSLO) is the first study to reveal that certain topographic baseline measurements of the optic disc are significantly associated with the development of primary open angle glaucoma in patients with ocular hypertension. An abnormally increased "mean height contour" value proved to be the individual parameter connected with the highest risk. The reliability of the Moorfields Regression Analysis of certain individual sectors during early detection of a primary angle glaucoma is higher than that of the global measurement. The temporal superior and inferior as well as the nasal inferior sectors have the highest positive predictive values and the largest risks in both univariate and multivariate analysis.
Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy.
Narayanaswamy, Arun; Vijaya, Lingam; Shantha, B; Baskaran, Mani; Sathidevi, A V; Baluswamy, Sukumar
2004-01-01
Comparison of anterior chamber angle measurements using ultrasound biomicroscopy (UBM) and gonioscopy. Five hundred subjects were evaluated for grading of angle width by the Shaffer method. UBM was done in the same group to document angle width, angle opening distance (AOD 500), and anterior chamber depth. Biometric parameters were documented in all subjects. UBM and gonioscopic findings were compared. A study was conducted in 282 men and 218 women with a mean age of 57.32 +/- 12.48 years. Gonioscopic grading was used to segregate occludable (slit-like, grades 1 and 2) from nonoccludable (grades 3 and 4) angles. Subjective assessment by gonioscopy resulted in an overestimation of angle width within the occludable group when compared with values obtained by UBM. This did not affect the segregation of occludable versus nonoccludable angles by gonioscopy. Biometric parameters in eyes with occludable angles were significantly lower in comparison with eyes with nonoccludable angles, except for lens thickness. AOD 500 correlated well with angle width. We concluded that clinical segregation into occludable and nonoccludable angles by an experienced observer using gonioscopy is fairly accurate. However, UBM is required for objective quantification of angles, and AOD 500 can be a reliable and standard parameter to grade angle width.
Franzotti Sant'Anna, Eduardo; Carneiro da Cunha, Amanda; Paludo Brunetto, Daniel; Franzotti Sant'Anna, Claudia
2017-03-01
The treatment of skeletal anterior open-bite malocclusion requires complex orthodontic planning that considers its multifactorial etiology, treatment limitations, and high relapse rates. This case report illustrates a successful treatment approach for a skeletal high-angle Class II malocclusion in an adult with a severe open bite. The treatment consisted of a high-pull headgear therapy after mini-implants failure during fixed orthodontic therapy. Adequate esthetics and function were achieved. Despite its low probability, the unexpected event of mini-implant loosening during complex treatments should be considered. Therefore, classic orthodontic mechanics should be established, especially when treating patients for whom invasive procedures such as miniplates or orthognathic surgery are not available options. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dwyer Cianciolo, Alicia; Powell, Richard W.
2017-01-01
Precision landing on Mars is a challenge. All Mars lander missions prior to the 2012 Mars Science Laboratory (MSL) had landing location uncertainty ellipses on the order of hundreds of kilometers. Sending humans to the surface of Mars will likely require multiple landers delivered in close proximity, which will in turn require orders of magnitude improvement in landing accuracy. MSL was the first Mars mission to use an Apollo-derived bank angle guidance to reduce the size of the landing ellipse. It utilized commanded bank angle magnitude to control total range and bank angle reversals to control cross range. A shortcoming of this bank angle guidance is that the open loop phase of flight created by use of bank reversals increases targeting errors. This paper presents a comparison of entry, descent and landing performance for a vehicle with a low lift-to-drag ratio using both bank angle control and an alternative guidance called Direct Force Control (DFC). DFC eliminates the open loop flight errors by directly controlling two forces independently, lift and side force. This permits independent control of down range and cross range. Performance results, evaluated using the Program to Optimize Simulated Trajectories (POST2), including propellant use and landing accuracy, are presented.
Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.
Okazaki, Toshio
2018-02-01
I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.
Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition.
Barkana, Yaniv; Dorairaj, Syril K; Gerber, Yariv; Liebmann, Jeffrey M; Ritch, Robert
2007-10-01
To assess the agreement between findings obtained at dark-room gonioscopy and ultrasound biomicroscopy (UBM) in the diagnosis of iridotrabecular apposition in light and dark conditions. We enrolled patients with appositional angle closure at dark-room gonioscopy performed using a 1-mm slitlamp beam that did not cross the pupil. Ultrasound biomicroscopic images were acquired in normal room light and subsequently with all room lights off. Images were evaluated for the presence or absence of iris-cornea contact. The angle opening distance at 500 microm was calculated. Iridotrabecular apposition in at least 1 angle quadrant was demonstrated in all 18 eyes at dark-room gonioscopy, 17 eyes (94%) at dark-room UBM, and only 10 eyes (56%) at UBM in room light. Of 18 superior angles that were appositionally closed at dark-room gonioscopy, apposition was demonstrated on UBM images in 16 (89%) in a dark room but only 6 (33%) in room light. Angle opening distance was less during dark-room gonioscopy in all but the nasal quadrant. We found high agreement between gonioscopy and UBM when both are performed in a completely dark room. Our findings support the recommendation that, in routine clinical practice, gonioscopy be performed in a dark room to avoid misdiagnosis of treatable iridotrabecular apposition.
Zhao, Jing-Xin; Su, Xiu-Yun; Xiao, Ruo-Xiu; Zhao, Zhe; Zhang, Li-Hai; Zhang, Li-Cheng; Tang, Pei-Fu
2016-11-01
We established a mathematical method to precisely calculate the radiographic anteversion (RA) and radiographic inclination (RI) angles of the acetabular cup based on anterior-posterior (AP) pelvic radiographs after total hip arthroplasty. Using Mathematica software, a mathematical model for an oblique cone was established to simulate how AP pelvic radiographs are obtained and to address the relationship between the two-dimensional and three-dimensional geometry of the opening circle of the cup. In this model, the vertex was the X-ray beam source, and the generatrix was the ellipse in radiographs projected from the opening circle of the acetabular cup. Using this model, we established a series of mathematical formulas to reveal the differences between the true RA and RI cup angles and the measurements results achieved using traditional methods and AP pelvic radiographs and to precisely calculate the RA and RI cup angles based on post-operative AP pelvic radiographs. Statistical analysis indicated that traditional methods should be used with caution if traditional measurements methods are used to calculate the RA and RI cup angles with AP pelvic radiograph. The entire calculation process could be performed by an orthopedic surgeon with mathematical knowledge of basic matrix and vector equations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; French, Richard G.; Dones, Luke; DeVincenzi, Donald (Technical Monitor)
2001-01-01
The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to August 2000 as the'ring opening angle to Earth and Sun increased from 4 deg to 24 deg, with a spread of phase angles between 0.3 deg and 6 deg at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images. In the 300-600 nm spectral range where the rings are red, the 555nm/336nm ratio increases by about 14% as the phase angle increases from 0.3 deg to 6 deg. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facets of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14 deg are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling. Overall ring-average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of ratios between different wavelength suggests the presence of multiple compositional components with different radial distributions. We present new radial profiles of far UV color ratio (F336W/F255W) showing, substantial global variations having a different radial structure than seen between 555 and 336nm. We also find evidence for absorption in the 850nm spectral range (a feature previously only weakly indicated in ring-averaged spectra) primarily through its radial variation; it is located primarily in the C ring, where the particles are known to have lower albedo, and is consistent with "interplanetary pollution" of the rings.
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
Brightness discrimination test is not useful in screening for open angle glaucoma.
Peter, E; Thomas, R; Muliyil, J
1996-06-01
Brightness discrimination test (BDT) is routinely employed to assess asymmetrical optic nerve dysfunction and has been suggested as a screening test for primary open angle glaucoma (POAG). We tested the reliability and validity of BDT in the diagnosis of POAG. The study groups included 34 patients with established primary open angle glaucoma, 20 glaucoma suspects, and 33 age-sex matched controls. Cataract was not an exclusion criterion in these groups. The normal brightness score was determined to be 88% (mean score, 94%-2 SD) in a pilot study. Brightness discrimination test was performed in all subjects by two observers independently. BDT showed an excellent interobserver agreement (weighted Kappa 0.84). The presence of a cataract alone increased the risk of brightness impairment twofold, glaucoma alone increased the risk eightfold, and the presence of both conditions by 17 times compared to those with neither condition. BDT was not a useful test in the diagnosis of POAG (sensitivity 67% and specificity 93%); the ability to detect a significant field defect was also poor (sensitivity 53% and specificity 76%). There was poor association between decreased brightness scores and asymmetrical field defects as determined by the Humphrey's field analyzer (HFA).
Characterizing the “POAGome”: A bioinformatics-driven approach to primary open-angle glaucoma
Danford, Ian D.; Verkuil, Lana D.; Choi, Daniel J.; Collins, David W.; Gudiseva, Harini V.; Uyhazi, Katherine E.; Lau, Marisa K.; Kanu, Levi N.; Grant, Gregory R.; Chavali, Venkata R.M.; O’Brien, Joan M.
2017-01-01
Primary open-angle glaucoma (POAG) is a genetically, physiologically, and phenotypically complex neurodegenerative disorder. This study addressed the expanding collection of genes associated with POAG, referred to as the “POAGome.” We used bioinformatics tools to perform an extensive, systematic literature search and compiled 542 genes with confirmed associations with POAG and its related phenotypes (normal tension glaucoma, ocular hypertension, juvenile open-angle glaucoma, and primary congenital glaucoma). The genes were classified according to their associated ocular tissues and phenotypes, and functional annotation and pathway analyses were subsequently performed. Our study reveals that no single molecular pathway can encompass the pathophysiology of POAG. The analyses suggested that inflammation and senescence may play pivotal roles in both the development and perpetuation of the retinal ganglion cell degeneration seen in POAG. The TGF-β signaling pathway was repeatedly implicated in our analyses, suggesting that it may be an important contributor to the manifestation of POAG in the anterior and posterior segments of the globe. We propose a molecular model of POAG revolving around TGF-β signaling, which incorporates the roles of inflammation and senescence in this disease. Finally, we highlight emerging molecular therapies that show promise for treating POAG. PMID:28223208
Oxidative stress markers in patients with primary open-angle glaucoma.
Ghanem, Asaad A; Arafa, Lamiaa F; El-Baz, Ayman
2010-04-01
To investigate the levels of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPO), superoxide dismutase (SOD), and malondialdehyde (MDA) in human eyes with primary open-angle glaucoma (POAG) and to correlate their concentrations with severity of glaucoma. A prospective cases control study. Thirty patients with primary open-angle glaucoma and twenty-five patients with senile cataracts of matched age and gender were included in the study prospectively. Aqueous humor samples were obtained by paracentesis at the time of elective surgery for glaucomatous and cataractous patients. Aqueous humor were analyzed for CAT, GPO, SOD, and MDA status. GPO, SOD, and MDA enzyme levels revealed a high significant increase in aqueous humor of POAG patients with respect to the comparative group of cataract patients (P < 0.001). No significant difference in the activity of CAT enzyme in aqueous humor of POAG and cataract patient (P = 0.201). Significant correlation was found between the MDA enzyme level and severe visual field loss (P < 0.001) in POAG patients. Increased levels of aqueous humor GPO, SOD, and MDA may be associated with POAG. In addition, they may be useful antioxidant enzyme levels in aqueous humor of POAG patients as a result of glaucoma disease and not a cause.
Tamçelik, Nevbahar; Izgi, Belgin; Temel, Ahmet; Yildirim, Nilgun; Okka, Mehmet; Özcan, Altan; Yüksel, Nurşen; Elgin, Ufuk; Altan, Çiğdem; Ozer, Baris
2017-01-01
Objective The objective of this study was to assess the intraocular pressure (IOP)-lowering efficacy, tolerability, safety, and usage patterns of prostaglandin analog/prostamide (PGA/P)-containing topical ocular hypotensives in ocular hypertension (OHT) and primary open-angle glaucoma in the Turkish clinical setting. Methods This non-interventional, multicenter study enrolled previously treated patients who failed to achieve target IOP (or experienced unacceptable adverse events [AEs]) and were prescribed a PGA/P-containing IOP-lowering agent. Treatment was initiated at baseline (V1), and patients returned at weeks 4–6 (V2) and 8–12 (V3). The primary efficacy measure was the change in IOP from baseline at V3 in each eye. The secondary measures were physician’s assessment of IOP-lowering efficacy, patients (%) reaching target IOP determined at V1, hyperemia score, physician and patient assessment of study treatment tolerability at V3, and AE frequency/severity. A subgroup analysis of patients receiving the most common study treatment was conducted. All analyses were performed using the safety population (patients who received one or more doses and had any data available). Results Of 358 enrolled patients, 60.6% had primary open-angle glaucoma, 29.9% had secondary open-angle glaucoma (protocol amendment), and 13.1% had OHT; 13 patients had multiple diagnoses. At V3, the mean IOP change from baseline was ≥−4.2 mmHg (≥21.1%). IOP met or was lower than the target in 81.7% of patients, 95% exhibited none to mild conjunctival hyperemia (most common AE), and tolerability was rated good/very good by >91.1% of patients and physicians. The results were similar in patients who received the most common study treatment, bimatoprost 0.03%/timolol 0.5% (bim/tim; n=310). Conclusion PGA/P-containing medications, including bim/tim, significantly reduced IOP in previously treated patients with open-angle glaucoma or OHT; most reached their target IOP or an IOP even lower than their target and reported good/very good tolerability. PGA/P-containing medications such as bim/tim should be considered as a safe, effective therapeutic option for Turkish patients who exhibit poor response, tolerance, or adherence to their previous therapy. PMID:28458511
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
A see-through holographic head-mounted display with the large viewing angle
NASA Astrophysics Data System (ADS)
Chen, Zhidong; sang, Xinzhu; Lin, Qiaojun; Li, Jin; Yu, Xunbo; Gao, Xin; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu; Xie, Songlin
2017-02-01
A novel solution for the large view angle holographic head-mounted display (HHMD) is presented. Divergent light is used for the hologram illumination to construct a large size three-dimensional object outside the display in a short distance. A designed project-type lens with large numerical aperture projects the object constructed by the hologram to its real location. The presented solution can realize a compact HHMD system with a large field of view. The basic principle and the structure of the system are described. An augmented reality (AR) prototype with the size of 50 mm×40 mm and the view angle above 60° is demonstrated.
A dynamic study of the anterior cruciate ligament of the knee using an open MRI.
Guenoun, Daphne; Vaccaro, Julien; Le Corroller, Thomas; Barral, Pierre-Antoine; Lagier, Aude; Pauly, Vanessa; Coquart, Benjamin; Coste, Joel; Champsaur, Pierre
2017-03-01
Recent anatomical and radiological studies of the anterior cruciate ligament (ACL) suggest the ACL length and orientation change during knee flexion, and an open MRI sequencing during knee flexion enables a dynamic ACL analysis. This study's goal is to describe a normal ACL using a 1T open MRI and, in particular, variations in length and insertion angles at different degrees of flexion. Twenty-one volunteers with clinically healthy knees received a dynamic MRI with their knees in hyperextension, neutral position, and flexed at 45° and 90° angles. For each position, two radiologists measured the ACL lengths and angles of the proximal insertion between the ACL's anterior edge and the roof of the inter-condylar notch. Additionally, we measured the ACL's and the tibial plateau's distal angle insertion between their anterior edges and then compared these with the nonparametric Wilcoxon test. The ACL had a significant extension between the 90° flexion and all other positions (hyperextension: 31.75 ± 2.5 mm, neutral position: 32.5 ± 2.6 mm, 45°: 35.6 ± 1.6 mm, 90°: 35.6 ± 1.6 mm). There was also a significant increase of the angle insertion between the proximal 90° flexion and all other positions, as well as between hyperextension and bending to 45° (hyperextension: 2.45° ± 3.7°, neutral: 13.4° ± 9.7°, 45°: 33 25 ± 9.3, 90: 51.85° ± 9.3°). Additionally, there is a significant increase in the distal angle insertion for all positions (hyperextension: 133.2° ± 5.4°, neutral position: 134.95° ± 4.4°, 45°: 138.35° ± 5.9°, 90°: 149.15° ± 8.6°). Our study is the first to exhibit that a dynamic MRI has a significant ACL extension in vivo during bending. This concept opens the way for further studies to improve the diagnosis of traumatic ACL injuries using a dynamic MRI.
Optical metasurfaces for high angle steering at visible wavelengths
Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...
2017-05-23
Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.
Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology
NASA Astrophysics Data System (ADS)
Bezrukov, F.; Chudaykin, A.; Gorbunov, D.
2017-06-01
We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such as Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.
"Driverless" Shocks in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Kaiser, M. L.; Lara, A.
1999-01-01
Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.
Modeling bistable behaviors in morphing structures through finite element simulations.
Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi
2014-01-01
Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.
A Tale of Two Faint Bursts: GRB 050223 and GRB 050911
NASA Astrophysics Data System (ADS)
Page, K. L.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Campana, S.; Chincharini, G.; Cummings, J. R.; Cusumano, G.; Gehrels, N.; Giommi, P.; Goad, M. R.; Godet, O.; Graham, J.; Kaneko, Y.; Kennea, J. A.; Mangano, V.; Markwardt, C. B.; O'Brien, P. T.; Osborne, J. P.; Reichart, D. E.; Rol, E.; Sakamoto, T.; Tagliaferri, G.; Tanvir, N. R.; Wells, A. A.; Zhang, B.
2006-05-01
GRBs 050223 and 050911 were discovered by the Swift Burst Alert Telescope (BAT) on 23rd February and 11th September 2005 respectively. The observation of GRB 050223 showed a faint, fading X-ray source, which was identified as the afterglow; GRB 050911, however, was not detected, making any X-ray afterglow extremely faint. The faintness of the afterglow of GRB 050223 could be explained by a large opening or viewing angle, or by the burst being at high redshift. The non-detection of GRB 050911 may indicate the burst occurred in a low-density environment, or, alternatively, was due to a compact object merger, in spite of the apparent long duration of the burst.
A method to measure internal contact angle in opaque systems by magnetic resonance imaging.
Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei
2013-07-23
Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.
Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS
Ali, Mazhar N.; Schoop, Leslie M.; Garg, Chirag; Lippmann, Judith M.; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S. P.
2016-01-01
Magnetoresistance (MR), the change of a material’s electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual “butterfly”-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 105 percent at 9 T and 2 K at a 45° angle between the applied current (I || a) and the applied field (90° is H || c). Approaching 90°, a “dip” is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states. PMID:28028541
Morphometric analysis of acetabular dysplasia in cerebral palsy: three-dimensional CT study.
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi
2009-12-01
Three-dimensional computed tomography (3D-CT) eliminates the positioning errors and allows the clinician to more accurately assess the radiographic parameters present. To elucidate the 3D geometry of the acetabulum and the extent of hip subluxation/dislocation in patients with cerebral palsy (CP), quantitative morphometric analysis was performed using 3D-CT data. We evaluated 150 hips in 75 patients with bilateral spastic CP. The mean age of the patients was 5.4 years (range: 2.7 to 6.9 y). The fitting plane of the ilium was projected onto the coronal plane and then onto the sagittal plane, and then the angle formed with a horizontal line was defined as CTalpha (the lateral opening angle) and CTbeta (the sagittal inclination angle), respectively. The center of the acetabulum and the femoral head were defined, and the distance between these centers was divided by the femoral head diameter, defined as CT migration percentage (CTMP, %). In 123 (82%) of the 150 hips, the femoral head center was located posteriorly, superiorly, and laterally relative to the acetabular center. Large CTalpha cases tended to show large CTMP. CTalpha and CTMP were significantly larger in the cases with Gross Motor Functional Classification System (GMFCS) level IV/V and spastic quadriplegia, than in the cases with GMFCS level II/III and spastic diplegia. CTbeta showed significant correlation with the acetabular defect on the lateral 3D reconstructed images. Three-dimensional acetabular geometry and migration percentage in CP patients can be analyzed quantitatively using 3D-CT regardless of the abnormal spastic posture. The extent of acetabular dysplasia and subluxation is more severe in patients with GMFCS level IV/V and spastic quadriplesia. Level 4.
Zhou, Haichao; Ren, Haoyang; Li, Bing; Yu, Tao; Yang, Yunfeng
2016-07-08
?To discuss the effectiveness of limited open reduction via sinus tarsi approach using medial distraction technique in the treatment of intra-articular calcaneus fractures by comparing with open reduction and internal fixation via extensile L-shaped incision. ?A retrospective analysis was made on the clinical data of 21 patients with intra-articular calcaneus fractures treated by sinus tarsi approach combined with medial distraction technique between April 2013 and November 2014 (minimally invasive group), and 32 patients treated by extensile L-shaped incision approach between June 2012 and September 2014 (extensile incision group). No significant difference was found in gender, age, injury pattern, fracture classification, time from injury to operation, preoperative Böhler angle, Gissane angle, calcaneal varus angle, the ankle and hind-foot score of American Orthopaedic Foot and Ankle Society (AOFAS), and visual analogue scale (VAS) score between 2 groups (P>0.05), which was comparable. The operation time, wound complications, and bone healing time were recorded. The postoperative function was also evaluated by AOFAS score and VAS score. The pre-and post-operative Böhler angle, Gissane angle, and calcaneal varus angle were measured on the X-ray films, and the corrective angle was calculated. ?Sixteen patients were followed up 6-18 months (mean, 11.5 months) in the minimally invasive group, and 23 patients for 6-24 months (mean, 13.5 months) in the extensile incision group. Difference was not significant in operation time between 2 groups (t=0.929, P=0.796). No complication occurred in the minimally invasive group; partial skin flap necrosis occurred in 3 cases of the extensile incision group, was cured after dressing change. There was no loosening of implants or reduction loss in 2 groups at last follow-up. Subtalar joint stiffness occurred in 1 case of the minimally invasive group and 4 cases of the extensile incision group, and 1 patient had discomfort for the implants in the extensile incision group. The bone healing time was (9.9±0.8) weeks in the minimally invasive group, and was (10.1±0.7) weeks in the extensile incision group, showing no significant difference (t=0.613, P=0.845 ). Böhler angle, Gissane angle, calcaneal varus angle, AOFAS score, and VAS score were significantly improved at last follow-up when compared with preoperative values in 2 groups (P<0.05), but there was no significant difference between 2 groups (P>0.05), and the corrective value of angle showed no significant difference between 2 groups (P>0.05). ?Limited open reduction via sinus tarsi approach for intra-articular calcaneus fractures could reduce the incidence of wound complications effectively. Meanwhile, the medial distraction technique is helpful to correct the heel varus deformity.
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Method and apparatus for controlling pitch and flap angles of a wind turbine
Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA
2009-05-12
A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.
Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng
2010-08-02
In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..
NASA Astrophysics Data System (ADS)
Cheng, Z.; Shi, J.; Zhang, J.; Kistler, L. M.
2017-12-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes (ILATs) of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistic study of 542 FAC cases observed by the four Cluster spacecraft in the northern hemisphere. The results show that the large FAC (>10 nA/m2) cases occur at the low ILATs (<71 º) and mainly occur when the IMF cone angle θ>60º, which implies the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with the IMF cone angle especially when IMF Bz is positive. There is almost no correlation or a weak positive correlation of the poleward boundary and IMF cone angle no matter IMF is northward or southward. The equatorward boundary is more responsive to the IMF cone angle. Compared to the equatorward boundary, the center of the FAC projected location changes very little. This is the first time a correlation between FAC projected location and IMF cone angle has been determined.
C(α) torsion angles as a flexible criterion to extract secrets from a molecular dynamics simulation.
Victor Paul Raj, Fredrick Robin Devadoss; Exner, Thomas E
2014-04-01
Given the increasing complexity of simulated molecular systems, and the fact that simulation times have now reached milliseconds to seconds, immense amounts of data (in the gigabyte to terabyte range) are produced in current molecular dynamics simulations. Manual analysis of these data is a very time-consuming task, and important events that lead from one intermediate structure to another can become occluded in the noise resulting from random thermal fluctuations. To overcome these problems and facilitate a semi-automated data analysis, we introduce in this work a measure based on C(α) torsion angles: torsion angles formed by four consecutive C(α) atoms. This measure describes changes in the backbones of large systems on a residual length scale (i.e., a small number of residues at a time). Cluster analysis of individual C(α) torsion angles and its fuzzification led to continuous time patches representing (meta)stable conformations and to the identification of events acting as transitions between these conformations. The importance of a change in torsion angle to structural integrity is assessed by comparing this change to the average fluctuations in the same torsion angle over the complete simulation. Using this novel measure in combination with other measures such as the root mean square deviation (RMSD) and time series of distance measures, we performed an in-depth analysis of a simulation of the open form of DNA polymerase I. The times at which major conformational changes occur and the most important parts of the molecule and their interrelations were pinpointed in this analysis. The simultaneous determination of the time points and localizations of major events is a significant advantage of the new bottom-up approach presented here, as compared to many other (top-down) approaches in which only the similarity of the complete structure is analyzed.
Neurovascular structures of the mandibular angle and condyle: a comprehensive anatomical review.
Yang, Hun-Mu; Won, Sung-Yoon; Kim, Hee-Jin; Hu, Kyung-Seok
2015-11-01
Various surgical interventions including esthetic surgery, salivary gland excision, and open reduction of fracture have been performed in the area around the mandibular angle and condyle. This study aimed to comprehensively review the anatomy of the neurovascular structures on the angle and condyle with recent anatomic and clinical research. We provide detailed information about the branching and distributing patterns of the neurovascular structures at the mandibular angle and condyle, with reported data of measurements and proportions from previous anatomical and clinical research. Our report should serve to help practitioners gain a better understanding of the area in order or reduce potential complications during local procedures. Reckless manipulation during mandibular angle reduction could mutilate arterial branches, not only from the facial artery, but also from the external carotid artery. The transverse facial artery and superficial temporal artery could be damaged during approach and incision in the condylar area. The marginal mandibular branch of the facial nerve can be easily damaged during submandibular gland excision or facial rejuvenation treatment. The main trunk of the facial nerve and its upper and lower distinct divisions have been damaged during parotidectomy, rhytidectomy, and open reductions of condylar fractures. By revisiting the information in the present study, surgeons will be able to more accurately prevent procedure-related complications, such as iatrogenic vascular accidents on the mandibular angle and condyle, complete and partial facial palsy, gustatory sweating (Frey syndrome), and traumatic neuroma after parotidectomy.
Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.
Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C
2017-11-01
To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Code of Federal Regulations, 2012 CFR
2012-01-01
... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...
Code of Federal Regulations, 2014 CFR
2014-01-01
... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...
Prevalence of comorbid retinal disease in patients with glaucoma at an academic medical center.
Griffith, Joseph F; Goldberg, Jeffrey L
2015-01-01
Patients with various retinal diseases and patients who have undergone retinal procedures and surgeries have an increased risk of developing ocular hypertension and glaucoma. Little is known about the epidemiology of comorbid retinal diseases in glaucoma patients. This study evaluated the prevalence of retinal comorbidities in a population of patients with five types of glaucoma. A longitudinal, retrospective study was conducted using International Classification of Disease (ICD-9) billing records from 2003 to 2010 at an academic medical center. Patients were classified as having primary open-angle glaucoma (POAG), low tension open-angle glaucoma (NTG), pigmentary open-angle glaucoma, chronic-angle closure glaucoma (CACG), or pseudoexfoliation glaucoma (PXG) if they had at least three clinic visits with the same ICD-9 code. Patients were classified as having a retinal comorbidity if they had two visits with the same code. Variables were analyzed with the independent t-test, χ (2) test, analysis of variance, or Fisher's exact test. A total of 5,154 patients had glaucoma, and 14.8% of these had a retinal comorbidity. The prevalence of comorbid retinal disease was higher in patients with POAG (15.7%) than in those with NTG (10.7%), PXG (10.1%), or pigmentary open-angle glaucoma (3.7%; P<0.05). Two hundred and two patients had diabetic retinopathy, with POAG patients (4.5%) having a higher prevalence than those with CACG (1.4%) or PXG (0.6%; P<0.001). There were 297 patients who had macular degeneration and both POAG (2.0%) and PXG patients (2.9%) had a higher prevalence of nonexudative macular degeneration than those with CACG (0%; P<0.01). Patients with comorbid retinal disease had a higher prevalence of blindness and low vision than those without comorbid retinal disease (1.97% versus 1.02%, P=0.02). The high prevalence of comorbid retinal disease and the nearly twofold increase in blindness and low vision in this population demonstrate the need for ophthalmologists to determine if patients have multiple etiologies for their vision loss. The higher prevalence of certain retinal diseases in POAG patients may reflect common pathophysiological processes that warrant further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebron, S; Yan, G; Li, J
2016-06-15
Purpose: To develop an accurate and quick multileaf collimator (MLC) calibration and quality assurance technique using an electronic portal imaging device (EPID) Methods: The MLC models used include the MLCi and Agility (Elekta Ltd). This technique consists of two 22(L)x10(W) cm{sup 2} fields with 0{sup 0} and 180{sup 0} collimator angles centered to an offset EPID. The MLC opening is estimated by calculating the profile at the image’s center in the image’s horizontal direction. Scans in the image’s vertical direction were calculated every 20 pixels in the inner 70% of estimated MLC opening. The profiles’ edges were fitted with linearmore » equations to determine the image’s rotation angle. Then, crossline profiles were scanned at the center of each leaf taking into account the leaf’s width at isocenter and the rotation angle. The profiles’ edges determine the location of the leaves’ edges and these were subtracted from the reference leaf’s position in order to determine the relative leaf offsets. The edge location of all profiles was determined by using the parameterized gradient of the penumbra region. The technique was tested against an established diode array-based method, and for different MLC systems, patterns, gantry angles, days, energies, beam modalities and MLC openings. Results: The differences between the proposed and established methods were 0.26±0.19mm. The leaf offsets’ deviation was <0.3mm (5 months period). For pattern fields, the differences between predetermined and calculated offsets were 0.18±0.18mm. The leaf offset deviation of measurements with different energies and MLC openings were <0.1mm and <0.3mm, respectively. The differences between offsets of FF and FFF beams were 0.01±0.02mm (<0.07mm). The differences between the offsets at different gantry angles were 0.08±0.15mm. Conclusion: The proposed method proved to be accurate and efficient in calculating the relative leaf offsets. Parameterized field edge is essential to obtain accurate result by eliminating the noise from EPID.« less
Large-viewing-angle electroholography by space projection
NASA Astrophysics Data System (ADS)
Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko
2004-06-01
The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.
Characteristics of a wind-actuated aerodynamic braking device for high-speed trains
NASA Astrophysics Data System (ADS)
Takami, H.; Maekawa, H.
2017-04-01
To shorten the stopping distance of the high speed trains in case of emergency, we developed a small-sized aerodynamic braking unit without use of the friction between a rail and a wheel. The developed device could actuate a pair of two drag panels with a travelling wind. However, after the drag panel fully opened, vibrational movements of the drag panel characterized by its slight flutter were repeated. In this study, to stabilize the opened panel, matters pertaining to the angle of attack with respect to the drag panel and pertaining to the arrangement of the two panels were examined by a wind tunnel experiment using a scale model. As a result, to stabilize the opened panel and to keep the good performance of the braking device, it is found out that an angle of attack of 75 to 80 degrees is suitable provided that the interval of the two panels is narrow enough.
NASA Astrophysics Data System (ADS)
Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao
2018-02-01
A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.
Bito, Haruhiko; Takeuchi, Ryohei; Kumagai, Ken; Aratake, Masato; Saito, Izumi; Hayashi, Riku; Sasaki, Yohei; Aota, Yoichi; Saito, Tomoyuki
2009-04-01
Obtaining a correct postoperative limb alignment is an important factor in achieving a successful clinical outcome after an opening-wedge high tibial osteotomy (OWHTO). To better predict some of the aspects that impact upon the clinical outcomes following this procedure, including postoperative correction loss and over correction, we examined the changes in the frontal plane of the lower limb in a cohort of patients who had undergone OWHTO using radiography. Forty-two knees from 33 patients (23 cases of osteoarthritis and 10 of osteonecrosis) underwent a valgus realignment OWHTO procedure and were radiographically assessed for changes that occurred pre- and post-surgery. The mean femorotibial angle (FTA) was found to be 182.1 +/- 2.0 degrees (12 +/- 2.0 anatomical varus angulation) preoperatively and 169.6 +/- 2.4 degrees (10.4 +/- 2.4 anatomical valgus angulation) postoperatively. These measurements thus revealed significant changes in the weight bearing line ratio (WBL), femoral axis angle (FA), tibial axis angle (TA), tibia plateau angle (TP), tibia vara angle (TV) and talar tilt angle (TT) following OWHTO. In contrast, no significant change was found in the weight bearing line angle (WBLA) after these treatments. To assess the relationship between the correction angle and these indexes, 42 knees were divided into the following three groups according to the postoperative FTA; a normal correction group (168 degrees < or = FTA < or = 172 degrees ), an over-correction group (FTA < 168 degrees ), and an under-correction group (FTA > 172 degrees ). There were significant differences in the delta angle [DA; calculated as (pre FTA - post FTA) - (pre TV - post TV)] among each group of patients. Our results thus indicate a negative correlation between the DA and preoperative TA (R(2) = 0.148, p < 0.05). Hence, given that the correction errors in our patients appear to negatively correlate with the preoperative TA, postoperative malalignments are likely to be predictable prior to surgery.
Equilibrium fluid interface behavior under low- and zero-gravity conditions
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1994-01-01
We describe here some of our recent mathematical work, which forms a basis for the Interface Configuration Experiment scheduled for USML-2. The work relates to the design of apparatus that exploits microgravity conditions for accurate determination of contact angle. The underlying motivation for the procedures rests on a discontinuous dependence of the capillary free surface interface S on the contact angle gamma, in a cylindrical capillary tube whose section (base) omega contains a protruding corner with opening angle 2 alpha. Specifically, in a gravity-free environment, omega can be chosen so that, for all sufficiently large fluid volume, the height of S is uniquely determined as a (single-valued) function mu(x,y) entirely covering the base; the height mu is bounded over omega uniformly in gamma throughout the range absolute value of (gamma -(pion/2)) less than or equal to alpha, while for absolute value of (gamma - (pion/2)) greater than alpha fluid will necessarily move to the corner and uncover the base, rising to infinity (or falling to negative infinity) at the vertex, regardless of volume. We mention here only that procedures based on the phenomenon promise excellent accuracy when gamma is close pion/2 but may be subject to experimental error when gamma is close to zero (orpion), as the 'singular' part of the domain over which the fluid accumulates (or disappears) when a critical angle gamma theta is crossed then becomes very small and may be difficult to observe. We ignore the trivial case gamma is equal to pion/2 (planar free surface), to simplify the discussion.
Measuring Mars' Atmospheric Neutral Density from 160 to 220km with the MGS Electron Reflectometer
NASA Astrophysics Data System (ADS)
Lillis, R.; Engel, J.; Mitchell, D.; Brain, D.; Lin, R.; Bougher, S.; Acuna, M.
2005-08-01
The Magnetometer/Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor (MGS) samples the local electron population's distribution in energy and pitch angle (angle between electron velocity and local magnetic field direction) at the mapping orbit altitude of ˜400km. We develop a single-particle model of the electrons' interaction with the neutral atmosphere and motion along open field-lines connecting the solar wind to remnant crustal magnetization. Electron reflection from magnetic gradients and absorption due to inelastic collisons with atmospheric neutrals results in characteristic pitch angle (PA) distributions for open field lines. By assuming the validity of spherical harmonic expansions (Cain et al, 2003) in the strongest field regions of Mars (such as Terra Sirenum), we trace the electron paths and fit these PA distributions to our model to constrain the scale height and density of the neutral atmosphere in the region of greatest absorption, 160-220km. We analyse almost 3 martian years of MGS mapping Orbit Data and present the first measurements of Mars' neutral density above 180km. Although the uncertainties in single measurements are quite large, averaging over many measurements over a period of weeks allows us to see long-term trends. Major results are: 1) a mean density of 0.03 kg/km3 at 160km with a month-averaged variation of ˜40%, 2) a very strong annual seasonal variation, confirmed by periodogram and least-squares fit and 3) increasing seasonal density variability with distance from the equator. We see broad general agreement with predictions from Mars Thermosphere Global Circulation Model (MTGCM) simulations [Bougher et al, 2004] and with inferred densities from MGS Doppler tracking data [Tracadas et al, 2001]. Our results will help to constrain the upper boundaries of GCMs and assist orbital decay calculations for low-orbiting spacecraft, such as the 2005 Mars Reconnaissance Orbiter. We thank the NASA Jet Propulsion Laboratory for funding assistance for this research.
Operative Treatment of Fifth Metatarsal Jones Fractures (Zones II and III) in the NBA.
O'Malley, Martin; DeSandis, Bridget; Allen, Answorth; Levitsky, Matthew; O'Malley, Quinn; Williams, Riley
2016-05-01
Proximal fractures of the fifth metatarsal (zone II and III) are common in the elite athlete and can be difficult to treat because of a tendency toward delayed union, nonunion, or refracture. The purpose of this case series was to report our experience in treating 10 NBA players, determine the healing rate, return to play, refracture rate, and role of foot type in these athletes. The records of 10 professional basketball players were retrospectively reviewed. Seven athletes underwent standard percutaneous internal fixation with bone marrow aspirate concentrate (BMAC) whereas the other 3 had open bone grafting primarily in addition to fixation and BMAC. Radiographic features evaluated included fourth-fifth intermetatarsal, fifth metatarsal lateral deviation, calcaneal pitch, and metatarsus adductus angles. Radiographic healing was observed at an overall average of 7.5 weeks and return to play was 9.8 weeks. Three athletes experienced refractures. There were no significant differences in clinical features or radiographic measurements except that the refracture group had the highest metatatarsus adductus angles. Most athletes were pes planus and 9 of 10 had a bony prominence under the fifth metatarsal styloid. This is the largest published series of operatively treated professional basketball players who exemplify a specific patient population at high risk for fifth metatarsal fracture. These players were large and possessed a unique foot type that seemed to be associated with increased risk of fifth metatarsal fracture and refracture. This foot type had forefoot metatarsus adductus and a fifth metatarsal that was curved with a prominent base. We continue to use standard internal fixation with bone marrow aspirate but advocate additional prophylactic open bone grafting in patients with high fourth-to-fifth intermetatarsal, fifth metatarsal lateral deviation, and metatarsus adductus angles as well as prominent fifth metatarsal styloids in order to improve fracture healing and potentially decrease the risk of refracture. Level IV, case series. © The Author(s) 2016.
Optimization design of the angle detecting system used in the fast steering mirror
NASA Astrophysics Data System (ADS)
Ni, Ying-xue; Wu, Jia-bin; San, Xiao-gang; Gao, Shi-jie; Ding, Shao-hang; Wang, Jing; Wang, Tao; Wang, Hui-xian
2018-01-01
In this paper, in order to design a fast steering mirror (FSM) with large deflection angle and high linearity, a deflection angle detecting system (DADS) using quadrant detector (QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
Zhou, Yixin; Wang, Kexin; Chen, Shuang; Zhang, Jianxin; Zhou, Mingjie
2017-01-01
This study tested emerging adult couples’ openness and its fit effect on their romantic relationship quality using quadratic polynomial regression and response surface analysis. Participants were 260 emerging adult dyads. Both dyads’ openness and relationship quality were measured. The result showed that (1) female and male openness contribute differently to relationship quality; (2) couples with similar high openness could experience better relationship quality than those with similar low openness traits; and (3) when dyadic openness is dissimilar, it is better to be either relatively high or relatively low than to be moderate. These findings highlight the role of openness in emerging adults’ romantic relationships from a dyadic angle. PMID:28360875
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB
Mansouri, Misagh; Reinbolt, Jeffrey A.
2013-01-01
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351
González-Iglesias, Héctor; Álvarez, Lydia; García, Montserrat; Escribano, Julio; Rodríguez-Calvo, Pedro Pablo; Fernández-Vega, Luis; Coca-Prados, Miguel
2014-02-26
Alterations in the sera proteins between patients with Primary Open-Angle Glaucoma (POAG), Pseudoexfoliation Glaucoma (PEXG), and healthy controls were identified through a proven approach utilizing equalization of high-abundance serum proteins with ProteoMiner™, two-dimensional fluorescent difference gel electrophoresis (2D-DIGE), MALDI-TOF/TOF, and nanoLC-MS-MS. Quantitative immunoassays of the 17 most-differentially-altered proteins identified in this analysis confirmed that they were also over expressed in the intact serum of newly recruited glaucoma patients. Overall, this report identifies a panel of candidates for glaucoma biomarkers and supports their further validation in large population studies. Additionally, functional pathway analysis of these candidate proteins suggested that they are part of a network linked to regulating immune and inflammatory-related processes. The data have been deposited to the ProteomeXchange with identifier PXD000198. POAG and PEXG are major causes of age-related blindness in the world; however, treatment can be very effective if they are identified early on in the progression. Genetic linkage studies can only explain a limited number of cases, suggesting that these forms of glaucoma are multigenic in nature. Other important factors, such as modifier genes, epigenetic influences, environmental and dietary agents, and inflammatory and oxidative effects are also believed to affect the development of these diseases. The characterization of metabolic and/or proteins changes, for example in bodily fluids, before the clinical manifestation of glaucoma is of considerable relevance for its early diagnosis. In the present work, identification of over-expressed proteins in serum of glaucoma patients (POAG and PEXG) linked to immune and inflammatory processes supports the finding that changes in these pathways also manifest systemically in patients with these pathologies. This study provides a new basis to validate the identified proteins as biomarkers of glaucoma in a large-scale-multiplexed screening in sera. Copyright © 2013 Elsevier B.V. All rights reserved.
The spectrum of glaucoma presentation at Menelik II Hospital, Addis Ababa.
Giorgis, Abeba T; Mulugeta, Abiye; Aga, Assegid; Deyassa, Neggusie
2012-07-01
Glaucoma is a major cause of blindness in Africa. However, many do not know if they have the disease until late. The aim of this study was to describe the type and severity of glaucoma at presentation A hospital based prospective review of 602 glaucoma patients was conducted over 18 month period ending in 2009. A special registry captured Socio demographic and clinical data at the glaucoma clinic of Menelik II Hospital in Addis Ababa. The vertical cup disc ratio (CDR) of the optic nerve head provided the bases to stage, the severity of glaucoma. Large portion of the total reviewed patients were men, 401 (66.6%) or above the age of 40 years, 484 (80.4%). The mean intraocular pressure was 28.5 and 30.6 in the right and left eye in mmHg. The leading subtypes of glaucoma, accounting 64.3% (n = 387), were Primary Open Angle Glaucoma, 227 (37.7%) and Pseudo exfoliation glaucoma, 160 (26.6%). At presentation, 260 (44%) and 109 (18%)) were unilaterally and bilaterally blind (vision < 3/60) respectively. Bilateral glaucoma was found in 464 (77%) and 366 (61%) presented with advanced stage (CDR > or = 9.0). Cases with advanced stage were likely to present with blindness [Odds Ratio (OR) -6.2 95% CI (3-8-10.1) and 6.9 95% CI (4.2-11.3)] or high Intraocular pressure >30mmHg [OR=3.4, 95% CI (2.2 -5.2) and 2.8, 95% CI (1.4-3.4)] in the respective right and left eyes. The stage, had no statistically significant association with age, sex, residence or type of glaucoma (Chi2 test, p > 0.05). A large proportion of patients still arrive at glaucoma clinic with a very late stage of open angle glaucoma. Intervention strategies are requiredfor early detection and treatment of glaucoma in Ethiopia.
Scale dependence of open c{\\bar{c}} and b{\\bar{b}} production in the low x region
NASA Astrophysics Data System (ADS)
Oliveira, E. G. de; Martin, A. D.; Ryskin, M. G.
2017-03-01
The `optimal' factorization scale μ _0 is calculated for open heavy quark production. We find that the optimal value is μ _F=μ _0˜eq 0.85√{p^2_T+m_Q^2} ; a choice which allows us to resum the double-logarithmic, (α _s ln μ ^2_F ln (1/x))^n corrections (enhanced at LHC energies by large values of ln (1/x)) and to move them into the incoming parton distributions, PDF(x,μ _0^2). Besides this result for the single inclusive cross section (corresponding to an observed heavy quark of transverse momentum p_T), we also determined the scale for processes where the acoplanarity can be measured; that is, events where the azimuthal angle between the quark and the antiquark may be determined experimentally. Moreover, we discuss the important role played by the 2→ 2 subprocesses, gg→ Q\\bar{Q} at NLO and higher orders. In summary, we achieve a better stability of the QCD calculations, so that the data on c{\\bar{c}} and b{\\bar{b}} production can be used to further constrain the gluons in the small x, relatively low scale, domain, where the uncertainties of the global analyses are large at present.
Levet, Y
2014-12-01
Short noses are not only depending on the length of the dorsum, but also if there is a saddle deformity, or a too lower situation of the fronto-nasal angle, or an open naso-labial angle or a rim retraction. All the cases are treated, often with the help of cartilage grafts and with a closed approach. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
3. Elevation view of entire midsection using ultrawide angle lens. ...
3. Elevation view of entire midsection using ultrawide angle lens. Note opened south doors and closed north doors. The following photo WA-203-C-4 is similar except the camera position was moved right to include the slope of the south end. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA
Colliding Stellar Winds Structure and X-ray Emission
NASA Astrophysics Data System (ADS)
Pittard, J. M.; Dawson, B.
2018-04-01
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.
Efficiency of geometric designs of flexible solar panels: mathematical simulation
NASA Astrophysics Data System (ADS)
Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia
2017-09-01
The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.
NASA Astrophysics Data System (ADS)
Milli, J.; Absil, O.; Mawet, D.; Lagrange, A.-M.
2013-09-01
High contrast imaging has thoroughly combed through the limited parameter space accessible with first-generation ground-based adaptive optics instruments and the HST. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. We aim at opening a new parameter space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L' band. This mid-infrared wavelength range is a sweet spot for high contrast coronagraphy since the planets-to-star brightness ratio is favorable, while Strehl ratio is naturally higher. An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L' band, made out of diamond subwavelength gratings has been manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA (here 0".09), potentially being the key to a new parameter space. Here we present the results of the installation and successful commissioning of an L'- band AGPM on VLT/NACO. During a recent science verification run, we imaged the inner regions of Beta Pictoris down to the previously unexplored projected radius of 1.75 AU with unprecedented point source sensitivity. The disk was also clearly resolved down to its inner truncation . The new NACO mode is an opportunity to introduce a more rigorous framework for deriving detection limits at very small angles, which is also relevant for SPHERE and GPI and every high contrast imaging instrument with small IWA ambitions. Indeed, classical tools assuming Gaussian statistics, perfectly valid at large separations, loose significance close to the center simply because the sample size decreases dramatically (fewer resolution elements at a given radius). Moreover, the probability density function (PDF) of speckle noise and associated confidence level for detection depend on radius. ADI was shown to transform speckles'modified Rician PDF into quasi-Gaussian PDF at large separations, but it is expected that this property of ADI does not hold true at small angles. Finally, the flux attenuation induced by ADI, potentially significant at small angles, does not scale linearly with the companion brightness, which makes its calibration more difficult.
Effect of blade outlet angle on radial thrust of single-blade centrifugal pump
NASA Astrophysics Data System (ADS)
Nishi, Y.; Fukutomi, J.; Fujiwara, R.
2012-11-01
Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.
Acoustic metamaterials with broadband and wide-angle impedance matching
NASA Astrophysics Data System (ADS)
Liu, Chenkai; Luo, Jie; Lai, Yun
2018-04-01
We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.
2007-03-01
front of a large area blackbody as background. The viewing angle , defined as the angle between surface normal and camera line of sight, was varied by...and polarization angle were derived from the Stokes parameters. The dependence of these polarization characteristics on viewing angle was investigated
Frerichs, H.; Schmitz, O.; Covele, B.; ...
2018-02-28
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Tanna, H. K.; Tester, B. J.
1981-01-01
When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerichs, H.; Schmitz, O.; Covele, B.
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less
NASA Astrophysics Data System (ADS)
Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.
2018-05-01
Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
Glazebrook, Mark; Copithorne, Peter; Boyd, Gordon; Daniels, Timothy; Lalonde, Karl-André; Francis, Patricia; Hickey, Michael
2014-10-01
Hallux valgus with an increased intermetatarsal angle is usually treated with a proximal metatarsal osteotomy. The proximal chevron osteotomy is commonly used but is technically difficult. This study compares the proximal opening wedge osteotomy of the first metatarsal with the proximal chevron osteotomy for the treatment of hallux valgus with an increased intermetatarsal angle. This prospective, randomized multicenter (three-center) study was based on the clinical outcome scores of the Short Form-36, the American Orthopaedic Foot & Ankle Society forefoot questionnaire, and the visual analog scale for pain, activity, and patient satisfaction. Subjects were assessed prior to surgery and at three, six, and twelve months postoperatively. Surgeon preference was evaluated based on questionnaires and the operative times required for each procedure. No significant differences were found for any of the patients' clinical outcome measurements between the two procedures. The proximal opening wedge osteotomy was found to lengthen, and the proximal chevron osteotomy was found to shorten, the first metatarsal. The intermetatarsal angles improved (decreased) significantly, from 14.8° ± 3.2° to 9.1° ± 2.9 (mean and standard deviation) after a proximal opening wedge osteotomy and from 14.6° ± 3.9° to 11.3° ± 4.0° after a proximal chevron osteotomy (p < 0.05 for both). Operative time required for performing a proximal opening wedge osteotomy is similar to that required for performing a proximal chevron osteotomy (mean and standard deviation, 67.1 ± 16.5 minutes compared with 69.9 ± 18.6 minutes; p = 0.510). Opening wedge and proximal chevron osteotomies have comparable radiographic outcomes and comparable clinical outcomes for pain, satisfaction, and function. The proximal opening wedge osteotomy lengthens, and the proximal chevron osteotomy shortens, the first metatarsal. The proximal opening wedge osteotomy was subjectively less technically demanding and was preferred by the orthopaedic surgeons in this study. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Study of a temporal bone of Homo heildelbergensis.
Urquiza, Rafael; Botella, Miguel; Ciges, Miguel
2005-05-01
The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces and tympanic cavity. The dimensions of the semicircular canals were similar to those of the Hss specimen. Endoscopy revealed normal, healthy tympanic walls and an ossicle fragment in the atticum that probably belonged to the body of the malleus. The diameters of the fallopian duct and the tympanic opening of the Eustachian tube were large. The canaliculo-fenestral angle was approximately 114 degrees
Lo, Jonathan S; Pang, Pierre M; Lo, Samuel C
2016-01-01
Fixed combination glaucoma medication is increasingly used in glaucoma treatment. There is a lack of comparative study in the literature of non-beta blocker combination agents used adjunctively with a glaucoma agent in a different class. The objective of this study is to evaluate the effect of intraocular pressure (IOP) control and tolerability of non-beta blocker combination suspension with prostaglandin analogs (PGA) in patients with open angle glaucoma who were previously treated with beta blocker combination solution with PGA. Open-label retrospective review of patient records. This study looked at patients with open angle glaucoma taking dorzolamide/timolol solution with PGA that were switched to brinzolamide/brimonidine combination suspension with PGA. This study reviewed the charts of all patients who were at least 21 years old with a clinical diagnosis of open-angle glaucoma or ocular hypertension in at least one eye. Patients needed to have been treated with concomitant use of PGA and dorzolamide/timolol solution for at least one month. Patients using dorzolamide/timolol solution plus PGA with medication related ocular irritation were switched to brinzolamide/brimonidine suspension with the same PGA. Best-corrected visual acuity, ocular hyperemia grading, slit lamp biomicroscopy and Goldmann applanation tonometry measurements, and patient medication preferences were assessed at baseline, 1 month and 3 months. Forty eyes with open angle glaucoma. The mean age of the patients was 68 and 60% were females. The IOP before the switch was 17.2 and 16.5 (P=0.70) following the switch at 3 months. We found a decreasing trend of ocular hyperemia (P=0.064) and strong preference (P=0.011) for non-beta blocker combination suspension but no difference of visual acuity and slit lamp findings. Brinzolamide/brimonidine combination suspension when used adjunctively with PGA is equally effective. Patients in this study reported greatly reduced ocular redness and shorter duration of stinging with non-beta blocker combination suspension. Their preference of it over dorzolamide/timolol combination solution makes it a viable treatment option, particularly for the aging glaucoma patient with comorbidities that restrict the beta blocker use.
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
Open-loop GPS signal tracking at low elevation angles from a ground-based observation site
NASA Astrophysics Data System (ADS)
Beyerle, Georg; Zus, Florian
2016-04-01
For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile provided signal-to-noise density ratios remain above about 30 dB Hz. At low signal levels, however, the dual-channel open-loop design, which tracks the same signal using two Doppler models separated by a 10 Hz offset, reveals a notable bias. A significant fraction of this bias is caused by frequency aliasing. The receiver's dual-channel setup, however, allows for unambiguous identification of the affected observation samples. Finally, the repeat patterns in terms of azimuth angle of the GPS orbit traces reveals characteristic signatures in both, signal amplitude and Doppler frequency with respect to the topography close to the observation site. On the other hand, mean vertical refractivity gradients extracted from ECMWF meteorological fields exhibit moderate correlations with observed signal amplitude fluctuations at negative elevation angles emphasizing the information content of low-elevation GPS signals with respect to the atmospheric state in the boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luck, L.A.; Falke, J.J.
1991-07-02
The Escherichia coli D-galactose and D-glucose receptor is a two-domain structure with a sugar-binding site at the interface between domains. The structure of the closed cleft containing bound D-glucose has been determined crystalloghraphically, but the open cleft remains to be characterized. The present study illustrates a generalizable approach that is used to detect and analyze both the open- and closed-cleft conformations in solution. A {sup 19}F nucleus located inside the cleft is monitored by {sup 19}F NMR. When the cleft is occupied by D-glucose, the {sup 19}F nucleus is found to be inaccessible to the aqueous paramagnetic probe Gd{center dot}EDTA,more » verifying that the occupied cleft is closed in solution and inaccessible to bulk solvent. When the cleft is empty, the {sup 19}F nucleus becomes accessible to the paramagnet such that the distance of closest approach is r {le} 10 {angstrom}, indicating that the empty cleft opens at least transiently by an angle {theta} {ge} 18 {plus minus} 3{degrees}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuta, Akira; Ioka, Kunihito
We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this newmore » picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.« less
Abu Hussein, Nahla B.; Habib, Ahmed E.; El Sayed, Yasmine M.
2016-01-01
Purpose. To examine causes as well as extent of delay in diagnosis and treatment of primary open angle glaucoma patients in a sample of Egyptians. Patients and Methods. 440 patients with primary open angle glaucoma were interviewed to evaluate delay in their diagnosis and treatment. The extent and cause of delay were investigated. The total delay interval, if any, was correlated with socioeconomic and other factors. Results. The median total delay was one year, with 50% of patients having a total delay of 1 year or less, of which 25% exhibited zero total delay. 25% of patients had a delay ranging from 1 to 3 years, and 25% had a total delay ranging from 3 to 27 years. Diagnostic delay accounted for 43.03% of cases. Longer delays were met in patients with certain socioeconomic factors. Patients with a positive family history of glaucoma displayed shorter delay periods. Conclusion. Significant delay in the diagnosis and treatment of glaucoma was found. Poor socioeconomic status seems to hinder timely diagnosis and treatment of POAG. Certain socioeconomic factors seem to correlate with the extent of delay. More effort is thus needed to subsidize the cost of investigations and treatment for glaucoma patients. PMID:28116140
Modifiable factors in the management of glaucoma: a systematic review of current evidence.
Hecht, Idan; Achiron, Asaf; Man, Vitaly; Burgansky-Eliash, Zvia
2017-04-01
Primary open angle glaucoma is a chronic optic neuropathy affecting millions of people worldwide and represents a major public health issue. Environmental factors, behaviors, and diet are intimately related to patient health and may play a role in the pathogenesis and progression of glaucoma. This study aims to review the literature, focusing on the last three years, regarding modifiable lifestyle interventions in the management of primary open angle glaucoma. Electronic databases were searched for studies published between January 2013 and July 2016 on the topic of lifestyle interventions in primary open angle glaucoma. Sleeping with the head elevated and avoiding the worst eye-dependent side during sleep may slightly lower intraocular pressure and reduce visual field loss. Some food supplements and moderate aerobic exercise may also reduce intraocular pressure up to 2.0 and 3.0 mmHg, respectively. Frequency of coffee intake may be associated with disease progression. Potential negative effects are associated with weight-lifting and yoga exercises. Certain lifestyle habits could influence glaucoma progression, yet no specific interventions are currently supported by robust evidence. Awareness of the possible influences of certain habits should help guide clinical advice and is important to help patients avoid adverse outcomes and take an active role in the management of their disease.
Law, Simon K
2007-01-01
The goal of treatment for open-angle glaucoma or ocular hypertension is to improve quality of life through reduction of intraocular pressure (IOP) to preserve visual function. Prostaglandins, as a newer class of ocular hypotensive agents, have been shown to be effective in IOP reduction by the primary mechanism of action of increase the uveoscleral outflow. Bimatoprost is a member this class, but different from the other members by having an ethyl amide group rather than an isopropyl ester at the C-1 carbon of the alpha chain. Bimatoprost used once daily has been shown to be more effect in IOP reduction than other classes of topical ocular hypotensive agents including beta-blockers, carbonic anhydrase inhibitors, and alpha agonists. Comparing with other topical prostaglandins, bimatoprost may be slightly more effective in IOP reduction, but the clinical significance is uncertain. The commonly reported adverse events associated with bimatoprost are localized to the eye and include conjunctival hyperemia, changes in the pigmentation of the periocular skin and iris, and eyelash darkening and growth. It is currently approved by the Food and Drug Administration (FDA) and the European Commission (EC) for first-line therapy for the reduction of elevated IOP in patients with open-angle glaucoma or ocular hypertension. PMID:19668476
A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion
NASA Astrophysics Data System (ADS)
Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.
2010-10-01
The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.
Gamma-Ray Burst Jet Breaks Revisited
NASA Astrophysics Data System (ADS)
Wang, Xiang-Gao; Zhang, Bing; Liang, En-Wei; Lu, Rui-Jing; Lin, Da-Bin; Li, Jing; Li, Long
2018-06-01
Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow light curve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we re-investigate this problem using a large sample of GRBs that have an optical jet break that is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from 1997 February to 2015 March that have optical and, for Swift GRBs, X-ray light curves that are consistent with the jet break interpretation. Out of the 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break, consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. Most jet breaks occur at 90 ks, with a typical opening angle θj = (2.5 ± 1.0)°. This gives a typical beaming correction factor {f}b-1∼ 1000 for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions: log(Eγ,iso/erg) = 53.11 with σ = 0.84 log(EK,iso/erg) = 54.82 with σ = 0.56 log(Eγ/erg) = 49.54 with σ = 1.29 and log(EK/erg) = 51.33 with σ = 0.58. We also investigate several empirical correlations (Amati, Frail, Ghirlanda, and Liang–Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the Swfit era, is most likely the source of scatter. If one limits the sample to jet breaks later than 104 s, the Liang–Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them.
Optimization of radar imaging system parameters for geological analysis
NASA Technical Reports Server (NTRS)
Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.
1981-01-01
The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Ebrahimi, N; Claus, B; Lee, C-Y; Biondi, A; Benndorf, G
2007-05-01
Radiographic visibility of self-expandable intracranial stents is insufficient for assessment of conformability and deployment characteristics. The purpose of this study was to evaluate stent mechanics in a curved vessel model by using Flat-Panel CT (FPCT). The following stents were used: Neuroform 2, Neuroform Treo, Enterprise, and LEO. All stents were bent in the same polytetrafluoroethylene tubes with various angles ranging from 150 degrees to 30 degrees . To visualize potential prolapse of the stent struts, 4-, 5-, and 8-mm openings were created. FPCTs were obtained using a C-arm with flat detector. FPCT scans provided excellent visualization of deployment characteristics and stent mechanics and was superior to digital subtraction angiography (DSA) and digital radiography (DR). The Neuroform2/Treo showed, with increasing angle and diameter of the opening, a continuous increase in cell size. These stents also showed an outward prolapse at the convexity and an inwards prolapse of struts at the concavity of the curvature. The Enterprise showed an increasing trend to flatten and to kink with curvatures that are more acute. The LEO showed fewer trends to kink but an inward crimping of its ends with more acute angles. Deployment characteristics and conformability to a curved vessel model vary considerably, depending on the angle and the stent design. Adverse mechanics such as increased cell opening, strut prolapse, flattening, and kinking occur during stent placement in a curved vessel model, and may gain clinical importance. FPCT is superior to DSA and DR in visualizing small metallic stents and enables accurate detection of adverse stent mechanics.
Likhvantseva, V G; Sokolov, V A; Levanova, O N; Kovelenova, I V
2018-01-01
Prediction of the clinical course of primary open-angle glaucoma (POAG) is one of the main directions in solving the problem of vision loss prevention and stabilization of the pathological process. Simple statistical methods of correlation analysis show the extent of each risk factor's impact, but do not indicate the total impact of these factors in personalized combinations. The relationships between the risk factors is subject to correlation and regression analysis. The regression equation represents the dependence of the mathematical expectation of the resulting sign on the combination of factor signs. To develop a technique for predicting the probability of development and progression of primary open-angle glaucoma based on a personalized combination of risk factors by linear multivariate regression analysis. The study included 66 patients (23 female and 43 male; 132 eyes) with newly diagnosed primary open-angle glaucoma. The control group consisted of 14 patients (8 male and 6 female). Standard ophthalmic examination was supplemented with biochemical study of lacrimal fluid. Concentration of matrix metalloproteinase MMP-2 and MMP-9 in tear fluid in both eyes was determined using 'sandwich' enzyme-linked immunosorbent assay (ELISA) method. The study resulted in the development of regression equations and step-by-step multivariate logistic models that can help calculate the risk of development and progression of POAG. Those models are based on expert evaluation of clinical and instrumental indicators of hydrodynamic disturbances (coefficient of outflow ease - C, volume of intraocular fluid secretion - F, fluctuation of intraocular pressure), as well as personalized morphometric parameters of the retina (central retinal thickness in the macular area) and concentration of MMP-2 and MMP-9 in the tear film. The newly developed regression equations are highly informative and can be a reliable tool for studying of the influence vector and assessment of pathogenic potential of the independent risk factors in specific personalized combinations.
Analysis of Balance Ability Dependent on the Angle of the Knee Joint in Females in Their 20s
Yoon, Se-Won; Lee, Jeong-Woo; Cho, Woon-Su; Kim, An-Na; Lee, Kyung-Hee
2013-01-01
The aim of this study was to investigate how balance ability according to angle of the knee joint changes in young female adults wearing a knee orthosis. [Methods] This study was conducted with 11 healthy female adults. The subjects used a knee brace that could be set to angles of 0°, 15°, and 30° of knee flexion. The ability to balance was evaluated by balance assessment. A total of four postures were used for measurements: a forward-facing posture with the eyes open on a stable surface (NO), a forward-facing posture with the eyes closed on a stable surface (NC), a forward-facing posture with the eyes open on an unstable surface (PO), and a forward-facing posture with the eyes closed on an unstable surface (PC). [Results] Regarding the weight distribution index and stability index on a stable surface, there was no interaction according to whether there was visual deprivation or not or according to knee flexion angle. Furthermore, the stability index on an unstable surface showed no interaction according to whether there was visual deprivation or not or according to knee flexion angle. But the WDI on a stable surface showed no interaction according to whether there was visual deprivation or not or according to knee flexion angle. [Conclusion] There were significant differences in the knee extension range of motion of normal elderly people and knee osteoarthritis, and the quadriceps femoris played an important role in knee function in individuals with knee osteoarthritis. PMID:24259902
NASA Astrophysics Data System (ADS)
Hamidi, S. M.; Behjati, S.
2018-02-01
Here we introduce large area plasmonic touching triangular dimers by angle controlled colloidal nanolithography to use them as an efficient multi channel absorber and also high figure of merit sensors. For this purpose, we coated gold thin films onto nanometric and also micrometric polystyrene hexagonal closed packed masks in different deposition angles and also diverse substrate polar angles. Our prepared samples, after remove masks, show large area touching triangular pattern with different inter particle distances in greater polar angles. To get more sense about optical response of the samples such as transmittance and also electric field distribution, we use finite difference time domain method in simulation part. The transmittance plot shows one narrow or multi-channel adjustable deep depend on inter-particle distances which can be controlled by azimuthally angle in nano lithography process. Also, due to the isoelliptical points in the transmittance spectra; we can see the bright and dark plasmon modes coupling and thus the Fano like resonance takes place in the optical spectral region which is very useful for refractive index measurement.
Azuara-Blanco, Augusto; Burr, Jennifer M; Cochran, Claire; Ramsay, Craig; Vale, Luke; Foster, Paul; Friedman, David; Quayyum, Zahidul; Lai, Jimmy; Nolan, Winnie; Aung, Tin; Chew, Paul; McPherson, Gladys; McDonald, Alison; Norrie, John
2011-05-23
Glaucoma is the leading cause of irreversible blindness. Although primary open-angle glaucoma is more common, primary angle-closure glaucoma (PACG) is more likely to result in irreversible blindness. By 2020, 5·3 million people worldwide will be blind because of PACG. The current standard care for PACG is a stepped approach of a combination of laser iridotomy surgery (to open the drainage angle) and medical treatment (to reduce intraocular pressure). If these treatments fail, glaucoma surgery (eg, trabeculectomy) is indicated. It has been proposed that, because the lens of the eye plays a major role in the mechanisms leading to PACG, early clear lens extraction will improve glaucoma control by opening the drainage angle. This procedure might reduce the need for drugs and glaucoma surgery, maintain good visual acuity, and improve quality of life compared with standard care.EAGLE aims to evaluate whether early lens extraction improves patient-reported, clinical outcomes, and cost-effectiveness, compared with standard care. EAGLE is a multicentre pragmatic randomized trial. All people presenting to the recruitment centres in the UK and east Asia with newly diagnosed PACG and who are at least 50 years old are eligible.The primary outcomes are EQ-5D, intraocular pressure, and incremental cost per quality adjusted life year (QALY) gained. Other outcomes are: vision and glaucoma-specific patient-reported outcomes, visual acuity, visual field, angle closure, number of medications, additional surgery (e.g., trabeculectomy), costs to the health services and patients, and adverse events.A single main analysis will be done at the end of the trial, after three years of follow-up. The analysis will be based on all participants as randomized (intention to treat). 400 participants (200 in each group) will be recruited, to have 90% power at 5% significance level to detect a difference in EQ-5D score between the two groups of 0·05, and a mean difference in intraocular pressure of 1·75 mm Hg. The study will have 80% power to detect a difference of 15% in the glaucoma surgery rate. ISRCTN44464607.
Jo, Chang Hwa; Kim, Junsoo; Han, Ah-reum; Park, Sam Yong; Hwang, Kwang Yeon; Nam, Ki Hyun
2016-03-01
Site-specific Xer recombination plays a pivotal role in reshuffling genetic information. Here, we report the 2.5 Å crystal structure of XerA from the archaean Thermoplasma acidophilum. Crystallographic data reveal a uniquely open conformational state, resulting in a C-shaped clamp with an angle of ~ 48° and a distance of 57 Å between the core-binding and the catalytic domains. The catalytic nucleophile, Tyr264, is positioned in cis-cleavage mode by XerA's C-term tail that interacts with the CAT domain of a neighboring monomer without DNA substrate. Structural comparisons of tyrosine recombinases elucidate the dynamics of Xer recombinase. © 2016 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.
2018-04-01
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.
Masoodi, Habibeh; Jafarzadehpur, Ebrahim; Esmaeili, Alireza; Abolbashari, Fereshteh; Ahmadi Hosseini, Seyed Mahdi
2014-08-01
To evaluate changes of nasal and temporal anterior chamber angle (ACA) in subjects with angle closure glaucoma using Spectralis AS-OCT (SAS-OCT) under dark and light conditions. Based on dark-room gonioscopy, 24 subjects with open angles and 86 with narrow angles participated in this study. The nasal and temporal angle opening distance at 500 μm anterior to the scleral spur (AOD500), nasal and temporal ACA were measured using SAS-OCT in light and dark conditions. In 2 groups, ACA and AOD500 in nasal and temporal quadrants were significantly greater in light compared to dark (all with p=0.000). The AOD500 and ACA were significantly higher in nasal than temporal in measured conditions for 2 groups except the ACA and AOD500 of normal group measured in light. The difference between nasal and temporal in dark (29.07 ± 65.71 μm for AOD500 and 5.7 ± 4.07° for ACA) was greater than light (24.86 ± 79.85 μm for AOD500 and 2.09 ± 7.21° for ACA) condition. But the difference was only significant for ACA (p=0.000). The correlation analysis showed a negative correlation between AOD500 and pupil diameter in temporal and nasal quadrants (both with p=0.000). While temporal AOD500 difference correlated with spherical equivalent, temporal and asal gonioscopy, nasal AOD correlated with IOP, temporal and nasal gonioscopy. Clinically important changes in ACA structure could be detected with SAS-OCT in nasal and temporal quadrants under different illumination intensity. The results could help in improvement of examination condition for better and more accurate assessment of individuals with angle closure glaucoma. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Does high knee flexion cause separation of meniscal repairs?
Lin, David L; Ruh, Sarah S; Jones, Hugh L; Karim, Azim; Noble, Philip C; McCulloch, Patrick C
2013-09-01
Previous clinical studies comparing nonrestrictive and restrictive protocols after meniscal repair have shown no difference in outcomes; however, some surgeons still limit range of motion out of concern that it will place undue stress on the repair. Large acute medial meniscal tears will gap during simulated open chain exercises at high flexion angles, and a repaired construct with vertical mattress sutures will not gap. Controlled laboratory study. Tantalum beads were implanted in the medial menisci of 6 fresh-frozen cadaveric knees via an open posteromedial approach. Each knee underwent 10 simulated open chain flexion cycles with loading of the quadriceps and hamstrings. Testing was performed on 3 different states of the meniscus: intact, torn, and repaired. Biplanar radiographs were taken of the loaded knee in 90°, 110°, and 135° of flexion for each state. A 2.5-cm tear was created in the posteromedial meniscus and repaired with inside-out vertical mattress sutures. Displacement of pairs of beads spanning the tear was measured in all planes by use of radiostereometric analysis (RSA) with an accuracy of better than 80 μm. With a longitudinal tear, compression rather than gapping occurred in all 3 regions of the posterior horn of the meniscus (mean ± standard deviation for medial collateral ligament [MCL], -321 ± 320 μm; midposterior, -487 ± 256 μm; root, -318 ± 150 μm) with knee flexion. After repair, meniscal displacement returned part way to intact values in both the MCL (+55 ± 250 μm) and root region (-170 ± 123 μm) but not the midposterior region, where further compression was seen (-661 ± 278 μm). Acute posteromedial meniscal tears and repairs with vertical mattress sutures do not gap, but rather compress in the transverse plane at higher flexion angles when subjected to physiologic loads consistent with active, open kinetic chain range of motion rehabilitation exercises. The kinematics of the repaired meniscus more closely resemble that of the intact meniscus than that of the torn meniscus in regions adjacent to the MCL and the root but not in the midposterior region, where meniscal repair led to increased compression across the tear plane. This study supports the idea that nonrestrictive unresisted open chain range of motion protocols do not place undue stress on meniscal repairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Snyder, K; Liu, C
Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas weremore » the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.« less
The influence of third molars in the line of mandibular angle fractures on wound and bone healing.
Ulbrich, N; Ettl, T; Waiss, W; Gosau, M; Moralis, A; Reichert, T E; Mueller, S
2016-07-01
The objective of this study was to evaluate postoperative complications after removal or retention of the third molar in the line of mandibular angle fractures. This retrospective study included the data of 98 patients with a molar in the line of a mandibular angle fracture treated with internal reduction and mini-plate fixation at our department over 9 years. Patients were classified into two groups: tooth removal during osteosynthesis (n = 45) and tooth retention (n = 55). The primary target criterion was the incidence of minor (outpatient treatment, local measures) and major (surgical revision, rehospitalisation) complications. Time between trauma and surgery was 1.4 days (range 0 to 12), and the average follow-up 291 days (range 66 to 863). Regarding the eruption status, 26 of 52 (50.0 %) impacted third molars, 11 of 19 (57.9 %) incompletely erupted and 8 of 27 (29.6 %) completely erupted molars had been removed during open reduction. Overall, 17 (17.3 %) patients had postoperative minor (n = 7) or major (n = 10) complications, in detail 10/45 (22.0 %) patients after tooth removal and 7/55 (13 %) patients after tooth retention (p = 0.286). Complication rates between impacted and incompletely erupted third molars (impacted molars 15.0 %, incompletely erupted molars 10.0 %) did not differ significantly, but completely erupted molars had a complication rate of 26.0 %. Mandibular angle fractures with a completely erupted third molar show the highest complication rate after open reduction and osteosynthesis. Retention of a non-infectious third molar facilitates open reduction and does not increase the complication risk. The study helps with the decision of removing or retention of a third molar during surgical treatment of a mandibular angle fracture.
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka
2004-12-01
To evaluate and compare the findings and changes of the anterior chamber angle configuration with indentation ultrasound biomicroscopy (UBM) gonioscopy in relative pupillary block (RPB), peripheral anterior synechia (PAS), and plateau iris configuration (PIC). This study included 73 eyes of 52 patients with RPB (n = 26), PAS (n = 21), or PIC (n = 26). First, a conventional UBM scan was performed using a normal size standard eye cup before indentation. Then, for indentation UBM gonioscopy, scans were performed using a new eye cup that we designed. For evaluation of the angle, angle opening distance 500 and angle recess area were recorded and evaluated with regard to the effect of expansion on the anterior chamber angle. Indentation UBM gonioscopy showed the characteristic images in each of the eyes. The angle of all examined eyes was significantly widened with indentation (P < 0.01). The angle changes in eyes with RPB were significantly greater than in eyes with PAS or PIC (P < 0.01). Indentation UBM gonioscopy is a very useful method for observing the angle and diagnosis of RPB, PAS, and PIC.
NASA Astrophysics Data System (ADS)
Cheng, Z. W.; Shi, J. K.; Zhang, J. C.; Torkar, K.; Kistler, L. M.; Dunlop, M.; Carr, C.; Rème, H.; Dandouras, I.; Fazakerley, A.
2018-04-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistical study of 542 FAC cases observed by the four Cluster spacecraft in the Northern Hemisphere. The results show that there are almost no FACs when the IMF cone angle is less than 10°, and there are indications of the FACs in the plasma sheet boundary layers being weak under the radial IMF conditions. The footprints of the large FAC (>10 nA/m2) cases are within invariant latitudes <71° and mainly within IMF cone angles θ > 60°, which implies that the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with increasing IMF cone angle (and has a better correlation for northward IMF), which shows that the IMF cone angle plays an important controlling role in FAC distributions in the magnetosphere-ionosphere coupling system. There is almost no correlation between the poleward boundary and the IMF cone angle for both northward and southward IMF. This is because the poleward boundary movement is limited by an enhanced lobe magnetic flux. This is the first time a correlation between FAC footprints in the polar region and IMF cone angles has been determined.
A small-angle large-acceptance detection system for hadrons
NASA Astrophysics Data System (ADS)
Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.
2000-04-01
The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.
Nonimaging Optical Illumination System
Winston, Roland
1994-02-22
A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.
High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk
NASA Astrophysics Data System (ADS)
Kumar, Nagendra
2018-02-01
We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.
Mapping magnetic field lines between the Sun and Earth
NASA Astrophysics Data System (ADS)
Li, B.; Cairns, Iver H.; Gosling, J. T.; Steward, G.; Francis, M.; Neudegg, D.; Schulte in den Bäumen, H.; Player, P. R.; Milne, A. R.
2016-02-01
Magnetic field topologies between the Sun and Earth are important for the connectivity to Earth of solar suprathermal particles, e.g., solar energetic particles and beam electrons in type III solar radio bursts. An approach is developed for mapping large-scale magnetic field lines near the solar equatorial plane, using near-Earth observations and a solar wind model with nonzero azimuthal magnetic field at the source surface. Unlike Parker's spiral model, which restricts the in-ecliptic angle ΦB in the Geocentric Solar Ecliptic coordinates to (90°-180°, 270°-360°) and so is unable to predict field configurations for the other ΦB values frequently observed in the solar wind, our approach can account for all the observed ΦB values. A set of predicted maps shows that near both minimal and maximal solar activity the field lines are typically open and that loops with both ends either connected to or disconnected from the Sun are relatively rare. The open field lines, nonetheless, often do not closely follow the Parker spiral, being less or more tightly wound, or strongly azimuthally or radially oriented, or inverted. The time-varying classes, e.g., bidirectional electrons, of suprathermal electron pitch angle distributions (PADs) at 1 AU are predicted from the mapped field line configurations and compared with Wind observations for two solar rotations, one each near solar minimum and solar maximum. PAD predictions by our approach agree quantitatively (≈90%) with the PAD observations and outperform (by ≈20%) PAD predictions using Parker's model.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Core shifts, magnetic fields and magnetization of extragalactic jets
NASA Astrophysics Data System (ADS)
Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander
2015-07-01
We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ≃0.1-0.2 divided by the bulk Lorentz factor, Γj. Larger values, e.g. 1/Γj, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ≪1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.
On the existence of a luminosity threshold of GRB jets in massive stars
NASA Astrophysics Data System (ADS)
Aloy, M. A.; Cuesta-Martínez, C.; Obergaulinger, M.
2018-05-01
Motivated by the many associations of γ-ray bursts (GRBs) with energetic supernova (SN) explosions, we study the propagation of relativistic jets within the progenitor star in which a SN shock wave may be launched briefly before the jets start to propagate. Based on analytic considerations and verified with an extensive set of 2D axisymmetric relativistic hydrodynamic simulations, we have estimated a threshold intrinsic jet luminosity, L_j^thr, for successfully launching a jet. This threshold depends on the structure of the progenitor and, thus, it is sensitive to its mass and to its metallicity. For a prototype host of cosmological long GRBs, a low-metallicity star of 35 M⊙, it is L_j^thr˜eq 1.35× 10^{49} erg s-1. The observed equivalent isotropic γ-ray luminosity, L_{γ ,iso,BO} ˜eq 4 ɛ _γ L_j θ _BO^{-2}, crucially depends on the jet opening angle after breakout, θBO, and on the efficiency for converting the intrinsic jet luminosity into γ-radiation, ɛγ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond this theoretical analysis, we show how the presence of a SN shock wave may reduce this luminosity threshold by means of numerical simulations. We foresee that the high-energy transients released by jets produced near the luminosity threshold will be more similar to llGRBs or XRFs than to GRBs.
[Preliminary investigation on the safety and efficacy of Trabectome].
Huang, Ping; Wang, Huaizhou; Wu, Huijuan; Sun, Yanran; Wang, Minshu; Cui, Ying; Qiu, Weiqiang; Yang, Yiquan; Ren, Zeqin; Zhang, Chun; Wang, Ningli
2015-02-01
To evaluate the safety and efficacy of ab interno trabeculectomy (Trabectome) surgery in Chinese open angle glaucoma patients. Prospective non-comparative case series study. A total of 41 cases (34 primary open angle glaucoma patients, 3 developmental glaucoma patients and 4 pigmentary glaucoma patients) were included in the study. All the cases underwent Trabectome, including 9 cases combined with phacoemulsification cataract extraction. Major outcomes include intraocular pressure (IOP), number of glaucoma medications, secondary glaucoma surgery and postoperative complications. Criteria for successful operation were defined as IOP ≤ 21 mmHg (1 mmHg = 0.133 kPa), at least 20% IOP reduction in any two consecutive visits after 3 months with or without IOP-lowering drugs and no additional glaucoma surgery. IOP and number of glaucoma medications were compared to baseline using Wilcoxon signed-rank test with Bonferroni correction. Kaplan-Meier analysis was performed to analyze the success rate of surgery. In the all 41 patients, 21 cases (51.2%) were followed up for up to 12 months. IOP was reduced from (22.5 ± 8.1) mmHg to (17.6 ± 6.4) mmHg (P = 0.02), meanwhile number of glaucoma medications was reduced from 2.0 ± 0.9 to 1.2 ± 0.9 (P = 0.02) at 12 months. The success rate at one year was 85% and 4 cases required additional glaucoma surgery. Trabectome has many advantages, such as shorter surgery time, simple post-operative care, less intraoperative and postoperative complications and clear IOP-lowering effect. But it slong-term efficacy is still need a large sample, long-term follow-up to verify.
Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings
NASA Astrophysics Data System (ADS)
Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.
2016-12-01
Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.
Jones, Christopher L; Kamper, Derek G
2018-01-01
Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p < 0.001). A greater effect was seen during the opening phase ( p < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.
Jones, Christopher L.; Kamper, Derek G.
2018-01-01
Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies. PMID:29545767
Type 0 open string amplitudes and the tensionless limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco
2014-12-01
The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.
NASA Astrophysics Data System (ADS)
Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.
2016-07-01
Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.
NASA Astrophysics Data System (ADS)
Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.
2017-11-01
In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion reducer for PGU-450T, which is bad from the standpoint of aerodynamics— to reduce the value of the coefficient of the total loss by almost 20% as compared with the model of real reducer of PGU-450T.
Effects of wind velocity and slope on flame properties
David R. Weise; Gregory S. Biging
1996-01-01
Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...
CONTINUOUS ROTATION SCATTERING CHAMBER
Verba, J.W.; Hawrylak, R.A.
1963-08-01
An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)
NASA Astrophysics Data System (ADS)
Kovacs, Geza
2018-04-01
The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2
Bone morphotypes of the varus and valgus knee.
Thienpont, E; Schwab, P E; Cornu, O; Bellemans, J; Victor, J
2017-03-01
Coronal deformity correction with total knee arthroplasty (TKA) is an important feature in the treatment of osteoarthritis (OA). The hypothesis of this study was that bone morphology would be different in varus and valgus deformity, both before osteoarthritis development as well as during and after the disease process of OA. Retrospective study with measurements on preoperative and postoperative full leg standing radiographs of 96 patients who underwent TKA. The included patients were selected for this study because they had an OA knee on one side and a non-arthritic knee on the contralateral side presenting the same type of alignment as the to-be-operated knee (varus or valgus alignment on both sides). The control group of 46 subjects was a group of patients with neutral mechanical alignment who presented for ligamentous problems. A single observer measured mechanical alignment, anatomical alignment, anatomical-mechanical femoral angle and intra-articular bone morphology parameters with an accuracy of 1°. Varus OA group has less distal femoral valgus (mLDFA 89°) than control group (87°) and valgus OA group (mLDFA 85°). Varus OA group has same varus obliquity as control group (MPTA 87°) but more than valgus OA group (MPTA 90°). Joint Line Congruency Angle (JLCA) is 3°open on lateral side in varus and medially open in valgus OA group (2°). The non-arthritic valgus group presents a constitutional mechanical valgus of 184° Hip-Knee-Ankle (HKA) angle. Varus deformity in OA as measured with an HKA angle (HKA) <177° is a combination of distal femoral wear, tibial varus obliquity and lateral joint line opening. Valgus deformity in OA with an HKA > 183° is a combination of femoral distal joint line obliquity and wear combined with medial opening due to medial collateral ligament stretching. The clinical importance of bone morphotype analysis is that it shows the intra-articular potential of alignment correction when mechanical axis cuts are performed. Bone morphology in varus and valgus deformity is different before and after osteoarthritis. Perpendicular cuts to mechanical axes do not necessarily lead to neutral mechanical axis. Constitutional mechanical valgus was observed as 184° HKA angle before the development of OA. Level IV study.
Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes.
Lee, Eun Jung; Han, Jong Chul; Kee, Changwon
2017-05-01
To evaluate the anterior lamina cribrosa (LC) surface tilt angle in myopic eyes and associate it with glaucoma development. In this retrospective study, medical records of myopic patients referred for glaucoma examination from July 1, 2012 to March 30, 2016 were reviewed. Comprehensive ophthalmic examination including spectral-domain optical coherence tomography were performed. We measured the angle of anterior LC surface tilt against Bruch's membrane opening from optical coherence tomography images at the center of the clinical optic disc margin. In horizontal and vertical sections, the angles were defined as α and β, respectively. Patients were grouped according to the presence of glaucomatous damage and factors including optic nerve head morphologic parameters and LC tilt angles were compared between the 2 groups. Among 138 patients originally enrolled, 102 patients were finally analyzed. One eye from 1 patient was randomly chosen. Fifty-five eyes had glaucoma and 47 were normal. The degree of myopia and all optic nerve head morphologic parameters were not significantly different between the 2 groups. However, |α| and |β| were significantly larger in the glaucoma group (all P<0.001), and significances were maintained in multivariate analysis (P<0.001). Larger anterior LC surface tilt angles were related to the presence of glaucoma in normal-pressure myopic eyes. Angulation of the LC against Bruch's membrane opening plane might be associated with increased glaucoma susceptibility in myopic eyes. Further investigations are warranted before clinical utilization of LC tilt as glaucoma susceptibility biomarker.
Open-field arena boundary is a primary object of exploration for Drosophila
Soibam, Benjamin; Mann, Monica; Liu, Lingzhi; Tran, Jessica; Lobaina, Milena; Kang, Yuan Yuan; Gunaratne, Gemunu H; Pletcher, Scott; Roman, Gregg
2012-01-01
Drosophila adults, when placed into a novel open-field arena, initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity and spend a majority of time near the arena edge, executing motions along the walls. In order to determine the environmental features that are responsible for the initial high activity and wall-following behavior exhibited during exploration, we examined wild-type and visually impaired mutants in arenas with different vertical surfaces. These experiments support the conclusion that the wall-following behavior of Drosophila is best characterized by a preference for the arena boundary, and not thigmotaxis or centrophobicity. In circular arenas, Drosophila mostly move in trajectories with low turn angles. Since the boundary preference could derive from highly linear trajectories, we further developed a simulation program to model the effects of turn angle on the boundary preference. In an hourglass-shaped arena with convex-angled walls that forced a straight versus wall-following choice, the simulation with constrained turn angles predicted general movement across a central gap, whereas Drosophila tend to follow the wall. Hence, low turn angled movement does not drive the boundary preference. Lastly, visually impaired Drosophila demonstrate a defect in attenuation of the elevated initial activity. Interestingly, the visually impaired w1118 activity decay defect can be rescued by increasing the contrast of the arena's edge, suggesting that the activity decay relies on visual detection of the boundary. The arena boundary is, therefore, a primary object of exploration for Drosophila. PMID:22574279
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
NASA Astrophysics Data System (ADS)
Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji
2011-07-01
New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.
Large area optical mapping of surface contact angle.
Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana
2017-09-04
Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.
NASA Technical Reports Server (NTRS)
Stoll, F.; Koenig, D. G.
1983-01-01
Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.
Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun
NASA Astrophysics Data System (ADS)
Mabey, K.; Smith, B. L.; Whichard, G.; McKechnie, T.
2011-06-01
A Coanda-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun. The two-piece retrofit device replaces the standard faceplate. Two separate collars were tested: one designed for small vector angles and one for larger vector angles. It was demonstrated that the small-angle device could modify the trajectory of zirconia powder up to several degrees. Doing so could realign the plasma with the powder resulting in increased powder temperature and velocity. The large-angle device was capable of vectoring the plasma jet up to 45°. However, the powder did not vector as much. Under large-angle vectoring, the powder velocity and temperature decreased steadily with vector angle. Both devices were tested using a supersonic configuration to demonstrate that CSM is capable of vectoring supersonic plasmas.
Paredes, Igor; Panero, Irene; Cepeda, Santiago; Castaño-Leon, Ana M; Jimenez-Roldan, Luis; Perez-Nuñez, Ángel; Alén, Jose A; Lagares, Alfonso
2018-06-14
This study aimed to compare the accuracy of screw placement between open pedicle screw fixation and percutaneous pedicle screw fixation (MIS) for the treatment of thoracolumbar spine fractures (TSF). Forty-nine patients with acute TSF who were treated with transpedicular screw fixation from January 2013 to December 2016 were retrospectively reviewed. The patients were divided into Open and MIS groups. Laminectomy was performed in either group if needed. The accuracy of the screw placement, the evolution of the Cobb sagital angle postoperatively and at 12-month follow up and the neurological status were recorded. AO type of fracture and TLICS score were also recorded. Mean age was 42 years old. Mean TLICS score was 6,29 and 5,96 for open and MIS groups respectively. Twenty five MIS and 24 open surgeries were performed, and 350 (175 in each group) screws were inserted (7,14 per patient). Twenty-four and 13 screws were considered ̈out ̈ in the open and MIS groups respectively (Odds ratio 1,98. 0,97-4,03 p=0,056). The Cobb sagittal angle went from 13,3o to 4,5o and from 14,9o to 8,2o in the Open and MIS groups respectively (both p<0,0001). Loss of correction at 12-month follow up was 3,2o and 4,2o for the open and MIS groups respectively. No neurological worsening was observed. For the treatment of acute thoracolumbar fractures, the MIS technique seems to achieve similar results to the open technique in relation to neurological improvement and deformity correction, while placing the screws more accurately.
A unified model for transfer alignment at random misalignment angles based on second-order EKF
NASA Astrophysics Data System (ADS)
Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo
2017-04-01
In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.
NASA Astrophysics Data System (ADS)
Han, Qinkai; Chu, Fulei
2012-12-01
It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.
Gurney, J C; Ansari, E; Harle, D; O'Kane, N; Sagar, R V; Dunne, M C M
2018-02-09
To determine the accuracy of a Bayesian learning scheme (Bayes') applied to the prediction of clinical decisions made by specialist optometrists in relation to the referral refinement of chronic open angle glaucoma. This cross-sectional observational study involved collection of data from the worst affected or right eyes of a consecutive sample of cases (n = 1,006) referred into the West Kent Clinical Commissioning Group Community Ophthalmology Team (COT) by high street optometrists. Multilevel classification of each case was based on race, sex, age, family history of chronic open angle glaucoma, reason for referral, Goldmann Applanation Tonometry (intraocular pressure and interocular asymmetry), optic nerve head assessment (vertical size, cup disc ratio and interocular asymmetry), central corneal thickness and visual field analysis (Hodapp-Parrish-Anderson classification). Randomised stratified tenfold cross-validation was applied to determine the accuracy of Bayes' by comparing its output to the clinical decisions of three COT specialist optometrists; namely, the decision to discharge, follow-up or refer each case. Outcomes of cross-validation, expressed as means and standard deviations, showed that the accuracy of Bayes' was high (95%, 2.0%) but that it falsely discharged (3.4%, 1.6%) or referred (3.1%, 1.5%) some cases. The results indicate that Bayes' has the potential to augment the decisions of specialist optometrists.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezrukov, F.; Chudaykin, A.; Gorbunov, D., E-mail: Fedor.Bezrukov@manchester.ac.uk, E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru
We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such asmore » Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.« less
Structure of a designed protein cage that self-assembles into a highly porous cube
Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; ...
2014-11-10
Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-raymore » scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. Finally, these results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.« less
NASA Astrophysics Data System (ADS)
Bahramy, M. S.; Clark, O. J.; Yang, B.-J.; Feng, J.; Bawden, L.; Riley, J. M.; Marković, I.; Mazzola, F.; Sunko, V.; Biswas, D.; Cooil, S. P.; Jorge, M.; Wells, J. W.; Leandersson, M.; Balasubramanian, T.; Fujii, J.; Vobornik, I.; Rault, J. E.; Kim, T. K.; Hoesch, M.; Okawa, K.; Asakawa, M.; Sasagawa, T.; Eknapakul, T.; Meevasana, W.; King, P. D. C.
2018-01-01
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
A Model for the Sources of the Slow Solar Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.
2010-01-01
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to approximately 60 degrees, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far front the heliospheric current sheet. We then use an MHD code and MIDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model.
A Model for the Sources of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Antiochos, S. K.; Mikić, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.
2011-04-01
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~60°, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
Evaluation of eyes with relative pupillary block by indentation ultrasound biomicroscopy gonioscopy.
Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka
2004-03-01
To investigate changes in anterior chamber angle configuration with indentation ultrasound biomicroscopy gonioscopy of relative pupillary block (RPB). Cross-sectional study. This study included 26 eyes of 26 patients with RPB. We determined angle opening distance 500 and angle recess area using indentation ultrasound biomicroscopy gonioscopy and compared a small-sized standard eye cup with a new eye cup with an area for inducing pressure. Indentation ultrasound biomicroscopy images documented concavity of the iris in eyes with RPB. Both the new and the small standard eye cups widened the anterior chamber angle significantly (P <.0001) without causing corneal damage. Angle changes were significantly greater for the new eye cup design. Indentation ultrasound biomicroscopy gonioscopy is a useful technique for observation and diagnosis of RPB. Using a small standard or the newly designed eye cup, the procedure can be performed easily and without causing corneal damage.
Bayesian Inference on the Radio-quietness of Gamma-ray Pulsars
NASA Astrophysics Data System (ADS)
Yu, Hoi-Fung; Hui, Chung Yue; Kong, Albert K. H.; Takata, Jumpei
2018-04-01
For the first time we demonstrate using a robust Bayesian approach to analyze the populations of radio-quiet (RQ) and radio-loud (RL) gamma-ray pulsars. We quantify their differences and obtain their distributions of the radio-cone opening half-angle δ and the magnetic inclination angle α by Bayesian inference. In contrast to the conventional frequentist point estimations that might be non-representative when the distribution is highly skewed or multi-modal, which is often the case when data points are scarce, Bayesian statistics displays the complete posterior distribution that the uncertainties can be readily obtained regardless of the skewness and modality. We found that the spin period, the magnetic field strength at the light cylinder, the spin-down power, the gamma-ray-to-X-ray flux ratio, and the spectral curvature significance of the two groups of pulsars exhibit significant differences at the 99% level. Using Bayesian inference, we are able to infer the values and uncertainties of δ and α from the distribution of RQ and RL pulsars. We found that δ is between 10° and 35° and the distribution of α is skewed toward large values.
The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie
2012-01-01
One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.
NASA Astrophysics Data System (ADS)
Vincent, Lionel; Kanso, Eva
2017-11-01
Diving induces large pressures during water entry, accompanied by the creation of cavity behind the diver and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of diving wedges as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, diving wedges experience significantly smaller drag forces (two-fold smaller) than immersed wedges. We characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. Combining experimental approach and a discrete fluid particle model, we show that the splash shape is governed by a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. These findings may have implications in a wide range of water entry problems, with applications in engineering and bio-related problems, including naval engineering, disease spreading and platform diving. This work was funded by the National Science Foundation.
Quantification of complex modular architecture in plants.
Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain
2018-04-01
Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Wang, Ning-li
2013-11-01
Promoting the control of primary angle-closure glaucoma (PACG) and primary open angle glaucoma (POAG) is most important prevention program of blindness in China. PACG has been incorporated into the prevention program of blindness in China based on the population-based screening studies. However, the clinical screening should be strengthened in POAG. The creation of a series of appropriate technologies suitable for glaucoma prevention and management has been achieved in China, especially for PACG. The technologies have been evaluated in the pilot areas and obtained very good results in China. It is recommended to develop new technology suitable for glaucoma management using the following workflow: research, development, and evaluation by large scale hospitals, and then clinical trial in the pilot areas. After a cost-benefit analysis is made, the new technology can be promoted and applied in clinical practice nationwide. We propose to gradually formed a strategical mode of "screening in township hospitals, intervention in county hospitals, and technical support and tackling in provincial hospitals" in order to improve the level of prevention and treatment of glaucoma and reduce the blindness incidence rate caused by glaucoma.
Angle stations in or for endless conveyor belts
Steel, Alan
1987-04-07
In an angle station for an endless conveyor belt, there are presented to each incoming run of the belt stationary curved guide members (18, 19) of the shape of a major segment of a right-circular cylinder and having in the part-cylindrical portion (16 or 17) thereof rectangular openings (15) arranged in parallel and helical paths and through which project small freely-rotatable rollers (14), the continuously-changing segments of the curved surfaces of which projecting through said openings (15) are in attitude to change the direction of travel of the belt (13) through 90.degree. during passage of the belt about the part-cylindrical portion (16 or 17) of the guide member (18 or 19). The rectangular openings (15) are arranged with their longer edges lengthwise of the diagonals representing the mean of the helix but with those of a plurality of the rows nearest to each end of the part-cylindrical portion (16 or 17) slightly out of axial symmetry with said diagonals, being slightly inclined in a direction about the intersections (40) of the diagonals of the main portion of the openings, to provide a "toe-in" attitude in relation to the line of run of the endless conveyor belt.
Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets
NASA Astrophysics Data System (ADS)
Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping
2018-03-01
Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.
Grooves and Kinks in the Rings
2017-06-19
Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Angle closure glaucoma in congenital ectropion uvea.
Wang, Grace M; Thuente, Daniel; Bohnsack, Brenda L
2018-06-01
Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months) and required additional surgery (cycloablation or trabeculectomy). Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control.
Variability of single-leg versus double-leg stance radiographs in the varus knee.
Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I
2009-07-01
We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.
Effects of excimer laser illumination on microdrilling into an oblique polymer surface
NASA Astrophysics Data System (ADS)
Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang
2006-08-01
In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo
2011-01-01
Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.
NASA Technical Reports Server (NTRS)
Elliott, David M.
2012-01-01
A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.
Strong-field ionization with twisted laser pulses
NASA Astrophysics Data System (ADS)
Paufler, Willi; Böning, Birger; Fritzsche, Stephan
2018-04-01
We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.
Educating the glaucoma patient.
Rosenthal, A. R.; Zimmerman, J. F.; Tanner, J.
1983-01-01
Forty-nine patients with open-angle glaucoma and 32 controls were studied at each of 2 medical centres, one in California and one in England. A 12-point questionnaire was answered before, immediately after, and 6 months after viewing a 6 minute video film about glaucoma. The English glaucoma patients and controls showed lower initial knowledge than their American counterparts. Immediately after the film all groups had substantially improved their knowledge by answering 78-88% of the questions correctly. Recall study showed that both American groups had retained more than their British counterparts and that glaucoma patients retained more knowledge of their disease than did controls. The use of an educational video film in an outpatient setting is a simple and economical method of patient education applicable to both American and British subjects with open-angle glaucoma. PMID:6671096
Role of oxidative stress enzymes in open-angle glaucoma.
Yildirim, O; Ateş, N A; Ercan, B; Muşlu, N; Unlü, A; Tamer, L; Atik, U; Kanik, A
2005-05-01
To investigate the role of oxidative stress and lipid peroxidation in the pathogenesis of primary open-angle glaucoma (POAG). The activities of myeloperoxidase (MPO), catalase (CAT), and the levels of plasma malondialdehyde (MDA) were measured in 40 (15 men and 25 women) patients with POAG and 60 (30 men and 30 women) healthy controls. There was no significant difference in the activities of CAT and MPO between the POAG patients and the controls. However, the plasma MDA level was significantly higher in patients than the controls. The results of this preliminary study suggest that the possible alterations of plasma MDA levels may be associated with the pathogenesis of POAG, but further research is needed to understand the role of oxidative damage in this important disorder of aging.
Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors
2012-05-01
Vol. 5745. 2005. 14. Y. Zhang, et al., A comparative study of limited-angle cone-beam reconstruction methods 505 for breast tomosynthesis. Med...opening angl em integratio designed line nia Dimension determine the try calibration th the detector ain is sent fro between XC urce not fou here...screening mammography. AJR, 2007. 189: p. 616. 12. P. Baldelli, et al., A prototype of a quasi-monochromatic system for mammography applications . Phys
Monte Carlo calculation of large and small-angle electron scattering in air
NASA Astrophysics Data System (ADS)
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.
2017-11-01
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
The vertex and large angle detectors of a spectrometer system for high energy muon physics
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration
1983-07-01
A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.
Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.
1993-01-01
Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single large blocks of coal vary widely. Although the strengths of coal cores increase slowly at high levels of confining stress, the coal in Sunnyside No. 1 Mine is slightly stronger in laboratory tests than coal in Sunnyside No.3 Mine. The coal in No.1 Mine probably can store larger amounts of stress than coal in the No.3 Mine, which may account for the apparently greater number of violent bumps in No.1 Mine. The strength of coal, and its ability to store stress before failure, may correlate in part with chemical composition, particularly with the amounts of benzene ring compounds in vitrain; coal with relatively large amounts of benzene ring compounds is stronger than coal with lesser amounts of these compounds. Alternatively, the chemical composition of coal may affect its response to stress. Increasing contents of kaolinite in coal appear to reduce its compressive strength at low confining stresses, resulting in easy failures of pillars and ribs in mine openings. Applications of the geologic factors outlined in this report, carefully coupled with advanced modern engineering methods, have markedly reduced the hazards from coal mine bumps and related failures of mine openings at Sunnyside. Similar studies probably could aid in reducing bump-related hazards in other coal mining areas.
Zhao, Jing-Xin; Su, Xiu-Yun; Zhao, Zhe; Xiao, Ruo-Xiu; Zhang, Li-Cheng; Tang, Pei-Fu
2018-02-17
The aim of this study is to demonstrate the varying rules of radiographic angles following varying three-dimensional (3D) orientations and locations of cup using an accurate mathematical model. A cone model is established to address the quantitative relationship between the opening circle of cup and its ellipse projection on radiograph. The varying rules of two-dimensional (2D) radiographic anteversion (RA) and inclination (RI) angles can be analyzed. When the centre of cup is located above X-ray source, with proper 3D RI/RA angles, 2D RA angle can be equal to its 3D counterpart, and 2D RI angle is usually greater than its 3D counterpart. Except for the original point on hip-centered anterior-posterior radiograph, there is no area on radiograph where both 2D RA and RI angles are equal to their 3D counterparts simultaneously. This study proposes an innovative model for accurately explaining how 2D RA/RI angles of cup are varying following different 3D RA/RI angles and location of cup. The analysis results provide clinicians an intuitive grasp of knowledge about 2D RA/RI angles greater or smaller than their 3D counterparts post-operatively. The established model may allow determining the effects of pelvic rotations on 2D radiographic angles of cup.
Corner entanglement as a probe of quantum criticality
NASA Astrophysics Data System (ADS)
Witczak-Krempa, William; Bueno, Pablo; Myers, Robert C.
The entanglement entropy in many gapless quantum systems in 2+1D receives a contribution from corners in the entangling surface. It is characterized by a universal function a (θ) that depends non-trivially on the corner opening angle θ. Focusing on a large family of quantum critical theories with emergent Lorentz invariance (CFTs), we argue that the smooth limit a (θ ~ π) is entirely determined by the energy-density or stress tensor 2-point function coefficient. This explains recent results obtained via cutting edge simulations on the quantum critical Ising, XY and Heisenberg models. We also show how to extract the full thermal entropy of the quantum critical system using corner entanglement of the groundstate alone. ** Bueno, Myers, WK, Phys. Rev. Lett. (2015) Work supported by Perimeter Institute and NSERC.
Active Galactic Nuclei at All Wavelengths and from All Angles
NASA Astrophysics Data System (ADS)
Padovani, Paolo
2017-11-01
AGN are quite unique astronomical sources emitting over more than 20 orders of magnitude in frequency, with different electromagnetic bands providing windows on different sub-structures and their physics. They come in a large number of flavors only partially related to intrinsic differences. I highlight here the types of sources selected in different bands, the relevant selection effects and biases, and the underlying physical processes. I then look at the "big picture" by describing the most important parameters one needs to describe the variety of AGN classes and by discussing AGN at all frequencies in terms of their sky surface density. I conclude with a look at the most pressing open issues and the main new facilities, which will flood us with new data to tackle them.
Active Galactic Nuclei at all wavelengths and from all angles
NASA Astrophysics Data System (ADS)
Padovani, Paolo
2017-11-01
AGN are quite unique astronomical sources emitting over more than twenty orders of magnitude in frequency, with different electromagnetic bands providing windows on different sub-structures and their physics. They come in a large number of flavors only partially related to intrinsic differences. I highlight here the types of sources selected in different bands, the relevant selection effects and biases, and the underlying physical processes. I then look at the ``big picture'' by describing the most important parameters one needs to describe the variety of AGN classes and by discussing AGN at all frequencies in terms of their sky surface density. I conclude with a look at the most pressing open issues and the main new facilities, which will flood us with new data to tackle them.
Durham, J. M.; Poulson, D.; Bacon, J.; ...
2018-04-10
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. M.; Poulson, D.; Bacon, J.
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
PEM Anchorage on Titanium Using Catechol Grafting
Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence
2012-01-01
Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262
Lewine, Eliza; Kim, Jaehon M; Miller, Patricia E; Waters, Peter M; Mahan, Susan T; Snyder, Brian; Hedequist, Daniel; Bae, Donald S
2018-02-01
The purpose of this investigation was to compare the presentation and postoperative results of children treated for open and closed, completely displaced type III supracondylar humerus fractures (SCFs). Thirty patients with open and 66 patients with closed, completely displaced type III SCFs were evaluated. Open fractures underwent irrigation and debridement, and all patients were treated by open or closed reduction and pin fixation. Medical records were reviewed to obtain demographic information as well as preoperative and postoperative clinical data regarding mechanism of injury, neurovascular status, associated injuries, postoperative range of motion, infections, and pain. Radiographs were evaluated to quantify displacement, Baumann's angle, humeral capitellar angle, position of the anterior humeral line, and adequacy of reduction. Outcomes were assessed using Flynn criteria. Mean clinical follow-up for the open and closed fracture groups was 8.9 and 5.7 months, respectively. Both groups were similar with respect to age, sex distribution, weight and body mass index, laterality of involvement, and mechanism of injury. At presentation, 35% of closed SCFs and 23% of open SCFs presented with abnormal neurovascular status. There was a higher prevalence of diminished/absent pulses or distal limb ischemia in patients with open injuries (27%) compared with closed fractures (18%). Conversely, severely displaced closed fractures were more commonly associated with nerve injury/palsy at presentation (35%) than those with open fractures (23%). Spontaneous nerve recovery was seen in 87% within 3 to 6 months. Postoperative loss of reduction and malunion were more common in the closed fracture group. However, 84% of patients achieved good-to-excellent results by Flynn criteria, with no appreciable difference based upon open versus closed fractures. With timely wound and fracture treatment, the clinical and radiographic results of children treated for open SCFs is similar to those with closed type III injuries, with little increased risk for infection, malunion, or neurovascular compromise. Level III.
Jouzdani, Sara; Amini, Rouzbeh; Barocas, Victor H.
2013-01-01
Purpose. To investigate the contribution of three anatomical and physiologic factors (dilator thickness, dynamic pupillary block, and iris compressibility) to changes in iris configuration and anterior chamber angle during pupil dilation. Methods. A mathematical model of the anterior segment based on the average values of ocular dimensions was developed to simulate pupil dilation. To change the pupil diameter from 3.0 to 5.4 mm in 10 seconds, active dilator contraction was applied by imposing stress in the dilator region. Three sets of parameters were varied in the simulations: (1) a thin (4 μm, 1% of full thickness) versus a thick dilator (covering the full thickness iris) to quantify the effects of dilator anatomy, (2) in the presence (+PB) versus absence of pupillary block (−PB) to quantify the effect of dynamic motion of aqueous humor from the posterior to the anterior chamber, and (3) a compressible versus an incompressible iris to quantify the effects of iris volume change. Changes in the apparent iris–lens contact and angle open distance (AOD500) were calculated for each case. Results. The thin case predicted a significant increase (average 700%) in iris curvature compared with the thick case (average 70%), showing that the anatomy of dilator plays an important role in iris deformation during dilation. In the presence of pupillary block (+PB), AOD500 decreased 25% and 36% for the compressible and incompressible iris, respectively. Conclusions. Iris bowing during dilation was driven primarily by posterior location of the dilator muscle and by dynamic pupillary block, but the effect of pupillary block was not as large as that of the dilator anatomy according to the quantified values of AOD500. Incompressibility of the iris, in contrast, had a relatively small effect on iris curvature but a large effect on AOD500; thus, we conclude that all three effects are important. PMID:23482467
Food waste impact on municipal solid waste angle of internal friction.
Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G
2011-01-01
The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.
2011-01-01
Background Glaucoma is the leading cause of irreversible blindness. Although primary open-angle glaucoma is more common, primary angle-closure glaucoma (PACG) is more likely to result in irreversible blindness. By 2020, 5·3 million people worldwide will be blind because of PACG. The current standard care for PACG is a stepped approach of a combination of laser iridotomy surgery (to open the drainage angle) and medical treatment (to reduce intraocular pressure). If these treatments fail, glaucoma surgery (eg, trabeculectomy) is indicated. It has been proposed that, because the lens of the eye plays a major role in the mechanisms leading to PACG, early clear lens extraction will improve glaucoma control by opening the drainage angle. This procedure might reduce the need for drugs and glaucoma surgery, maintain good visual acuity, and improve quality of life compared with standard care. EAGLE aims to evaluate whether early lens extraction improves patient-reported, clinical outcomes, and cost-effectiveness, compared with standard care. Methods/Design EAGLE is a multicentre pragmatic randomized trial. All people presenting to the recruitment centres in the UK and east Asia with newly diagnosed PACG and who are at least 50 years old are eligible. The primary outcomes are EQ-5D, intraocular pressure, and incremental cost per quality adjusted life year (QALY) gained. Other outcomes are: vision and glaucoma-specific patient-reported outcomes, visual acuity, visual field, angle closure, number of medications, additional surgery (e.g., trabeculectomy), costs to the health services and patients, and adverse events. A single main analysis will be done at the end of the trial, after three years of follow-up. The analysis will be based on all participants as randomized (intention to treat). 400 participants (200 in each group) will be recruited, to have 90% power at 5% significance level to detect a difference in EQ-5D score between the two groups of 0·05, and a mean difference in intraocular pressure of 1·75 mm Hg. The study will have 80% power to detect a difference of 15% in the glaucoma surgery rate. Trial Registration: ISRCTN44464607. PMID:21605352
The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite
NASA Astrophysics Data System (ADS)
Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He
2004-04-01
The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.
Tanihara, H; Honjo, M; Inatani, M; Honda, Y; Ogino, N; Ueno, S; Negi, A; Ichioka, H; Mizoguchi, T; Matsumura, M; Nagata, M
1997-10-01
The authors previously reported the usefulness of trabeculotomy ab externo for the treatment of primary open-angle glaucoma in adult patients. In an attempt to elucidate the long-term risk-to-benefit ratio of this surgical modality in combination with cataract surgery, the authors conducted a retrospective study of the surgical effects and complications of a triple procedure: phacoemulsification, implantation (of an intraocular lens), and trabeculotomy (PIT). The authors conducted a retrospective study of patients treated with PIT at multiple hospitals. Intraocular pressure (IOP) and visual function data were obtained from patients after PIT as an initial surgical treatment in cases where antiglaucoma medications failed to resolve uncontrolled IOP (higher than 21 mm Hg). Included in this study were 96 eyes of 64 patients with primary open-angle glaucoma and coexisting cataract. The mean follow-up period was 22.6 +/- 14.7 months (range 3-56 months). In 94 (98%) of the 96 eyes, the IOP was well controlled, having achieved a level of 21 mm Hg or lower at the final examinations. The mean preoperative IOP of the 33 eyes that underwent the triple procedure using a single flap method (PIT-I) was 24.3 +/- 3.9 mm Hg, with an average of 2.1 +/- 1.1 medications. At the final examinations, the mean IOP had dropped to 16.0 +/- 1.2 mm Hg, with an average of 1.2 +/- 1.2 medications. The mean preoperative IOP of the 63 eyes that underwent the triple procedure using a double flap method (PIT-II) was 26.2 +/- 6.2 mm Hg, with an average of 1.9 +/- 1.2 medications. At the final examination, the mean IOP for this group was 15.6 +/- 2.9 mm Hg, with an average of 1.0 +/- 0.9 medications. The long-term results from this multicenter study showed that the triple procedure, PIT, can be useful and effective as an initial surgical treatment for open-angle glaucoma in glaucoma patients with coexisting cataract.
Monte Carlo calculation of large and small-angle electron scattering in air
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...
2017-08-12
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Akiyama, Keisuke; Yoshikawa, Hideki; Sugamoto, Kazuomi
2011-12-01
We evaluated the validity of the Robin and Graham classification system of hip disease in cerebral palsy (CP) using three-dimensional computed tomography in young people with CP. A total of 91 hips in 91 consecutive children with bilateral spastic CP (57 males, 34 females; nine classified at Gross Motor Function Classification System level II, 42 at level III, 32 at level IV, and eight at level V; mean age 5 y 2 mo, SD 11 mo; range 2-6 y) were investigated retrospectively using anteroposterior plain radiographs and three-dimensional computed tomography (3D-CT) of the hip. The migration percentage was calculated on plain radiographs and all participants were classified into four groups according to migration percentage: grade II, migration percentage ≥ 10% but ≤ 15%, (four hips), grade III, migration percentage >15% but ≤ 30%, (20 hips); grade IV, migration percentage >30% but <100%, (63 hips); and grade V, migration percentage ≥ 100%, (four hips). The lateral opening angle and the sagittal inclination angle of the acetabulum, the neck-shaft angle, and the femoral anteversion of the femur were measured on 3D-CT. The three-dimensional quantitative evaluation indicated that there were significant differences in the lateral opening angle and the neck-shaft angle between the four groups (Kruskal-Wallis test, p ≤ 0.001). This three-dimensional evaluation supports the validation of the Robin and Graham classification system for hip disease in 2- to 7-year-olds with CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Sakata, Lisandro M; Lavanya, Raghavan; Friedman, David S; Aung, Han T; Gao, Hong; Kumar, Rajesh S; Foster, Paul J; Aung, Tin
2008-05-01
To compare the performance of gonioscopy and anterior segment (AS) optical coherence tomography (OCT) in detecting angle closure in the different quadrants of the anterior chamber angle (ACA). Cross-sectional observational study. Five hundred two consecutive subjects more than 50 years of age with no previous ophthalmic problems recruited from a community clinic in Singapore. All subjects underwent gonioscopy and AS OCT imaging in the dark. Using gonioscopy, the ACA was graded using the Scheie system by a single examiner masked to AS OCT findings. The ACA in a particular quadrant was classified as closed if the posterior trabecular meshwork could not be seen on gonioscopy. A closed ACA on AS OCT imaging was defined by the presence of any contact between the iris and angle wall anterior to the scleral spur. After excluding eyes with poor image quality, a total of 423 right eyes were included in the analysis. A closed angle in at least 1 quadrant was observed in 59% of the eyes by AS OCT and in 33% of the eyes by gonioscopy (P<0.001), with fair agreement between the two methods (kappa = 0.40). The frequency of closed angles by AS OCT and gonioscopy were 48% versus 29% superiorly, 43% versus 22% inferiorly, 18% versus 14% nasally, and 12% versus 20% temporally, respectively. Of the 119 of 1692 quadrants that were closed on gonioscopy but open on AS OCT, a steep iris profile was present in 61 (51%) of 119 quadrants on AS OCT, and of the 276 of 1692 quadrants that were open on gonioscopy but closed on AS OCT, 196 (71%) of 276 quadrants showed short iridoangle contact on AS OCT. The highest rates of closed angles on gonioscopy and AS OCT images were observed in the superior quadrant. Anterior segment OCT tended to detect more closed ACAs than gonioscopy, particularly in the superior and inferior quadrants. Variations in the iris profile and level of iridoangle contact also may explain some of the differences seen between gonioscopy and AS OCT.
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
EMIIM Wetting Properties & Their Effect on Electrospray Thruster Design
2012-03-01
tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface. Ideally this angle is a function of the...3 3 Picture of a Taylor cone formed at AFRL, note bubbles present. . . . . . . 3 4 Titanium electrode grids in use at AFRL...cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in Figure 3.[7] Emitters are precisely aligned with openings
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and, as the patient's mouth opens, the pen records on graph paper the angle between the upper and the lower jaw. (b) Classification. Class I (general controls). The device is exempt from the premarket...
Genetics Home Reference: early-onset glaucoma
... called a syndrome. If glaucoma appears before the age of 5 without other associated abnormalities, it is called primary congenital glaucoma. Other individuals experience early onset of primary open-angle glaucoma, the most ...
... is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye ... Media Policies and Other Important Links NEI Employee Emergency Information NEI Intranet (Employees Only) *PDF files require ...
... in their Asian counterparts. Normal Tension Glaucoma affects Japanese Japanese populations, however, have a substantially higher incidence of ... factor for open angle glaucoma). In fact, a Japanese study found NTG accounted for 92 percent of ...
Density Waves in Saturn's Rings from Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.
2005-12-01
The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.
Li, Junhua; Feng, Yifan; Sung, Mi Sun; Lee, Tae Hee; Park, Sang Woo
2017-11-28
Previous studies have associated the Interleukin-1 (IL-1) gene clusters polymorphisms with the risk of primary open-angle glaucoma (POAG). However, the results were not consistent. Here, we performed a meta-analysis to evaluate the role of IL-1 gene clusters polymorphisms in POAG susceptibility. PubMed, EMBASE and Cochrane Library (up to July 15, 2017) were searched by two independent investigators. All case-control studies investigating the association between single-nucleotide polymorphisms (SNPs) of IL-1 gene clusters and POAG risk were included. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for quantifying the strength of association that has been involved in at least two studies. Five studies on IL-1β rs16944 (c. -511C > T) (1053 cases and 986 controls), 4 studies on IL-1α rs1800587 (c. -889C > T) (822 cases and 714 controls), and 4 studies on IL-1β rs1143634 (c. +3953C > T) (798 cases and 730 controls) were included. The results suggest that all three SNPs were not associated with POAG risk. Stratification analyses indicated that the rs1143634 has a suggestive associated with high tension glaucoma (HTG) under dominant (P = 0.03), heterozygote (P = 0.04) and allelic models (P = 0.02), however, the weak association was nullified after Bonferroni adjustments for multiple tests. Based on current meta-analysis, we indicated that there is lack of association between the three SNPs of IL-1 and POAG. However, this conclusion should be interpreted with caution and further well designed studies with large sample-size are required to validate the conclusion as low statistical powers.
Short stature Revealing a Pycnodysostosis: A Case Report
Aynaou, Hayat; Skiker, Imane; Latrech, Hanane
2016-01-01
Introduction: Pycnodysostosis is a rare genetic disease characterized by osteosclerosis and bone fragility. The clinical aspects are varied including short stature, acro-osteolysis of distal phalanges, and dysplasia of the clavicles. Oral and maxillofacial manifestations of this disease are very clear. The head is usually large, a beaked nose, obtuse mandibular angle, and both maxilla and mandible are hypoplastic. Dental abnormalities are common. We report a case with the typical clinical and radiological characteristics of the Pycnodysostosis associated with a conductive hearing loss, an association rarely reported. Case Presentation: A 12-year-female was admitted in our institute for short stature with a dysmorphic facies for evaluation. The patient reported a history of multiple fractures of the long bones after a trivial fall. On physical examination, she had the following features: short stature, limited mouth opening, short hands and feet with dysplastic nails; frontal and occipital bossing; and hypoplasia of the maxilla and mandible. Examination of the mouth: grooved palate, caries of the teeth, impacted and malposed teeth, persistent deciduous teeth and missing teeth. Laboratory investigations were normal. The radiographic examination showed a generalized increase in the bone density, slight condensation of the skull base and a very open mandibular angle. X-rays showed tapered phalanges with acro-osteolysis of the distal phalanges. A symptomatic treatment was proposed based on fracture prevention, oral hygiene, frequent dental visits and psychiatric support. Conclusion: The clinical and radiological features are the bases for the diagnosis of this disease. It is important to make the diagnosis as early as possible in order to plan the treatment and to provide a better life quality to the patients. PMID:27703936
Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.
Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi
2016-03-03
Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.
On the impact of large angle CMB polarization data on cosmological parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo
We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz datamore » to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.« less
Apparatus For Laminating Segmented Core For Electric Machine
Lawrence, Robert Anthony; Stabel, Gerald R
2003-06-17
A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.
Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirtz, M.K.; Samples, J.R.; Kramer, P.L.
1997-02-01
Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57more » refs., 3 figs., 3 tabs.« less
A Relationship Between Constraint and the Critical Crack Tip Opening Angle
NASA Technical Reports Server (NTRS)
Johnston, William M.; James, Mark A.
2009-01-01
Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.
Liu, Ziyuan; Wang, Hongli; Fan, Dongsheng; Wang, Wei
2018-02-01
Recent studies revealing genetic connection of primary open angle glaucoma (POAG) and amyotrophic lateral sclerosis (ALS) have received particular attention. Exploring the evidence for common pathogenesis of these two progressive neurological disorders may assist in understanding the mechanism and searching for new treatment. Retinal nerve fiber layer (RNFL) defect and corresponding visual field (VF) impairment are well known neuropathy signs in glaucoma. In our study, thickness of certain retinal layer in ALS patients was analyzed to detect ganglion cell's soma and axon, and for first time visual field was examined for ALS. The correlation of retinal involvement and ALS progression were also investigated. The results were compared with those of POAG. The study may provide new knowledge for these two neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Blindness following bleb-related infection in open angle glaucoma.
Yamada, Hiroki; Sawada, Akira; Kuwayama, Yasuaki; Yamamoto, Tetsuya
2014-11-01
To estimate the risk of blindness following bleb-related infection after trabeculectomy with mitomycin C in open angle glaucoma, utilizing data obtained from two prospective multicenter studies. The incidence of bleb-related infection in open angle glaucoma after the first or second glaucoma surgery was calculated using a Kaplan-Meier analysis and data from the Collaborative Bleb-related Infection Incidence and Treatment Study (CBIITS). The rate of blindness following bleb-related infection was calculated using data from the Japan Glaucoma Society Survey of Bleb-related Infection (JGSSBI). Finally, the rate of blindness following bleb-related infection after filtering surgery was estimated based on the above two data sets. Blindness was defined as an eye with a visual acuity of 0.04 or less. The incidences of development of bleb-related infection at 5 years were 2.6 ± 0.7 % (calculated cumulative incidence ± standard error) for all infections and 0.9 ± 0.4 % for endophthalmitis in all cases in the CBIITS data. The rates of blindness in the JGSSBI data were 14 % for the total cases with bleb-related infection and 30 % for the endophthalmitis subgroup. The rate of blindness developing within 5 years following trabeculectomy was estimated to be approximately 0.24-0.36 %. The rate of blindness following bleb-related infection within 5 years after trabeculectomy is considerable and thus careful consideration must be given to the indication for trabeculectomy and the selection of surgical techniques.
NASA Astrophysics Data System (ADS)
Hunter, N. J. R.; Weinberg, R. F.; Wilson, C. J. L.; Law, R. D.
2018-07-01
Variations in flow kinematics influence the type of crystallographic preferred orientations (CPOs) in plastically deformed quartz, yet we currently lack a robust means of quantifying the diagnostic symmetries that develop in the c-axis (0001) pole figure. In this contribution, we demonstrate how the symmetry of common c-axis topologies may be quantified by analysing the intensity distribution across a line transect of the pole figure margin. A symmetry value (S) measures the relative difference in intensities between marginal girdle maxima in the pole figure, and thus the degree to which the pole figure defines orthorhombic or monoclinic end member symmetries. This provides a semi-quantitative depiction of whether the rocks underwent coaxial or non-coaxial flow, respectively, and may subsequently be used to quantify other topological properties, such as the opening angle of girdle maxima. The open source Matlab® toolbox MTEX is used to quantify pole figure symmetries in quartzite samples from the Main Central Thrust (NW Himalaya) and the Moine Thrust (NW Scotland).
Broadband and polarization reflectors in the lookdown, Selene vomer
Zhao, Shulei; Brady, Parrish Clawson; Gao, Meng; Etheredge, Robert Ian; Kattawar, George W.; Cummings, Molly E.
2015-01-01
Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields. PMID:25673301
A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348
A vision-based dynamic rotational angle measurement system for large civil structures.
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.
Comparing approaches to screening for angle closure in older Chinese adults
Andrews, J; Chang, D S; Jiang, Y; He, M; Foster, P J; Munoz, B; Kashiwagi, K; Friedman, D S
2012-01-01
Aims Primary angle-closure glaucoma is expected to account for nearly 50% of bilateral glaucoma blindness by 2020. This study was conducted to assess the performance of the scanning peripheral anterior chamber depth analyzer (SPAC) and limbal anterior chamber depth (LACD) as screening methods for angle closure. Methods This study assessed two clinical populations to compare SPAC, LACD, and gonioscopy: the Zhongshan Angle-closure Prevention Trial, from which 370 patients were eligible as closed-angle participants and the Liwan Eye Study, from which 72 patients were selected as open-angle controls. Eligible participants were assessed by SPAC, LACD, and gonioscopy. Results Angle status was defined by gonioscopy. Area under the receiver operating characteristic curve (AUROC) for SPAC was 0.92 (0.89–0.95) whereas AUROC for LACD was 0.94 (0.92–0.97). Using conventional cutoff points, sensitivity/specificity was 93.0%/70.8% for SPAC and 94.1%/87.5% for LACD. Sequential testing using both SPAC and LACD increased the specificity to 94.4% and decreased the sensitivity to 87.0%. Conclusion SPAC has significantly lower specificity than LACD measurement using conventional cutoffs but interpretation of the findings can be performed by modestly trained personnel. PMID:21997356
Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-02-08
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.
Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-01-01
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765
Preliminary eddy current modelling for the large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin
1994-01-01
This report presents some recent developments in the mathematical modeling of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) at NASA Langley Research Center. It is shown that these effects are significant, but may be amenable to analysis, modeling and measurement. A theoretical framework is presented, together with a comparison of computed and experimental data.
Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production
NASA Astrophysics Data System (ADS)
Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.
2014-12-01
There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.
A Model fot the Sources of the Slow Solar Wind
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.
2011-01-01
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to approx.60deg, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model. Key words: solar wind - Sun: corona - Sun: magnetic topology
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A
2016-03-01
To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Evaluation of a Wedge on a Force Balance as a Flow Angle Probe
1975-02-01
pitot rake attached to the Captive Trajectory System (CTS), and (3) measurement of flow angles in the same region with a probe attached to the CTS...localized pressures. Although it was the characteristics of supersonic flow which led to this conclusion, and even though the wedge design was based...vary the open area from near zero to 10 percent. Suction through the porous walls is used to maximize flow uniformity and to develop supersonic flow
Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P
2017-12-07
The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...
Analysis of Slug Test Response in a Fracture of a Large Dipping Angle
NASA Astrophysics Data System (ADS)
Chen, C.
2013-12-01
A number of cross-borehole slug tests were conducted in a Cenozoic folded sandstone formation, where a fracture has a dipping angle as large as 47°. As all the slug test models available in literature assume the formation to be horizontal, a slug test model taking into account the dipping angle effect is developed herein. Due to the presence of the dipping angle, there is a uniform regional groundwater flow, and the flow field generated by the test is not raidally symmetrical with respect to the test well. When the fracture hydraulic conductivity is relatively low, a larger dipping angle causes larger wellbore flow rates, leading to a faster recovery of the non-oscillatory test response. When the fracture hydraulic conductivity is relatively high, a larger dipping angle causes smaller wellbore heads, resulting in an increase of amplitude of the oscillatory test response; yet little influence on the frequency of oscillation. In general, neglecting the dipping angle may lead to an overestimate of hydraulic conductivity and an underestimate of the storage coefficient. The dipping angle effect is more pronounced for a larger storage coefficient, being less sensitive to transmissivity. An empirical relationship is developed for the minimum dipping angle, smaller than which the dipping angle effect can be safely neglected, as a function of the dimensionless storage coefficient. This empirical relationship helps evaluate whether or not the dipping angle needs to be considered in data analysis. The slug test data in the fracture of a 47°dipping angle is analyzed using the current model, and it is found that neglecting the dip angle can result in a 30% overestimate of transmissivity and a 61% underestimate of the storage coefficient.
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions.
Woellner, C F; Machado, L D; Autreto, P A S; de Sousa, J M; Galvao, D S
2018-02-14
The behavior of nanostructures under high strain-rate conditions has been the object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high-velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still unknown. In this work, we have investigated the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities, using fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations. CNS (BNS) are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in their close-ended analogs, such as nanotubes. Our results show that collision products are mainly determined by impact velocities and by two orientation angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations, large-scale deformations and nanoscroll fractures could occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions
NASA Astrophysics Data System (ADS)
Woellner, C. F.; Machado, L. D.; Autreto, P. A. S.; de Sousa, J. M.; Galvao, D. S.
The behavior of nanostructures under high strain-rate conditions has been object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still not completely understood. In this work we have investigated through fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities,. CNS (BNS) nanoscrolls are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in close-ended analogues, such as nanotubes. Our results show that the collision products are mainly determined by impact velocities and by two impact angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations large-scale deformations and nanoscroll fracture can occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
33 CFR 157.21 - Subdivision and stability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... account sinkage, heel, and trim, must be below the lower edge of an opening through which progressive.... (b) In the final stage of flooding, the angle of heel due to unsymmetrical flooding must not exceed...
33 CFR 157.21 - Subdivision and stability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... account sinkage, heel, and trim, must be below the lower edge of an opening through which progressive.... (b) In the final stage of flooding, the angle of heel due to unsymmetrical flooding must not exceed...
Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.
1997-11-01
An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less
Rutowski, Ronald L; Warrant, Eric J
2002-02-01
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.
3D superwide-angle one-way propagator and its application in seismic modeling and imaging
NASA Astrophysics Data System (ADS)
Jia, Xiaofeng; Jiang, Yunong; Wu, Ru-Shan
2018-07-01
Traditional one-way wave-equation based propagators have been widely used in past decades. Comparing to two-way propagators, one-way methods have higher efficiency and lower memory demands. These two features are especially important in solving large-scale 3D problems. However, regular one-way propagators cannot simulate waves that propagate in large angles within 90° because of their inherent wide angle limitation. Traditional one-way can only propagate along the determined direction (e.g., z-direction), so simulation of turning waves is beyond the ability of one-way methods. We develop 3D superwide-angle one-way propagator to overcome angle limitation and to simulate turning waves with superwide-angle propagation angle (>90°) for modeling and imaging complex geological structures. Wavefields propagating along vertical and horizontal directions are combined using typical stacking scheme. A weight function related to the propagation angle is used for combining and updating wavefields in each propagating step. In the implementation, we use graphics processing units (GPU) to accelerate the process. Typical workflow is designed to exploit the advantages of GPU architecture. Numerical examples show that the method achieves higher accuracy in modeling and imaging steep structures than regular one-way propagators. Actually, superwide-angle one-way propagator can be applied based on any one-way method to improve the effects of seismic modeling and imaging.
NASA Astrophysics Data System (ADS)
Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime
2017-09-01
The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.