Science.gov

Sample records for large phylogenetic trees

  1. Phylo.io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web

    PubMed Central

    Robinson, Oscar; Dylus, David; Dessimoz, Christophe

    2016-01-01

    Phylogenetic trees are pervasively used to depict evolutionary relationships. Increasingly, researchers need to visualize large trees and compare multiple large trees inferred for the same set of taxa (reflecting uncertainty in the tree inference or genuine discordance among the loci analyzed). Existing tree visualization tools are however not well suited to these tasks. In particular, side-by-side comparison of trees can prove challenging beyond a few dozen taxa. Here, we introduce Phylo.io, a web application to visualize and compare phylogenetic trees side-by-side. Its distinctive features are: highlighting of similarities and differences between two trees, automatic identification of the best matching rooting and leaf order, scalability to large trees, high usability, multiplatform support via standard HTML5 implementation, and possibility to store and share visualizations. The tool can be freely accessed at http://phylo.io and can easily be embedded in other web servers. The code for the associated JavaScript library is available at https://github.com/DessimozLab/phylo-io under an MIT open source license. PMID:27189561

  2. Phylo.io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web.

    PubMed

    Robinson, Oscar; Dylus, David; Dessimoz, Christophe

    2016-08-01

    Phylogenetic trees are pervasively used to depict evolutionary relationships. Increasingly, researchers need to visualize large trees and compare multiple large trees inferred for the same set of taxa (reflecting uncertainty in the tree inference or genuine discordance among the loci analyzed). Existing tree visualization tools are however not well suited to these tasks. In particular, side-by-side comparison of trees can prove challenging beyond a few dozen taxa. Here, we introduce Phylo.io, a web application to visualize and compare phylogenetic trees side-by-side. Its distinctive features are: highlighting of similarities and differences between two trees, automatic identification of the best matching rooting and leaf order, scalability to large trees, high usability, multiplatform support via standard HTML5 implementation, and possibility to store and share visualizations. The tool can be freely accessed at http://phylo.io and can easily be embedded in other web servers. The code for the associated JavaScript library is available at https://github.com/DessimozLab/phylo-io under an MIT open source license. PMID:27189561

  3. Phylo.io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web.

    PubMed

    Robinson, Oscar; Dylus, David; Dessimoz, Christophe

    2016-08-01

    Phylogenetic trees are pervasively used to depict evolutionary relationships. Increasingly, researchers need to visualize large trees and compare multiple large trees inferred for the same set of taxa (reflecting uncertainty in the tree inference or genuine discordance among the loci analyzed). Existing tree visualization tools are however not well suited to these tasks. In particular, side-by-side comparison of trees can prove challenging beyond a few dozen taxa. Here, we introduce Phylo.io, a web application to visualize and compare phylogenetic trees side-by-side. Its distinctive features are: highlighting of similarities and differences between two trees, automatic identification of the best matching rooting and leaf order, scalability to large trees, high usability, multiplatform support via standard HTML5 implementation, and possibility to store and share visualizations. The tool can be freely accessed at http://phylo.io and can easily be embedded in other web servers. The code for the associated JavaScript library is available at https://github.com/DessimozLab/phylo-io under an MIT open source license.

  4. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  5. Terraces in phylogenetic tree space.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Steel, Mike

    2011-07-22

    A key step in assembling the tree of life is the construction of species-rich phylogenies from multilocus--but often incomplete--sequence data sets. We describe previously unknown structure in the landscape of solutions to the tree reconstruction problem, comprising sometimes vast "terraces" of trees with identical quality, arranged on islands of phylogenetically similar trees. Phylogenetic ambiguity within a terrace can be characterized efficiently and then ameliorated by new algorithms for obtaining a terrace's maximum-agreement subtree or by identifying the smallest set of new targets for additional sequencing. Algorithms to find optimal trees or estimate Bayesian posterior tree distributions may need to navigate strategically in the neighborhood of large terraces in tree space.

  6. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  7. On Tree-Based Phylogenetic Networks.

    PubMed

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  8. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  9. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia).

    PubMed

    Bininda-Emonds, O R; Gittleman, J L; Purvis, A

    1999-05-01

    One way to build larger, more comprehensive phylogenies is to combine the vast amount of phylogenetic information already available. We review the two main strategies for accomplishing this (combining raw data versus combining trees), but employ a relatively new variant of the latter: supertree construction. The utility of one supertree technique, matrix representation using parsimony analysis (MRP), is demonstrated by deriving a complete phylogeny for all 271 extant species of the Carnivora from 177 literature sources. Beyond providing a 'consensus' estimate of carnivore phylogeny, the tree also indicates taxa for which the relationships remain controversial (e.g. the red panda; within canids, felids, and hyaenids) or have not been studied in any great detail (e.g. herpestids, viverrids, and intrageneric relationships in the procyonids). Times of divergence throughout the tree were also estimated from 74 literature sources based on both fossil and molecular data. We use the phylogeny to show that some lineages within the Mustelinae and Canidae contain significantly more species than expected for their age, illustrating the tree's utility for studies of macroevolution. It will also provide a useful foundation for comparative and conservational studies involving the carnivores.

  10. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  11. Matching split distance for unrooted binary phylogenetic trees.

    PubMed

    Bogdanowicz, Damian; Giaro, Krzysztof

    2012-01-01

    The reconstruction of evolutionary trees is one of the primary objectives in phylogenetics. Such a tree represents the historical evolutionary relationship between different species or organisms. Tree comparisons are used for multiple purposes, from unveiling the history of species to deciphering evolutionary associations among organisms and geographical areas. In this paper, we propose a new method of defining distances between unrooted binary phylogenetic trees that is especially useful for relatively large phylogenetic trees. Next, we investigate in detail the properties of one example of these metrics, called the Matching Split distance, and describe how the general method can be extended to nonbinary trees.

  12. Transforming phylogenetic networks: Moving beyond tree space.

    PubMed

    Huber, Katharina T; Moulton, Vincent; Wu, Taoyang

    2016-09-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks.

  13. Encoding phylogenetic trees in terms of weighted quartets.

    PubMed

    Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles

    2008-04-01

    One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.

  14. Using tree diversity to compare phylogenetic heuristics

    PubMed Central

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-01-01

    Background Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Results Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Conclusion Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest. PMID:19426451

  15. Terrestrial apes and phylogenetic trees

    PubMed Central

    Arsuaga, Juan Luis

    2010-01-01

    The image that best expresses Darwin’s thinking is the tree of life. However, Darwin’s human evolutionary tree lacked almost everything because only the Neanderthals were known at the time and they were considered one extreme expression of our own species. Darwin believed that the root of the human tree was very deep and in Africa. It was not until 1962 that the root was shown to be much more recent in time and definitively in Africa. On the other hand, some neo-Darwinians believed that our family tree was not a tree, because there were no branches, but, rather, a straight stem. The recent years have witnessed spectacular discoveries in Africa that take us close to the origin of the human tree and in Spain at Atapuerca that help us better understand the origin of the Neanderthals as well as our own species. The final form of the tree, and the number of branches, remains an object of passionate debate. PMID:20445090

  16. Visual exploration of parameter influence on phylogenetic trees.

    PubMed

    Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana

    2014-01-01

    Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

  17. Relating phylogenetic trees to transmission trees of infectious disease outbreaks.

    PubMed

    Ypma, Rolf J F; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-11-01

    Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.

  18. Constructing Student Problems in Phylogenetic Tree Construction.

    ERIC Educational Resources Information Center

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  19. Quantifying MCMC exploration of phylogenetic tree space.

    PubMed

    Whidden, Chris; Matsen, Frederick A

    2015-05-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks.

  20. Quantifying MCMC Exploration of Phylogenetic Tree Space

    PubMed Central

    Whidden, Chris; Matsen, Frederick A.

    2015-01-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. PMID:25631175

  1. Tree thinking cannot taken for granted: challenges for teaching phylogenetics

    PubMed Central

    2008-01-01

    Tree thinking is an integral part of modern evolutionary biology, and a necessary precondition for phylogenetics and comparative analyses. Tree thinking has during the 20th century largely replaced group thinking, developmental thinking and anthropocentricism in biology. Unfortunately, however, this does not imply that tree thinking can be taken for granted. The findings reported here indicate that tree thinking is very much an acquired ability which needs extensive training. I tested a sample of undergraduate and graduate students of biology by means of questionnaires. Not a single student was able to correctly interpret a simple tree drawing. Several other findings demonstrate that tree thinking is virtually absent in students unless they are explicitly taught how to read evolutionary trees. Possible causes and implications of this mental bias are discussed. It seems that biological textbooks can be an important source of confusion for students. While group and developmental thinking have disappeared from most textual representations of evolution, they have survived in the evolutionary tree drawings of many textbooks. It is quite common for students to encounter anthropocentric trees and even trees containing stem groups and paraphyla. While these biases originate from the unconscious philosophical assumptions made by authors, the findings suggest that presenting unbiased evolutionary trees in biological publications is not merely a philosophical virtue but has also clear practical implications. PMID:18247075

  2. Tree thinking cannot taken for granted: challenges for teaching phylogenetics.

    PubMed

    Sandvik, Hanno

    2008-03-01

    Tree thinking is an integral part of modern evolutionary biology, and a necessary precondition for phylogenetics and comparative analyses. Tree thinking has during the 20th century largely replaced group thinking, developmental thinking and anthropocentrism in biology. Unfortunately, however, this does not imply that tree thinking can be taken for granted. The findings reported here indicate that tree thinking is very much an acquired ability which needs extensive training. I tested a sample of undergraduate and graduate students of biology by means of questionnaires. Not a single student was able to correctly interpret a simple tree drawing. Several other findings demonstrate that tree thinking is virtually absent in students unless they are explicitly taught how to read evolutionary trees. Possible causes and implications of this mental bias are discussed. It seems that biological textbooks can be an important source of confusion for students. While group and developmental thinking have disappeared from most textual representations of evolution, they have survived in the evolutionary tree drawings of many textbooks. It is quite common for students to encounter anthropocentric trees and even trees containing stem groups and paraphyla. While these biases originate from the unconscious philosophical assumptions made by authors, the findings suggest that presenting unbiased evolutionary trees in biological publications is not merely a philosophical virtue but has also clear practical implications.

  3. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  4. A metric for phylogenetic trees based on matching.

    PubMed

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard M E

    2012-01-01

    Comparing two or more phylogenetic trees is a fundamental task in computational biology. The simplest outcome of such a comparison is a pairwise measure of similarity, dissimilarity, or distance. A large number of such measures have been proposed, but so far all suffer from problems varying from computational cost to lack of robustness; many can be shown to behave unexpectedly under certain plausible inputs. For instance, the widely used Robinson-Foulds distance is poorly distributed and thus affords little discrimination, while also lacking robustness in the face of very small changes--reattaching a single leaf elsewhere in a tree of any size can instantly maximize the distance. In this paper, we introduce a new pairwise distance measure, based on matching, for phylogenetic trees. We prove that our measure induces a metric on the space of trees, show how to compute it in low polynomial time, verify through statistical testing that it is robust, and finally note that it does not exhibit unexpected behavior under the same inputs that cause problems with other measures. We also illustrate its usefulness in clustering trees, demonstrating significant improvements in the quality of hierarchical clustering as compared to the same collections of trees clustered using the Robinson-Foulds distance. PMID:22184263

  5. Identifiability of large phylogenetic mixture models.

    PubMed

    Rhodes, John A; Sullivant, Seth

    2012-01-01

    Phylogenetic mixture models are statistical models of character evolution allowing for heterogeneity. Each of the classes in some unknown partition of the characters may evolve by different processes, or even along different trees. Such models are of increasing interest for data analysis, as they can capture the variety of evolutionary processes that may be occurring across long sequences of DNA or proteins. The fundamental question of whether parameters of such a model are identifiable is difficult to address, due to the complexity of the parameterization. Identifiability is, however, essential to their use for statistical inference.We analyze mixture models on large trees, with many mixture components, showing that both numerical and tree parameters are indeed identifiable in these models when all trees are the same. This provides a theoretical justification for some current empirical studies, and indicates that extensions to even more mixture components should be theoretically well behaved. We also extend our results to certain mixtures on different trees, using the same algebraic techniques.

  6. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    ERIC Educational Resources Information Center

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  7. One Tree to Link Them All: A Phylogenetic Dataset for the European Tetrapoda

    PubMed Central

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-01-01

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty. PMID:25685620

  8. Student interpretations of phylogenetic trees in an introductory biology course.

    PubMed

    Dees, Jonathan; Momsen, Jennifer L; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge.

  9. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    PubMed Central

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  10. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    PubMed Central

    Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489

  11. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    PubMed Central

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  12. Trinets encode tree-child and level-2 phylogenetic networks.

    PubMed

    van Iersel, Leo; Moulton, Vincent

    2014-06-01

    Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that [Formula: see text] phylogenetic networks are encoded by their trinets, and also conjectured that all "recoverable" rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2 networks and binary tree-child networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets.

  13. Estimating phylogenetic trees from genome-scale data.

    PubMed

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data. PMID:25873435

  14. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects. PMID:21249334

  15. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  16. Edge-Related Loss of Tree Phylogenetic Diversity in the Severely Fragmented Brazilian Atlantic Forest

    PubMed Central

    Santos, Bráulio A.; Arroyo-Rodríguez, Víctor; Moreno, Claudia E.; Tabarelli, Marcelo

    2010-01-01

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PMID:20838613

  17. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction.

  18. morePhyML: improving the phylogenetic tree space exploration with PhyML 3.

    PubMed

    Criscuolo, Alexis

    2011-12-01

    PhyML is a widely used Maximum Likelihood (ML) phylogenetic tree inference software based on a standard hill-climbing method. Starting from an initial tree, the version 3 of PhyML explores the tree space by using "Nearest Neighbor Interchange" (NNI) or "Subtree Pruning and Regrafting" (SPR) tree swapping techniques in order to find the ML phylogenetic tree. NNI-based local searches are fast but can often get trapped in local optima, whereas it is expected that the larger (but slower to cover) SPR-based neighborhoods will lead to trees with higher likelihood. Here, I verify that PhyML infers more likely trees with SPRs than with NNIs in almost all cases. However, I also show that the SPR-based local search of PhyML often does not succeed at locating the ML tree. To improve the tree space exploration, I deliver a script, named morePhyML, which allows escaping from local optima by performing character reweighting. This ML tree search strategy, named ratchet, often leads to higher likelihood estimates. Based on the analysis of a large number of amino acid and nucleotide data, I show that morePhyML allows inferring more accurate phylogenetic trees than several other recently developed ML tree inference softwares in many cases.

  19. Minimizing phylogenetic number to find good evolutionary trees

    SciTech Connect

    Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sweedyk, E.; Warnow, T.

    1995-05-01

    Inferring phylogenetic trees is a fundamental problem in computational-biology. We present a new objective criterion, the phylogenetic number, for evaluating evolutionary trees for species defined by biomolecular sequences or other qualitative characters. The phylogenetic number of a tree T is the maximum number of times that any given character state arises in T. By contrast, the classical parsimony criterion measures the total number of times that different character states arise in T. We consider the following related problems: finding the tree with minimum phylogenetic number, and computing the phylogenetic number of a given topology in which only the leaves are labeled by species. When the number of states is bounded (as is the case for biomolecular sequence characters), we can solve the second problem in polynomial time. We can also compute a fixed-topology 2-phylogeny (when one exists) for an arbitrary number of states. This algorithm can be used to further distinguish trees that are equal under parsimony. We also consider a number of other related problems.

  20. Characterization of a branch of the phylogenetic tree

    SciTech Connect

    Samuel, Stuart A.; Weng, Gezhi

    2003-04-11

    We use a combination of analytic models and computer simulations to gain insight into the dynamics of evolution. Our results suggest that certain interesting phenomena should eventually emerge from the fossil record. For example, there should be a ''tortoise and hare effect'': Those genera with the smallest species death rate are likely to survive much longer than genera with large species birth and death rates. A complete characterization of the behavior of a branch of the phylogenetic tree corresponding to a genus and accurate mathematical representations of the various stages are obtained. We apply our results to address certain controversial issues that have arisen in paleontology such as the importance of punctuated equilibrium and whether unique Cambrian phyla have survived to the present.

  1. Large-scale analysis of phylogenetic search behavior.

    PubMed

    Park, Hyun Jung; Sul, Seung-Jin; Williams, Tiffani L

    2010-01-01

    Phylogenetic analysis is used in all branches of biology with applications ranging from studies on the origin of human populations to investigations of the transmission patterns of HIV. Most phylogenetic analyses rely on effective heuristics for obtaining accurate trees. However, relatively little work has been done to analyze quantitatively the behavior of phylogenetic heuristics in tree space. A better understanding of local search behavior can facilitate the design of better heuristics, which ultimately lead to more accurate depictions of the true evolutionary relationships. In this paper, we present new and novel insights into local search behavior for maximum parsimony on three biological datasets consisting of 44, 60, and 174 taxa. By analyzing all trees from search, we find that, as the search algorithm climbs the hill to local optima, the trees in the neighborhood surrounding the current solution improve as well. Furthermore, the search is quite robust to a small number of randomly selected neighbors. Thus, our work shows how to gain insights into the behavior of local search algorithm by exploring a large diverse collection of trees.

  2. Phylogenetic classification and the universal tree.

    PubMed

    Doolittle, W F

    1999-06-25

    From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a "universal tree of life," taking it as the basis for a "natural" hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If "chimerism" or "lateral gene transfer" cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the "true tree," not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished. PMID:10381871

  3. MrEnt: an editor for publication-quality phylogenetic tree illustrations.

    PubMed

    Zuccon, Alessandro; Zuccon, Dario

    2014-09-01

    We developed MrEnt, a Windows-based, user-friendly software that allows the production of complex, high-resolution, publication-quality phylogenetic trees in few steps, directly from the analysis output. The program recognizes the standard Nexus tree format and the annotated tree files produced by BEAST and MrBayes. MrEnt combines in a single software a large suite of tree manipulation functions (e.g. handling of multiple trees, tree rotation, character mapping, node collapsing, compression of large clades, handling of time scale and error bars for chronograms) with drawing tools typical of standard graphic editors, including handling of graphic elements and images. The tree illustration can be printed or exported in several standard formats suitable for journal publication, PowerPoint presentation or Web publication.

  4. New algorithms for reconstructing phylogenetic trees

    SciTech Connect

    Dress, A.

    1994-12-31

    Since the time of Linne, classification of living beings into subspecies, species, orders, families etc. has been an important task in biology. With the advent of molecular biology, many more data have become available which can be exploited for this purpose using comparative sequence analysis, while the sheer amount of these data stored presently in biomolecular data bases make automated classification procedures unavoidable. Consequently, many algorithms have been developed in the last 25 years to support this task. In the lecture, an amazingly successful polynomial algorithm for analysing all sorts of distance data derived from sequence analysis (or elsewhere) will be presented which simultaneously highlights phylogenetic similarity and similarity caused by convergent evolution. In addition to sketching the mathematics on which the algorithm is based and discussing its implementation (including some interesting computer graphics aspects), various proper biological examples will be presented which stretch from the analysis of data relating to the origin of life and the first bifurcations into the various {open_quote}kingdoms of life{close_quote} to the analysis of data relating to, say, the phylogenetic history of mammals or that of the AIDS or the Influenca virus family.

  5. Which Phylogenetic Networks are Merely Trees with Additional Arcs?

    PubMed Central

    Francis, Andrew R.; Steel, Mike

    2015-01-01

    A binary phylogenetic network may or may not be obtainable from a tree by the addition of directed edges (arcs) between tree arcs. Here, we establish a precise and easily tested criterion (based on “2-SAT”) that efficiently determines whether or not any given network can be realized in this way. Moreover, the proof provides a polynomial-time algorithm for finding one or more trees (when they exist) on which the network can be based. A number of interesting consequences are presented as corollaries; these lead to some further relevant questions and observations, which we outline in the conclusion. PMID:26070685

  6. Which Phylogenetic Networks are Merely Trees with Additional Arcs?

    PubMed

    Francis, Andrew R; Steel, Mike

    2015-09-01

    A binary phylogenetic network may or may not be obtainable from a tree by the addition of directed edges (arcs) between tree arcs. Here, we establish a precise and easily tested criterion (based on "2-SAT") that efficiently determines whether or not any given network can be realized in this way. Moreover, the proof provides a polynomial-time algorithm for finding one or more trees (when they exist) on which the network can be based. A number of interesting consequences are presented as corollaries; these lead to some further relevant questions and observations, which we outline in the conclusion.

  7. A new algorithm to construct phylogenetic networks from trees.

    PubMed

    Wang, J

    2014-03-06

    Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.

  8. Reconstruction of phylogenetic trees using the ant colony optimization paradigm.

    PubMed

    Perretto, Mauricio; Lopes, Heitor Silvério

    2005-01-01

    We developed a new approach for the reconstruction of phylogenetic trees using ant colony optimization metaheuristics. A tree is constructed using a fully connected graph and the problem is approached similarly to the well-known traveling salesman problem. This methodology was used to develop an algorithm for constructing a phylogenetic tree using a pheromone matrix. Two data sets were tested with the algorithm: complete mitochondrial genomes from mammals and DNA sequences of the p53 gene from several eutherians. This new methodology was found to be superior to other well-known softwares, at least for this data set. These results are very promising and suggest more efforts for further developments. PMID:16342043

  9. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. PMID:27383815

  10. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.

  11. Reliable Phylogenetic Trees Building: A New Web Interface for FIGENIX.

    PubMed

    Paganini, Julien; Gouret, Philippe

    2012-01-01

    The community needed a reliable and user friendly tool to quickly produce robust phylogenetic trees which are crucial in evolutionary studies and genomes' functional annotation. FIGENIX is software dedicated to this and was published in 2005. Several laboratories around the world use it in their research, but it was difficult to use for non-expert users, thus we developed a new graphical user interface for the benefit of all biologists.

  12. CVTree: a phylogenetic tree reconstruction tool based on whole genomes.

    PubMed

    Qi, Ji; Luo, Hong; Hao, Bailin

    2004-07-01

    Composition Vector Tree (CVTree) implements a systematic method of inferring evolutionary relatedness of microbial organisms from the oligopeptide content of their complete proteomes (http://cvtree.cbi.pku.edu.cn). Since the first bacterial genomes were sequenced in 1995 there have been several attempts to infer prokaryote phylogeny from complete genomes. Most of them depend on sequence alignment directly or indirectly and, in some cases, need fine-tuning and adjustment. The composition vector method circumvents the ambiguity of choosing the genes for phylogenetic reconstruction and avoids the necessity of aligning sequences of essentially different length and gene content. This new method does not contain 'free' parameter and 'fine-tuning'. A bootstrap test for a phylogenetic tree of 139 organisms has shown the stability of the branchings, which support the small subunit ribosomal RNA (SSU rRNA) tree of life in its overall structure and in many details. It may provide a quick reference in prokaryote phylogenetics whenever the proteome of an organism is available, a situation that will become commonplace in the near future.

  13. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.

    PubMed

    Letunic, Ivica; Bork, Peer

    2011-07-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. In addition to classical tree viewer functions, iTOL offers many novel ways of annotating trees with various additional data. Current version introduces numerous new features and greatly expands the number of supported data set types. Trees can be interactively manipulated and edited. A free personal account system is available, providing management and sharing of trees in user defined workspaces and projects. Export to various bitmap and vector graphics formats is supported. Batch access interface is available for programmatic access or inclusion of interactive trees into other web services.

  14. Model checking software for phylogenetic trees using distribution and database methods.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2013-01-01

    Model checking, a generic and formal paradigm stemming from computer science based on temporal logics, has been proposed for the study of biological properties that emerge from the labeling of the states defined over the phylogenetic tree. This strategy allows us to use generic software tools already present in the industry. However, the performance of traditional model checking is penalized when scaling the system for large phylogenies. To this end, two strategies are presented here. The first one consists of partitioning the phylogenetic tree into a set of subgraphs each one representing a subproblem to be verified so as to speed up the computation time and distribute the memory consumption. The second strategy is based on uncoupling the information associated to each state of the phylogenetic tree (mainly, the DNA sequence) and exporting it to an external tool for the management of large information systems. The integration of all these approaches outperforms the results of monolithic model checking and helps us to execute the verification of properties in a real phylogenetic tree. PMID:24231143

  15. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014).

  16. A web-based Tree View (TV) program for the visualization of phylogenetic trees.

    PubMed

    Zhai, Yufeng; Tchieu, Jason; Saier, Milton H

    2002-01-01

    We designed a web-based program, Tree View (TV), which uses a dynamic data structure algorithm to draw the phylogenetic tree for a family of homologous proteins. This program has a user-friendly interface and can be easily implemented into other programs for convenient protein sequence analysis. It is available at our web site: http://www.biology.ucsd.edu-yzhai/biotools.html.

  17. Climate Change Impacts on the Tree of Life: Changes in Phylogenetic Diversity Illustrated for Acropora Corals

    PubMed Central

    Faith, Daniel P.; Richards, Zoe T.

    2012-01-01

    The possible loss of whole branches from the tree of life is a dramatic, but under-studied, biological implication of climate change. The tree of life represents an evolutionary heritage providing both present and future benefits to humanity, often in unanticipated ways. Losses in this evolutionary (evo) life-support system represent losses in “evosystem” services, and are quantified using the phylogenetic diversity (PD) measure. High species-level biodiversity losses may or may not correspond to high PD losses. If climate change impacts are clumped on the phylogeny, then loss of deeper phylogenetic branches can mean disproportionately large PD loss for a given degree of species loss. Over time, successive species extinctions within a clade each may imply only a moderate loss of PD, until the last species within that clade goes extinct, and PD drops precipitously. Emerging methods of “phylogenetic risk analysis” address such phylogenetic tipping points by adjusting conservation priorities to better reflect risk of such worst-case losses. We have further developed and explored this approach for one of the most threatened taxonomic groups, corals. Based on a phylogenetic tree for the corals genus Acropora, we identify cases where worst-case PD losses may be avoided by designing risk-averse conservation priorities. We also propose spatial heterogeneity measures changes to assess possible changes in the geographic distribution of corals PD. PMID:24832524

  18. Mesoamerican tree squirrels evolution (Rodentia: Sciuridae): a molecular phylogenetic analysis.

    PubMed

    Villalobos, Federico; Gutierrez-Espeleta, Gustavo

    2014-06-01

    The tribe Sciurini comprehends the genera Sciurus, Syntheosiurus, Microsciurus, Tamiasciurus and Rheinthrosciurus. The phylogenetic relationships within Sciurus have been only partially done, and the relationship between Mesoamerican species remains unsolved. The phylogenetic relationships of the Mesoamerican tree squirrels were examined using molecular data. Sequence data publicly available (12S, 16S, CYTB mitochondrial genes and IRBP nuclear gene) and cytochrome B gene sequences of four previously not sampled Mesoamerican Sciurus species were analyzed under a Bayesian multispecies coalescence model. Phylogenetic analysis of the multilocus data set showed the neotropical tree squirrels as a monophyletic clade. The genus Sciurus was paraphyletic due to the inclusion of Microsciurus species (M. alfari and M. flaviventer). The South American species S. aestuans and S. stramineus showed a sister taxa relationship. Single locus analysis based on the most compact and complete data set (i.e. CYTB gene sequences), supported the monophyly of the South American species and recovered a Mesoamerican clade including S. aureogaster, S. granatensis and S. variegatoides. These results corroborated previous findings based on cladistic analysis of cranial and post-cranial characters. Our data support a close relationship between Mesoamerican Sciurus species and a sister relationship with South American species, and corroborates previous findings in relation to the polyphyly of Microsciurus and Syntheosciurus paraphyly.

  19. Reversible polymorphism-aware phylogenetic models and their application to tree inference.

    PubMed

    Schrempf, Dominik; Minh, Bui Quang; De Maio, Nicola; von Haeseler, Arndt; Kosiol, Carolin

    2016-10-21

    We present a reversible Polymorphism-Aware Phylogenetic Model (revPoMo) for species tree estimation from genome-wide data. revPoMo enables the reconstruction of large scale species trees for many within-species samples. It expands the alphabet of DNA substitution models to include polymorphic states, thereby, naturally accounting for incomplete lineage sorting. We implemented revPoMo in the maximum likelihood software IQ-TREE. A simulation study and an application to great apes data show that the runtimes of our approach and standard substitution models are comparable but that revPoMo has much better accuracy in estimating trees, divergence times and mutation rates. The advantage of revPoMo is that an increase of sample size per species improves estimations but does not increase runtime. Therefore, revPoMo is a valuable tool with several applications, from speciation dating to species tree reconstruction. PMID:27480613

  20. Fair-balance paradox, star-tree paradox, and Bayesian phylogenetics.

    PubMed

    Yang, Ziheng

    2007-08-01

    The star-tree paradox refers to the conjecture that the posterior probabilities for the three unrooted trees for four species (or the three rooted trees for three species if the molecular clock is assumed) do not approach 1/3 when the data are generated using the star tree and when the amount of data approaches infinity. It reflects the more general phenomenon of high and presumably spurious posterior probabilities for trees or clades produced by the Bayesian method of phylogenetic reconstruction, and it is perceived to be a manifestation of the deeper problem of the extreme sensitivity of Bayesian model selection to the prior on parameters. Analysis of the star-tree paradox has been hampered by the intractability of the integrals involved. In this article, I use Laplacian expansion to approximate the posterior probabilities for the three rooted trees for three species using binary characters evolving at a constant rate. The approximation enables calculation of posterior tree probabilities for arbitrarily large data sets. Both theoretical analysis of the analogous fair-coin and fair-balance problems and computer simulation for the tree problem confirmed the existence of the star-tree paradox. When the data size n --> infinity, the posterior tree probabilities do not converge to 1/3 each, but they vary among data sets according to a statistical distribution. This distribution is characterized. Two strategies for resolving the star-tree paradox are explored: (1) a nonzero prior probability for the degenerate star tree and (2) an increasingly informative prior forcing the internal branch length toward zero. Both appear to be effective in resolving the paradox, but the latter is simpler to implement. The posterior tree probabilities are found to be very sensitive to the prior.

  1. Why abundant tropical tree species are phylogenetically old

    PubMed Central

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W.

    2013-01-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  2. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  3. An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees

    PubMed Central

    2013-01-01

    Abstract A phylogenetic network is a model for reticulate evolution. A hybridization network is one type of phylogenetic network for a set of discordant gene trees and “displays” each gene tree. A central computational problem on hybridization networks is: given a set of gene trees, reconstruct the minimum (i.e., most parsimonious) hybridization network that displays each given gene tree. This problem is known to be NP-hard, and existing approaches for this problem are either heuristics or making simplifying assumptions (e.g., work with only two input trees or assume some topological properties). In this article, we develop an exact algorithm (called PIRNC) for inferring the minimum hybridization networks from multiple gene trees. The PIRNC algorithm does not rely on structural assumptions (e.g., the so-called galled networks). To the best of our knowledge, PIRNC is the first exact algorithm implemented for this formulation. When the number of reticulation events is relatively small (say, four or fewer), PIRNC runs reasonably efficient even for moderately large datasets. For building more complex networks, we also develop a heuristic version of PIRNC called PIRNCH. Simulation shows that PIRNCH usually produces networks with fewer reticulation events than those by an existing method. PIRNC and PIRNCH have been implemented as part of the software package called PIRN and is available online. PMID:24093230

  4. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    PubMed

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets. PMID:27295640

  5. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.

    PubMed

    Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang

    2013-01-01

    Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.

  6. Phylogenetic Tree Reconstruction Accuracy and Model Fit when Proportions of Variable Sites Change across the Tree

    PubMed Central

    Grievink, Liat Shavit; Penny, David; Hendy, Michael D.; Holland, Barbara R.

    2010-01-01

    Commonly used phylogenetic models assume a homogeneous process through time in all parts of the tree. However, it is known that these models can be too simplistic as they do not account for nonhomogeneous lineage-specific properties. In particular, it is now widely recognized that as constraints on sequences evolve, the proportion and positions of variable sites can vary between lineages causing heterotachy. The extent to which this model misspecification affects tree reconstruction is still unknown. Here, we evaluate the effect of changes in the proportions and positions of variable sites on model fit and tree estimation. We consider 5 current models of nucleotide sequence evolution in a Bayesian Markov chain Monte Carlo framework as well as maximum parsimony (MP). We show that for a tree with 4 lineages where 2 nonsister taxa undergo a change in the proportion of variable sites tree reconstruction under the best-fitting model, which is chosen using a relative test, often results in the wrong tree. In this case, we found that an absolute test of model fit is a better predictor of tree estimation accuracy. We also found further evidence that MP is not immune to heterotachy. In addition, we show that increased sampling of taxa that have undergone a change in proportion and positions of variable sites is critical for accurate tree reconstruction. PMID:20525636

  7. How Ecology and Landscape Dynamics Shape Phylogenetic Trees.

    PubMed

    Gascuel, Fanny; Ferrière, Régis; Aguilée, Robin; Lambert, Amaury

    2015-07-01

    Whether biotic or abiotic factors are the dominant drivers of clade diversification is a long-standing question in evolutionary biology. The ubiquitous patterns of phylogenetic imbalance and branching slowdown have been taken as supporting the role of ecological niche filling and spatial heterogeneity in ecological features, and thus of biotic processes, in diversification. However, a proper theoretical assessment of the relative roles of biotic and abiotic factors in macroevolution requires models that integrate both types of factors, and such models have been lacking. In this study, we use an individual-based model to investigate the temporal patterns of diversification driven by ecological speciation in a stochastically fluctuating geographic landscape. The model generates phylogenies whose shape evolves as the clade ages. Stabilization of tree shape often occurs after ecological saturation, revealing species turnover caused by competition and demographic stochasticity. In the initial phase of diversification (allopatric radiation into an empty landscape), trees tend to be unbalanced and branching slows down. As diversification proceeds further due to landscape dynamics, balance and branching tempo may increase and become positive. Three main conclusions follow. First, the phylogenies of ecologically saturated clades do not always exhibit branching slowdown. Branching slowdown requires that competition be wide or heterogeneous across the landscape, or that the characteristics of landscape dynamics vary geographically. Conversely, branching acceleration is predicted under narrow competition or frequent local catastrophes. Second, ecological heterogeneity does not necessarily cause phylogenies to be unbalanced--short time in geographical isolation or frequent local catastrophes may lead to balanced trees despite spatial heterogeneity. Conversely, unbalanced trees can emerge without spatial heterogeneity, notably if competition is wide. Third, short isolation time

  8. Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods.

    PubMed

    Bernardi, Massimo; Angielczyk, Kenneth D; Mitchell, Jonathan S; Ruta, Marcello

    2016-09-01

    Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time. In this study, we examined an empirical phylogeny of fossil tetrapods during several time intervals, and studied how temporal constraints manifested in patterns of tree imbalance and character change. The results indicate that the impact of temporal constraints on tree shape is minimal and highlights the stability through time of the reference tetrapod phylogeny. Unexpected values of imbalance for Mississippian and Pennsylvanian time slices strongly support the hypothesis that the Carboniferous was a period of explosive tetrapod radiation. Several significant diversification shifts take place in the Mississippian and underpin increased terrestrialization among the earliest limbed vertebrates. Character incompatibility is relatively high at the beginning of tetrapod history, but quickly decreases to a relatively stable lower level, relative to a null distribution based on constant rates of character change. This implies that basal tetrapods had high, but declining, rates of homoplasy early in their evolutionary history, although the origin of Lissamphibia is an exception to this trend. The time slice approach is a powerful method of phylogenetic analysis and a useful tool for assessing the impact of combining extinct and extant taxa in phylogenetic analyses of large and speciose clades.

  9. Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods.

    PubMed

    Bernardi, Massimo; Angielczyk, Kenneth D; Mitchell, Jonathan S; Ruta, Marcello

    2016-09-01

    Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time. In this study, we examined an empirical phylogeny of fossil tetrapods during several time intervals, and studied how temporal constraints manifested in patterns of tree imbalance and character change. The results indicate that the impact of temporal constraints on tree shape is minimal and highlights the stability through time of the reference tetrapod phylogeny. Unexpected values of imbalance for Mississippian and Pennsylvanian time slices strongly support the hypothesis that the Carboniferous was a period of explosive tetrapod radiation. Several significant diversification shifts take place in the Mississippian and underpin increased terrestrialization among the earliest limbed vertebrates. Character incompatibility is relatively high at the beginning of tetrapod history, but quickly decreases to a relatively stable lower level, relative to a null distribution based on constant rates of character change. This implies that basal tetrapods had high, but declining, rates of homoplasy early in their evolutionary history, although the origin of Lissamphibia is an exception to this trend. The time slice approach is a powerful method of phylogenetic analysis and a useful tool for assessing the impact of combining extinct and extant taxa in phylogenetic analyses of large and speciose clades. PMID:27288479

  10. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.

    PubMed

    Rabosky, Daniel L

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858

  11. A Model of Desired Performance in Phylogenetic Tree Construction for Teaching Evolution.

    ERIC Educational Resources Information Center

    Brewer, Steven D.

    This research paper examines phylogenetic tree construction-a form of problem solving in biology-by studying the strategies and heuristics used by experts. One result of the research is the development of a model of desired performance for phylogenetic tree construction. A detailed description of the model and the sample problems which illustrate…

  12. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  13. Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees

    PubMed Central

    Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958

  14. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    PubMed

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  15. Phylometrics: a pipeline for inferring phylogenetic trees from a sequence relationship network perspective

    PubMed Central

    2010-01-01

    Background Comparative sequence analysis of the 16S rRNA gene is frequently used to characterize the microbial diversity of environmental samples. However, sequence similarities do not always imply functional or evolutionary relatedness due to many factors, including unequal rates of change and convergence. Thus, relying on top BLASTN hits for phylogenetic studies may misrepresent the diversity of these constituents. Furthermore, attempts to circumvent this issue by including a large number of BLASTN hits per sequence in one tree to explore their relatedness presents other problems. For instance, the multiple sequence alignment will be poor and computationally costly if not relying on manual alignment, and it may be difficult to derive meaningful relationships from the resulting tree. Analyzing sequence relationship networks within collective BLASTN results, however, reveal sequences that are closely related despite low rank. Results We have developed a web application, Phylometrics, that relies on networks of collective BLASTN results (rather than single BLASTN hits) to facilitate the process of building phylogenetic trees in an automated, high-throughput fashion while offering novel tools to find sequences that are of significant phylogenetic interest with minimal human involvement. The application, which can be installed locally in a laboratory or hosted remotely, utilizes a simple wizard-style format to guide the user through the pipeline without necessitating a background in programming. Furthermore, Phylometrics implements an independent job queuing system that enables users to continue to use the system while jobs are run with little or no degradation in performance. Conclusions Phylometrics provides a novel data mining method to screen supplied DNA sequences and to identify sequences that are of significant phylogenetic interest using powerful analytical tools. Sequences that are identified as being similar to a number of supplied sequences may provide key

  16. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks.

    PubMed

    Boc, Alix; Diallo, Alpha Boubacar; Makarenkov, Vladimir

    2012-07-01

    T-REX (Tree and reticulogram REConstruction) is a web server dedicated to the reconstruction of phylogenetic trees, reticulation networks and to the inference of horizontal gene transfer (HGT) events. T-REX includes several popular bioinformatics applications such as MUSCLE, MAFFT, Neighbor Joining, NINJA, BioNJ, PhyML, RAxML, random phylogenetic tree generator and some well-known sequence-to-distance transformation models. It also comprises fast and effective methods for inferring phylogenetic trees from complete and incomplete distance matrices as well as for reconstructing reticulograms and HGT networks, including the detection and validation of complete and partial gene transfers, inference of consensus HGT scenarios and interactive HGT identification, developed by the authors. The included methods allows for validating and visualizing phylogenetic trees and networks which can be built from distance or sequence data. The web server is available at: www.trex.uqam.ca.

  17. Performance comparison between k-tuple distance and four model-based distances in phylogenetic tree reconstruction.

    PubMed

    Yang, Kuan; Zhang, Liqing

    2008-03-01

    Phylogenetic tree reconstruction requires construction of a multiple sequence alignment (MSA) from sequences. Computationally, it is difficult to achieve an optimal MSA for many sequences. Moreover, even if an optimal MSA is obtained, it may not be the true MSA that reflects the evolutionary history of the underlying sequences. Therefore, errors can be introduced during MSA construction which in turn affects the subsequent phylogenetic tree construction. In order to circumvent this issue, we extend the application of the k-tuple distance to phylogenetic tree reconstruction. The k-tuple distance between two sequences is the sum of the differences in frequency, over all possible tuples of length k, between the sequences and can be estimated without MSAs. It has been traditionally used to build a fast 'guide tree' to assist the construction of MSAs. Using the 1470 simulated sets of sequences generated under different evolutionary scenarios, the neighbor-joining trees and BioNJ trees, we compared the performance of the k-tuple distance with four commonly used distance estimators including Jukes-Cantor, Kimura, F84 and Tamura-Nei. These four distance estimators fall into the category of model-based distance estimators, as each of them takes account of a specific substitution model in order to compute the distance between a pair of already aligned sequences. Results show that trees constructed from the k-tuple distance are more accurate than those from other distances most time; when the divergence between underlying sequences is high, the tree accuracy could be twice or higher using the k-tuple distance than other estimators. Furthermore, as the k-tuple distance voids the need for constructing an MSA, it can save tremendous amount of time for phylogenetic tree reconstructions when the data include a large number of sequences. PMID:18296485

  18. PhyloExplorer: a web server to validate, explore and query phylogenetic trees

    PubMed Central

    Ranwez, Vincent; Clairon, Nicolas; Delsuc, Frédéric; Pourali, Saeed; Auberval, Nicolas; Diser, Sorel; Berry, Vincent

    2009-01-01

    Background Many important problems in evolutionary biology require molecular phylogenies to be reconstructed. Phylogenetic trees must then be manipulated for subsequent inclusion in publications or analyses such as supertree inference and tree comparisons. However, no tool is currently available to facilitate the management of tree collections providing, for instance: standardisation of taxon names among trees with respect to a reference taxonomy; selection of relevant subsets of trees or sub-trees according to a taxonomic query; or simply computation of descriptive statistics on the collection. Moreover, although several databases of phylogenetic trees exist, there is currently no easy way to find trees that are both relevant and complementary to a given collection of trees. Results We propose a tool to facilitate assessment and management of phylogenetic tree collections. Given an input collection of rooted trees, PhyloExplorer provides facilities for obtaining statistics describing the collection, correcting invalid taxon names, extracting taxonomically relevant parts of the collection using a dedicated query language, and identifying related trees in the TreeBASE database. Conclusion PhyloExplorer is a simple and interactive website implemented through underlying Python libraries and MySQL databases. It is available at: and the source code can be downloaded from: . PMID:19450253

  19. [A bird's eye view of the algorithms and software packages for reconstructing phylogenetic trees].

    PubMed

    Zhang, Li-Na; Rong, Chang-He; He, Yuan; Guan, Qiong; He, Bin; Zhu, Xing-Wen; Liu, Jia-Ni; Chen, Hong-Ju

    2013-12-01

    The prototype phylogenetic tree, i.e., evolutionary "tree" or "tree of life", was first conceived by Charles Darwin in his seminal book "The Origin of Species", and its reconstructions have been approached by generations of biologists ever since. In this article, we briefly reviewed the major algorithms and software packages for reconstructing phylogenetic trees. Specifically we discuss four categories of phylogeny algorithms including distance-matrix, maximum parsimony, maximum likelihood, and Bayesian framework, as well as software packages (PHYLIP, MEGA, MrBayes) based on them. PMID:24415699

  20. [A bird's eye view of the algorithms and software packages for reconstructing phylogenetic trees].

    PubMed

    Zhang, Li-Na; Rong, Chang-He; He, Yuan; Guan, Qiong; He, Bin; Zhu, Xing-Wen; Liu, Jia-Ni; Chen, Hong-Ju

    2013-12-01

    The prototype phylogenetic tree, i.e., evolutionary "tree" or "tree of life", was first conceived by Charles Darwin in his seminal book "The Origin of Species", and its reconstructions have been approached by generations of biologists ever since. In this article, we briefly reviewed the major algorithms and software packages for reconstructing phylogenetic trees. Specifically we discuss four categories of phylogeny algorithms including distance-matrix, maximum parsimony, maximum likelihood, and Bayesian framework, as well as software packages (PHYLIP, MEGA, MrBayes) based on them.

  1. PTreeRec: Phylogenetic Tree Reconstruction based on genome BLAST distance.

    PubMed

    Deng, Riqiang; Huang, Mingsong; Wang, Jinwen; Huang, Yuansen; Yang, Jie; Feng, Jinghua; Wang, Xunzhang

    2006-08-01

    Phylogenetic Tree Reconstruction (PTreeRec) is a web-based tool for automatic phylogeny inferences from whole-genome sequences, which accepts files of DNA sequences in the FASTA format and allows users to save the output tree file, and displays the inferred tree through an applet in a web browser. PTreeRec involves three basic steps. First, regions of maximal segment pairs (MSPs) based on an all-against-all pairwise comparison of genomes are located. Second, a distance matrix is calculated from MSP scores or coverage. Finally, a phylogenetic tree is reconstructed by the neighbor-joining method.

  2. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R

    PubMed Central

    Stephens, Timothy G.; Bhattacharya, Debashish; Ragan, Mark A.

    2016-01-01

    A frequent bottleneck in interpreting phylogenomic output is the need to screen often thousands of trees for features of interest, particularly robust clades of specific taxa, as evidence of monophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, flexible R package for classifying phylogenetic trees. Unlike existing utilities, PhySortR allows for identification of both exclusive and non-exclusive clades uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable options to assess clades within the context of the whole tree. Using simulated and empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a command-line tool that is freely available and easily automatable. PMID:27190724

  3. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R.

    PubMed

    Stephens, Timothy G; Bhattacharya, Debashish; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    A frequent bottleneck in interpreting phylogenomic output is the need to screen often thousands of trees for features of interest, particularly robust clades of specific taxa, as evidence of monophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, flexible R package for classifying phylogenetic trees. Unlike existing utilities, PhySortR allows for identification of both exclusive and non-exclusive clades uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable options to assess clades within the context of the whole tree. Using simulated and empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a command-line tool that is freely available and easily automatable. PMID:27190724

  4. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.

    PubMed

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua

    2012-07-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796

  5. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees

    PubMed Central

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua

    2012-01-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796

  6. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.

    PubMed

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua

    2012-07-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.

  7. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change.

    PubMed

    Potter, Kevin M; Woodall, Christopher W

    2012-03-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones

  8. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    PubMed

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus.

  9. Phylogenetic and functional diversity in large carnivore assemblages

    PubMed Central

    Dalerum, F.

    2013-01-01

    Large terrestrial carnivores are important ecological components and prominent flagship species, but are often extinction prone owing to a combination of biological traits and high levels of human persecution. This study combines phylogenetic and functional diversity evaluations of global and continental large carnivore assemblages to provide a framework for conservation prioritization both between and within assemblages. Species-rich assemblages of large carnivores simultaneously had high phylogenetic and functional diversity, but species contributions to phylogenetic and functional diversity components were not positively correlated. The results further provide ecological justification for the largest carnivore species as a focus for conservation action, and suggests that range contraction is a likely cause of diminishing carnivore ecosystem function. This study highlights that preserving species-rich carnivore assemblages will capture both high phylogenetic and functional diversity, but that prioritizing species within assemblages will involve trade-offs between optimizing contemporary ecosystem function versus the evolutionary potential for future ecosystem performance. PMID:23576787

  10. Phylogenetic and functional diversity in large carnivore assemblages.

    PubMed

    Dalerum, F

    2013-06-01

    Large terrestrial carnivores are important ecological components and prominent flagship species, but are often extinction prone owing to a combination of biological traits and high levels of human persecution. This study combines phylogenetic and functional diversity evaluations of global and continental large carnivore assemblages to provide a framework for conservation prioritization both between and within assemblages. Species-rich assemblages of large carnivores simultaneously had high phylogenetic and functional diversity, but species contributions to phylogenetic and functional diversity components were not positively correlated. The results further provide ecological justification for the largest carnivore species as a focus for conservation action, and suggests that range contraction is a likely cause of diminishing carnivore ecosystem function. This study highlights that preserving species-rich carnivore assemblages will capture both high phylogenetic and functional diversity, but that prioritizing species within assemblages will involve trade-offs between optimizing contemporary ecosystem function versus the evolutionary potential for future ecosystem performance. PMID:23576787

  11. A first step toward computing all hybridization networks for two rooted binary phylogenetic trees.

    PubMed

    Scornavacca, Celine; Linz, Simone; Albrecht, Benjamin

    2012-11-01

    Recently, considerable effort has been put into developing fast algorithms to reconstruct a rooted phylogenetic network that explains two rooted phylogenetic trees and has a minimum number of hybridization vertices. With the standard app1235roach to tackle this problem being combinatorial, the reconstructed network is rarely unique. From a biological point of view, it is therefore of importance to not only compute one network, but all possible networks. In this article, we make a first step toward approaching this goal by presenting the first algorithm--called ALLMAAFs--that calculates all maximum-acyclic-agreement forests for two rooted binary phylogenetic trees on the same set of taxa.

  12. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.

    PubMed

    Eiserhardt, Wolf L; Borchsenius, Finn; Plum, Christoffer M; Ordonez, Alejandro; Svenning, Jens-Christian

    2015-03-01

    When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly.

  13. Minimizing the Average Distance to a Closest Leaf in a Phylogenetic Tree

    PubMed Central

    Matsen, Frederick A.; Gallagher, Aaron; McCoy, Connor O.

    2013-01-01

    When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized “reference sequences” to a smaller subset that is as close as possible on average to a collection of “query sequences” of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting “reference tree” sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software. [Mass transport; phylogenetic diversity; sequence selection.] PMID:23843314

  14. Minimizing the average distance to a closest leaf in a phylogenetic tree.

    PubMed

    Matsen, Frederick A; Gallagher, Aaron; McCoy, Connor O

    2013-11-01

    When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software. PMID:23843314

  15. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  16. Phylogenetic tree and community structure from a Tangled Nature model.

    PubMed

    Canko, Osman; Taşkın, Ferhat; Argın, Kamil

    2015-10-01

    In evolutionary biology, the taxonomy and origination of species are widely studied subjects. An estimation of the evolutionary tree can be done via available DNA sequence data. The calculation of the tree is made by well-known and frequently used methods such as maximum likelihood and neighbor-joining. In order to examine the results of these methods, an evolutionary tree is pursued computationally by a mathematical model, called Tangled Nature. A relatively small genome space is investigated due to computational burden and it is found that the actual and predicted trees are in reasonably good agreement in terms of shape. Moreover, the speciation and the resulting community structure of the food-web are investigated by modularity.

  17. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees

    PubMed Central

    Martin, Adam R.; Thomas, Sean C.; Zhao, Yong

    2013-01-01

    Wood anatomical traits are important correlates of life-history strategies among tree species, yet little is known about wood chemical traits. Additionally, size-dependent changes in wood chemical traits have been rarely examined, although these changes may represent an important aspect of tree ontogeny. Owing to selection for pathogen resistance and biomechanical stability, we predicted that saplings would show higher lignin (L) and wood carbon (Cconv), and lower holocellulose (H) concentrations, compared with conspecific large trees. To test these expectations, we quantified H, L and Cconv in co-occurring Panamanian tree species at the large tree vs. sapling size classes. We also examined inter- and intraspecific patterns using multivariate and phylogenetic analyses. In 15 of 16 species, sapling L concentration was higher than that in conspecific large trees, and in all 16 species, sapling H was lower than that in conspecific large trees. In 16 of 24 species, Cconv was higher in saplings than conspecific large trees. All large-tree traits were unrelated to sapling values and were unrelated to four life-history variables. Wood chemical traits did not show a phylogenetic signal in saplings, instead showing similar values across distantly related taxa; in large trees, only H showed a significant phylogenetic signal. Size-dependent changes in wood chemistry show consistent and predictable patterns, suggesting that ontogenetic changes in wood chemical traits are an important aspect of tree functional biology. Our results are consistent with the hypothesis that at early ontogenetic stages, trees are selected for greater L to defend against cellulose-decaying pathogens, or possibly to confer biomechanical stability.

  18. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  19. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis

    PubMed Central

    Trifinopoulos, Jana; Nguyen, Lam-Tung; von Haeseler, Arndt; Minh, Bui Quang

    2016-01-01

    This article presents W-IQ-TREE, an intuitive and user-friendly web interface and server for IQ-TREE, an efficient phylogenetic software for maximum likelihood analysis. W-IQ-TREE supports multiple sequence types (DNA, protein, codon, binary and morphology) in common alignment formats and a wide range of evolutionary models including mixture and partition models. W-IQ-TREE performs fast model selection, partition scheme finding, efficient tree reconstruction, ultrafast bootstrapping, branch tests, and tree topology tests. All computations are conducted on a dedicated computer cluster and the users receive the results via URL or email. W-IQ-TREE is available at http://iqtree.cibiv.univie.ac.at. It is free and open to all users and there is no login requirement. PMID:27084950

  20. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.

    PubMed

    Trifinopoulos, Jana; Nguyen, Lam-Tung; von Haeseler, Arndt; Minh, Bui Quang

    2016-07-01

    This article presents W-IQ-TREE, an intuitive and user-friendly web interface and server for IQ-TREE, an efficient phylogenetic software for maximum likelihood analysis. W-IQ-TREE supports multiple sequence types (DNA, protein, codon, binary and morphology) in common alignment formats and a wide range of evolutionary models including mixture and partition models. W-IQ-TREE performs fast model selection, partition scheme finding, efficient tree reconstruction, ultrafast bootstrapping, branch tests, and tree topology tests. All computations are conducted on a dedicated computer cluster and the users receive the results via URL or email. W-IQ-TREE is available at http://iqtree.cibiv.univie.ac.at It is free and open to all users and there is no login requirement.

  1. An approximately unbiased test of phylogenetic tree selection.

    PubMed

    Shimodaira, Hidetoshi

    2002-06-01

    An approximately unbiased (AU) test that uses a newly devised multiscale bootstrap technique was developed for general hypothesis testing of regions in an attempt to reduce test bias. It was applied to maximum-likelihood tree selection for obtaining the confidence set of trees. The AU test is based on the theory of Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429-13434; 1996), but the new method provides higher-order accuracy yet simpler implementation. The AU test, like the Shimodaira-Hasegawa (SH) test, adjusts the selection bias overlooked in the standard use of the bootstrap probability and Kishino-Hasegawa tests. The selection bias comes from comparing many trees at the same time and often leads to overconfidence in the wrong trees. The SH test, though safe to use, may exhibit another type of bias such that it appears conservative. Here I show that the AU test is less biased than other methods in typical cases of tree selection. These points are illustrated in a simulation study as well as in the analysis of mammalian mitochondrial protein sequences. The theoretical argument provides a simple formula that covers the bootstrap probability test, the Kishino-Hasegawa test, the AU test, and the Zharkikh-Li test. A practical suggestion is provided as to which test should be used under particular circumstances. PMID:12079646

  2. Phylogenetic Trees and Networks Reduce to Phylogenies on Binary States: Does It Furnish an Explanation to the Robustness of Phylogenetic Trees against Lateral Transfers.

    PubMed

    Thuillard, Marc; Fraix-Burnet, Didier

    2015-01-01

    This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.

  3. A simulation approach for change-points on phylogenetic trees.

    PubMed

    Persing, Adam; Jasra, Ajay; Beskos, Alexandros; Balding, David; De Iorio, Maria

    2015-01-01

    We observe n sequences at each of m sites and assume that they have evolved from an ancestral sequence that forms the root of a binary tree of known topology and branch lengths, but the sequence states at internal nodes are unknown. The topology of the tree and branch lengths are the same for all sites, but the parameters of the evolutionary model can vary over sites. We assume a piecewise constant model for these parameters, with an unknown number of change-points and hence a transdimensional parameter space over which we seek to perform Bayesian inference. We propose two novel ideas to deal with the computational challenges of such inference. Firstly, we approximate the model based on the time machine principle: the top nodes of the binary tree (near the root) are replaced by an approximation of the true distribution; as more nodes are removed from the top of the tree, the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias, which we investigate empirically. Secondly, we develop a particle marginal Metropolis-Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-necks of standard computational algorithms: the transdimensional nature of the posterior distribution. The algorithm is implemented on simulated and real data examples, and we empirically demonstrate its potential to outperform competing methods based on approximate Bayesian computation (ABC) techniques. PMID:25506749

  4. A simulation approach for change-points on phylogenetic trees.

    PubMed

    Persing, Adam; Jasra, Ajay; Beskos, Alexandros; Balding, David; De Iorio, Maria

    2015-01-01

    We observe n sequences at each of m sites and assume that they have evolved from an ancestral sequence that forms the root of a binary tree of known topology and branch lengths, but the sequence states at internal nodes are unknown. The topology of the tree and branch lengths are the same for all sites, but the parameters of the evolutionary model can vary over sites. We assume a piecewise constant model for these parameters, with an unknown number of change-points and hence a transdimensional parameter space over which we seek to perform Bayesian inference. We propose two novel ideas to deal with the computational challenges of such inference. Firstly, we approximate the model based on the time machine principle: the top nodes of the binary tree (near the root) are replaced by an approximation of the true distribution; as more nodes are removed from the top of the tree, the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias, which we investigate empirically. Secondly, we develop a particle marginal Metropolis-Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-necks of standard computational algorithms: the transdimensional nature of the posterior distribution. The algorithm is implemented on simulated and real data examples, and we empirically demonstrate its potential to outperform competing methods based on approximate Bayesian computation (ABC) techniques.

  5. Assessing statistical reliability of phylogenetic trees via a speedy double bootstrap method.

    PubMed

    Ren, Aizhen; Ishida, Takashi; Akiyama, Yutaka

    2013-05-01

    Evaluating the reliability of estimated phylogenetic trees is of critical importance in the field of molecular phylogenetics, and for other endeavors that depend on accurate phylogenetic reconstruction. The bootstrap method is a well-known computational approach to phylogenetic tree assessment, and more generally for assessing the reliability of statistical models. However, it is known to be biased under certain circumstances, calling into question the accuracy of the method. Several advanced bootstrap methods have been developed to achieve higher accuracy, one of which is the double bootstrap approach, but the computational burden of this method has precluded its application to practical problems of phylogenetic tree selection. We address this issue by proposing a simple method called the speedy double bootstrap, which circumvents the second-tier resampling step in the regular double bootstrap approach. We also develop an implementation of the regular double bootstrap for comparison with our speedy method. The speedy double bootstrap suffers no significant loss of accuracy compared with the regular double bootstrap, while performing calculations significantly more rapidly (at minimum around 371 times faster, based on analysis of mammalian mitochondrial amino acid sequences and 12S and 16S rRNA genes). Our method thus enables, for the first time, the practical application of the double bootstrap technique in the context of molecular phylogenetics. The approach can also be used more generally for model selection problems wherever the maximum likelihood criterion is used.

  6. Analyzing phylogenetic trees with timed and probabilistic model checking: the lactose persistence case study.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2014-01-01

    Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype. PMID:25339082

  7. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-01

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. PMID:27131786

  8. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-01

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/.

  9. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees

    PubMed Central

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Chen, Wei-Hua; Hu, Songnian

    2016-01-01

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its ‘dataset system’ contains not only the data to be visualized on the tree, but also ‘modifiers’ that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new ‘Demo’ trees to demonstrate the basic functionalities of Evolview, and five new ‘Showcase’ trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. PMID:27131786

  10. Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses

    PubMed Central

    Lanfear, Robert; Hua, Xia; Warren, Dan L.

    2016-01-01

    Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794

  11. PhyloPen: Phylogenetic Tree Browsing Using a Pen and Touch Interface

    PubMed Central

    Wehrer, Anthony; Yee, Andrew; Lisle, Curtis; Hughes, Charles

    2015-01-01

    Phylogenetic trees are used by researchers across multiple fields of study to display historical relationships between organisms or genes. Trees are used to examine the speciation process in evolutionary biology, to classify families of viruses in epidemiology, to demonstrate co-speciation in host and pathogen studies, and to explore genetic changes occurring during the disease process in cancer, among other applications. Due to their complexity and the amount of data they present in visual form, phylogenetic trees have generally been difficult to render for publication and challenging to directly interact with in digital form. To address these limitations, we developed PhyloPen, an experimental novel multi-touch and pen application that renders a phylogenetic tree and allows users to interactively navigate within the tree, examining nodes, branches, and auxiliary information, and annotate the tree for note-taking and collaboration. We present a discussion of the interactions implemented in PhyloPen and the results of a formative study that examines how the application was received after use by practicing biologists -- faculty members and graduate students in the discipline. These results are to be later used for a fully supported implementation of the software where the community will be welcomed to participate in its development. PMID:26693078

  12. Sharing and re-use of phylogenetic trees (and associated data) to facilitate synthesis

    PubMed Central

    2012-01-01

    Background Recently, various evolution-related journals adopted policies to encourage or require archiving of phylogenetic trees and associated data. Such attention to practices that promote sharing of data reflects rapidly improving information technology, and rapidly expanding potential to use this technology to aggregate and link data from previously published research. Nevertheless, little is known about current practices, or best practices, for publishing trees and associated data so as to promote re-use. Findings Here we summarize results of an ongoing analysis of current practices for archiving phylogenetic trees and associated data, current practices of re-use, and current barriers to re-use. We find that the technical infrastructure is available to support rudimentary archiving, but the frequency of archiving is low. Currently, most phylogenetic knowledge is not easily re-used due to a lack of archiving, lack of awareness of best practices, and lack of community-wide standards for formatting data, naming entities, and annotating data. Most attempts at data re-use seem to end in disappointment. Nevertheless, we find many positive examples of data re-use, particularly those that involve customized species trees generated by grafting to, and pruning from, a much larger tree. Conclusions The technologies and practices that facilitate data re-use can catalyze synthetic and integrative research. However, success will require engagement from various stakeholders including individual scientists who produce or consume shareable data, publishers, policy-makers, technology developers and resource-providers. The critical challenges for facilitating re-use of phylogenetic trees and associated data, we suggest, include: a broader commitment to public archiving; more extensive use of globally meaningful identifiers; development of user-friendly technology for annotating, submitting, searching, and retrieving data and their metadata; and development of a minimum reporting

  13. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    PubMed

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are

  14. Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data

    ERIC Educational Resources Information Center

    Maier, Caroline Alexander

    2004-01-01

    The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…

  15. Building Phylogenetic Trees from DNA Sequence Data: Investigating Polar Bear and Giant Panda Ancestry.

    ERIC Educational Resources Information Center

    Maier, Caroline Alexandra

    2001-01-01

    Presents an activity in which students seek answers to questions about evolutionary relationships by using genetic databases and bioinformatics software. Students build genetic distance matrices and phylogenetic trees based on molecular sequence data using web-based resources. Provides a flowchart of steps involved in accessing, retrieving, and…

  16. Phylogenetic isolation of host trees affects assembly of local Heteroptera communities.

    PubMed

    Vialatte, A; Bailey, R I; Vasseur, C; Matocq, A; Gossner, M M; Everhart, D; Vitrac, X; Belhadj, A; Ernoult, A; Prinzing, A

    2010-07-22

    A host may be physically isolated in space and then may correspond to a geographical island, but it may also be separated from its local neighbours by hundreds of millions of years of evolutionary history, and may form in this case an evolutionarily distinct island. We test how this affects the assembly processes of the host's colonizers, this question being until now only invoked at the scale of physically distinct islands or patches. We studied the assembly of true bugs in crowns of oaks surrounded by phylogenetically more or less closely related trees. Despite the short distances (less than 150 m) between phylogenetically isolated and non-isolated trees, we found major differences between their Heteroptera faunas. We show that phylogenetically isolated trees support smaller numbers and fewer species of Heteroptera, an increasing proportion of phytophages and a decreasing proportion of omnivores, and proportionally more non-host-specialists. These differences were not due to changes in the nutritional quality of the trees, i.e. species sorting, which we accounted for. Comparison with predictions from meta-community theories suggests that the assembly of local Heteroptera communities may be strongly driven by independent metapopulation processes at the level of the individual species. We conclude that the assembly of communities on hosts separated from their neighbours by long periods of evolutionary history is qualitatively and quantitatively different from that on hosts established surrounded by closely related trees. Potentially, the biotic selection pressure on a host might thus change with the evolutionary proximity of the surrounding hosts.

  17. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  18. Equality of Shapley value and fair proportion index in phylogenetic trees.

    PubMed

    Fuchs, Michael; Jin, Emma Yu

    2015-11-01

    The Shapley value and the fair proportion index of phylogenetic trees have been introduced recently for the purpose of making conservation decisions in genetics. Moreover, also very recently, Hartmann (J Math Biol 67:1163-1170, 2013) has presented data which shows that there is a strong correlation between a slightly modified version of the Shapley value (which we call the modified Shapley value) and the fair proportion index. He gave an explanation of this correlation by showing that the contribution of both indices to an edge of the tree becomes identical as the number of taxa tends to infinity. In this note, we show that the Shapley value and the fair proportion index are in fact the same. Moreover, we also consider the modified Shapley value and show that its covariance with the fair proportion index in random phylogenetic trees under the Yule-Harding model and uniform model is indeed close to one.

  19. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics

    PubMed Central

    Mazel, F.; Davies, T.J; Gallien, L.; Renaud, J.; Groussin, M.; Münkemüller, T.; Thuiller, W.

    2016-01-01

    During the last decades, describing, analysing and understanding the phylogenetic structure of species assemblages has been a central theme in both community ecology and macro-ecology. Among the wide variety of phylogenetic structure metrics, three have been predominant in the literature: Faith’s phylogenetic diversity (PDFaith), which represents the sum of the branch lengths of the phylogenetic tree linking all species of a particular assemblage, the mean pairwise distance between all species in an assemblage (MPD) and the pairwise distance between the closest relatives in an assemblage (MNTD). Comparisons between studies using one or several of these metrics are difficult because there has been no comprehensive evaluation of the phylogenetic properties each metric captures. In particular it is unknown how PDFaith relates to MDP and MNTD. Consequently, it is possible that apparently opposing patterns in different studies might simply reflect differences in metric properties. Here, we aim to fill this gap by comparing these metrics using simulations and empirical data. We first used simulation experiments to test the influence of community structure and size on the mismatch between metrics whilst varying the shape and size of the phylogenetic tree of the species pool. Second we investigated the mismatch between metrics for two empirical datasets (gut microbes and global carnivoran assemblages). We show that MNTD and PDFaith provide similar information on phylogenetic structure, and respond similarly to variation in species richness and assemblage structure. However, MPD demonstrate a very different behaviour, and is highly sensitive to deep branching structure. We suggest that by combining complementary metrics that are sensitive to processes operating at different phylogenetic depths (i.e. MPD and MNTD or PDFaith) we can obtain a better understanding of assemblage structure. PMID:27713599

  20. Genetic Distances and Reconstruction of Phylogenetic Trees from Microsatellite DNA

    PubMed Central

    Takezaki, N.; Nei, M.

    1996-01-01

    Recently many investigators have used microsatellite DNA loci for studying the evolutionary relationships of closely related populations or species, and some authors proposed new genetic distance measures for this purpose. However, the efficiencies of these distance measures in obtaining the correct tree topology remains unclear. We therefore investigated the probability of obtaining the correct topology (P(C)) for these new distances as well as traditional distance measures by using computer simulation. We used both the infinite-allele model (IAM) and the stepwise mutation model (SMM), which seem to be appropriate for classical markers and microsatellite loci, respectively. The results show that in both the IAM and SMM CAVALLI-SFORZA and EDWARDS' chord distance (D(C)) and NEI et al.'s D(A) distance generally show higher P(C) values than other distance measures, whether the bottleneck effect exists or not. For estimating evolutionary times, however, NEI's standard distance and GOLDSTEIN et al.'s (δ μ)(2) are more appropriate than other distances. Microsatellite DNA seems to be very useful for clarifying the evolutionary relationships of closely related populations. PMID:8878702

  1. Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees

    PubMed Central

    Couvreur, Thomas LP; Chatrou, Lars W; Sosef, Marc SM; Richardson, James E

    2008-01-01

    Background Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years – Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of

  2. SATCHMO-JS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction.

    PubMed

    Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen

    2010-07-01

    We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.

  3. Characterizing the Phylogenetic Tree Community Structure of a Protected Tropical Rain Forest Area in Cameroon

    PubMed Central

    Munoz, François; Couteron, Pierre; Hardy, Olivier J.; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world. PMID:24936786

  4. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    PubMed

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  5. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    PubMed

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-01-01

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees. PMID:26235237

  6. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage

    PubMed Central

    Yang, Jie; Swenson, Nathan G.; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J. W.; Lin, Luxiang

    2015-01-01

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees. PMID:26235237

  7. Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest

    PubMed Central

    Schreeg, Laura A.; Kress, W. John; Erickson, David L.; Swenson, Nathan G.

    2010-01-01

    Background Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. Methodology/Principal Findings Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. Conclusions Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends

  8. An African American Paternal Lineage Adds an Extremely Ancient Root to the Human Y Chromosome Phylogenetic Tree

    PubMed Central

    Mendez, Fernando L.; Krahn, Thomas; Schrack, Bonnie; Krahn, Astrid-Maria; Veeramah, Krishna R.; Woerner, August E.; Fomine, Forka Leypey Mathew; Bradman, Neil; Thomas, Mark G.; Karafet, Tatiana M.; Hammer, Michael F.

    2013-01-01

    We report the discovery of an African American Y chromosome that carries the ancestral state of all SNPs that defined the basal portion of the Y chromosome phylogenetic tree. We sequenced ∼240 kb of this chromosome to identify private, derived mutations on this lineage, which we named A00. We then estimated the time to the most recent common ancestor (TMRCA) for the Y tree as 338 thousand years ago (kya) (95% confidence interval = 237–581 kya). Remarkably, this exceeds current estimates of the mtDNA TMRCA, as well as those of the age of the oldest anatomically modern human fossils. The extremely ancient age combined with the rarity of the A00 lineage, which we also find at very low frequency in central Africa, point to the importance of considering more complex models for the origin of Y chromosome diversity. These models include ancient population structure and the possibility of archaic introgression of Y chromosomes into anatomically modern humans. The A00 lineage was discovered in a large database of consumer samples of African Americans and has not been identified in traditional hunter-gatherer populations from sub-Saharan Africa. This underscores how the stochastic nature of the genealogical process can affect inference from a single locus and warrants caution during the interpretation of the geographic location of divergent branches of the Y chromosome phylogenetic tree for the elucidation of human origins. PMID:23453668

  9. An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree.

    PubMed

    Mendez, Fernando L; Krahn, Thomas; Schrack, Bonnie; Krahn, Astrid-Maria; Veeramah, Krishna R; Woerner, August E; Fomine, Forka Leypey Mathew; Bradman, Neil; Thomas, Mark G; Karafet, Tatiana M; Hammer, Michael F

    2013-03-01

    We report the discovery of an African American Y chromosome that carries the ancestral state of all SNPs that defined the basal portion of the Y chromosome phylogenetic tree. We sequenced ∼240 kb of this chromosome to identify private, derived mutations on this lineage, which we named A00. We then estimated the time to the most recent common ancestor (TMRCA) for the Y tree as 338 thousand years ago (kya) (95% confidence interval = 237-581 kya). Remarkably, this exceeds current estimates of the mtDNA TMRCA, as well as those of the age of the oldest anatomically modern human fossils. The extremely ancient age combined with the rarity of the A00 lineage, which we also find at very low frequency in central Africa, point to the importance of considering more complex models for the origin of Y chromosome diversity. These models include ancient population structure and the possibility of archaic introgression of Y chromosomes into anatomically modern humans. The A00 lineage was discovered in a large database of consumer samples of African Americans and has not been identified in traditional hunter-gatherer populations from sub-Saharan Africa. This underscores how the stochastic nature of the genealogical process can affect inference from a single locus and warrants caution during the interpretation of the geographic location of divergent branches of the Y chromosome phylogenetic tree for the elucidation of human origins.

  10. Novel information theory-based measures for quantifying incongruence among phylogenetic trees.

    PubMed

    Salichos, Leonidas; Stamatakis, Alexandros; Rokas, Antonis

    2014-05-01

    Phylogenies inferred from different data matrices often conflict with each other necessitating the development of measures that quantify this incongruence. Here, we introduce novel measures that use information theory to quantify the degree of conflict or incongruence among all nontrivial bipartitions present in a set of trees. The first measure, internode certainty (IC), calculates the degree of certainty for a given internode by considering the frequency of the bipartition defined by the internode (internal branch) in a given set of trees jointly with that of the most prevalent conflicting bipartition in the same tree set. The second measure, IC All (ICA), calculates the degree of certainty for a given internode by considering the frequency of the bipartition defined by the internode in a given set of trees in conjunction with that of all conflicting bipartitions in the same underlying tree set. Finally, the tree certainty (TC) and TC All (TCA) measures are the sum of IC and ICA values across all internodes of a phylogeny, respectively. IC, ICA, TC, and TCA can be calculated from different types of data that contain nontrivial bipartitions, including from bootstrap replicate trees to gene trees or individual characters. Given a set of phylogenetic trees, the IC and ICA values of a given internode reflect its specific degree of incongruence, and the TC and TCA values describe the global degree of incongruence between trees in the set. All four measures are implemented and freely available in version 8.0.0 and subsequent versions of the widely used program RAxML.

  11. LifePrint: a novel k-tuple distance method for construction of phylogenetic trees

    PubMed Central

    Reyes-Prieto, Fabián; García-Chéquer, Adda J; Jaimes-Díaz, Hueman; Casique-Almazán, Janet; Espinosa-Lara, Juana M; Palma-Orozco, Rosaura; Méndez-Tenorio, Alfonso; Maldonado-Rodríguez, Rogelio; Beattie, Kenneth L

    2011-01-01

    Purpose Here we describe LifePrint, a sequence alignment-independent k-tuple distance method to estimate relatedness between complete genomes. Methods We designed a representative sample of all possible DNA tuples of length 9 (9-tuples). The final sample comprises 1878 tuples (called the LifePrint set of 9-tuples; LPS9) that are distinct from each other by at least two internal and noncontiguous nucleotide differences. For validation of our k-tuple distance method, we analyzed several real and simulated viroid genomes. Using different distance metrics, we scrutinized diverse viroid genomes to estimate the k-tuple distances between these genomic sequences. Then we used the estimated genomic k-tuple distances to construct phylogenetic trees using the neighbor-joining algorithm. A comparison of the accuracy of LPS9 and the previously reported 5-tuple method was made using symmetric differences between the trees estimated from each method and a simulated “true” phylogenetic tree. Results The identified optimal search scheme for LPS9 allows only up to two nucleotide differences between each 9-tuple and the scrutinized genome. Similarity search results of simulated viroid genomes indicate that, in most cases, LPS9 is able to detect single-base substitutions between genomes efficiently. Analysis of simulated genomic variants with a high proportion of base substitutions indicates that LPS9 is able to discern relationships between genomic variants with up to 40% of nucleotide substitution. Conclusion Our LPS9 method generates more accurate phylogenetic reconstructions than the previously proposed 5-tuples strategy. LPS9-reconstructed trees show higher bootstrap proportion values than distance trees derived from the 5-tuple method. PMID:21918634

  12. The algebra of the general Markov model on phylogenetic trees and networks.

    PubMed

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  13. Assessing confidence in phylogenetic trees : bootstrap versus Markov chain Monte Carlo

    SciTech Connect

    Burr, Tom; Doak, J. E.; Gattiker, J. R.; Stanbro, W. D.

    2002-01-01

    Recent implementations of Bayesian approaches are one of the largest advances in phylogenetic tree estimation in the last 10 years. Markov chain Monte Carlo (MCMC) is used in these new approaches to estimate the Bayesian posterior probability for each tree topology of interest. Our goal is to assess the confidence in the estimated tree (particularly in whether prespecified groups are monophyletic) using MCMC and to compare the Bayesian estimate of confidence to a bootstrap-based estimate of confidence. We compare the Bayesian posterior probability to the bootstrap probability for specified groups in two real sets of influenza sequences and two sets of simulated sequences for our comparison. We conclude that the bootstrap estimate is adequate compared to the MCMC estimate except perhaps if the number of DNA sites is small.

  14. Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing.

    PubMed

    Al-Atiyat, R M; Aljumaah, R S

    2014-01-01

    This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.

  15. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...

  16. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees.

    PubMed

    Mi, Huaiyu; Muruganujan, Anushya; Thomas, Paul D

    2013-01-01

    The data and tools in PANTHER-a comprehensive, curated database of protein families, trees, subfamilies and functions available at http://pantherdb.org-have undergone continual, extensive improvement for over a decade. Here, we describe the current PANTHER process as a whole, as well as the website tools for analysis of user-uploaded data. The main goals of PANTHER remain essentially unchanged: the accurate inference (and practical application) of gene and protein function over large sequence databases, using phylogenetic trees to extrapolate from the relatively sparse experimental information from a few model organisms. Yet the focus of PANTHER has continually shifted toward more accurate and detailed representations of evolutionary events in gene family histories. The trees are now designed to represent gene family evolution, including inference of evolutionary events, such as speciation and gene duplication. Subfamilies are still curated and used to define HMMs, but gene ontology functional annotations can now be made at any node in the tree, and are designed to represent gain and loss of function by ancestral genes during evolution. Finally, PANTHER now includes stable database identifiers for inferred ancestral genes, which are used to associate inferred gene attributes with particular genes in the common ancestral genomes of extant species.

  17. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees.

    PubMed

    Letunic, Ivica; Bork, Peer

    2016-07-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users.

  18. Auto-validating von Neumann rejection sampling from small phylogenetic tree spaces

    PubMed Central

    2009-01-01

    Background In phylogenetic inference one is interested in obtaining samples from the posterior distribution over the tree space on the basis of some observed DNA sequence data. One of the simplest sampling methods is the rejection sampler due to von Neumann. Here we introduce an auto-validating version of the rejection sampler, via interval analysis, to rigorously draw samples from posterior distributions over small phylogenetic tree spaces. Results The posterior samples from the auto-validating sampler are used to rigorously (i) estimate posterior probabilities for different rooted topologies based on mitochondrial DNA from human, chimpanzee and gorilla, (ii) conduct a non-parametric test of rate variation between protein-coding and tRNA-coding sites from three primates and (iii) obtain a posterior estimate of the human-neanderthal divergence time. Conclusion This solves the open problem of rigorously drawing independent and identically distributed samples from the posterior distribution over rooted and unrooted small tree spaces (3 or 4 taxa) based on any multiply-aligned sequence data. PMID:19128477

  19. [Research on constructing phylogenetics trees of ruminants basing on the database of milk protein gene sequences].

    PubMed

    Fan, B L; Li, N; Wu, C X

    2000-01-01

    Primers designed according to the sequences of four milk protein genes of cow Bos taurus (alpha-lactoalbumin, beta-lactoglobin, beta- and kappa-casein) were used to amplify the full length gene of alpha-lactalbumin in yak Bos grunniens (2999 bp), water buffalo Bubalus arnee bubalis (278 bp), partial sequence of this gene in red deer cervus elaphs xanthopygus (1582 bp), 5' and 3' flanking region of beta-lactoglobin gene (2167 bp and 1096 bp in length respectively), 5'-flanking region and exon VIII to exon IX of beta-casein gene (987 bp and 1096 bp in length respectively), exonIV of kappa-casein gene (780 bp). All the amplified DNA fragments were cloned and the Nt sequences were determined. Phylogenetic tree containing 20 species (or subspecies) of ruminantia suborder was constructed according to the partial sequence of kappa-casein gene exon IV (363 bp in length), which shows good monophyly of the Bovidae. And trees constructed according to other milk protein genes indicate that all the milk protein genes have good features for drawing phylogenetics tree at least among species belonging to different subfamilies.

  20. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice.

    PubMed

    Sridhar, Srinath; Dhamdhere, Kedar; Blelloch, Guy; Halperin, Eran; Ravi, R; Schwartz, Russell

    2007-01-01

    We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes the perfect phylogeny assumption by allowing at most a constant number of additional mutations. We develop two algorithms for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance. The first simple algorithm is fixed parameter tractable when the number of additional mutations and the number of characters that share four gametes with some other character are constants. The second, more involved algorithm for the problem is fixed parameter tractable when only the number of additional mutations is fixed. We have implemented both algorithms and shown them to be extremely efficient in practice on biologically significant data sets. This work proves the BNPP problem fixed parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find guaranteed optimal solutions while being easily implemented and computationally feasible for data sets of biologically meaningful size and complexity.

  1. Hypothesis tests for phylogenetic quartets, with applications to coalescent-based species tree inference.

    PubMed

    Gaither, Jeff; Kubatko, Laura

    2016-11-01

    Numerous statistical methods have been developed to estimate evolutionary relationships among a collection of present-day species, typically represented by a phylogenetic tree, using the information contained in the DNA sequences sampled from representatives of each species. In the current era of high-throughput genome sequencing, the models underlying such methods have become increasingly sophisticated, and the resulting computations are often prohibitive. Here we consider the problem of rigorously testing the phylogenetic relationships among collections of four species under the multispecies coalescent model that accommodates both multi-locus datasets and SNP data. Our test employs a new statistic - the summed absolute differences between certain columns in flattened phylogenetic matrices - as well as a previously used statistic that measures the distance of a flattened matrix from the space of rank-10 matrices. We derive distributional results for both statistics and study the performance of the corresponding hypothesis tests using both simulated and empirical data. We discuss how these tests may be used to improve inference of phylogenetic relationships for larger samples of species under the multispecies coalescent model, a problem that has until recently been computationally intractable. PMID:27521524

  2. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees

    PubMed Central

    Wisecaver, Jennifer H.

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/. PMID:27635331

  3. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees

    PubMed Central

    Wisecaver, Jennifer H.

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  4. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees.

    PubMed

    DeBlasio, Dan F; Wisecaver, Jennifer H

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/. PMID:27635331

  5. Mapping the Shapes of Phylogenetic Trees from Human and Zoonotic RNA Viruses

    PubMed Central

    Poon, Art F. Y.; Walker, Lorne W.; Murray, Heather; McCloskey, Rosemary M.; Harrigan, P. Richard; Liang, Richard H.

    2013-01-01

    A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation. Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents an important new tool for characterizing the evolution and epidemiology of RNA viruses. PMID:24223766

  6. The future of large old trees in urban landscapes.

    PubMed

    Le Roux, Darren S; Ikin, Karen; Lindenmayer, David B; Manning, Adrian D; Gibbons, Philip

    2014-01-01

    Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha(-1); and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.

  7. Effects of land management on large trees and carbon stocks

    NASA Astrophysics Data System (ADS)

    Kauppi, P. E.; Birdsey, R. A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A.

    2014-02-01

    Large trees are important and unique organisms in forests, providing ecosystem services including carbon dioxide removal from the atmosphere and long-term storage. There is concern about reports of global decline of big trees. Based on observations from Finland and the United States we report that trends of big trees during recent decades have been surprisingly variable among regions. In southern Finland, the growing stock volume of trees larger than 30 cm at breast height increased nearly five-fold during the second half of the 20th century, yet more recently ceased to expand. In the United States, large hardwood trees have become increasingly common since the 1950s, while large softwood trees declined until the mid 1990's as a consequence of harvests in the Pacific region, and then rebounded when harvesting there was reduced. We conclude that in the regions studied, the history of land use and forest management governs changes of tree populations especially with reference to large trees. Large trees affect greatly the carbon density of forests and usually have deeper roots and relatively lower mortality than small trees. An accumulating stock of large trees in forests may have negligible direct biophysical effects on climate because from changes in transpiration or forest albedo. Large trees have particular ecological importance and often constitute an unusually large proportion of biomass carbon stocks in a forest. Understanding the changes in big tree distributions in different regions of the world and the demography of tree populations makes a contribution to estimating the past impact and future potential of the role of forests in the global carbon budget.

  8. New approach for phylogenetic tree recovery based on genome-scale metabolic networks.

    PubMed

    Gamermann, Daniel; Montagud, Arnaud; Conejero, J Alberto; Urchueguía, Javier F; de Córdoba, Pedro Fernández

    2014-07-01

    A wide range of applications and research has been done with genome-scale metabolic models. In this work, we describe an innovative methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in order to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.

  9. Bayesian Inference of the Evolution of a Phenotype Distribution on a Phylogenetic Tree

    PubMed Central

    Ansari, M. Azim; Didelot, Xavier

    2016-01-01

    The distribution of a phenotype on a phylogenetic tree is often a quantity of interest. Many phenotypes have imperfect heritability, so that a measurement of the phenotype for an individual can be thought of as a single realization from the phenotype distribution of that individual. If all individuals in a phylogeny had the same phenotype distribution, measured phenotypes would be randomly distributed on the tree leaves. This is, however, often not the case, implying that the phenotype distribution evolves over time. Here we propose a new model based on this principle of evolving phenotype distribution on the branches of a phylogeny, which is different from ancestral state reconstruction where the phenotype itself is assumed to evolve. We develop an efficient Bayesian inference method to estimate the parameters of our model and to test the evidence for changes in the phenotype distribution. We use multiple simulated data sets to show that our algorithm has good sensitivity and specificity properties. Since our method identifies branches on the tree on which the phenotype distribution has changed, it is able to break down a tree into components for which this distribution is unique and constant. We present two applications of our method, one investigating the association between HIV genetic variation and human leukocyte antigen and the other studying host range distribution in a lineage of Salmonella enterica, and we discuss many other potential applications. PMID:27412711

  10. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference

    PubMed Central

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-01-01

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal

  11. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-01-01

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal

  12. Patterns of thinking about phylogenetic trees: A study of student learning and the potential of tree thinking to improve comprehension of biological concepts

    NASA Astrophysics Data System (ADS)

    Naegle, Erin

    Evolution education is a critical yet challenging component of teaching and learning biology. There is frequently an emphasis on natural selection when teaching about evolution and conducting educational research. A full understanding of evolution, however, integrates evolutionary processes, such as natural selection, with the resulting evolutionary patterns, such as species divergence. Phylogenetic trees are models of evolutionary patterns. The perspective gained from understanding biology through phylogenetic analyses is referred to as tree thinking. Due to the increasing prevalence of tree thinking in biology, understanding how to read phylogenetic trees is an important skill for students to learn. Interpreting graphics is not an intuitive process, as graphical representations are semiotic objects. This is certainly true concerning phylogenetic tree interpretation. Previous research and anecdotal evidence report that students struggle to correctly interpret trees. The objective of this research was to describe and investigate the rationale underpinning the prior knowledge of introductory biology students' tree thinking Understanding prior knowledge is valuable as prior knowledge influences future learning. In Chapter 1, qualitative methods such as semi-structured interviews were used to explore patterns of student rationale in regard to tree thinking. Seven common tree thinking misconceptions are described: (1) Equating the degree of trait similarity with the extent of relatedness, (2) Environmental change is a necessary prerequisite to evolution, (3) Essentialism of species, (4) Evolution is inherently progressive, (5) Evolution is a linear process, (6) Not all species are related, and (7) Trees portray evolution through the hybridization of species. These misconceptions are based in students' incomplete or incorrect understanding of evolution. These misconceptions are often reinforced by the misapplication of cultural conventions to make sense of trees

  13. Phylogenetic trait conservation in the partner choice of a group of ectomycorrhizal trees.

    PubMed

    Hayward, Jeremy; Horton, Thomas R

    2014-10-01

    Ecological interactions are frequently conserved across evolutionary time. In the case of mutualisms, these conserved interactions may play a large role in structuring mutualist communities. We hypothesized that phylogenetic trait conservation could play a key role in determining patterns of association in the ectomycorrhizal symbiosis, a globally important trophic mutualism. We used the association between members of the pantropical plant tribe Pisonieae and its fungal mutualist partners as a model system to test the prediction that Pisonieae-associating ectomycorrhizal fungi will be more closely related than expected by chance, reflecting a conserved trait. We tested this prediction using previously published and newly generated sequences in a Bayesian framework incorporating phylogenetic uncertainty. We report that phylogenetic trait conservation does exist in this association. We generated a five-marker phylogeny of members of the Pisonieae and used this phylogeny in a Bayesian relaxed molecular clock analysis. We established that the most recent common ancestors of Pisonieae species and Pisonieae-associating fungi sharing phylogenetic conservation of their patterns of ectomycorrhizal association occurred no more recently than 14.2 Ma. We therefore suggest that phylogenetic trait conservation in the Pisonieae ectomycorrhizal mutualism association represents an inherited syndrome which has existed for at least 14 Myr. PMID:25169622

  14. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites.

    PubMed

    Hampl, V; Pavlícek, A; Flegr, J

    2001-05-01

    The Win95/98/NT program FreeTree for computation of distance matrices and construction of phylogenetic or phenetic trees on the basis of random amplified polymorphic DNA (RAPD), RFLP and allozyme data is presented. In contrast to other similar software, the program FreeTree (available at http://www.natur.cuni.cz/~flegr/programs/freetree or http://ijs.sgmjournals.org/content/vol51/issue3/) can also assess the robustness of the tree topology by bootstrap, jackknife or operational taxonomic unit-jackknife analysis. Moreover, the program can be also used for the analysis of data obtained in several independent experiments performed with non-identical subsets of taxa. The function of the program was demonstrated by an analysis of RAPD data from 42 strains of 10 species of trichomonads. On the phylogenetic tree constructed using FreeTree, the high bootstrap values and short terminal branches for the Tritrichomonas foetus/suis 14-strain branch suggested relatively recent and probably clonal radiation of this species. At the same time, the relatively lower bootstrap values and long terminal branches for the Trichomonas vaginalis 20-strain branch suggested more ancient radiation of this species and the possible existence of genetic recombination (sexual reproduction) in this human pathogen. The low bootstrap values and the star-like topology of the whole Trichomonadidae tree confirm that the RAPD method is not suitable for phylogenetic analysis of protozoa at the level of higher taxa. It is proposed that the repeated bootstrap analysis should be an obligatory part of any RAPD study. It makes it possible to assess the reliability of the tree obtained and to adjust the amount of collected data (the number of random primers) to the amount of phylogenetic signals in the RAPD data of the taxon analysed. The FreeTree program makes such analysis possible. PMID:11411692

  15. The Unique Challenges of Conserving Large Old Trees.

    PubMed

    Lindenmayer, David B; Laurance, William F

    2016-06-01

    Large old trees play numerous critical ecological roles. They are susceptible to a plethora of interacting threats, in part because the attributes that confer a competitive advantage in intact ecosystems make them maladapted to rapidly changing, human-modified environments. Conserving large old trees will require surmounting a number of unresolved challenges. PMID:27117523

  16. Effects of land management on large trees and carbon stocks

    NASA Astrophysics Data System (ADS)

    Kauppi, P. E.; Birdsey, R. A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A.

    2015-02-01

    Large trees are important and unique organisms in forests, providing ecosystem services including carbon dioxide removal from the atmosphere and long-term storage. Some reports have raised concerns about the global decline of large trees. Based on observations from two regions in Finland and three regions in the United States we report that trends of large trees during recent decades have been surprisingly variable among regions. In southern Finland, the growing stock volume of trees larger than 30 cm at breast height increased nearly five-fold during the second half of the 20th century, yet more recently ceased to expand. In the United States, large hardwood trees have become increasingly common in the Northeast since the 1950s, while large softwood trees declined until the mid 1990s as a consequence of harvests in the Pacific region, and then rebounded when harvesting there was reduced. We conclude that in the regions studied, the history of land use and forest management governs changes of the diameter-class distributions of tree populations. Large trees have significant benefits; for example, they can constitute a large proportion of the carbon stock and affect greatly the carbon density of forests. Large trees usually have deeper roots and long lifetimes. They affect forest structure and function and provide habitats for other species. An accumulating stock of large trees in existing forests may have negligible direct biophysical effects on climate through transpiration or forest albedo. Understanding changes in the demography of tree populations makes a contribution to estimating the past impact and future potential of forests in the global carbon budget and to assessing other ecosystem services of forests.

  17. TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information

    PubMed Central

    Struck, Torsten H

    2014-01-01

    Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html. PMID:24701118

  18. Conserving the functional and phylogenetic trees of life of European tetrapods.

    PubMed

    Thuiller, Wilfried; Maiorano, Luigi; Mazel, Florent; Guilhaumon, François; Ficetola, Gentile Francesco; Lavergne, Sébastien; Renaud, Julien; Roquet, Cristina; Mouillot, David

    2015-02-19

    Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diversity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species' target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history.

  19. Conserving the functional and phylogenetic trees of life of European tetrapods

    PubMed Central

    Thuiller, Wilfried; Maiorano, Luigi; Mazel, Florent; Guilhaumon, François; Ficetola, Gentile Francesco; Lavergne, Sébastien; Renaud, Julien; Roquet, Cristina; Mouillot, David

    2015-01-01

    Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diversity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species' target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history. PMID:25561666

  20. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity.

    PubMed

    Pyron, R Alexander; Wiens, John J

    2013-11-01

    Many groups show higher species richness in tropical regions but the underlying causes remain unclear. Despite many competing hypotheses to explain latitudinal diversity gradients, only three processes can directly change species richness across regions: speciation, extinction and dispersal. These processes can be addressed most powerfully using large-scale phylogenetic approaches, but most previous studies have focused on small groups and recent time scales, or did not separate speciation and extinction rates. We investigate the origins of high tropical diversity in amphibians, applying new phylogenetic comparative methods to a tree of 2871 species. Our results show that high tropical diversity is explained by higher speciation in the tropics, higher extinction in temperate regions and limited dispersal out of the tropics compared with colonization of the tropics from temperate regions. These patterns are strongly associated with climate-related variables such as temperature, precipitation and ecosystem energy. Results from models of diversity dependence in speciation rate suggest that temperate clades may have lower carrying capacities and may be more saturated (closer to carrying capacity) than tropical clades. Furthermore, we estimate strikingly low tropical extinction rates over geological time scales, in stark contrast to the dramatic losses of diversity occurring in tropical regions presently. PMID:24026818

  1. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site.

    PubMed

    Becker, Erin A; Yao, Andrew I; Seitzer, Phillip M; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S Y; Yarov-Yarovoy, Vladimir; Facciotti, Marc T

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  2. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site

    PubMed Central

    Becker, Erin A.; Yao, Andrew I.; Seitzer, Phillip M.; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S. Y.; Yarov-Yarovoy, Vladimir; Facciotti, Marc T.

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  3. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    SciTech Connect

    N. Price, Morgan; S. Dehal, Paramvir; P. Arkin, Adam

    2009-07-31

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

  4. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life.

    PubMed

    Barley, Anthony J; Spinks, Phillip Q; Thomson, Robert C; Shaffer, H Bradley

    2010-06-01

    Advances in molecular biology have expanded our understanding of patterns of evolution and our ability to infer phylogenetic relationships. Despite many applications of molecular methods in attempts at resolving the evolutionary relationships among the major clades of turtles, some nodes in the tree have proved to be extremely problematic and have remained unresolved. In this study, we use 14 nuclear loci to provide an in depth look at several of these troublesome nodes and infer the systematic relationships among 11 of the 14 turtle families. We find strong support for two of the most problematic nodes in the deep phylogeny of turtles that have traditionally defied resolution. In particular, we recover strong support for a sister relationship between the Emydidae and the monotypic bigheaded-turtle, Platysternon megacephalum. We also find strong support for a clade consisting of sea turtles, mud and musk turtles, and snapping turtles. Within this clade, snapping turtles (Chelydridae) and mud/musk turtles (Kinosternidae) are sister taxa, again with strong support. Our results emphasize the utility of multi-locus datasets in phylogenetic analyses of difficult problems. PMID:19913628

  5. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

    PubMed

    Davis, Brian W; Li, Gang; Murphy, William J

    2010-07-01

    The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and

  6. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

    PubMed

    Davis, Brian W; Li, Gang; Murphy, William J

    2010-07-01

    The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and

  7. Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus.

    PubMed

    Wang, Fen; Ye, Bin

    2016-09-01

    Cyst echinococcosis caused by the matacestodal larvae of Echinococcus granulosus (Eg), is a chronic, worldwide, and severe zoonotic parasitosis. The treatment of cyst echinococcosis is still difficult since surgery cannot fit the needs of all patients, and drugs can lead to serious adverse events as well as resistance. The screen of target proteins interacted with new anti-hydatidosis drugs is urgently needed to meet the prevailing challenges. Here, we analyzed the sequences and structure properties, and constructed a phylogenetic tree by bioinformatics methods. The MIP family signature and Protein kinase C phosphorylation sites were predicted in all nine EgAQPs. α-helix and random coil were the main secondary structures of EgAQPs. The numbers of transmembrane regions were three to six, which indicated that EgAQPs contained multiple hydrophobic regions. A neighbor-joining tree indicated that EgAQPs were divided into two branches, seven EgAQPs formed a clade with AQP1 from human, a "strict" aquaporins, other two EgAQPs formed a clade with AQP9 from human, an aquaglyceroporins. Unfortunately, homology modeling of EgAQPs was aborted. These results provide a foundation for understanding and researches of the biological function of E. granulosus. PMID:27164831

  8. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    PubMed

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession.

  9. Improved Phylogenetic Analyses Corroborate a Plausible Position of Martialis heureka in the Ant Tree of Life

    PubMed Central

    Kück, Patrick; Hita Garcia, Francisco; Misof, Bernhard; Meusemann, Karen

    2011-01-01

    Martialinae are pale, eyeless and probably hypogaeic predatory ants. Morphological character sets suggest a close relationship to the ant subfamily Leptanillinae. Recent analyses based on molecular sequence data suggest that Martialinae are the sister group to all extant ants. However, by comparing molecular studies and different reconstruction methods, the position of Martialinae remains ambiguous. While this sister group relationship was well supported by Bayesian partitioned analyses, Maximum Likelihood approaches could not unequivocally resolve the position of Martialinae. By re-analysing a previous published molecular data set, we show that the Maximum Likelihood approach is highly appropriate to resolve deep ant relationships, especially between Leptanillinae, Martialinae and the remaining ant subfamilies. Based on improved alignments, alignment masking, and tree reconstructions with a sufficient number of bootstrap replicates, our results strongly reject a placement of Martialinae at the first split within the ant tree of life. Instead, we suggest that Leptanillinae are a sister group to all other extant ant subfamilies, whereas Martialinae branch off as a second lineage. This assumption is backed by approximately unbiased (AU) tests, additional Bayesian analyses and split networks. Our results demonstrate clear effects of improved alignment approaches, alignment masking and data partitioning. We hope that our study illustrates the importance of thorough, comprehensible phylogenetic analyses using the example of ant relationships. PMID:21731644

  10. Improved phylogenetic analyses corroborate a plausible position of Martialis heureka in the ant tree of life.

    PubMed

    Kück, Patrick; Hita Garcia, Francisco; Misof, Bernhard; Meusemann, Karen

    2011-01-01

    Martialinae are pale, eyeless and probably hypogaeic predatory ants. Morphological character sets suggest a close relationship to the ant subfamily Leptanillinae. Recent analyses based on molecular sequence data suggest that Martialinae are the sister group to all extant ants. However, by comparing molecular studies and different reconstruction methods, the position of Martialinae remains ambiguous. While this sister group relationship was well supported by Bayesian partitioned analyses, Maximum Likelihood approaches could not unequivocally resolve the position of Martialinae. By re-analysing a previous published molecular data set, we show that the Maximum Likelihood approach is highly appropriate to resolve deep ant relationships, especially between Leptanillinae, Martialinae and the remaining ant subfamilies. Based on improved alignments, alignment masking, and tree reconstructions with a sufficient number of bootstrap replicates, our results strongly reject a placement of Martialinae at the first split within the ant tree of life. Instead, we suggest that Leptanillinae are a sister group to all other extant ant subfamilies, whereas Martialinae branch off as a second lineage. This assumption is backed by approximately unbiased (AU) tests, additional Bayesian analyses and split networks. Our results demonstrate clear effects of improved alignment approaches, alignment masking and data partitioning. We hope that our study illustrates the importance of thorough, comprehensible phylogenetic analyses using the example of ant relationships.

  11. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    PubMed

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal.

  12. Bears in a Forest of Gene Trees: Phylogenetic Inference Is Complicated by Incomplete Lineage Sorting and Gene Flow

    PubMed Central

    Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel

    2014-01-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145

  13. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    PubMed

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145

  14. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees

    PubMed Central

    Letunic, Ivica; Bork, Peer

    2016-01-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. PMID:27095192

  15. Rooting the tree of life: the phylogenetic jury is still out

    PubMed Central

    Gouy, Richard; Baurain, Denis; Philippe, Hervé

    2015-01-01

    This article aims to shed light on difficulties in rooting the tree of life (ToL) and to explore the (sociological) reasons underlying the limited interest in accurately addressing this fundamental issue. First, we briefly review the difficulties plaguing phylogenetic inference and the ways to improve the modelling of the substitution process, which is highly heterogeneous, both across sites and over time. We further observe that enriched taxon samplings, better gene samplings and clever data removal strategies have led to numerous revisions of the ToL, and that these improved shallow phylogenies nearly always relocate simple organisms higher in the ToL provided that long-branch attraction artefacts are kept at bay. Then, we note that, despite the flood of genomic data available since 2000, there has been a surprisingly low interest in inferring the root of the ToL. Furthermore, the rare studies dealing with this question were almost always based on methods dating from the 1990s that have been shown to be inaccurate for much more shallow issues! This leads us to argue that the current consensus about a bacterial root for the ToL can be traced back to the prejudice of Aristotle's Great Chain of Beings, in which simple organisms are ancestors of more complex life forms. Finally, we demonstrate that even the best models cannot yet handle the complexity of the evolutionary process encountered both at shallow depth, when the outgroup is too distant, and at the level of the inter-domain relationships. Altogether, we conclude that the commonly accepted bacterial root is still unproven and that the root of the ToL should be revisited using phylogenomic supermatrices to ensure that new evidence for eukaryogenesis, such as the recently described Lokiarcheota, is interpreted in a sound phylogenetic framework. PMID:26323760

  16. Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Rubin Filho, C J; Azevedo, J L; Pamphile, J A

    2012-01-01

    Various types of organisms, mainly fungi and bacteria, live within vegetal organs and tissues, without causing damage to the plant. These microorganisms, which are called endophytes, can be useful for biological control and plant growth promotion; bioactive compounds from these organisms may have medical and pharmaceutical applications. Trichilia elegans (Meliaceae) is a native tree that grows abundantly in several regions of Brazil. Preparations using the leaves, seeds, bark, and roots of many species of the Meliaceae family have been widely used in traditional medicine, and some members of the Trichilia genus are used in Brazilian popular medicine. We assessed the diversity of endophytic fungi from two wild specimens of T. elegans, collected from a forest remnant, by sequencing ITS1-5.8S-ITS2 of rDNA of the isolates. The fungi were isolated and purified; 97 endophytic fungi were found; they were separated into 17 morpho-groups. Of the 97 endophytic fungi, four genera (Phomopsis, Diaporthe, Dothideomycete, and Cordyceps) with 11 morpho-groups were identified. Phomopsis was the most frequent genus among the identified endophytes. Phylogenetic analysis showed two major clades: Sordariomycetes, which includes three genera, Phomopsis, Diaporthe, and Cordyceps, and the clade Dothideomycetes, which was represented by the order Pleosporales. PMID:22782630

  17. Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis

    PubMed Central

    Guo, Da-Long; Hou, Xiao-Gai; Jia, Tian

    2014-01-01

    Tree peony is an important horticultural plant worldwide of great ornamental and medicinal value. Long terminal repeat retrotransposons (LTR-retrotransposons) are the major components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their sequence characteristics, genetic distribution and transcriptional activity; however, no information about them is available in tree peony. Ty1-copia-like reverse transcriptase sequences were amplified from tree peony genomic DNA by polymerase chain reaction (PCR) with degenerate oligonucleotide primers corresponding to highly conserved domains of the Ty1-copia-like retrotransposons in this study. PCR fragments of roughly 270 bp were isolated and cloned, and 33 sequences were obtained. According to alignment and phylogenetic analysis, all sequences were divided into six families. The observed difference in the degree of nucleotide sequence similarity is an indication for high level of sequence heterogeneity among these clones. Most of these sequences have a frame shift, a stop codon, or both. Dot-blot analysis revealed distribution of these sequences in all the studied tree peony species. However, different hybridization signals were detected among them, which is in agreement with previous systematics studies. Reverse transcriptase PCR (RT-PCR) indicated that Ty1-copia retrotransposons in tree peony were transcriptionally inactive. The results provide basic genetic and evolutionary information of tree peony genome, and will provide valuable information for the further utilization of retrotransposons in tree peony. PMID:26019529

  18. Variance to mean ratio, R(t), for poisson processes on phylogenetic trees.

    PubMed

    Goldman, N

    1994-09-01

    The ratio of expected variance to mean, R(t), of numbers of DNA base substitutions for contemporary sequences related by a "star" phylogeny is widely seen as a measure of the adherence of the sequences' evolution to a Poisson process with a molecular clock, as predicted by the "neutral theory" of molecular evolution under certain conditions. A number of estimators of R(t) have been proposed, all predicted to have mean 1 and distributions based on the chi 2. Various genes have previously been analyzed and found to have values of R(t) far in excess of 1, calling into question important aspects of the neutral theory. In this paper, I use Monte Carlo simulation to show that the previously suggested means and distributions of estimators of R(t) are highly inaccurate. The analysis is applied to star phylogenies and to general phylogenetic trees, and well-known gene sequences are reanalyzed. For star phylogenies the results show that Kimura's estimators ("The Neutral Theory of Molecular Evolution," Cambridge Univ. Press, Cambridge, 1983) are unsatisfactory for statistical testing of R(t), but confirm the accuracy of Bulmer's correction factor (Genetics 123: 615-619, 1989). For all three nonstar phylogenies studied, attained values of all three estimators of R(t), although larger than 1, are within their true confidence limits under simple Poisson process models. This shows that lineage effects can be responsible for high estimates of R(t), restoring some limited confidence in the molecular clock and showing that the distinction between lineage and molecular clock effects is vital.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Testing robustness of relative complexity measure method constructing robust phylogenetic trees for Galanthus L. Using the relative complexity measure

    PubMed Central

    2013-01-01

    Background Most phylogeny analysis methods based on molecular sequences use multiple alignment where the quality of the alignment, which is dependent on the alignment parameters, determines the accuracy of the resulting trees. Different parameter combinations chosen for the multiple alignment may result in different phylogenies. A new non-alignment based approach, Relative Complexity Measure (RCM), has been introduced to tackle this problem and proven to work in fungi and mitochondrial DNA. Result In this work, we present an application of the RCM method to reconstruct robust phylogenetic trees using sequence data for genus Galanthus obtained from different regions in Turkey. Phylogenies have been analyzed using nuclear and chloroplast DNA sequences. Results showed that, the tree obtained from nuclear ribosomal RNA gene sequences was more robust, while the tree obtained from the chloroplast DNA showed a higher degree of variation. Conclusions Phylogenies generated by Relative Complexity Measure were found to be robust and results of RCM were more reliable than the compared techniques. Particularly, to overcome MSA-based problems, RCM seems to be a reasonable way and a good alternative to MSA-based phylogenetic analysis. We believe our method will become a mainstream phylogeny construction method especially for the highly variable sequence families where the accuracy of the MSA heavily depends on the alignment parameters. PMID:23323678

  20. Finding the tree of life: matching phylogenetic trees to the fossil record through the 20th century.

    PubMed Central

    Benton, M. J.

    2001-01-01

    Phylogenies, or evolutionary trees, are fundamental to biology. Systematists have laboured since the time of Darwin to discover the tree of life. Recent developments in systematics, such as cladistics and molecular sequencing, have led practitioners to believe that their phylogenies are more testable now than equivalent efforts from the 1960s or earlier. Whole trees, and nodes within trees, may be assessed for their robustness. However, these quantitative approaches cannot be used to demonstrate that one tree is more likely to be correct than another. Congruence assessments may help. Comparison of a sample of 1000 published trees with an essentially independent standard (dates of origin of groups in geological time) shows that the order of branching has improved slightly, but the disparity between estimated times of origination from phylogeny and stratigraphy has, if anything, become worse. Controlled comparisons of phylogenies of four major groups (Agnatha, Sarcopterygii, Sauria and Mammalia) do not show uniform improvement, or decline, of fit to stratigraphy through the twentieth century. Nor do morphological or molecular trees differ uniformly in their performance. PMID:11600076

  1. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments.

    PubMed

    Chen, Jonathan S; Reddy, Vamsee; Chen, Joshua H; Shlykov, Maksim A; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H

    2011-01-01

    Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation:Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids.

  2. SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations.

    PubMed

    Huang, Yen-Lin; Huang, Chen-Cheng; Tang, Chuan Yi; Lu, Chin Lung

    2010-07-01

    SoRT(2) is a web server that allows the user to perform genome rearrangement analysis involving reversals, generalized transpositions and translocations (including fusions and fissions), and infer phylogenetic trees of genomes being considered based on their pairwise genome rearrangement distances. It takes as input two or more linear/circular multi-chromosomal gene (or synteny block) orders in FASTA-like format. When the input is two genomes, SoRT(2) will quickly calculate their rearrangement distance, as well as a corresponding optimal scenario by highlighting the genes involved in each rearrangement operation. In the case of multiple genomes, SoRT(2) will also construct phylogenetic trees of these genomes based on a matrix of their pairwise rearrangement distances using distance-based approaches, such as neighbor-joining (NJ), unweighted pair group method with arithmetic mean (UPGMA) and Fitch-Margoliash (FM) methods. In addition, if the function of computing jackknife support values is selected, SoRT(2) will further perform the jackknife analysis to evaluate statistical reliability of the constructed NJ, UPGMA and FM trees. SoRT(2) is available online at http://bioalgorithm.life.nctu.edu.tw/SORT2/.

  3. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans.

    PubMed

    Rodríguez-Ezpeleta, Naiara; Brinkmann, Henner; Burger, Gertraud; Roger, Andrew J; Gray, Michael W; Philippe, Hervé; Lang, B Franz

    2007-08-21

    Resolving the global phylogeny of eukaryotes has proven to be challenging. Among the eukaryotic groups of uncertain phylogenetic position are jakobids, a group of bacterivorous flagellates that possess the most bacteria-like mitochondrial genomes known. Jakobids share several ultrastructural features with malawimonads and an assemblage of anaerobic protists (e.g., diplomonads and oxymonads). These lineages together with Euglenozoa and Heterolobosea have collectively been designated "excavates". However, published molecular phylogenies based on the sequences of nuclear rRNAs and up to six nucleus-encoded proteins do not provide convincing support for the monophyly of excavates, nor do they uncover their relationship to other major eukaryotic groups. Here, we report the first large-scale eukaryotic phylogeny, inferred from 143 nucleus-encoded proteins comprising 31,604 amino acid positions, that includes jakobids, malawimonads and cercozoans. We obtain compelling support for the monophyly of jakobids, Euglenozoa plus Heterolobosea (JEH group), and for the association of cercozoans with stramenopiles plus alveolates. Furthermore, we observe a sister-group relationship between the JEH group and malawimonads after removing fast-evolving species from the dataset. We discuss the implications of these results for the concept of "excavates" and for the elucidation of eukaryotic phylogeny in general.

  4. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    PubMed

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4]. PMID:27672674

  5. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    PubMed

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  6. Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis

    PubMed Central

    Kuramoto, Tae; Nishihara, Hidenori; Watanabe, Maiko; Okada, Norihiro

    2015-01-01

    Despite many studies on avian phylogenetics in recent decades that used morphology, mitochondrial genomes, and/or nuclear genes, the phylogenetic positions of several birds (e.g., storks) remain unsettled. In addition to the aforementioned approaches, analysis of retroposon insertions, which are nearly homoplasy-free phylogenetic markers, has also been used in avian phylogenetics. However, the first step in the analysis of retroposon insertions, that is, isolation of retroposons from genomic libraries, is a costly and time-consuming procedure. Therefore, we developed a high-throughput and cost-effective protocol to collect retroposon insertion information based on next-generation sequencing technology, which we call here the STRONG (Screening of Transposons Obtained by Next Generation Sequencing) method, and applied it to 3 waterbird species, for which we identified 35,470 loci containing chicken repeat 1 retroposons (CR1). Our analysis of the presence/absence of 30 CR1 insertions demonstrated the intra- and interordinal phylogenetic relationships in the waterbird assemblage, namely 1) Loons diverged first among the waterbirds, 2) penguins (Sphenisciformes) and petrels (Procellariiformes) diverged next, and 3) among the remaining families of waterbirds traditionally classified in Ciconiiformes/Pelecaniformes, storks (Ciconiidae) diverged first. Furthermore, our genome-scale, in silico retroposon analysis based on published genome data uncovered a complex divergence history among pelican, heron, and ibis lineages, presumably involving ancient interspecies hybridization between the heron and ibis lineages. Thus, our retroposon-based waterbird phylogeny and the established phylogenetic position of storks will help to understand the evolutionary processes of aquatic adaptation and related morphological convergent evolution. PMID:26527652

  7. [Estimating genetic distance and phylogenetic tree of HPA-1-3, 5, and 15 in different populations].

    PubMed

    Feng, Ming-Liang; Huang, Hui; Shen, Tong; Zhang, Xi; Yin, Biao; Yang, Jian-Hao; Liu, Da-Zhuang

    2008-07-01

    According to the human platelet alloantigens (HPA) polymorphisms in five systems, the distributions of HPA-1 -3, 5, and 15 systems in 1 000 Chinese donors were carried out by using a polymerase chain reaction with sequence-specific primers (PCR-SSP) method. The genetic distance and phylogenetic tree between Chinese Hans and other populations were estimated by using DISPAN and PHYLIP software. As presented by the phylogenetic tree, Asian had a convergence with European first, and grouped together with African. Beninese which came from Africa was on the top of dendrogram. Indian was located between Asian and European. Brazilian was converged with other Europe populations. Oceanian Polynexiya had been shown specifically to cluster with Asia populations. These results proved the "out of Africa theory" from one side, and it also confirmed that early migration of Asian is from south to southeast, and east Asia., thus it is probable that Europeans are migrated from south to north, and west Europe. As genetic distance was estimated effectively by HPA systems, HPA systems could serve as the genetic marker in human migration and evolution research. PMID:18779125

  8. A chloroplast tree for Viburnum (Adoxaceae) and its implications for phylogenetic classification and character evolution.

    PubMed

    Clement, Wendy L; Arakaki, Mónica; Sweeney, Patrick W; Edwards, Erika J; Donoghue, Michael J

    2014-06-13

    • Premise of the study: Despite recent progress, significant uncertainties remain concerning relationships among early-branching lineages within Viburnum (Adoxaceae), prohibiting a new classification and hindering studies of character evolution and the increasing use of Viburnum in addressing a wide range of ecological and evolutionary questions. We hoped to resolve these issues by sequencing whole plastid genomes for representative species and combining these with molecular data previously obtained from an expanded taxon sample.• Methods: We performed paired-end Illumina sequencing of plastid genomes of 22 Viburnum species and combined these data with a 10-gene data set to infer phylogenetic relationships for 113 species. We used the results to devise a comprehensive phylogenetic classification and to analyze the evolution of eight morphological characters that vary among early-branching lineages.• Key results: With greatly increased levels of confidence in most of the early branches, we propose a phylogenetic classification of Viburnum, providing formal phylogenetic definitions for 30 clades, including 13 with names recognized under the International Code of Nomenclature for Algae, Fungi, and Plants, eight with previously proposed informal names, and nine newly proposed names for major branches. Our parsimony reconstructions of bud structure, leaf margins, inflorescence form, ruminate endosperm, extrafloral nectaries, glandular trichomes, palisade anatomy, and pollen exine showed varying levels of homoplasy, but collectively provided morphological support for some, though not all, of the major clades.• Conclusions: Our study demonstrates the value of next-generation plastid sequencing, the ease of creating a formal phylogenetic classification, and the utility of such a system in describing patterns of character evolution. PMID:24928633

  9. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. PMID:26140928

  10. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  11. A Revised Root for the Human Y Chromosomal Phylogenetic Tree: The Origin of Patrilineal Diversity in Africa

    PubMed Central

    Cruciani, Fulvio; Trombetta, Beniamino; Massaia, Andrea; Destro-Bisol, Giovanni; Sellitto, Daniele; Scozzari, Rosaria

    2011-01-01

    To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent. PMID:21601174

  12. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd

    PubMed Central

    2014-01-01

    Background Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Results Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. Conclusions The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica. PMID:24969969

  13. Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster

    PubMed Central

    Buckley, Thomas R.; Attanayake, Dilini; Bradler, Sven

    2008-01-01

    The ‘tree lobsters’ are an enigmatic group of robust, ground-dwelling stick insects (order Phasmatodea) from the subfamily Eurycanthinae, distributed in New Guinea, New Caledonia and associated islands. Its most famous member is the Lord Howe Island stick insect Dryococelus australis (Montrouzier), which was believed to have become extinct but was rediscovered in 2001 and is considered to be one of the rarest insects in the world. To resolve the evolutionary position of Dryococelus, we constructed a phylogeny from approximately 2.4 kb of mitochondrial and nuclear sequence data from representatives of all major phasmatodean lineages. Our data placed Dryococelus and the New Caledonian tree lobsters outside the New Guinean Eurycanthinae as members of an unrelated Australasian stick insect clade, the Lanceocercata. These results suggest a convergent origin of the ‘tree lobster’ body form. Our reanalysis of tree lobster characters provides additional support for our hypothesis of convergent evolution. We conclude that the phenotypic traits leading to the traditional classification are convergent adaptations to ground-living behaviour. Our molecular dating analyses indicate an ancient divergence (more than 22 Myr ago) between Dryococelus and its Australian relatives. Hence, Dryococelus represents a long-standing separate evolutionary lineage within the stick insects and must be regarded as a key taxon to protect with respect to phasmatodean diversity. PMID:19129110

  14. An Efficient Independence Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sampling of Phylogenetic Trees.

    PubMed

    Aberer, Andre J; Stamatakis, Alexandros; Ronquist, Fredrik

    2016-01-01

    Sampling tree space is the most challenging aspect of Bayesian phylogenetic inference. The sheer number of alternative topologies is problematic by itself. In addition, the complex dependency between branch lengths and topology increases the difficulty of moving efficiently among topologies. Current tree proposals are fast but sample new trees using primitive transformations or re-mappings of old branch lengths. This reduces acceptance rates and presumably slows down convergence and mixing. Here, we explore branch proposals that do not rely on old branch lengths but instead are based on approximations of the conditional posterior. Using a diverse set of empirical data sets, we show that most conditional branch posteriors can be accurately approximated via a [Formula: see text] distribution. We empirically determine the relationship between the logarithmic conditional posterior density, its derivatives, and the characteristics of the branch posterior. We use these relationships to derive an independence sampler for proposing branches with an acceptance ratio of ~90% on most data sets. This proposal samples branches between 2× and 3× more efficiently than traditional proposals with respect to the effective sample size per unit of runtime. We also compare the performance of standard topology proposals with hybrid proposals that use the new independence sampler to update those branches that are most affected by the topological change. Our results show that hybrid proposals can sometimes noticeably decrease the number of generations necessary for topological convergence. Inconsistent performance gains indicate that branch updates are not the limiting factor in improving topological convergence for the currently employed set of proposals. However, our independence sampler might be essential for the construction of novel tree proposals that apply more radical topology changes. PMID:26231183

  15. [Phylogeny of genus Spermophilus and position of Alashan ground squirrel (Spermophilus alashanicus, Buchner, 1888) on phylogenetic tree of Paleartic short-tailed ground squirrels].

    PubMed

    Kapustina, S Yu; Brandler, O V; Adiya, Ya

    2015-01-01

    Phylogenetic relationships within a group of Paleartic short tailed ground squirrels (Spermophilus), recently defined as genus, are not sufficiently clear and need a critical revision. Interspecies hybridization, found in Eurasian Spermophilus, can affect the results of reconstruction of molecular phylogeny. Alashan ground squirrel position on the phylogenetic tree needs clarification. We analyzed eight nucleotide sequences of cytb gene of S. alashanicus and 127 sequences of other Spermophilus species form GenBank. S.alashanicus and S. dauricus close phylogenetic relationship, and their affinity to ancestral forms of the group are revealed. Monophyly of Colobotis subgenus was confirmed. Paraphyly of eastern and western forms of S. relictus was shown.

  16. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees.

    PubMed

    Ribeiro-Gonçalves, Bruno; Francisco, Alexandre P; Vaz, Cátia; Ramirez, Mário; Carriço, João André

    2016-07-01

    High-throughput sequencing methods generated allele and single nucleotide polymorphism information for thousands of bacterial strains that are publicly available in online repositories and created the possibility of generating similar information for hundreds to thousands of strains more in a single study. Minimum spanning tree analysis of allelic data offers a scalable and reproducible methodological alternative to traditional phylogenetic inference approaches, useful in epidemiological investigations and population studies of bacterial pathogens. PHYLOViZ Online was developed to allow users to do these analyses without software installation and to enable easy accessing and sharing of data and analyses results from any Internet enabled computer. PHYLOViZ Online also offers a RESTful API for programmatic access to data and algorithms, allowing it to be seamlessly integrated into any third party web service or software. PHYLOViZ Online is freely available at https://online.phyloviz.net. PMID:27131357

  17. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees

    PubMed Central

    Ribeiro-Gonçalves, Bruno; Francisco, Alexandre P.; Vaz, Cátia; Ramirez, Mário; Carriço, João André

    2016-01-01

    High-throughput sequencing methods generated allele and single nucleotide polymorphism information for thousands of bacterial strains that are publicly available in online repositories and created the possibility of generating similar information for hundreds to thousands of strains more in a single study. Minimum spanning tree analysis of allelic data offers a scalable and reproducible methodological alternative to traditional phylogenetic inference approaches, useful in epidemiological investigations and population studies of bacterial pathogens. PHYLOViZ Online was developed to allow users to do these analyses without software installation and to enable easy accessing and sharing of data and analyses results from any Internet enabled computer. PHYLOViZ Online also offers a RESTful API for programmatic access to data and algorithms, allowing it to be seamlessly integrated into any third party web service or software. PHYLOViZ Online is freely available at https://online.phyloviz.net. PMID:27131357

  18. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    NASA Technical Reports Server (NTRS)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  19. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

    PubMed

    Magallón, Susana; Gómez-Acevedo, Sandra; Sánchez-Reyes, Luna L; Hernández-Hernández, Tania

    2015-07-01

    The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later. PMID:25615647

  20. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  1. Molecular Dissection of the Basal Clades in the Human Y Chromosome Phylogenetic Tree

    PubMed Central

    Scozzari, Rosaria; Massaia, Andrea; D’Atanasio, Eugenia; Myres, Natalie M.; Perego, Ugo A.; Trombetta, Beniamino; Cruciani, Fulvio

    2012-01-01

    One hundred and forty-six previously detected mutations were more precisely positioned in the human Y chromosome phylogeny by the analysis of 51 representative Y chromosome haplogroups and the use of 59 mutations from literature. Twenty-two new mutations were also described and incorporated in the revised phylogeny. This analysis made it possible to identify new haplogroups and to resolve a deep trifurcation within haplogroup B2. Our data provide a highly resolved branching in the African-specific portion of the Y tree and support the hypothesis of an origin in the north-western quadrant of the African continent for the human MSY diversity. PMID:23145109

  2. Molecular dissection of the basal clades in the human Y chromosome phylogenetic tree.

    PubMed

    Scozzari, Rosaria; Massaia, Andrea; D'Atanasio, Eugenia; Myres, Natalie M; Perego, Ugo A; Trombetta, Beniamino; Cruciani, Fulvio

    2012-01-01

    One hundred and forty-six previously detected mutations were more precisely positioned in the human Y chromosome phylogeny by the analysis of 51 representative Y chromosome haplogroups and the use of 59 mutations from literature. Twenty-two new mutations were also described and incorporated in the revised phylogeny. This analysis made it possible to identify new haplogroups and to resolve a deep trifurcation within haplogroup B2. Our data provide a highly resolved branching in the African-specific portion of the Y tree and support the hypothesis of an origin in the north-western quadrant of the African continent for the human MSY diversity.

  3. Interim Report on Multiple Sequence Alignments and TaqMan Signature Mapping to Phylogenetic Trees

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The goal of this project is to develop forensic genotyping assays for select agent viruses, addressing a significant capability gap for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the Taqman signature development for South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.

  4. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    PubMed

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  5. Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    PubMed Central

    Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  6. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  7. Sampling strategies for improving tree accuracy and phylogenetic analyses: a case study in ciliate protists, with notes on the genus Paramecium.

    PubMed

    Yi, Zhenzhen; Strüder-Kypke, Michaela; Hu, Xiaozhong; Lin, Xiaofeng; Song, Weibo

    2014-02-01

    In order to assess how dataset-selection for multi-gene analyses affects the accuracy of inferred phylogenetic trees in ciliates, we chose five genes and the genus Paramecium, one of the most widely used model protist genera, and compared tree topologies of the single- and multi-gene analyses. Our empirical study shows that: (1) Using multiple genes improves phylogenetic accuracy, even when their one-gene topologies are in conflict with each other. (2) The impact of missing data on phylogenetic accuracy is ambiguous: resolution power and topological similarity, but not number of represented taxa, are the most important criteria of a dataset for inclusion in concatenated analyses. (3) As an example, we tested the three classification models of the genus Paramecium with a multi-gene based approach, and only the monophyly of the subgenus Paramecium is supported.

  8. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants.

    PubMed

    Volokita, Micha; Rosilio-Brami, Tamar; Rivkin, Natalia; Zik, Moriyah

    2011-01-01

    The GDSL-lipase gene family is a very large subfamily within the supergene family of SGNH esterases, defined by the distinct GDSL amino acid motif and several highly conserved domains. Plants retain a large number of GDSL-lipases indicating that they have acquired important functions. Yet, in planta functions have been demonstrated for only a few GDSL-lipases from diverse species. Considering that orthologs often retain equivalent functions, we determined the phylogenetic relationships between GDSL-lipases from genome-sequenced species representing bryophytes, gymnosperms, monocots, and eudicots. An unrooted phylogenetic tree was constructed from the amino acid sequences of 604 GDSL-lipases from seven species. The topology of the tree depicts two major and one minor subfamily. This division is also supported by the unique gene structure of each subfamily. Because GDSL-lipase genes of all species are present in each of the three subfamilies, we conclude that the last common ancestor of the land plants already possessed at least one ancestral GDSL-lipase gene of each subfamily. Combined gene structure and synteny analyses revealed events of segmental duplications, gene transposition, and gene degeneration in the evolution of the GDSL-lipase gene family. Furthermore, these analyses showed that independent events of intron gain and loss also contributed to the extant repertoire of the GDSL-lipase gene family. Our findings suggest that underlying many of the intron losses was a spliceosomal-mediated mechanism followed by gene conversion. Sorting the phylogenetic relationships among the members of the GDSL-lipase gene family, as depicted by the tree and supported by synteny analyses, provides a framework for extrapolation of demonstrated functional data to GDSL-lipases, whose function is yet unknown. Furthermore, function(s) associated with specific lineage(s)-enriched branches may reveal correlations between acquired and/or lost functions and speciation.

  9. Comprehensive phylogenetic reconstruction of relationships in Octocorallia (Cnidaria: Anthozoa) from the Atlantic ocean using mtMutS and nad2 genes tree reconstructions

    NASA Astrophysics Data System (ADS)

    Morris, K. J.; Herrera, S.; Gubili, C.; Tyler, P. A.; Rogers, A.; Hauton, C.

    2012-12-01

    Despite being an abundant group of significant ecological importance the phylogenetic relationships of the Octocorallia remain poorly understood and very much understudied. We used 1132 bp of two mitochondrial protein-coding genes, nad2 and mtMutS (previously referred to as msh1), to construct a phylogeny for 161 octocoral specimens from the Atlantic, including both Isididae and non-Isididae species. We found that four clades were supported using a concatenated alignment. Two of these (A and B) were in general agreement with the of Holaxonia-Alcyoniina and Anthomastus-Corallium clades identified by previous work. The third and fourth clades represent a split of the Calcaxonia-Pennatulacea clade resulting in a clade containing the Pennatulacea and a small number of Isididae specimens and a second clade containing the remaining Calcaxonia. When individual genes were considered nad2 largely agreed with previous work with MtMutS also producing a fourth clade corresponding to a split of Isididae species from the Calcaxonia-Pennatulacea clade. It is expected these difference are a consequence of the inclusion of Isisdae species that have undergone a gene inversion in the mtMutS gene causing their separation in the MtMutS only tree. The fourth clade in the concatenated tree is also suspected to be a result of this gene inversion, as there were very few Isidiae species included in previous work tree and thus this separation would not be clearly resolved. A~larger phylogeny including both Isididae and non Isididae species is required to further resolve these clades.

  10. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America.

    PubMed

    Haukka, K; Lindström, K; Young, J P

    1998-02-01

    The diversity and phylogeny of nodA and nifH genes were studied by using 52 rhizobial isolates from Acacia senegal, Prosopis chilensis, and related leguminous trees growing in Africa and Latin America. All of the strains had similar host ranges and belonged to the genera Sinorhizobium and Mesorhizobium, as previously determined by 16S rRNA gene sequence analysis. The restriction patterns and a sequence analysis of the nodA and nifH genes divided the strains into the following three distinct groups: sinorhizobia from Africa, sinorhizobia from Latin America, and mesorhizobia from both regions. In a phylogenetic tree also containing previously published sequences, the nodA genes of our rhizobia formed a branch of their own, but within the branch no correlation between symbiotic genes and host trees was apparent. Within the large group of African sinorhizobia, similar symbiotic gene types were found in different chromosomal backgrounds, suggesting that transfer of symbiotic genes has occurred across species boundaries. Most strains had plasmids, and the presence of plasmid-borne nifH was demonstrated by hybridization for some examples. The nodA and nifH genes of Sinorhizobium teranga ORS1009T grouped with the nodA and nifH genes of the other African sinorhizobia, but Sinorhizobium saheli ORS609T had a totally different nodA sequence, although it was closely related based on the 16S rRNA gene and nifH data. This might be because this S. saheli strain was originally isolated from Sesbania sp., which belongs to a different cross-nodulation group than Acacia and Prosopis spp. The factors that appear to have influenced the evolution of rhizobial symbiotic genes vary in importance at different taxonomic levels.

  11. Three Phylogenetic Groups of nodA and nifH Genes in Sinorhizobium and Mesorhizobium Isolates from Leguminous Trees Growing in Africa and Latin America

    PubMed Central

    Haukka, Kaisa; Lindström, Kristina; Young, J. Peter W.

    1998-01-01

    The diversity and phylogeny of nodA and nifH genes were studied by using 52 rhizobial isolates from Acacia senegal, Prosopis chilensis, and related leguminous trees growing in Africa and Latin America. All of the strains had similar host ranges and belonged to the genera Sinorhizobium and Mesorhizobium, as previously determined by 16S rRNA gene sequence analysis. The restriction patterns and a sequence analysis of the nodA and nifH genes divided the strains into the following three distinct groups: sinorhizobia from Africa, sinorhizobia from Latin America, and mesorhizobia from both regions. In a phylogenetic tree also containing previously published sequences, the nodA genes of our rhizobia formed a branch of their own, but within the branch no correlation between symbiotic genes and host trees was apparent. Within the large group of African sinorhizobia, similar symbiotic gene types were found in different chromosomal backgrounds, suggesting that transfer of symbiotic genes has occurred across species boundaries. Most strains had plasmids, and the presence of plasmid-borne nifH was demonstrated by hybridization for some examples. The nodA and nifH genes of Sinorhizobium teranga ORS1009T grouped with the nodA and nifH genes of the other African sinorhizobia, but Sinorhizobium saheli ORS609T had a totally different nodA sequence, although it was closely related based on the 16S rRNA gene and nifH data. This might be because this S. saheli strain was originally isolated from Sesbania sp., which belongs to a different cross-nodulation group than Acacia and Prosopis spp. The factors that appear to have influenced the evolution of rhizobial symbiotic genes vary in importance at different taxonomic levels. PMID:9464375

  12. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes.

    PubMed

    Spring, S; Lins, U; Amann, R; Schleifer, K H; Ferreira, L C; Esquivel, D M; Farina, M

    1998-02-01

    Natural enrichments of magnetic bacteria from the Itaipu lagoon near Rio de Janeiro were dominated by coccoid-to-ovoid morphotypes that produced unusually large magnetosomes. To determine the phylogenetic position of these unusual microorganisms, 16S rRNA genes were retrieved from bacteria magnetically separated from sediment of the Itaipu lagoon by in vitro amplification and cloning of PCR products into a plasmid vector. Partial sequencing of the obtained clones revealed two clusters of closely related sequences affiliated to a distinct lineage consisting exclusively of magnetic bacteria within the alpha-subclass of Proteobacteria. For a detailed phylogenetic analysis, several almost complete sequences of the 16S rRNA genes were determined. One representative clone of each cluster provided a PCR template for the in vitro transcription of group-specific polynucleotide probes complementary to a variable region of the 16S rRNA molecule. At least three different morphotypes of magnetic bacteria were reliably identified by post-embedding hybridization of ultra-thin sections. Electron microscopic analyses of hybridized cells enabled for the first time a detailed description of the morphological variety and ultrastructure of phylogenetically identified, uncultured magnetic bacteria. Two distinct coccoid bacteria were identified by the transcript probe complementary to the 16S rRNA sequence mabrj12, whereas the probe complementary to the sequence mabrj58 allowed the identification of an ovoid morphotype that displayed magnetosomes with the largest volumes observed to date.

  13. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus).

    PubMed

    Moody, Michael L; Rieseberg, Loren H

    2012-07-01

    The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.

  14. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  15. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis.

    PubMed

    Wang, Hsiuying

    2016-01-01

    MicroRNAs (miRNAs) are shown to be involved in the initiation and progression of cancers in the literature, and the expression of miRNAs is used as an important cancer prognostic tool. The aim of this study is to predict high-confidence miRNA biomarkers for cancer. We adopt a method that combines miRNA phylogenetic structure and miRNA microarray data analysis to discover high-confidence miRNA biomarkers for colon, prostate, pancreatic, lung, breast, bladder and kidney cancers. There are 53 miRNAs selected through this method that either have potential to involve a single cancer's development or to involve several cancers' development. These miRNAs can be used as high-confidence miRNA biomarkers of these seven investigated cancers for further experiment validation. miR-17, miR-20, miR-106a, miR-106b, miR-92, miR-25, miR-16, miR-195 and miR-143 are selected to involve a single cancer's development in these seven cancers. They have the potential to be useful miRNA biomarkers when the result can be confirmed by experiments. PMID:27213352

  16. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis

    PubMed Central

    Wang, Hsiuying

    2016-01-01

    MicroRNAs (miRNAs) are shown to be involved in the initiation and progression of cancers in the literature, and the expression of miRNAs is used as an important cancer prognostic tool. The aim of this study is to predict high-confidence miRNA biomarkers for cancer. We adopt a method that combines miRNA phylogenetic structure and miRNA microarray data analysis to discover high-confidence miRNA biomarkers for colon, prostate, pancreatic, lung, breast, bladder and kidney cancers. There are 53 miRNAs selected through this method that either have potential to involve a single cancer’s development or to involve several cancers’ development. These miRNAs can be used as high-confidence miRNA biomarkers of these seven investigated cancers for further experiment validation. miR-17, miR-20, miR-106a, miR-106b, miR-92, miR-25, miR-16, miR-195 and miR-143 are selected to involve a single cancer’s development in these seven cancers. They have the potential to be useful miRNA biomarkers when the result can be confirmed by experiments. PMID:27213352

  17. Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.

    2009-01-01

    Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa

  18. Shrines in Central Italy conserve plant diversity and large trees.

    PubMed

    Frascaroli, Fabrizio; Bhagwat, Shonil; Guarino, Riccardo; Chiarucci, Alessandro; Schmid, Bernhard

    2016-05-01

    Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices.

  19. Amino acid sequence of myoglobin from the chiton Liolophura japonica and a phylogenetic tree for molluscan globins.

    PubMed

    Suzuki, T; Furukohri, T; Okamoto, S

    1993-02-01

    Myoglobin was isolated from the radular muscle of the chiton Liolophura japonica, a primitive archigastropodic mollusc. Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved in Liolophura myoglobin. The autoxidation rate at physiological conditions indicated that Liolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence of Liolophura myoglobin shows low homology (11-21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26-29%) with monomeric myoglobins from the gastropodic molluscs Aplysia, Dolabella, and Bursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively. Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clams Anadara, Scapharca, and Barbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiontharboring clams Calyptogena and Lucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.

  20. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses

    PubMed Central

    Capella-Gutiérrez, Salvador; Silla-Martínez, José M.; Gabaldón, Toni

    2009-01-01

    Summary: Multiple sequence alignments are central to many areas of bioinformatics. It has been shown that the removal of poorly aligned regions from an alignment increases the quality of subsequent analyses. Such an alignment trimming phase is complicated in large-scale phylogenetic analyses that deal with thousands of alignments. Here, we present trimAl, a tool for automated alignment trimming, which is especially suited for large-scale phylogenetic analyses. trimAl can consider several parameters, alone or in multiple combinations, for selecting the most reliable positions in the alignment. These include the proportion of sequences with a gap, the level of amino acid similarity and, if several alignments for the same set of sequences are provided, the level of consistency across different alignments. Moreover, trimAl can automatically select the parameters to be used in each specific alignment so that the signal-to-noise ratio is optimized. Availability: trimAl has been written in C++, it is portable to all platforms. trimAl is freely available for download (http://trimal.cgenomics.org) and can be used online through the Phylemon web server (http://phylemon2.bioinfo.cipf.es/). Supplementary Material is available at http://trimal.cgenomics.org/publications. Contact: tgabaldon@crg.es PMID:19505945

  1. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by

  2. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a

  3. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by

  4. Large carnivores make savanna tree communities less thorny.

    PubMed

    Ford, Adam T; Goheen, Jacob R; Otieno, Tobias O; Bidner, Laura; Isbell, Lynne A; Palmer, Todd M; Ward, David; Woodroffe, Rosie; Pringle, Robert M

    2014-10-17

    Understanding how predation risk and plant defenses interactively shape plant distributions is a core challenge in ecology. By combining global positioning system telemetry of an abundant antelope (impala) and its main predators (leopards and wild dogs) with a series of manipulative field experiments, we showed that herbivores' risk-avoidance behavior and plants' antiherbivore defenses interact to determine tree distributions in an African savanna. Well-defended thorny Acacia trees (A. etbaica) were abundant in low-risk areas where impala aggregated but rare in high-risk areas that impala avoided. In contrast, poorly defended trees (A. brevispica) were more abundant in high- than in low-risk areas. Our results suggest that plants can persist in landscapes characterized by intense herbivory, either by defending themselves or by thriving in risky areas where carnivores hunt. PMID:25324387

  5. Incorporating social and cultural significance of large old trees in conservation policy.

    PubMed

    Blicharska, Malgorzata; Mikusiński, Grzegorz

    2014-12-01

    In addition to providing key ecological functions, large old trees are a part of a social realm and as such provide numerous social-cultural benefits to people. However, their social and cultural values are often neglected when designing conservation policies and management guidelines. We believe that awareness of large old trees as a part of human identity and cultural heritage is essential when addressing the issue of their decline worldwide. Large old trees provide humans with aesthetic, symbolic, religious, and historic values, as well as concrete tangible benefits, such as leaves, branches, or nuts. In many cultures particularly large trees are treated with reverence. Also, contemporary popular culture utilizes the image of trees as sentient beings and builds on the ancient myths that attribute great powers to large trees. Although the social and cultural role of large old trees is usually not taken into account in conservation, accounting for human-related values of these trees is an important part of conservation policy because it may strengthen conservation by highlighting the potential synergies in protecting ecological and social values. PMID:25115905

  6. Incorporating social and cultural significance of large old trees in conservation policy.

    PubMed

    Blicharska, Malgorzata; Mikusiński, Grzegorz

    2014-12-01

    In addition to providing key ecological functions, large old trees are a part of a social realm and as such provide numerous social-cultural benefits to people. However, their social and cultural values are often neglected when designing conservation policies and management guidelines. We believe that awareness of large old trees as a part of human identity and cultural heritage is essential when addressing the issue of their decline worldwide. Large old trees provide humans with aesthetic, symbolic, religious, and historic values, as well as concrete tangible benefits, such as leaves, branches, or nuts. In many cultures particularly large trees are treated with reverence. Also, contemporary popular culture utilizes the image of trees as sentient beings and builds on the ancient myths that attribute great powers to large trees. Although the social and cultural role of large old trees is usually not taken into account in conservation, accounting for human-related values of these trees is an important part of conservation policy because it may strengthen conservation by highlighting the potential synergies in protecting ecological and social values.

  7. Large herbivores facilitate savanna tree establishment via diverse and indirect pathways.

    PubMed

    Goheen, Jacob R; Palmer, Todd M; Keesing, Felicia; Riginos, Corinna; Young, Truman P

    2010-03-01

    1. Savanna ecosystems are defined largely by tree-grass mixtures, and tree establishment is a key driver of community structure and ecosystem function in these systems. The factors controlling savanna tree establishment are understudied, but likely involve some combination of seed, microsite and predator/fire limitation. In African savannas, suppression and killing of adult trees by large mammals like elephants (Loxodonta africana Blumenbach, 1797) and giraffes (Giraffa camelopardalis Linnaeus, 1758) can maintain tree-grass co-dominance, although the impacts of even these conspicuous herbivores on tree establishment also are poorly understood. 2. We combined seed addition and predator exclusion experiments with a large-scale, long-term field manipulation of large herbivores to investigate the relative importance of seeds, microsites and predators in limiting establishment of a monodominant tree (Acacia drepanolobium Sjostedt) in a Kenyan savanna. 3. Both wild and domestic (i.e. cattle; Bos taurus Linnaeus, 1758) large herbivores facilitated tree establishment by suppressing abundances of rodents, the most important seed and seedling predators. However, this indirect, positive effect of wild herbivores was negated by wild herbivores' suppression of seed production. Cattle did not have this direct, negative impact; rather, they further assisted tree establishment by reducing cover of understorey grasses. Thus, the impacts of both groups of large herbivores on tree establishment were largely routed through other taxa, with a negligible net effect of wild herbivores and a positive net effect of cattle on tree establishment. 4. The distinction between the (positive) net effect of cattle and (neutral) net effect of wild herbivores is due to the inclusion of browsers and mixed feeders within the assemblage of wild herbivores. Browsing by wild herbivores limited seed production, which reduced tree recruitment; grazing by cattle was more pronounced than that by wild

  8. Large herbivores facilitate savanna tree establishment via diverse and indirect pathways.

    PubMed

    Goheen, Jacob R; Palmer, Todd M; Keesing, Felicia; Riginos, Corinna; Young, Truman P

    2010-03-01

    1. Savanna ecosystems are defined largely by tree-grass mixtures, and tree establishment is a key driver of community structure and ecosystem function in these systems. The factors controlling savanna tree establishment are understudied, but likely involve some combination of seed, microsite and predator/fire limitation. In African savannas, suppression and killing of adult trees by large mammals like elephants (Loxodonta africana Blumenbach, 1797) and giraffes (Giraffa camelopardalis Linnaeus, 1758) can maintain tree-grass co-dominance, although the impacts of even these conspicuous herbivores on tree establishment also are poorly understood. 2. We combined seed addition and predator exclusion experiments with a large-scale, long-term field manipulation of large herbivores to investigate the relative importance of seeds, microsites and predators in limiting establishment of a monodominant tree (Acacia drepanolobium Sjostedt) in a Kenyan savanna. 3. Both wild and domestic (i.e. cattle; Bos taurus Linnaeus, 1758) large herbivores facilitated tree establishment by suppressing abundances of rodents, the most important seed and seedling predators. However, this indirect, positive effect of wild herbivores was negated by wild herbivores' suppression of seed production. Cattle did not have this direct, negative impact; rather, they further assisted tree establishment by reducing cover of understorey grasses. Thus, the impacts of both groups of large herbivores on tree establishment were largely routed through other taxa, with a negligible net effect of wild herbivores and a positive net effect of cattle on tree establishment. 4. The distinction between the (positive) net effect of cattle and (neutral) net effect of wild herbivores is due to the inclusion of browsers and mixed feeders within the assemblage of wild herbivores. Browsing by wild herbivores limited seed production, which reduced tree recruitment; grazing by cattle was more pronounced than that by wild

  9. Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca).

    PubMed

    Sharma, Prashant P; González, Vanessa L; Kawauchi, Gisele Y; Andrade, Sónia C S; Guzmán, Alejandra; Collins, Timothy M; Glover, Emily A; Harper, Elizabeth M; Healy, John M; Mikkelsen, Paula M; Taylor, John D; Bieler, Rüdiger; Giribet, Gonzalo

    2012-10-01

    Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia remain contentious, owing to conflicting morphological and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus mitochondrial genes has also impeded consensus on the type of molecular data best suited for investigating bivalve relationships. To arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-encoding genes-ATP synthase β, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II-for resolving the basal relationships of Bivalvia. We sampled all five major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using maximum likelihood and Bayesian approaches. To investigate the robustness of the phylogenetic signal embedded in the data, we implemented additional datasets wherein length variability and/or third codon positions were eliminated. Results obtained include (a) the clade (Nuculanida+Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the monophyly of Pteriomorphia; (c) the clade (Archiheterodonta+Palaeoheterodonta); (d) the monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) the monophyly of Heteroconchia, i.e., (Palaeoheterodonta+Archiheterodonta+Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative of signal robustness in these four genes. The inferred tree topology corresponds closely to those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene phylogenies.

  10. Phylogenetic analysis with the iPlant discovery environment.

    PubMed

    Matasci, Naim; McKay, Sheldon

    2013-06-01

    The iPlant Collaborative's Discovery Environment is a unified Web portal to many bioinformatics applications and analytical workflows, including various methods of phylogenetic analysis. This unit describes example protocols for phylogenetic analyses, starting at sequence retrieval from the GenBank sequence database, through to multiple sequence alignment inference and visualization of phylogenetic trees. Methods for extracting smaller sub-trees from very large phylogenies, and the comparative method of continuous ancestral character state reconstruction based on observed morphology of extant species related to their phylogenetic relationships, are also presented.

  11. LSHPlace: fast phylogenetic placement using locality-sensitive hashing.

    PubMed

    Brown, Daniel G; Truszkowski, Jakub

    2013-01-01

    We consider the problem of phylogenetic placement, in which large numbers of sequences (often next-generation sequencing reads) are placed onto an existing phylogenetic tree. We adapt our recent work on phylogenetic tree inference, which uses ancestral sequence reconstruction and locality-sensitive hashing, to this domain. With these ideas, new sequences can be placed onto trees with high fidelity in strikingly fast runtimes. Our results are two orders of magnitude faster than existing programs for this domain, and show a modest accuracy tradeoff. Our results offer the possibility of analyzing many more reads in a next-generation sequencing project than is currently possible.

  12. Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms.

    PubMed

    Massoni, Julien; Forest, Félix; Sauquet, Hervé

    2014-01-01

    Magnoliidae have been supported as a clade in the majority of large-scale molecular phylogenetic studies of angiosperms. This group consists of about 10,000 species assigned to 20 families and four orders, Canellales, Piperales, Laurales, and Magnoliales. Some relationships among the families are still largely debated. Here, we reconstruct the phylogenetic relationships of Magnoliidae as a whole, sampling 199 species (representing ca. 75% of genera) and 12 molecular markers from the three genomes (plastid atpB, matK, trnL intron, trnL-trnF spacer, ndhF, rbcL; mitochondrial atp1, matR, mtSSU, mtLSU; nuclear 18s rDNA, 26S rDNA). Maximum likelihood, Bayesian and maximum parsimony analyses yielded congruent trees, with good resolution and high support values for higher-level relationships. This study further confirms, with greater levels of support, two major clades in Magnoliidae: Canellales+Piperales and Laurales+Magnoliales. Relationships among the 20 families are, in general, well resolved and supported. Several previously ambiguous relationships are now well supported. For instance, the Aristolochiaceae s.l. (incl. Asaroideae, Aristolochioideae, and Lactoris) are monophyletic with high support when Hydnoraceae are excluded. The latter family was not included in most previous studies because of the lack of suitable plastid sequences, a consequence of the parasitic habit of its species. Here, we confirm that it belongs in Aristolochiaceae. Our analyses also provide moderate support for a sister group relationship between Lauraceae and Monimiaceae. Conversely, the exact position of Magnoliaceae remains very difficult to determine. This study provides a robust phylogenetic background to address the evolutionary history of an important and highly diverse clade of early-diverging angiosperms.

  13. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  14. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGESBeta

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristobal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukonmore » River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  15. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  16. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    NASA Astrophysics Data System (ADS)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-07-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  17. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  18. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  19. Mortality of large trees and lianas following experimental drought in an Amazon forest.

    PubMed

    Nepstad, Daniel C; Tohver, Ingrid Marisa; Ray, David; Moutinho, Paulo; Cardinot, Georgina

    2007-09-01

    Severe drought episodes such as those associated with El Niño Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends. PMID:17918404

  20. Large-scale simulation of the human arterial tree.

    PubMed

    Grinberg, L; Anor, T; Madsen, J R; Yakhot, A; Karniadakis, G E

    2009-02-01

    1. Full-scale simulations of the virtual physiological human (VPH) will require significant advances in modelling, multiscale mathematics, scientific computing and further advances in medical imaging. Herein, we review some of the main issues that need to be resolved in order to make three-dimensional (3D) simulations of blood flow in the human arterial tree feasible in the near future. 2. A straightforward approach is computationally prohibitive even on the emerging petaflop supercomputers, so a three-level hierarchical approach based on vessel size is required, consisting of: (i) a macrovascular network (MaN); (ii) a mesovascular network (MeN); and (iii) a microvascular network (MiN). We present recent simulations of MaN obtained by solving the 3D Navier-Stokes equations on arterial networks with tens of arteries and bifurcations and accounting for the neglected dynamics through proper boundary conditions. 3. A multiscale simulation coupling MaN-MeN-MiN and running on hundreds of thousands of processors on petaflop computers will require no more than a few CPU hours per cardiac cycle within the next 5 years. The rapidly growing capacity of supercomputing centres opens up the possibility of simulation studies of cardiovascular diseases, drug delivery, perfusion in the brain and other pathologies. PMID:18671721

  1. Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: Lessons from a large scale study.

    PubMed

    Heimeier, Dorothea; Lavery, Shane; Sewell, Mary A

    2010-01-01

    Ecological studies of the diversity and distribution of marine planktonic larvae are increasingly depending on molecular methods for accurate taxonomic identification. The greater coverage of reference marine species on genetic databases such as GenBank and BoLD (Barcoding of Life Data Systems; www.boldystems.org); together with the decreasing costs for DNA sequencing have made large scale larval identification studies using molecular methods more feasible. Here, we present the development and implementation of a practical molecular approach to identify over 2000 individual marine invertebrate larvae that were collected in the Ross Sea, Antarctica, during the austral summer over five years (2002-2007) as part of the LGP (Latitudinal Gradient Project). Larvae for molecular ID were morphologically identified to belong to the Phyla Mollusca, Echinodermata, Nemertea and Annelida (Class Polychaeta), but also included unidentified early developmental stages which could not be assigned a specific taxon (e.g., eggs, blastulae). The use of a 100μm mesh plankton net makes this one of the first larval identification studies to simultaneously consider both embryos and larvae. Molecular identification methods included amplification of up to three molecular loci for each specimen, a pre-identification step using BLAST with GenBank, phylogenetic reconstructions and cross-validation of assigned Molecular Operational Taxonomic Units (MOTUs). This combined approach of morphological and molecular methods assigned about 700 individuals to 53 MOTUs, which were identified to the lowest possible taxonomic level. During the course of this long-term study we identified several procedural difficulties, including issues with the collection of larvae, locus amplification, contamination, assignment and validation of MOTUs. The practical guidelines that we describe here should greatly assist other researchers to conduct reliable molecular identification studies of larvae in the future.

  2. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  3. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata.

    PubMed

    Moreira, David; von der Heyden, Sophie; Bass, David; López-García, Purificación; Chao, Ema; Cavalier-Smith, Thomas

    2007-07-01

    Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of

  4. Phylogenetic relationships within the lizard clade Xantusiidae: using trees and divergence times to address evolutionary questions at multiple levels.

    PubMed

    Noonan, Brice P; Pramuk, Jennifer B; Bezy, Robert L; Sinclair, Elizabeth A; de Queiroz, Kevin; Sites, Jack W

    2013-10-01

    Xantusiidae (night lizards) is a clade of small-bodied, cryptic lizards endemic to the New World. The clade is characterized by several features that would benefit from interpretation in a phylogenetic context, including: (1) monophyletic status of extant taxa Cricosaura, Lepidophyma, and Xantusia; (2) a species endemic to Cuba (Cricosaura typica) of disputed age; (3) origins of the parthenogenetic species of Lepidophyma; (4) pronounced micro-habitat differences accompanied by distinct morphologies in both Xantusia and Lepidophyma; and (5) placement of Xantusia riversiana, the only vertebrate species endemic to the California Channel Islands, which is highly divergent from its mainland relatives. This study incorporates extensive new character data from multiple gene regions to investigate the phylogeny of Xantusiidae using the most comprehensive taxonomic sampling available to date. Parsimony and partitioned Bayesian analyses of more than 7 kb of mitochondrial and nuclear sequence data from 11 loci all confirm that Xantusiidae is monophyletic, and comprises three well-supported clades: Cricosaura, Xantusia, and Lepidophyma. The Cuban endemic Cricosaura typica is well supported as the sister to all other xantusiids. Estimates of divergence time indicate that Cricosaura diverged from the (Lepidophyma+Xantusia) clade ≈ 81 million years ago (Ma), a time frame consistent with the separation of the Antilles from North America. Our results also confirm and extend an earlier study suggesting that parthenogenesis has arisen at least twice within Lepidophyma without hybridization, that rock-crevice ecomorphs evolved numerous times (>9) within Xantusia and Lepidophyma, and that the large-bodied Channel Island endemic X. riversiana is a distinct, early lineage that may form the sister group to the small-bodied congeners of the mainland.

  5. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains.

    PubMed

    Yarza, Pablo; Richter, Michael; Peplies, Jörg; Euzeby, Jean; Amann, Rudolf; Schleifer, Karl-Heinz; Ludwig, Wolfgang; Glöckner, Frank Oliver; Rosselló-Móra, Ramon

    2008-09-01

    The signing authors together with the journal Systematic and Applied Microbiology (SAM) have started an ambitious project that has been conceived to provide a useful tool especially for the scientific microbial taxonomist community. The aim of what we have called "The All-Species Living Tree" is to reconstruct a single 16S rRNA tree harboring all sequenced type strains of the hitherto classified species of Archaea and Bacteria. This tree is to be regularly updated by adding the species with validly published names that appear monthly in the Validation and Notification lists of the International Journal of Systematic and Evolutionary Microbiology. For this purpose, the SAM executive editors, together with the responsible teams of the ARB, SILVA, and LPSN projects (www.arb-home.de, www.arb-silva.de, and www.bacterio.cict.fr, respectively), have prepared a 16S rRNA database containing over 6700 sequences, each of which represents a single type strain of a classified species up to 31 December 2007. The selection of sequences had to be undertaken manually due to a high error rate in the names and information fields provided for the publicly deposited entries. In addition, from among the often occurring multiple entries for a single type strain, the best-quality sequence was selected for the project. The living tree database that SAM now provides contains corrected entries and the best-quality sequences with a manually checked alignment. The tree reconstruction has been performed by using the maximum likelihood algorithm RAxML. The tree provided in the first release is a result of the calculation of a single dataset containing 9975 single entries, 6728 corresponding to type strain gene sequences, as well as 3247 additional high-fquality sequences to give robustness to the reconstruction. Trees are dynamic structures that change on the basis of the quality and availability of the data used for their calculation. Therefore, the addition of new type strain sequences in

  6. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    PubMed Central

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the

  7. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    PubMed

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind

  8. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale?

    PubMed Central

    Paquette, Alain; Joly, Simon; Messier, Christian

    2015-01-01

    Given evidences that diverse ecosystems provide more services than depauperate ones, much attention has now turned toward finding meaningful and operational diversity indices. We ask two questions: (1) Does phylogenetic diversity contain additional information not explained by functional traits? And (2) What are the strength and nature of the correlation between phylogeny and functional traits according to the evolutionary scale considered? We used data from permanent forest plots of northeastern Canada for which these links have been demonstrated and important functional traits identified. We show that the nature of the relationship between traits and phylogeny varies dramatically among traits, but also according to the evolutionary distance considered. The demonstration that different characters show phylogenetic autocorrelation at different evolutionary depths suggests that phylogenetic content of traits may be too crude to determine whether phylogenies contain relevant information. However, our study provides support for the use of phylogenies to assess ecosystem functioning when key functional traits are unavailable. We also highlight a potentially important contribution of phylogenetics for conservation and the study of the impact of biodiversity loss on ecosystem functioning and the provision of services, given the accumulating evidence that mechanisms promoting diversity effects shift over time to involve different traits. PMID:26140194

  9. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale?

    PubMed

    Paquette, Alain; Joly, Simon; Messier, Christian

    2015-05-01

    Given evidences that diverse ecosystems provide more services than depauperate ones, much attention has now turned toward finding meaningful and operational diversity indices. We ask two questions: (1) Does phylogenetic diversity contain additional information not explained by functional traits? And (2) What are the strength and nature of the correlation between phylogeny and functional traits according to the evolutionary scale considered? We used data from permanent forest plots of northeastern Canada for which these links have been demonstrated and important functional traits identified. We show that the nature of the relationship between traits and phylogeny varies dramatically among traits, but also according to the evolutionary distance considered. The demonstration that different characters show phylogenetic autocorrelation at different evolutionary depths suggests that phylogenetic content of traits may be too crude to determine whether phylogenies contain relevant information. However, our study provides support for the use of phylogenies to assess ecosystem functioning when key functional traits are unavailable. We also highlight a potentially important contribution of phylogenetics for conservation and the study of the impact of biodiversity loss on ecosystem functioning and the provision of services, given the accumulating evidence that mechanisms promoting diversity effects shift over time to involve different traits.

  10. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  11. The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  12. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  13. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  14. KD-tree based clustering algorithm for fast face recognition on large-scale data

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Lin, Yaping; Yang, Junfeng

    2015-07-01

    This paper proposes an acceleration method for large-scale face recognition system. When dealing with a large-scale database, face recognition is time-consuming. In order to tackle this problem, we employ the k-means clustering algorithm to classify face data. Specifically, the data in each cluster are stored in the form of the kd-tree, and face feature matching is conducted with the kd-tree based nearest neighborhood search. Experiments on CAS-PEAL and self-collected database show the effectiveness of our proposed method.

  15. Investigating the performance of AIC in selecting phylogenetic models.

    PubMed

    Jhwueng, Dwueng-Chwuan; Huzurbazar, Snehalata; O'Meara, Brian C; Liu, Liang

    2014-08-01

    The popular likelihood-based model selection criterion, Akaike's Information Criterion (AIC), is a breakthrough mathematical result derived from information theory. AIC is an approximation to Kullback-Leibler (KL) divergence with the derivation relying on the assumption that the likelihood function has finite second derivatives. However, for phylogenetic estimation, given that tree space is discrete with respect to tree topology, the assumption of a continuous likelihood function with finite second derivatives is violated. In this paper, we investigate the relationship between the expected log likelihood of a candidate model, and the expected KL divergence in the context of phylogenetic tree estimation. We find that given the tree topology, AIC is an unbiased estimator of the expected KL divergence. However, when the tree topology is unknown, AIC tends to underestimate the expected KL divergence for phylogenetic models. Simulation results suggest that the degree of underestimation varies across phylogenetic models so that even for large sample sizes, the bias of AIC can result in selecting a wrong model. As the choice of phylogenetic models is essential for statistical phylogenetic inference, it is important to improve the accuracy of model selection criteria in the context of phylogenetics. PMID:24867284

  16. Suffix tree searcher: exploration of common substrings in large DNA sequence sets

    PubMed Central

    2014-01-01

    Background Large DNA sequence data sets require special bioinformatics tools to search and compare them. Such tools should be easy to use so that the data can be easily accessed by a wide array of researchers. In the past, the use of suffix trees for searching DNA sequences has been limited by a practical need to keep the trees in RAM. Newer algorithms solve this problem by using disk-based approaches. However, none of the fastest suffix tree algorithms have been implemented with a graphical user interface, preventing their incorporation into a feasible laboratory workflow. Results Suffix Tree Searcher (STS) is designed as an easy-to-use tool to index, search, and analyze very large DNA sequence datasets. The program accommodates very large numbers of very large sequences, with aggregate size reaching tens of billions of nucleotides. The program makes use of pre-sorted persistent "building blocks" to reduce the time required to construct new trees. STS is comprised of a graphical user interface written in Java, and four C modules. All components are automatically downloaded when a web link is clicked. The underlying suffix tree data structure permits extremely fast searching for specific nucleotide strings, with wild cards or mismatches allowed. Complete tree traversals for detecting common substrings are also very fast. The graphical user interface allows the user to transition seamlessly between building, traversing, and searching the dataset. Conclusions Thus, STS provides a new resource for the detection of substrings common to multiple DNA sequences or within a single sequence, for truly huge data sets. The re-searching of sequence hits, allowing wild card positions or mismatched nucleotides, together with the ability to rapidly retrieve large numbers of sequence hits from the DNA sequence files, provides the user with an efficient method of evaluating the similarity between nucleotide sequences by multiple alignment or use of Logos. The ability to re

  17. VIEW OF CRESCENTSHAPED ISLAND/MEDIAN WITH LARGE MONKEYPOD TREE AT SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRESCENT-SHAPED ISLAND/MEDIAN WITH LARGE MONKEYPOD TREE AT SOUTHEAST “CORNER” OF BIRCH CIRCLE. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  18. Computer System for Analysis of Molecular Evolution Modes (SAMEM): analysis of molecular evolution modes at deep inner branches of the phylogenetic tree.

    PubMed

    Gunbin, Konstantin V; Suslov, Valentin V; Genaev, Mikhail A; Afonnikov, Dmitry A

    SAMEM (System for Analysis of Molecular Evolution Modes), a web-based pipeline system for inferring modes of molecular evolution in genes and proteins (http://pixie.bionet.nsc.ru/samem/), is presented. Pipeline 1 performs analyses of protein-coding gene evolution; pipeline 2 performs analyses of protein evolution; pipeline 3 prepares datasets of genes and/or proteins, performs their primary analysis, and builds BLOSUM matrices; pipeline 4 checks if these genes really are protein-coding. Pipeline 1 has an all-new feature, which allows the user to obtain K(R)/K(C) estimates using several different methods. An important feature of pipeline 2 is an original method for analyzing the rates of amino acid substitutions at the branches of a phylogenetic tree. The method is based on Markov modeling and a non-parametric permutation test, which compares expected and observed frequencies of amino acid substitutions, and infers the modes of molecular evolution at deep inner branches.

  19. Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria.

    PubMed

    Engene, Niclas; Gunasekera, Sarath P; Gerwick, William H; Paul, Valerie J

    2013-03-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria.

  20. primers4clades: a web server that uses phylogenetic trees to design lineage-specific PCR primers for metagenomic and diversity studies

    PubMed Central

    Contreras-Moreira, Bruno; Sachman-Ruiz, Bernardo; Figueroa-Palacios, Iraís; Vinuesa, Pablo

    2009-01-01

    Primers4clades is an easy-to-use web server that implements a fully automatic PCR primer design pipeline for cross-species amplification of novel sequences from metagenomic DNA, or from uncharacterized organisms, belonging to user-specified phylogenetic clades or taxa. The server takes a set of non-aligned protein coding genes, with or without introns, aligns them and computes a neighbor-joining tree, which is displayed on screen for easy selection of species or sequence clusters to design lineage-specific PCR primers. Primers4clades implements an extended CODEHOP primer design strategy based on both DNA and protein multiple sequence alignments. It evaluates several thermodynamic properties of the oligonucleotide pairs, and computes the phylogenetic information content of the predicted amplicon sets from Shimodaira–Hasegawa-like branch support values of maximum likelihood phylogenies. A non-redundant set of primer formulations is returned, ranked according to their thermodynamic properties. An amplicon distribution map provides a convenient overview of the coverage of the target locus. Altogether these features greatly help the user in making an informed choice between alternative primer pair formulations. Primers4clades is available at two mirror sites: http://maya.ccg.unam.mx/primers4clades/and http://floresta.eead.csic.es/primers4clades/. Three demo data sets and a comprehensive documentation/tutorial page are provided for easy testing of the server's capabilities and interface. PMID:19465390

  1. primers4clades: a web server that uses phylogenetic trees to design lineage-specific PCR primers for metagenomic and diversity studies.

    PubMed

    Contreras-Moreira, Bruno; Sachman-Ruiz, Bernardo; Figueroa-Palacios, Iraís; Vinuesa, Pablo

    2009-07-01

    Primers4clades is an easy-to-use web server that implements a fully automatic PCR primer design pipeline for cross-species amplification of novel sequences from metagenomic DNA, or from uncharacterized organisms, belonging to user-specified phylogenetic clades or taxa. The server takes a set of non-aligned protein coding genes, with or without introns, aligns them and computes a neighbor-joining tree, which is displayed on screen for easy selection of species or sequence clusters to design lineage-specific PCR primers. Primers4clades implements an extended CODEHOP primer design strategy based on both DNA and protein multiple sequence alignments. It evaluates several thermodynamic properties of the oligonucleotide pairs, and computes the phylogenetic information content of the predicted amplicon sets from Shimodaira-Hasegawa-like branch support values of maximum likelihood phylogenies. A non-redundant set of primer formulations is returned, ranked according to their thermodynamic properties. An amplicon distribution map provides a convenient overview of the coverage of the target locus. Altogether these features greatly help the user in making an informed choice between alternative primer pair formulations. Primers4clades is available at two mirror sites: http://maya.ccg.unam.mx/primers4clades/and http://floresta.eead.csic.es/primers4clades/. Three demo data sets and a comprehensive documentation/tutorial page are provided for easy testing of the server's capabilities and interface.

  2. The phylogenetic utility of acetyltransferase (ARD1) and glutaminyl tRNA synthetase (QtRNA) for reconstructing Cenozoic relationships as exemplified by the large Australian cicada Pauropsalta generic complex.

    PubMed

    Owen, Christopher L; Marshall, David C; Hill, Kathy B R; Simon, Chris

    2015-02-01

    The Pauropsalta generic complex is a large group of cicadas (72 described spp.; >82 undescribed spp.) endemic to Australia. No previous molecular work on deep level relationships within this complex has been conducted, but a recent morphological revision and phylogenetic analysis proposed relationships among the 11 genera. We present here the first comprehensive molecular phylogeny of the complex using five loci (1 mtDNA, 4 nDNA), two of which are from nuclear genes new to cicada systematics. We compare the molecular phylogeny to the morphological phylogeny. We evaluate the phylogenetic informativeness of the new loci to traditional cicada systematics loci to generate a baseline of performance and behavior to aid in gene choice decisions in future systematic and phylogenomic studies. Our maximum likelihood and Bayesian inference phylogenies strongly support the monophyly of most of the newly described genera; however, relationships among genera differ from the morphological phylogeny. A comparison of phylogenetic informativeness among all loci revealed that COI 3rd positions dominate the informativeness profiles relative to all other loci but exhibit some among taxon nucleotide bias. After removing COI 3rd positions, COI 1st positions dominate near the terminals, while the period intron has the most phylogenetic informativeness near the root. Among the nuclear loci, ARD1 and QtRNA have lower phylogenetic informativeness than period intron and elongation factor 1 alpha intron, but the informativeness increases at you move from the tips to the root. The increase in phylogenetic informativeness deeper in the tree suggests these loci may be useful for resolving older relationships.

  3. Evolutionary history of the Afro-Madagascan Ixora species (Rubiaceae): species diversification and distribution of key morphological traits inferred from dated molecular phylogenetic trees

    PubMed Central

    Tosh, J.; Dessein, S.; Buerki, S.; Groeninckx, I.; Mouly, A.; Bremer, B.; Smets, E. F.; De Block, P.

    2013-01-01

    Background and Aims Previous work on the pantropical genus Ixora has revealed an Afro-Madagascan clade, but as yet no study has focused in detail on the evolutionary history and morphological trends in this group. Here the evolutionary history of Afro-Madagascan Ixora spp. (a clade of approx. 80 taxa) is investigated and the phylogenetic trees compared with several key morphological traits in taxa occurring in Madagascar. Methods Phylogenetic relationships of Afro-Madagascan Ixora are assessed using sequence data from four plastid regions (petD, rps16, rpoB-trnC and trnL-trnF) and nuclear ribosomal external transcribed spacer (ETS) and internal transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil evidence. Key Results Two separate lineages of Madagascan taxa are recovered, one of which is nested in a group of East African taxa. Divergence in Ixora is estimated to have commenced during the mid Miocene, with extensive cladogenesis occurring in the Afro-Madagascan clade during the Pliocene onwards. Conclusions Both lineages of Madagascan Ixora exhibit morphological innovations that are rare throughout the rest of the genus, including a trend towards pauciflorous inflorescences and a trend towards extreme corolla tube length, suggesting that the same ecological and selective pressures are acting upon taxa from both Madagascan lineages. Novel ecological opportunities resulting from climate-induced habitat fragmentation and corolla tube length diversification are likely to have facilitated species radiation on Madagascar. PMID:24142919

  4. Root–shoot allometry of tropical forest trees determined in a large-scale aeroponic system

    PubMed Central

    Eshel, Amram; Grünzweig, José M.

    2013-01-01

    Background and Aims This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy–root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined. Methods Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting. Key Results The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems. Conclusions The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts. PMID:23250916

  5. FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data.

    PubMed

    Uchiyama, Takeru; Irie, Mitsuru; Mori, Hiroshi; Kurokawa, Ken; Yamada, Takuji

    2015-01-01

    Exponential growth of high-throughput data and the increasing complexity of omics information have been making processing and interpreting biological data an extremely difficult and daunting task. Here we developed FuncTree (http://bioviz.tokyo/functree), a web-based application for analyzing and visualizing large-scale omics data, including but not limited to genomic, metagenomic, and transcriptomic data. FuncTree allows user to map their omics data onto the "Functional Tree map", a predefined circular dendrogram, which represents the hierarchical relationship of all known biological functions defined in the KEGG database. This novel visualization method allows user to overview the broad functionality of their data, thus allowing a more accurate and comprehensive understanding of the omics information. FuncTree provides extensive customization and calculation methods to not only allow user to directly map their omics data to identify the functionality of their data, but also to compute statistically enriched functions by comparing it to other predefined omics data. We have validated FuncTree's analysis and visualization capability by mapping pan-genomic data of three different types of bacterial genera, metagenomic data of the human gut, and transcriptomic data of two different types of human cell expression. All three mapping strongly confirms FuncTree's capability to analyze and visually represent key functional feature of the omics data. We believe that FuncTree's capability to conduct various functional calculations and visualizing the result into a holistic overview of biological function, would make it an integral analysis/visualization tool for extensive omics base research. PMID:25974630

  6. Potential Impacts of Precipitation Change on Large-Scale Patterns of Tree Diversity

    NASA Astrophysics Data System (ADS)

    Konar, M.; Muneepeerakul, R.; Azaele, S.; Bertuzzo, E.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2010-12-01

    Forests are globally important ecosystems host to outstanding biological diversity. Widespread efforts have addressed the impacts of climate change on biodiversity in these ecosystems. We show that a metacommunity model founded on basic ecological processes offers direct linkage from large-scale forcing, such as precipitation, to tree diversity patterns of the Mississippi-Missouri River System and its sub-regions. We quantify changes in tree diversity patterns under various projected precipitation patterns, resulting in a range of responses. Uncertainties accompanying global climate models necessitate the use of scenarios of biodiversity. Here, we present results from scenarios with the largest losses and gains in tree diversity. Our results suggest that species losses under scenarios with the most dramatic contractions tend to be greater in magnitude, spatial extent, and statistical significance than gains under alternative scenarios. These findings are expected to have important implications for conservation policy and resource management.

  7. Potential impacts of precipitation change on large-scale patterns of tree diversity

    NASA Astrophysics Data System (ADS)

    Konar, M.; Muneepeerakul, R.; Azaele, S.; Bertuzzo, E.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2010-11-01

    Forests are globally important ecosystems host to outstanding biological diversity. Widespread efforts have addressed the impacts of climate change on biodiversity in these ecosystems. We show that a metacommunity model founded on basic ecological processes offers direct linkage from large-scale forcing, such as precipitation, to tree diversity patterns of the Mississippi-Missouri River System and its subregions. We quantify changes in tree diversity patterns under various projected precipitation patterns, resulting in a range of responses. Uncertainties accompanying global climate models necessitate the use of scenarios of biodiversity. Here we present results from scenarios with the largest losses and gains in tree diversity. Our results suggest that species losses under scenarios with the most dramatic contractions tend to be greater in magnitude, spatial extent, and statistical significance than gains under alternative scenarios. These findings are expected to have important implications for conservation policy and resource management.

  8. Leaf distribution in large trees and stands of the floodplain forest in southern Moravia.

    PubMed

    Cermák, Jan

    1998-11-01

    Vertical distributions of leaf dry mass (M(d)) and leaf area (A(f)) were related to relative irradiance (I(r); I(r) above the stand = 1) in closed-canopy, old-growth stands of the floodplain forest in southern Moravia composed largely of Quercus, Fraxinus and Tilia species. Foliage area and mass at any given canopy height were converted to solar equivalent leaf area (A(s)) and mass (M(s)) by multiplying actual values at a given level in the canopy by the relative irradiance at that position. Stand leaf area index (LAI) was 5 (7 including shrub and herb layer), and solar equivalent parameters reached about 25% of that amount. In all species, vertical profiles of both relative irradiance and leaf dry mass to area ratio (LMA) were sigmoidal and the two variables were linearly related. The dominant, upper canopy species had a larger proportion of solar equivalent foliage than suppressed understory species. For individual trees of all species, the upper canopy had a larger proportion of solar equivalent foliage than the lower canopy. Light compensation points at both the leaf and whole-tree level were defined according to leaf or tree position, size and structure. I conclude that optimization of A(s) for forest stands may be used as a basis for determining thinning schedules and evaluating tree survival after damage to tree crowns by various factors.

  9. Gene Tree Diameter for Deep Coalescence.

    PubMed

    Górecki, Paweł; Eulenstein, Oliver

    2015-01-01

    The deep coalescence cost accounts for discord caused by deep coalescence between a gene tree and a species tree. It is a major concern that the diameter of a gene tree (the tree's maximum deep coalescence cost across all species trees) depends on its topology, which can largely obfuscate phylogenetic studies. While this bias can be compensated by normalizing the deep coalescence cost using diameters, obtaining them efficiently has been posed as an open problem by Than and Rosenberg. Here, we resolve this problem by describing a linear time algorithm to compute the diameter of a gene tree. In addition, we provide a complete classification of the species trees yielding this diameter to guide phylogenetic analyses.

  10. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting.

    PubMed

    Desper, Richard; Gascuel, Olivier

    2004-03-01

    Due to its speed, the distance approach remains the best hope for building phylogenies on very large sets of taxa. Recently (R. Desper and O. Gascuel, J. Comp. Biol. 9:687-705, 2002), we introduced a new "balanced" minimum evolution (BME) principle, based on a branch length estimation scheme of Y. Pauplin (J. Mol. Evol. 51:41-47, 2000). Initial simulations suggested that FASTME, our program implementing the BME principle, was more accurate than or equivalent to all other distance methods we tested, with running time significantly faster than Neighbor-Joining (NJ). This article further explores the properties of the BME principle, and it explains and illustrates its impressive topological accuracy. We prove that the BME principle is a special case of the weighted least-squares approach, with biologically meaningful variances of the distance estimates. We show that the BME principle is statistically consistent. We demonstrate that FASTME only produces trees with positive branch lengths, a feature that separates this approach from NJ (and related methods) that may produce trees with branches with biologically meaningless negative lengths. Finally, we consider a large simulated data set, with 5,000 100-taxon trees generated by the Aldous beta-splitting distribution encompassing a range of distributions from Yule-Harding to uniform, and using a covarion-like model of sequence evolution. FASTME produces trees faster than NJ, and much faster than WEIGHBOR and the weighted least-squares implementation of PAUP*. Moreover, FASTME trees are consistently more accurate at all settings, ranging from Yule-Harding to uniform distributions, and all ranges of maximum pairwise divergence and departure from molecular clock. Interestingly, the covarion parameter has little effect on the tree quality for any of the algorithms. FASTME is freely available on the web.

  11. A dynamic tree-based registration could handle possible large deformations among MR brain images.

    PubMed

    Zhang, Pei; Wu, Guorong; Gao, Yaozong; Yap, Pew-Thian; Shen, Dinggang

    2016-09-01

    Multi-atlas segmentation is a powerful approach to automated anatomy delineation via fusing label information from a set of spatially normalized atlases. For simplicity, many existing methods perform pairwise image registration, leading to inaccurate segmentation especially when shape variation is large. In this paper, we propose a dynamic tree-based strategy for effective large-deformation registration and multi-atlas segmentation. To deal with local minima caused by large shape variation, coarse estimates of deformations are first obtained via alignment of automatically localized landmark points. The dynamic tree capturing the structural relationships between images is then employed to further reduce misalignment errors. Evaluation based on two real human brain datasets, ADNI and LPBA40, shows that our method significantly improves registration and segmentation accuracy. PMID:27235894

  12. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. PMID:26472095

  13. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities.

  14. The tree of eukaryotes.

    PubMed

    Keeling, Patrick J; Burger, Gertraud; Durnford, Dion G; Lang, B Franz; Lee, Robert W; Pearlman, Ronald E; Roger, Andrew J; Gray, Michael W

    2005-12-01

    Recent advances in resolving the tree of eukaryotes are converging on a model composed of a few large hypothetical 'supergroups', each comprising a diversity of primarily microbial eukaryotes (protists, or protozoa and algae). The process of resolving the tree involves the synthesis of many kinds of data, including single-gene trees, multigene analyses, and other kinds of molecular and structural characters. Here, we review the recent progress in assembling the tree of eukaryotes, describing the major evidence for each supergroup, and where gaps in our knowledge remain. We also consider other factors emerging from phylogenetic analyses and comparative genomics, in particular lateral gene transfer, and whether such factors confound our understanding of the eukaryotic tree.

  15. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change.

    PubMed

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D; Xu, Jian-Chu; Soltis, Douglas E; Chen, Zhi-Duan

    2015-09-10

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria.

  16. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change

    PubMed Central

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E.; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D.; Xu, Jian-Chu; Soltis, Douglas E.; Chen, Zhi-Duan

    2015-01-01

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria. PMID:26354898

  17. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change.

    PubMed

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D; Xu, Jian-Chu; Soltis, Douglas E; Chen, Zhi-Duan

    2015-01-01

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria. PMID:26354898

  18. Tree Species Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.

    2014-12-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a tree species associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous tree species in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal tree species affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live tree biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distribution of C among pools was markedly different. In black spruce, 78% of measured C was found in soil pools, primarily in the SOL, where spruce contained twice the C stored in paper birch (4.8 ± 0.3 vs. 2.4 ± 0.1 kg C m-2). In contrast, aboveground biomass dominated ecosystem C pools in birch forest (6.0 ± 0.3 vs. 2.5 ± 0.2 kg C m-2 in birch and spruce, respectively). Our findings suggest that tree species exert a strong influence over plant-soil-microbial feedbacks and may have long-term effects on ecosystem C sequestration and storage that feedback to the climate system.

  19. Small-scale human-biometeorological impacts of shading by a large tree

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Kovács, Attila; Takács, Ágnes

    2016-04-01

    This study provides evidences on the beneficial small-scale human-biometeorological effects of a large shade tree during the daytime in summer. We carried out detailed measurement from 10 am to 6 pm with two human-biometeorological stations on a popular square in Szeged, Hungary. One of the stations stood under a great Sophora japonica, while the other in the sun. Compared to the sunny location, we found 0.5°C lower air temperature, 2% higher relative humidity and 0.4 hPa higher vapor pressure under the tree. From human-biometeorological point of view, we observed more significant differences. The tree reduced the mean radiant temperature by 22.1°C and the physiological equivalent temperature by 9.3°C - indicating about two categories lower physiological stress on the human body. In order to demonstrate the background mechanisms of these differences, we analyzed separately the components of the radiation budget. The effect of tree crown on radiation components was found to be greater in the short-wave domain than in the long-wave domain. The extended foliage reduced the solar radiation from the upper hemisphere and thus lowered the radiation from the ground (the reflected short-wave and the emitted longwave flux densities) along with the radiation from the lateral directions.

  20. Improved description of the bipolar ciliate, Euplotes petzi, and definition of its basal position in the Euplotes phylogenetic tree.

    PubMed

    Di Giuseppe, Graziano; Erra, Fabrizio; Paolo Frontini, Francesco; Dini, Fernando; Vallesi, Adriana; Luporini, Pierangelo

    2014-08-01

    Data improving the characterization of the marine Euplotes species, E. petzi Wilbert and Song, 2008, were obtained from morphological, ecological and genetic analyses of Antarctic and Arctic wild-type strains. This species is identified by a minute (mean size, 46 μm × 32 μm) and ellipsoidal cell body which is dorsally decorated with an argyrome of the double-patella type, five dorsal kineties (of which the median one contains 8-10 dikinetids), five sharp-edged longitudinal ridges, and a right anterior spur. Ventrally, it bears 10 fronto-ventral, five transverse, two caudal and two marginal cirri, 30-35 adoral membranelles, and three inconspicuous ridges. Euplotes petzi grows well at 4 °C on green algae, does not produce cysts, undergoes mating under the genetic control of a multiple mating-type system, constitutively secretes water-borne pheromones, and behaves as a psychrophilic microorganism unable to survive at >15 °C. While the α-tubulin gene sequence determination did not provide useful information on the E. petzi molecular phylogeny, the small subunit rRNA (SSU rRNA) gene sequence determination provided solid evidence that E. petzi clusters with E. sinicus Jiang et al., 2010a, into a clade which represents the deepest branch at the base of the Euplotes phylogentic tree. PMID:25051516

  1. Improved description of the bipolar ciliate, Euplotes petzi, and definition of its basal position in the Euplotes phylogenetic tree.

    PubMed

    Di Giuseppe, Graziano; Erra, Fabrizio; Paolo Frontini, Francesco; Dini, Fernando; Vallesi, Adriana; Luporini, Pierangelo

    2014-08-01

    Data improving the characterization of the marine Euplotes species, E. petzi Wilbert and Song, 2008, were obtained from morphological, ecological and genetic analyses of Antarctic and Arctic wild-type strains. This species is identified by a minute (mean size, 46 μm × 32 μm) and ellipsoidal cell body which is dorsally decorated with an argyrome of the double-patella type, five dorsal kineties (of which the median one contains 8-10 dikinetids), five sharp-edged longitudinal ridges, and a right anterior spur. Ventrally, it bears 10 fronto-ventral, five transverse, two caudal and two marginal cirri, 30-35 adoral membranelles, and three inconspicuous ridges. Euplotes petzi grows well at 4 °C on green algae, does not produce cysts, undergoes mating under the genetic control of a multiple mating-type system, constitutively secretes water-borne pheromones, and behaves as a psychrophilic microorganism unable to survive at >15 °C. While the α-tubulin gene sequence determination did not provide useful information on the E. petzi molecular phylogeny, the small subunit rRNA (SSU rRNA) gene sequence determination provided solid evidence that E. petzi clusters with E. sinicus Jiang et al., 2010a, into a clade which represents the deepest branch at the base of the Euplotes phylogentic tree.

  2. Vertical Stability of Ephemeral Step-Pool Streams Largely Controlled By Tree Roots, Central Kentucky, USA

    NASA Astrophysics Data System (ADS)

    Macmannis, K. R.; Hawley, R. J.

    2013-12-01

    The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel

  3. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  4. Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    PubMed Central

    Buchheim, Mark A.; Keller, Alexander; Koetschan, Christian; Förster, Frank; Merget, Benjamin; Wolf, Matthias

    2011-01-01

    Background Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated

  5. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  6. Space, time, form: viewing the Tree of Life.

    PubMed

    Page, Roderic D M

    2012-02-01

    There are numerous ways to display a phylogenetic tree, which is reflected in the diversity of software tools available to phylogenetists. Displaying very large trees continues to be a challenge, made ever harder as increasing computing power enables researchers to construct ever-larger trees. At the same time, computing technology is enabling novel visualisations, ranging from geophylogenies embedded on digital globes to touch-screen interfaces that enable greater interaction with evolutionary trees. In this review, I survey recent developments in phylogenetic visualisation, highlighting successful (and less successful) approaches and sketching some future directions.

  7. FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data

    PubMed Central

    Uchiyama, Takeru; Irie, Mitsuru; Mori, Hiroshi; Kurokawa, Ken; Yamada, Takuji

    2015-01-01

    Exponential growth of high-throughput data and the increasing complexity of omics information have been making processing and interpreting biological data an extremely difficult and daunting task. Here we developed FuncTree (http://bioviz.tokyo/functree), a web-based application for analyzing and visualizing large-scale omics data, including but not limited to genomic, metagenomic, and transcriptomic data. FuncTree allows user to map their omics data onto the “Functional Tree map”, a predefined circular dendrogram, which represents the hierarchical relationship of all known biological functions defined in the KEGG database. This novel visualization method allows user to overview the broad functionality of their data, thus allowing a more accurate and comprehensive understanding of the omics information. FuncTree provides extensive customization and calculation methods to not only allow user to directly map their omics data to identify the functionality of their data, but also to compute statistically enriched functions by comparing it to other predefined omics data. We have validated FuncTree’s analysis and visualization capability by mapping pan-genomic data of three different types of bacterial genera, metagenomic data of the human gut, and transcriptomic data of two different types of human cell expression. All three mapping strongly confirms FuncTree’s capability to analyze and visually represent key functional feature of the omics data. We believe that FuncTree’s capability to conduct various functional calculations and visualizing the result into a holistic overview of biological function, would make it an integral analysis/visualization tool for extensive omics base research. PMID:25974630

  8. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential.

    PubMed

    Salmaso, Nico; Cerasino, Leonardo; Boscaini, Adriano; Capelli, Camilla

    2016-10-01

    This work allowed assessing a widespread occurrence of Tychonema bourrellyi in the largest lakes south of the Alps (Garda, Iseo, Como and Maggiore). The taxonomy of the species was confirmed adopting a polyphasic approach, which included microscopic examinations, molecular (16S rRNA and rbcLX sequences) and (Lake Garda) ecological characterisations. Over 70% of the 36 isolates of Tychonema sampled from the four lakes tested positive for the presence of genes implicated in the biosynthesis of anatoxins (anaF and/or anaC) and for the production of anatoxin-a (ATX) and homoanatoxin-a (HTX). A detailed analysis carried out in Lake Garda showed strong ongoing changes in the cyanobacterial community, with populations of Tychonema developing with higher biovolumes compared to the microcystins (MCs) producer Planktothrix rubescens Moreover, the time × depth distribution of Tychonema was paralleled by a comparable distribution of ATX and HTX. The increasing importance of Tychonema in Lake Garda was also suggested by the opposite trends of ATX and MCs observed since 2009. These results suggest that radical changes are occurring in the largest lakes south of the Alps. Their verification and implications will require to be assessed by extending a complete experimental work to the other large perialpine lakes. PMID:27402712

  9. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential.

    PubMed

    Salmaso, Nico; Cerasino, Leonardo; Boscaini, Adriano; Capelli, Camilla

    2016-10-01

    This work allowed assessing a widespread occurrence of Tychonema bourrellyi in the largest lakes south of the Alps (Garda, Iseo, Como and Maggiore). The taxonomy of the species was confirmed adopting a polyphasic approach, which included microscopic examinations, molecular (16S rRNA and rbcLX sequences) and (Lake Garda) ecological characterisations. Over 70% of the 36 isolates of Tychonema sampled from the four lakes tested positive for the presence of genes implicated in the biosynthesis of anatoxins (anaF and/or anaC) and for the production of anatoxin-a (ATX) and homoanatoxin-a (HTX). A detailed analysis carried out in Lake Garda showed strong ongoing changes in the cyanobacterial community, with populations of Tychonema developing with higher biovolumes compared to the microcystins (MCs) producer Planktothrix rubescens Moreover, the time × depth distribution of Tychonema was paralleled by a comparable distribution of ATX and HTX. The increasing importance of Tychonema in Lake Garda was also suggested by the opposite trends of ATX and MCs observed since 2009. These results suggest that radical changes are occurring in the largest lakes south of the Alps. Their verification and implications will require to be assessed by extending a complete experimental work to the other large perialpine lakes.

  10. From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes.

    PubMed

    Arnedo, Miquel A; Coddington, Jonathan; Agnarsson, Ingi; Gillespie, Rosemary G

    2004-04-01

    The family Theridiidae is one of the most diverse assemblages of spiders, from both a morphological and ecological point of view. The family includes some of the very few cases of sociality reported in spiders, in addition to bizarre foraging behaviors such as kleptoparasitism and araneophagy, and highly diverse web architecture. Theridiids are one of the seven largest families in the Araneae, with about 2200 species described. However, this species diversity is currently grouped in half the number of genera described for other spider families of similar species richness. Recent cladistic analyses of morphological data have provided an undeniable advance in identifying the closest relatives of the theridiids as well as establishing the family's monophyly. Nevertheless, the comb-footed spiders remain an assemblage of poorly defined genera, among which hypothesized relationships have yet to be examined thoroughly. Providing a robust cladistic structure for the Theridiidae is an essential step towards the clarification of the taxonomy of the group and the interpretation of the evolution of the diverse traits found in the family. Here we present results of a molecular phylogenetic analysis of a broad taxonomic sample of the family (40 taxa in 33 of the 79 currently recognized genera) and representatives of nine additional araneoid families, using approximately 2.5kb corresponding to fragments of three nuclear genes (Histone 3, 18SrDNA, and 28SrDNA) and two mitochondrial genes (16SrDNA and CoI). Several methods for incorporating indel information into the phylogenetic analysis are explored, and partition support for the different clades and sensitivity of the results to different assumptions of the analysis are examined as well. Our results marginally support theridiid monophyly, although the phylogenetic structure of the outgroup is unstable and largely contradicts current phylogenetic hypotheses based on morphological data. Several groups of theridiids receive strong

  11. Evolutionary relationships of the Critically Endangered frog Ericabatrachus baleensis Largen, 1991 with notes on incorporating previously unsampled taxa into large-scale phylogenetic analyses

    PubMed Central

    2014-01-01

    Background The phylogenetic relationships of many taxa remain poorly known because of a lack of appropriate data and/or analyses. Despite substantial recent advances, amphibian phylogeny remains poorly resolved in many instances. The phylogenetic relationships of the Ethiopian endemic monotypic genus Ericabatrachus has been addressed thus far only with phenotypic data and remains contentious. Results We obtained fresh samples of the now rare and Critically Endangered Ericabatrachus baleensis and generated DNA sequences for two mitochondrial and four nuclear genes. Analyses of these new data using de novo and constrained-tree phylogenetic reconstructions strongly support a close relationship between Ericabatrachus and Petropedetes, and allow us to reject previously proposed alternative hypotheses of a close relationship with cacosternines or Phrynobatrachus. Conclusions We discuss the implications of our results for the taxonomy, biogeography and conservation of E. baleensis, and suggest a two-tiered approach to the inclusion and analyses of new data in order to assess the phylogenetic relationships of previously unsampled taxa. Such approaches will be important in the future given the increasing availability of relevant mega-alignments and potential framework phylogenies. PMID:24612655

  12. Comments on the gonotyl of Proctocaecum macroclemidis (Tkach and Snyder, 2003) n. comb. (Digenea: Acanthostomidae: Acanthostominae), with a key to the genera of acanthostominae and new phylogenetic tree for Proctocaecum Baugh, 1957.

    PubMed

    Brooks, Daniel R

    2004-06-01

    The species recently described as Acanthostomum macroclemidis possesses the gonotyl in the form of a solid muscular pad uniquely diagnostic for species of Proctocaecum and is accordingly transferred to that genus. An artificial key to the 5 acanthostomine genera, as well as an updated phylogenetic hypothesis for the 10 known species of Proctocaecum, based on 11 characters and including 2 species described since the last phylogenetic analysis, are presented. The single most parsimonious phylogenetic tree with a consistency index of 87.5% suggests that Proctocaecum originated in Africa and spread to North America and South America before the breakup of Pangaea. As a result, the 2 North American and 1 South American species are most closely related to different African members of the genus. African and Indo-Pacific species inhabit crocodylids; hence, the occurrence of North American species in alligatorids and chelonians and a South American species in alligatorids are the result of host switches.

  13. A Deliberate Practice Approach to Teaching Phylogenetic Analysis

    PubMed Central

    Hobbs, F. Collin; Johnson, Daniel J.; Kearns, Katherine D.

    2013-01-01

    One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or “one-shot,” in-class activities. Using a deliberate practice instructional approach, we designed a set of five assignments for a 300-level plant systematics course that incrementally introduces the concepts and skills used in phylogenetic analysis. In our assignments, students learned the process of constructing phylogenetic trees through a series of increasingly difficult tasks; thus, skill development served as a framework for building content knowledge. We present results from 5 yr of final exam scores, pre- and postconcept assessments, and student surveys to assess the impact of our new pedagogical materials on student performance related to constructing and interpreting phylogenetic trees. Students improved in their ability to interpret relationships within trees and improved in several aspects related to between-tree comparisons and tree construction skills. Student feedback indicated that most students believed our approach prepared them to engage in tree construction and gave them confidence in their abilities. Overall, our data confirm that instructional approaches implementing deliberate practice address student misconceptions, improve student experiences, and foster deeper understanding of difficult scientific concepts. PMID:24297294

  14. Transcriptome sequencing of two phenotypic mosaic Eucalyptus trees reveals large scale transcriptome re-modelling.

    PubMed

    Padovan, Amanda; Patel, Hardip R; Chuah, Aaron; Huttley, Gavin A; Krause, Sandra T; Degenhardt, Jörg; Foley, William J; Külheim, Carsten

    2015-01-01

    Phenotypic mosaic trees offer an ideal system for studying differential gene expression. We have investigated two mosaic eucalypt trees from two closely related species (Eucalyptus melliodora and E. sideroxylon), which each support two types of leaves: one part of the canopy is resistant to insect herbivory and the remaining leaves are susceptible. Driving this ecological distinction are differences in plant secondary metabolites. We used these phenotypic mosaics to investigate genome wide patterns of foliar gene expression with the aim of identifying patterns of differential gene expression and the somatic mutation(s) that lead to this phenotypic mosaicism. We sequenced the mRNA pool from leaves of the resistant and susceptible ecotypes from both mosaic eucalypts using the Illumina HiSeq 2000 platform. We found large differences in pathway regulation and gene expression between the ecotypes of each mosaic. The expression of the genes in the MVA and MEP pathways is reflected by variation in leaf chemistry, however this is not the case for the terpene synthases. Apart from the terpene biosynthetic pathway, there are several other metabolic pathways that are differentially regulated between the two ecotypes, suggesting there is much more phenotypic diversity than has been described. Despite the close relationship between the two species, they show large differences in the global patterns of gene and pathway regulation.

  15. Transcriptome Sequencing of Two Phenotypic Mosaic Eucalyptus Trees Reveals Large Scale Transcriptome Re-Modelling

    PubMed Central

    Padovan, Amanda; Patel, Hardip R.; Chuah, Aaron; Huttley, Gavin A.; Krause, Sandra T.; Degenhardt, Jörg; Foley, William J.; Külheim, Carsten

    2015-01-01

    Phenotypic mosaic trees offer an ideal system for studying differential gene expression. We have investigated two mosaic eucalypt trees from two closely related species (Eucalyptus melliodora and E. sideroxylon), which each support two types of leaves: one part of the canopy is resistant to insect herbivory and the remaining leaves are susceptible. Driving this ecological distinction are differences in plant secondary metabolites. We used these phenotypic mosaics to investigate genome wide patterns of foliar gene expression with the aim of identifying patterns of differential gene expression and the somatic mutation(s) that lead to this phenotypic mosaicism. We sequenced the mRNA pool from leaves of the resistant and susceptible ecotypes from both mosaic eucalypts using the Illumina HiSeq 2000 platform. We found large differences in pathway regulation and gene expression between the ecotypes of each mosaic. The expression of the genes in the MVA and MEP pathways is reflected by variation in leaf chemistry, however this is not the case for the terpene synthases. Apart from the terpene biosynthetic pathway, there are several other metabolic pathways that are differentially regulated between the two ecotypes, suggesting there is much more phenotypic diversity than has been described. Despite the close relationship between the two species, they show large differences in the global patterns of gene and pathway regulation. PMID:25978451

  16. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains.

    PubMed Central

    Ye, L H; Li, Y Q; Fukami-Kobayashi, K; Go, M; Konishi, T; Watanabe, A; Sugiura, M

    1991-01-01

    Two new ribonucleoproteins (RNPs) have been identified from a tobacco chloroplast lysate. These two proteins (cp29A and cp29B) are nuclear-encoded and have a less affinity to single-stranded DNA as compared with three other chloroplast RNPs (cp28, cp31 and cp33) previously isolated. DNA sequencing revealed that both contain two consensus sequence-type homologous RNA-binding domains (CS-RBDs) and a very acidic amino-terminal domain but shorter than that of cp28, cp31 and cp33. Comparison of cp29A and cp29B showed a 19 amino acid insertion in the region separating the two CS-RBDs in cp29B. This insertion results in three tandem repeats of a glycine-rich sequence of 10 amino acids, which is a novel feature in RNPs. The two proteins are encoded by different single nuclear genes and no alternatively spliced transcripts could be identified. We constructed a phylogenetic tree for the ten chloroplast CS-RBDs. These results suggest that there is a sizable RNP family in chloroplasts and the diversity was mainly generated through a series of gene duplications rather than through alternative pre-mRNA splicing. The gene for cp29B contains three introns. The first and second introns interrupt the first CS-RBD and the third intron does the second CS-RBD. The position of the first intron site is the same as that in the human hnRNP A1 protein gene. Images PMID:1721701

  17. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  18. A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies)

    PubMed Central

    Regier, Jerome C.; Mitter, Charles; Zwick, Andreas; Bazinet, Adam L.; Cummings, Michael P.; Kawahara, Akito Y.; Sohn, Jae-Cheon; Zwickl, Derrick J.; Cho, Soowon; Davis, Donald R.; Baixeras, Joaquin; Brown, John; Parr, Cynthia; Weller, Susan; Lees, David C.; Mitter, Kim T.

    2013-01-01

    Background Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. Methodology / Principal Findings 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. Conclusions / Significance Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also

  19. Make Your Own Phylogenetic Tree

    ERIC Educational Resources Information Center

    Rau, Gerald

    2012-01-01

    Molecular similarity is one of the strongest lines of evidence for evolution--and one of the most difficult for students to grasp. That is because the underlying observations--that identical mutations are found in closely related species and the degree of similarity decreases with evolutionary distance--are not visible to the human eye. And it's…

  20. Searching for the oldest baobab of Madagascar: radiocarbon investigation of large Adansonia rubrostipa trees.

    PubMed

    Patrut, Adrian; von Reden, Karl F; Danthu, Pascal; Pock-Tsy, Jean-Michel Leong; Patrut, Roxana T; Lowy, Daniel A

    2015-01-01

    We extended our research on the architecture, growth and age of trees belonging to the genus Adansonia, by starting to investigate large individuals of the most widespread Malagasy species. Our research also intends to identify the oldest baobabs of Madagascar. Here we present results of the radiocarbon investigation of the two most representative Adansonia rubrostipa (fony baobab) specimens, which are located in south-western Madagascar, in the Tsimanampetsotse National Park. We found that the fony baobab called "Grandmother" consists of 3 perfectly fused stems of different ages. The radiocarbon date of the oldest sample was found to be 1136 ± 16 BP. We estimated that the oldest part of this tree, which is mainly hollow, has an age close to 1,600 yr. This value is comparable to the age of the oldest Adansonia digitata (African baobab) specimens. By its age, the Grandmother is a major candidate for the oldest baobab of Madagascar. The second investigated specimen, called the "polygamous baobab", consists of 6 partially fused stems of different ages. According to dating results, this fony baobab is 1,000 yr old. This research is the first investigation of the structure and age of Malagasy baobabs.

  1. An effective fractal-tree closure model for simulating blood flow in large arterial networks

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George

    2014-11-01

    The aim of the present work is to address the closure problem for hemodynamics simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. We model blood flow in the sub-pixel vasculature by using a nonlinear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime. The proposed model accounts for wall viscoelasticity and non-Newtonian flow effects in arterioles, overcomes cut-off radius sensitivity issues by introducing a monotonically decreasing artery length to radius ratio across different generations of the fractal tree, and convergences to a periodic state in just two cardiac cycles. The resulting fractal trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have developed a scalable hybrid MPI/OpenMP solver that is capable of computing near real-time solutions. The proposed model is tested on a large patient-specific cranial network returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures.

  2. Towards a large-scale scalable adaptive heart model using shallow tree meshes

    NASA Astrophysics Data System (ADS)

    Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf

    2015-10-01

    Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.

  3. An efective fractal-tree closure model for simulating blood flow in large arterial networks

    PubMed Central

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em.

    2014-01-01

    The aim of the present work is to address the closure problem for hemodynamic simulations by developing a exible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure out flow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii 500 μm – 10 μm). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to out flow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for out flow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 minutes. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels

  4. An effective fractal-tree closure model for simulating blood flow in large arterial networks.

    PubMed

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2015-06-01

    The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels

  5. [Foundations of the new phylogenetics].

    PubMed

    Pavlinov, I Ia

    2004-01-01

    phylistics (Rasnitsyn's term; close to Simpsonian evolutionary taxonomy) belonging rather to the classical realm, and Hennigian cladistics that pays attention to origin of monophyletic taxa exclusively. In early of the 20th century, microevolutionary doctrine became predominating in evolutionary studies. Its core is the population thinking accompanied by the phenetic one based on equation of kinship to overall similarity. They were connected to positivist philosophy and hence were characterized by reductionism at both ontological and epistemological levels. It led to fall of classical phylogenetics but created the prerequisites for the new phylogenetics which also appeared to be full of reductionism. The new rise of phylogenetic (rather than tree) thinking during the last third of the 20th century was caused by lost of explanatory power of population one and by development of the new worldview and new epistemological premises. That new worldview is based on the synergetic (Prigoginian) model of development of non-equilibrium systems: evolution of the biota, a part of which is phylogeny, is considered as such a development. At epistemological level, the principal premise appeared to be fall of positivism which was replaced by post-positivism argumentation schemes. Input of cladistics into new phylogenetics is twofold. On the one hand, it reduced phylogeny to cladistic history lacking any adaptivist interpretation and presuming minimal evolution model. From this it followed reduction of kinship relation to sister-group relation lacking any reference to real time scale and to ancestor-descendant relation. On the other hand, cladistics elaborated methodology of phylogenetic reconstructions based on the synapomorphy principle, the outgroup concept became its part. The both inputs served as premises of incorporation of both numerical techniques and molecular data into phylogenetic reconstruction. Numerical phyletics provided the new phylogenetics with easily manipulated algorithms

  6. Dating the arthropod tree based on large-scale transcriptome data.

    PubMed

    Rehm, Peter; Borner, Janus; Meusemann, Karen; von Reumont, Björn M; Simon, Sabrina; Hadrys, Heike; Misof, Bernhard; Burmester, Thorsten

    2011-12-01

    Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution. PMID:21945788

  7. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  8. Open reading frame phylogenetic analysis on the cloud.

    PubMed

    Hung, Che-Lun; Lin, Chun-Yuan

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  9. A Large Eddy Simulation to determine the effect of trees on wind and turbulence over a suburban surface

    NASA Astrophysics Data System (ADS)

    Egli, P. E.; Giometto, M. G.; Tooke, T. R.; Krayenhoff, S.; Christen, A.; Parlange, M. B.

    2014-12-01

    Robust modeling of flow and turbulence within and over urban canopies is required to properly predict air pollution and dispersion in cities. Trees are an integral part of the urban landscape. In many suburban neighbourhoods, tree cover is 10 to 30% and trees are often taller than buildings. Effects of trees on drag, mean wind and turbulence in cities are not accounted for in current weather, air pollution and dispersion models. Our goal is to use high-resolution Large Eddy Simulations (LES) over a realistic urban canopy to determine the effects of trees on drag, mean wind and turbulence in the urban roughness sublayer (RSL). The simulated area is part of the Sunset-Neighbourhood in Vancouver, Canada. In this area, long-term wind and turbulence measurements are available from instruments on a 28m-tall tower. Further, a three-dimensional point cloud was captured from high precision airborne Light Detection and Ranging (LiDAR), and analyzed to represent the structural characteristics of both buildings and trees at high spatial resolution. Trees are described by location-specific leaf area density (LAD) profiles. LES simulations are performed over a 512 x 512m characteristic subset of the city that contains the tower location and predominant source area. In the LES, buildings are accounted for with an immersed boundary method, adopting a zero level-set distance function to localize the surface, whereas drag forces from trees are parametrized as a function of the height-dependent LAD. Spectra of streamwise and vertical velocity components compare well between tower data and the model data, confirming the good performance of LES in simulations of flow over fully rough surfaces. We show how the presence of trees impacts mean velocity and computed momentum flux profiles; they significantly decrease dispersive terms in the bulk of the flow. The impact of trees on integral length scales in the flow is discussed.

  10. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka.

    PubMed

    Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2015-07-01

    Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each

  11. Phylogenetic comparison of metabolic capacities of organisms at genome level.

    PubMed

    Ma, Hong-Wu; Zeng, An-Ping

    2004-04-01

    Horizontal gene transfer (HGT) has been shown to widely spread in organisms by comparative genomic studies. However, its effect on the phylogenetic relationship of organisms, especially at a system level of different cellular functions, is still not well understood. In this work, we have constructed phylogenetic trees based on the enzyme, reaction, and gene contents of metabolic networks reconstructed from annotated genome information of 82 sequenced organisms. Results from different phylogenetic distance definitions and based on three different functional subsystems (i.e., metabolism, cellular processes, information storage and processing) were compared. Results based on the three different functional subsystems give different pictures on the phylogenetic relationship of organisms, reflecting the different extents of HGT in the different functional systems. In general, horizontal transfer is prevailing in genes for metabolism, but less in genes for information processing. Nevertheless, the major results of metabolic network-based phylogenetic trees are in good agreement with the tree based on 16S rRNA and genome trees, confirming the three domain classification and the close relationship between eukaryotes and archaea at the level of metabolic networks. These results strongly support the hypothesis that although HGT is widely distributed, it is nevertheless constrained by certain pre-existing metabolic organization principle(s) during the evolution. Further research is needed to identify the organization principle and constraints of metabolic network on HGT which have large impacts on understanding the evolution of life and in purposefully manipulating cellular metabolism.

  12. Phylogenetically resolving epidemiologic linkage

    DOE PAGESBeta

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  13. Phylogenetically resolving epidemiologic linkage.

    PubMed

    Romero-Severson, Ethan O; Bulla, Ingo; Leitner, Thomas

    2016-03-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals' HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  14. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  15. Biochemical and structural characterizations of two Dictyostelium cellobiohydrolases from the amoebozoa kingdom reveal a high level of conservation between distant phylogenetic trees of life

    DOE PAGESBeta

    Hobdey, Sarah E.; Knott, Brandon C.; Momeni, Majid Haddad; Taylor, II, Larry E.; Borisova, Anna S.; Podkaminer, Kara K.; VanderWall, Todd A.; Himmel, Michael E.; Decker, Stephen R.; Beckham, Gregg T.; et al

    2016-04-01

    Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes often employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7Amore » and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei. DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 μM, respectively. Finally, taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.« less

  16. Phylogenetic approaches to natural product structure prediction.

    PubMed

    Ziemert, Nadine; Jensen, Paul R

    2012-01-01

    Phylogenetics is the study of the evolutionary relatedness among groups of organisms. Molecular phylogenetics uses sequence data to infer these relationships for both organisms and the genes they maintain. With the large amount of publicly available sequence data, phylogenetic inference has become increasingly important in all fields of biology. In the case of natural product research, phylogenetic relationships are proving to be highly informative in terms of delineating the architecture and function of the genes involved in secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide synthetases provide model examples in which individual domain phylogenies display different predictive capacities, resolving features ranging from substrate specificity to structural motifs associated with the final metabolic product. This chapter provides examples in which phylogeny has proven effective in terms of predicting functional or structural aspects of secondary metabolism. The basics of how to build a reliable phylogenetic tree are explained along with information about programs and tools that can be used for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently developed Web tool that employs phylogenetic logic to classify ketosynthase and condensation domains based on established enzyme architecture and biochemical function.

  17. Simulating the impacts of large scale insect- and disease-driven tree mortality on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Geddes, J.; Heald, C. L.; Silva, S. J.; Martin, R.

    2015-12-01

    Land-use and land-cover change (LUC) is an important driver of global change through the alteration of local energy, moisture, and carbon exchanges. LUC can also directly impact the emission and deposition of important reactive trace gases, altering the oxidative chemistry of the atmosphere and subsequently air quality and climate. Large-scale tree mortality as a result of insects and disease may therefore have unexplored feedbacks on atmospheric chemistry. Between 2013 and 2027, over 80 million acres of treed land in the United States is predicted to experience basal area mortality rates exceeding 25%. We harmonized the description of land cover across the relevant surface-atmosphere exchange processes in the GEOS-Chem chemical transport model to facilitate LUC simulations, and used this adapted model to test the impact of projected tree mortality according to the 2012 USDA National Insect and Disease Risk Assessment. Nation-wide biogenic VOC emissions were reduced by 5%, with local impacts approaching 50% in some regions. By themselves, these emission reductions resulted in lower surface-level O3 mixing ratios, but this was counteracted by decreases in the O3 deposition velocity (by up to 10%) due to the reduction in vegetation density. Organic aerosol mass concentrations were also significantly affected across the United States, decreasing by 5-10% across the eastern U.S. and the northwest, with local impacts exceeding 25% in some regions. We discuss the general impacts on air quality in clean and polluted regions of the US, and point to developments needed for a more robust understanding of land cover change feedbacks.

  18. Instrumental methods for studies of structure and function of root systems of large trees.

    PubMed

    Nadezhdina, Nadezhda; Cermak, Jan

    2003-06-01

    New methods using different physical principles have been successfully applied in studies of root systems of large trees. The ground-penetrating radar technique provides 3D images of coarse roots (starting with a diameter of about 20 mm) from the soil surface down to a depth of several metres. This can even be done under layers of undisturbed materials such as concrete, asphalt and water. Fine roots cannot be visualized by this method, but the total rooted volume of soil can be determined. The differential electric conductance method has been used for fast measurement of conducting (absorbing) root surfaces. However, more testing is needed. Both these methods are non-invasive. The results can be verified by an almost harmless excavation of whole root systems, including fine roots, using the ultrasonic air-stream (air-spade) method. This method is suitable for all studies, as well as practical operations on roots or objects in their vicinity, where a gentle approach is required. Sap flow measurements on their own or in tandem with soil moisture monitoring play a leading role in studying root function and hydraulic redistribution of flow in the soil. The water absorption function of roots can be studied by measuring sap flow on individual root branches directly (as on crown branches) and also indirectly, by measuring the radial pattern of sap flow in different sapwood depths at the base of a stem. Root zone architecture can also be estimated indirectly by studying its functionality. The heat field deformation method with multi-point sensors has been found to be very convenient for this purpose. A combination of several such methods is recommended whenever possible, in order to obtain detailed information about the root systems of trees.

  19. Optimization of hydrological parameters in a Soil-Tree-Atmosphere Continuum model of a large White Fir

    NASA Astrophysics Data System (ADS)

    Rings, J.; Kamai, T.; Mollaei Kandelous, M.; Nasta, P.; Vrugt, J. A.; Hartsough, P. C.; Hopmans, J. W.

    2011-12-01

    We use statistical optimization with a hydrologic model to obtain the van Genuchten parameters of a large White Fir tree in a mid-latitude montane forest ecosystem, located in the King's River Experimental Watershed as part of the Southern Sierra Critical Zone Observatory. The site is instrumented for spatially distributed monitoring of soil water content, matric potential and sap flux. The physical tree is represented in a HYDRUS model that models the interactions betweens soil, tree and atmosphere as a continuum. The soil and tree domains are modeled as variably saturated porous media, while atmospheric forcing taken from a nearby flux tower is used to determine the potential evapotranspiration (ET) and root uptake (RU). Actual ET and RU are modeled by accounting for canopy and root distributions together with matric potential stress in the soil-tree domains. This model is embedded within a Markov Chain Monte Carlo (MCMC) framework using current versions of the DREAM_ZS optimization code. We present results of the parameter optimization for time periods in different seasons, analyze the uncertainty and information content in the different measurement methods and use the optimized parameters to study the influence of soil water stress on the soil-root-tree system.

  20. Ecological Thresholds in the Savanna Landscape: Developing a Protocol for Monitoring the Change in Composition and Utilisation of Large Trees

    PubMed Central

    Druce, Dave J.; Shannon, Graeme; Page, Bruce R.; Grant, Rina; Slotow, Rob

    2008-01-01

    Background Acquiring greater understanding of the factors causing changes in vegetation structure - particularly with the potential to cause regime shifts - is important in adaptively managed conservation areas. Large trees (≥5 m in height) play an important ecosystem function, and are associated with a stable ecological state in the African savanna. There is concern that large tree densities are declining in a number of protected areas, including the Kruger National Park, South Africa. In this paper the results of a field study designed to monitor change in a savanna system are presented and discussed. Methodology/Principal Findings Developing the first phase of a monitoring protocol to measure the change in tree species composition, density and size distribution, whilst also identifying factors driving change. A central issue is the discrete spatial distribution of large trees in the landscape, making point sampling approaches relatively ineffective. Accordingly, fourteen 10 m wide transects were aligned perpendicular to large rivers (3.0–6.6 km in length) and eight transects were located at fixed-point photographic locations (1.0–1.6 km in length). Using accumulation curves, we established that the majority of tree species were sampled within 3 km. Furthermore, the key ecological drivers (e.g. fire, herbivory, drought and disease) which influence large tree use and impact were also recorded within 3 km. Conclusions/Significance The technique presented provides an effective method for monitoring changes in large tree abundance, size distribution and use by the main ecological drivers across the savanna landscape. However, the monitoring of rare tree species would require individual marking approaches due to their low densities and specific habitat requirements. Repeat sampling intervals would vary depending on the factor of concern and proposed management mitigation. Once a monitoring protocol has been identified and evaluated, the next stage is to

  1. Audubon Tree Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…

  2. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided. PMID:17656792

  3. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided.

  4. Large tree species richness is associated with topography, forest structure and spectral heterogeneity in a neotropical rainforest

    NASA Astrophysics Data System (ADS)

    Fricker, G. A.; Wolf, J. A.; Gillespie, T.; Meyer, V.; Hubbell, S. P.; Santo, F. E.; Saatchi, S. S.

    2013-12-01

    Large tropical canopy trees contain the majority of forest biomass in addition to being the primary producers in the forest ecosystem in terms of both food and structural habitat. The spatial distributions of large tropical trees are non-randomly distributed across environmental gradients in light, water and nutrients. These environmental gradients are a result of the biophysical processes related to topography and three-dimensional forest structure. In this study we examine large (>10 cm) diameter tree species richness across Barro Colorado Nature Monument in a tropical moist forest in Panama using active and passive remote sensing. Airborne light detection and ranging and high-resolution satellite imagery were used to quantify spectral heterogeneity, sub-canopy topography and vertical canopy structure across existing vegetation plots to model the extent to which remote sensing variables can be used to explain variation in large tree species richness. Plant species richness data was calculated from the stem mapped 50-ha forest dynamics plot on Barro Colorado Island in addition to 8 large tree plots across the Barro Colorado Nature Monument at 1.0 ha and 0.25 ha spatial scales. We investigated four statistical models to predict large tree species richness including spectral, topographic, vertical canopy structure and a combined ';global' model which includes all remote sensing derived variables. The models demonstrate that remote sensing derived variables can capture a significant fraction (R2= 0.54 and 0.36) of observed variation in tree species richness across the 1.0 and 0.25 ha spatial scales respectively. A selection of remote sensing derived predictor variables. A) World View-2 satellite imagery in RGB/true color. B) False color image of the principal component analysis. C) Normalized Difference Vegetation Index (NDVI). D) Simple Ratio Index. E) Quickbird satellite imagery in RGB/true color. F) False color image of the principal component analysis. G) NDVI. H

  5. Unitarity of the tree approximation to the Glauber AA amplitude for large A

    SciTech Connect

    Braun, M. A.; Krylov, A. V.

    2011-02-15

    The nucleus-nucleus Glauber amplitude in the tree approximation is studied for heavy participant nuclei. It is shown that, contrary to previous published results, it is not unitary for realistic values of nucleon-nucleon cross sections.

  6. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  7. Genomic repeat abundances contain phylogenetic signal.

    PubMed

    Dodsworth, Steven; Chase, Mark W; Kelly, Laura J; Leitch, Ilia J; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.

  8. Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees

    PubMed Central

    Yamada, Kazunori D.; Tomii, Kentaro; Katoh, Kazutaka

    2016-01-01

    Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences, are becoming more and more common, due to advances in sequencing technologies. The MAFFT MSA program has several options for building large MSAs, but their performances have not been sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult. Recently, such assessments have been made possible through the HomFam and ContTest benchmark protein datasets. Along with the development of these datasets, an interesting theory was proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions. This theory challenges the basis of progressive alignment methods and needs to be examined by being compared with other known methods including computationally intensive ones. Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a progressive method with chained guide trees, (3) a combination of an iterative refinement method and a progressive method and (4) a less approximate progressive method that uses a rigorous guide tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were also included into the comparison. The effect of method 2 (chained guide trees) was positive in ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores more consistently than method 2 for the three datasets, suggesting that they are safer to use. Availability and Implementation: http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378296

  9. Isotopic fractionation in a large herbivorous insect, the Auckland tree weta.

    PubMed

    Wehi, Priscilla M; Hicks, Brendan J

    2010-12-01

    Determining diet and trophic position of species with stable isotopes requires appropriate trophic enrichment estimates between an animal and its potential foods. These estimates are particularly important for cryptic foragers where there is little comparative dietary information. Nonetheless, many trophic enrichment estimates are based on related taxa, without confirmation of accuracy using laboratory trials. We used stable isotope analysis to investigate diet and to resolve trophic relationships in a large endemic insect, the Auckland tree weta (Hemideina thoracica White). Comparisons of isotopes in plant foods fed to captive wetas with isotope ratios in their frass provided variable results, so frass isotope values had limited usefulness as a proxy indicator of trophic level. Isotopic values varied between different tissues, with trophic depletion of (15)N highest in body fat and testes. Tissue fractionation was consistent in captive and wild caught wetas, and isotopic values were not significantly different between the two groups, suggesting that this weta species is primarily herbivorous. Whole-body values in captive wetas demonstrated trophic depletion (Δδ) for δ(15)N of about -0.77 ‰ and trophic enrichment of 4.28 ‰ for δ(13)C. These values differ from commonly estimated trophic enrichments for both insects and herbivores and indicate the importance of laboratory trials to determine trophic enrichment. Isotopic values for femur muscles from a number of local wild weta populations did not vary consistently with body weight or size, suggesting that juveniles eat the same foods as adults. Considerable variation among individuals within and between populations suggests that isotopic values are strongly influenced by food availability and individual foraging traits. PMID:20709068

  10. The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees

    PubMed Central

    Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

    2013-01-01

    Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730

  11. Phylogenetic Stochastic Mapping Without Matrix Exponentiation

    PubMed Central

    Irvahn, Jan; Minin, Vladimir N.

    2014-01-01

    Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812

  12. An exploration of how to define and measure the evolution of behavior, learning, memory and mind across the full phylogenetic tree of life.

    PubMed

    Eisenstein, E M; Eisenstein, D L; Sarma, J S M

    2016-01-01

    There are probably few terms in evolutionary studies regarding neuroscience issues that are used more frequently than 'behavior', 'learning', 'memory', and 'mind'. Yet there are probably as many different meanings of these terms as there are users of them. Further, investigators in such studies, while recognizing the full phylogenetic spectrum of life and the evolution of these phenomena, rarely go beyond mammals and other vertebrates in their investigations; invertebrates are sometimes included. What is rarely taken into consideration, though, is that to fully understand the evolution and significance for survival of these phenomena across phylogeny, it is essential that they be measured and compared in the same units of measurement across the full phylogenetic spectrum from aneural bacteria and protozoa to humans. This paper explores how these terms are generally used as well as how they might be operationally defined and measured to facilitate uniform examination and comparisons across the full phylogenetic spectrum of life. This paper has 2 goals: (1) to provide models for measuring the evolution of 'behavior' and its changes across the full phylogenetic spectrum, and (2) to explain why 'mind phenomena' cannot be measured scientifically at the present time. PMID:27489578

  13. An exploration of how to define and measure the evolution of behavior, learning, memory and mind across the full phylogenetic tree of life

    PubMed Central

    Eisenstein, E. M.; Eisenstein, D. L.; Sarma, J. S. M.

    2016-01-01

    ABSTRACT There are probably few terms in evolutionary studies regarding neuroscience issues that are used more frequently than ‘behavior', ‘learning', ‘memory', and ‘mind'. Yet there are probably as many different meanings of these terms as there are users of them. Further, investigators in such studies, while recognizing the full phylogenetic spectrum of life and the evolution of these phenomena, rarely go beyond mammals and other vertebrates in their investigations; invertebrates are sometimes included. What is rarely taken into consideration, though, is that to fully understand the evolution and significance for survival of these phenomena across phylogeny, it is essential that they be measured and compared in the same units of measurement across the full phylogenetic spectrum from aneural bacteria and protozoa to humans. This paper explores how these terms are generally used as well as how they might be operationally defined and measured to facilitate uniform examination and comparisons across the full phylogenetic spectrum of life. This paper has 2 goals: (1) to provide models for measuring the evolution of ‘behavior' and its changes across the full phylogenetic spectrum, and (2) to explain why ‘mind phenomena' cannot be measured scientifically at the present time. PMID:27489578

  14. An exploration of how to define and measure the evolution of behavior, learning, memory and mind across the full phylogenetic tree of life.

    PubMed

    Eisenstein, E M; Eisenstein, D L; Sarma, J S M

    2016-01-01

    There are probably few terms in evolutionary studies regarding neuroscience issues that are used more frequently than 'behavior', 'learning', 'memory', and 'mind'. Yet there are probably as many different meanings of these terms as there are users of them. Further, investigators in such studies, while recognizing the full phylogenetic spectrum of life and the evolution of these phenomena, rarely go beyond mammals and other vertebrates in their investigations; invertebrates are sometimes included. What is rarely taken into consideration, though, is that to fully understand the evolution and significance for survival of these phenomena across phylogeny, it is essential that they be measured and compared in the same units of measurement across the full phylogenetic spectrum from aneural bacteria and protozoa to humans. This paper explores how these terms are generally used as well as how they might be operationally defined and measured to facilitate uniform examination and comparisons across the full phylogenetic spectrum of life. This paper has 2 goals: (1) to provide models for measuring the evolution of 'behavior' and its changes across the full phylogenetic spectrum, and (2) to explain why 'mind phenomena' cannot be measured scientifically at the present time.

  15. Investigating how students communicate tree-thinking

    NASA Astrophysics Data System (ADS)

    Boyce, Carrie Jo

    Learning is often an active endeavor that requires students work at building conceptual understandings of complex topics. Personal experiences, ideas, and communication all play large roles in developing knowledge of and understanding complex topics. Sometimes these experiences can promote formation of scientifically inaccurate or incomplete ideas. Representations are tools used to help individuals understand complex topics. In biology, one way that educators help people understand evolutionary histories of organisms is by using representations called phylogenetic trees. In order to understand phylogenetics trees, individuals need to understand the conventions associated with phylogenies. My dissertation, supported by the Tree-Thinking Representational Competence and Word Association frameworks, is a mixed-methods study investigating the changes in students' tree-reading, representational competence and mental association of phylogenetic terminology after participation in varied instruction. Participants included 128 introductory biology majors from a mid-sized southern research university. Participants were enrolled in either Introductory Biology I, where they were not taught phylogenetics, or Introductory Biology II, where they were explicitly taught phylogenetics. I collected data using a pre- and post-assessment consisting of a word association task and tree-thinking diagnostic (n=128). Additionally, I recruited a subset of students from both courses (n=37) to complete a computer simulation designed to teach students about phylogenetic trees. I then conducted semi-structured interviews consisting of a word association exercise with card sort task, a retrospective pre-assessment discussion, a post-assessment discussion, and interview questions. I found that students who received explicit lecture instruction had a significantly higher increase in scores on a tree-thinking diagnostic than students who did not receive lecture instruction. Students who received both

  16. Carbon emissions from decomposition of fire-killed trees following a large wildfire in Oregon, United States

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Fontaine, Joseph B.; Donato, Daniel C.

    2016-03-01

    A key uncertainty concerning the effect of wildfire on carbon dynamics is the rate at which fire-killed biomass (e.g., dead trees) decays and emits carbon to the atmosphere. We used a ground-based approach to compute decomposition of forest biomass killed, but not combusted, in the Biscuit Fire of 2002, an exceptionally large wildfire that burned over 200,000 ha of mixed conifer forest in southwestern Oregon, USA. A combination of federal inventory data and supplementary ground measurements afforded the estimation of fire-caused mortality and subsequent 10 year decomposition for several functionally distinct carbon pools at 180 independent locations in the burn area. Decomposition was highest for fire-killed leaves and fine roots and lowest for large-diameter wood. Decomposition rates varied somewhat among tree species and were only 35% lower for trees still standing than for trees fallen at the time of the fire. We estimate a total of 4.7 Tg C was killed but not combusted in the Biscuit Fire, 85% of which remains 10 years after. Biogenic carbon emissions from fire-killed necromass were estimated to be 1.0, 0.6, and 0.4 Mg C ha-1 yr-1 at 1, 10, and 50 years after the fire, respectively; compared to the one-time pyrogenic emission of nearly 17 Mg C ha-1.

  17. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species.

    PubMed

    Nock, C A; Caspersen, J P; Thomas, S C

    2008-03-01

    The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from approximately 7 to 4 in Acer saccharum, and from approximately 9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests. PMID:18459337

  18. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species.

    PubMed

    Nock, C A; Caspersen, J P; Thomas, S C

    2008-03-01

    The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from approximately 7 to 4 in Acer saccharum, and from approximately 9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests.

  19. The Eukaryotic Tree of Life from a Global Phylogenomic Perspective

    PubMed Central

    Burki, Fabien

    2014-01-01

    Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree. PMID:24789819

  20. Species tree estimation and the historical biogeography of heroine cichlids.

    PubMed

    Hulsey, C Darrin; Keck, Benjamin P; Hollingsworth, Phillip R

    2011-01-01

    Heroine cichlids are major components of the fish faunas in both Central America and the Caribbean. To examine the evolutionary patterns of how cichlids colonized both of these regions, we reconstructed the phylogenetic relationships among 23 cichlid lineages. We used three phylogenetically novel nuclear markers (Dystropin b, Myomesin1, and Wnt7b) in combination with sequence data from seven other gene regions (Nd2, Rag1, Enc1, Sreb2, Ptr, Plagl2, and Zic1) to elucidate the species tree of these cichlids. The species examined represent major heroine lineages in South America, Central America, and the Greater Antilles. The individual gene trees of these groups were topologically quite discordant. Therefore, we combined the genetic partitions and inferred the species tree using both concatenation and a coalescent-based Bayesian method. The two resulting phylogenetic topologies were largely concordant but differed in two fundamental ways. First, more nodes in the concatenated tree were supported with substantial or 100% Bayesian posterior support than in the coalescent-based tree. Second, there was a minor, but biogeographically critical, topological difference between the concatenated and coalescent-based trees. Nevertheless, both analyses recovered topologies consistent with the Greater Antillean heroines being phylogenetically nested within the largely Central American heroine radiation. This study suggests that reconstructions of cichlid phylogeny and historical biogeography should account for the vagaries of individual gene histories.

  1. Impacts of Terraces on Phylogenetic Inference.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Stamatakis, Alexandros; Zwickl, Derrick J; Steel, Mike

    2015-09-01

    Terraces are sets of trees with precisely the same likelihood or parsimony score, which can be induced by missing sequences in partitioned multi-locus phylogenetic data matrices. The potentially large set of trees on a terrace can be characterized by enumeration algorithms or consensus methods that exploit the pattern of partial taxon coverage in the data, independent of the sequence data themselves. Terraces can add ambiguity and complexity to phylogenetic inference, particularly in settings where inference is already challenging: data sets with many taxa and relatively few loci. In this article we present five new findings about terraces and their impacts on phylogenetic inference. First, we clarify assumptions about partitioning scheme model parameters that are necessary for the existence of terraces. Second, we explore the dependence of terrace size on partitioning scheme and indicate how to find the partitioning scheme associated with the largest terrace containing a given tree. Third, we highlight the impact of terrace size on bootstrap estimates of confidence limits in clades, and characterize the surprising result that the bootstrap proportion for a clade, as it is usually calculated, can be entirely determined by the frequency of bipartitions on a terrace, with some bipartitions receiving high support even when incorrect. Fourth, we dissect some effects of prior distributions of edge lengths on the computed posterior probabilities of clades on terraces, to understand an example in which long edges "attract" each other in Bayesian inference. Fifth, we describe how assuming relationships between edge-lengths of different loci, as an attempt to avoid terraces, can also be problematic when taxon coverage is partial, specifically when heterotachy is present. Finally, we discuss strategies for remediation of some of these problems. One promising approach finds a minimal set of taxa which, when deleted from the data matrix, reduces the size of a terrace to a

  2. Experimental evidence of large changes in terrestrial chlorine cycling following altered tree species composition.

    PubMed

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2015-04-21

    Organochlorine molecules (Clorg) are surprisingly abundant in soils and frequently exceed chloride (Cl(-)) levels. Despite the widespread abundance of Clorg and the common ability of microorganisms to produce Clorg, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl(-) and Clorg after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl(-) and Clorg content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl(-) and Clorg over the experiment period, and showed a 10 and 4 times higher Cl(-) and Clorg storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl(-) and Clorg in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.

  3. Evaluating fruit quality and maturity consistency in large open vase trained ‘D’Anjou’ trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pear industry in the Pacific North West is still based on low density systems with globe shaped canopies with multiple leaders and usually an open center to allow light penetration. The rootstock limitation to mainly seedlings, promoting high vigor in the tree, explains the choice for this trai...

  4. The phylogenetic likelihood library.

    PubMed

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL).

  5. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.

    PubMed

    Mendes, Joana; Harris, D James; Carranza, Salvador; Salvi, Daniele

    2016-07-01

    Estimating the phylogeny of lacertid lizards, and particularly the tribe Lacertini has been challenging, possibly due to the fast radiation of this group resulting in a hard polytomy. However this is still an open question, as concatenated data primarily from mitochondrial markers have been used so far whereas in a recent phylogeny based on a compilation of these data within a squamate supermatrix the basal polytomy seems to be resolved. In this study, we estimate phylogenetic relationships between all Lacertini genera using for the first time DNA sequences from five fast evolving nuclear genes (acm4, mc1r, pdc, βfib and reln) and two mitochondrial genes (nd4 and 12S). We generated a total of 529 sequences from 88 species and used Maximum Likelihood and Bayesian Inference methods based on concatenated multilocus dataset as well as a coalescent-based species tree approach with the aim of (i) shedding light on the basal relationships of Lacertini (ii) assessing the monophyly of genera which were previously questioned, and (iii) discussing differences between estimates from this and previous studies based on different markers, and phylogenetic methods. Results uncovered (i) a new phylogenetic clade formed by the monotypic genera Archaeolacerta, Zootoca, Teira and Scelarcis; and (ii) support for the monophyly of the Algyroides clade, with two sister species pairs represented by western (A. marchi and A. fitzingeri) and eastern (A. nigropunctatus and A. moreoticus) lineages. In both cases the members of these groups show peculiar morphology and very different geographical distributions, suggesting that they are relictual groups that were once diverse and widespread. They probably originated about 11-13 million years ago during early events of speciation in the tribe, and the split between their members is estimated to be only slightly older. This scenario may explain why mitochondrial markers (possibly saturated at higher divergence levels) or slower nuclear markers

  6. Reconstructing large-scale climatic patterns from tree-ring data

    SciTech Connect

    Fritts, H.C. . Lab. of Tree-Ring Research)

    1991-01-01

    This book describes Harold Fritts's work developing methodologies for reconstructing tree-ring chronologies that can be used to provide models for understanding climate variations over the past several centuries. The time series and patterns of climate change for North America from 1602 to 1963, provide a basis for comparison with what can be reconstructed of climatic patterns in other parts of the world. In describing experiments and analyses that were conducted over fifteen years, Fritts focuses on how he developed and tested a set of equations for reconstructing this 400-year climate history from tree rings. He documents in detail the procedures used to obtain climatic reconstructions and shows how he was able to apply these data to climatic questions.

  7. Testing tree-level perturbation theory for large-scale structure with the local Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Protogeros, Zacharias A. M.; Melott, Adrian L.; Scherrer, Robert J.

    1997-09-01

    We test tree-level perturbation theory for Gaussian initial conditions with power spectra P(k)~k^n by comparing the probability distribution function (PDF) for the density predicted by the local Lagrangian approximation (LLA) with the results of numerical gravitational clustering simulations. Our results indicate that our approximation correctly reproduces the evolved density PDF for n=-1 and -2 power spectra up to the weakly non-linear regime, while it shows marginal agreement for power indices n=0 and +1 in the linear regime and poor agreement beyond this point. This suggests that tree-level perturbation theory (as realized in the LLA) can accurately predict the density distribution function for n<=-1, but fails for n>=0.

  8. Tree ring anatomical variability as an indicator for large-magnitude spring flooding in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Therrell, M. D.; Meko, M. D.; Bialecki, M.; Harley, G. L.

    2015-12-01

    Predicting the magnitude and frequency of floods relies on instrumental measurements of flood stage and discharge, however instrumental observations prior to the late-nineteenth century are rare. Using paleoproxies such as tree rings to study floods that occurred before the instrumental record, can help provide context for the modern flood record especially the variability of flood recurrence patterns. Riparian trees growing on flooded sites often record flood events as inter- and intra-annual variability in size, shape and arrangement of vessels in the annual xylem growth increment. In this study, we used anomalous anatomical features as well as a modified measure of earlywood (EW) vessel width of oak (Quercus sp.) annual tree rings to identify large-magnitude spring-season flood events at three locations in the Lower Mississippi River (LMR) basin for the past ~300 years. We compared the flood-ring anomaly and EW chronologies with daily river stage height data at several locations and these comparisons indicate that our new flood ring records can individually and jointly explain significant amounts of the variance in both stage height and number of days in flood during spring flood events. Our analyses indicate that our chronologies are recording nearly all large observed LMR floods in the 20th century, and provide a new record of similar events in the 18th and 19th centuries. These results suggest that tree-rings can be effectively used to develop and improve pre-instrumental flood records throughout the LMW region and potentially other similar systems.

  9. Quartets and unrooted phylogenetic networks.

    PubMed

    Gambette, Philippe; Berry, Vincent; Paul, Christophe

    2012-08-01

    Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions.

  10. Quartets and unrooted phylogenetic networks.

    PubMed

    Gambette, Philippe; Berry, Vincent; Paul, Christophe

    2012-08-01

    Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions. PMID:22809417

  11. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  12. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  13. Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery

    NASA Technical Reports Server (NTRS)

    Uy, O. Manuel; Maurer, R. H.

    1987-01-01

    The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons.

  14. Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation.

    PubMed

    Nadezhdina, Nadezhda; Steppe, Kathy; De Pauw, Dirk J W; Bequet, Raphael; Cermak, Jan; Ceulemans, Reinhart

    2009-12-01

    *Increasing evidence about hydraulic redistribution and its ecological consequences is emerging. Hydraulic redistribution results from an interplay between competing plant and soil water potential gradients. In this work, stem-mediated hydraulic redistribution was studied in a 53-year-old Douglas-fir tree during a period of drought. *Sap flux density measurements using the heat field deformation method were performed at four locations: in two large opposing roots and on two sides of the tree stem. Hydraulic redistribution was induced by localized irrigation on one of the measured roots, creating heterogeneous soil water conditions. *Stem-mediated hydraulic redistribution was detected during night-time conditions when water was redistributed from the wet side of the tree to the nonirrigated dry side. In addition to stem-mediated hydraulic redistribution, bidirectional flow in the dry root was observed, indicating radial sectoring in the xylem. *It was observed that, through stem-mediated hydraulic redistribution, Douglas-fir was unable to increase its transpiration despite the fact that sufficient water was available to one part of the root system. This resulted from the strong water potential gradient created by the dry soil in contact with the nonirrigated part of the root system. A mechanism of stem-mediated hydraulic redistribution is proposed and its possible implications are discussed. PMID:19754638

  15. Phylogenetic effective sample size.

    PubMed

    Bartoszek, Krzysztof

    2016-10-21

    In this paper I address the question-how large is a phylogenetic sample? I propose a definition of a phylogenetic effective sample size for Brownian motion and Ornstein-Uhlenbeck processes-the regression effective sample size. I discuss how mutual information can be used to define an effective sample size in the non-normal process case and compare these two definitions to an already present concept of effective sample size (the mean effective sample size). Through a simulation study I find that the AICc is robust if one corrects for the number of species or effective number of species. Lastly I discuss how the concept of the phylogenetic effective sample size can be useful for biodiversity quantification, identification of interesting clades and deciding on the importance of phylogenetic correlations. PMID:27343033

  16. Assessment of phylogenetic structure in genome size--gene content correlations.

    PubMed

    Prasad, Vibhu Ranjan; Isler, Karin

    2012-05-01

    Gene content and gene-coding percentage can be predicted from genome size in newly sequenced organisms. Here, we investigate whether these predictions are influenced by phylogenetic relationships between the involved species. Combining a highly resolved phylogenetic tree with a large compilation of gene content data, our results reveal the presence of significant phylogenetic structure in the correlations between genome size and gene content in both bacteria and eukaryotes. The variation in log(gene content) explained by log(genome size) in combination with phylogeny was found to be 97% in bacteria and 55% in eukaryotes. Further, in bacteria, gene-coding percentages are only significantly correlated to genome size if phylogenetic information is taken into account in the analyses. These findings support the usage of phylogenetic correlation models for gene content predictions.

  17. On Determining if Tree-based Networks Contain Fixed Trees.

    PubMed

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable. PMID:27125655

  18. Sarcocystis clethrionomyelaphis Matuschka, 1986 (Apicomplexa: Sarcocystidae) infecting the large oriental vole Eothenomys miletus (Thomas) (Cricetidae: Microtinae) and its phylogenetic relationships with other species of Sarcocystis Lankester, 1882.

    PubMed

    Hu, Jun-Jie; Liu, Ting-Ting; Liu, Qiong; Esch, G W; Chen, Jin-Qing

    2015-07-01

    Sarcocystis clethrionomyelaphis Matuschka, 1986 was first identified in skeletal muscles of 47 (75.8%) of 62 large oriental voles Eothenomys miletus (Thomas) captured between March 2012 and May 2014 in Anning Prefecture of Yunnan Province (China). Sarcocyst walls were thick and possessed villous protrusions measuring 3.5-5.5 μm in length. Beauty rat snakes Elaphe taeniura (Cope) fed sarcocysts of the species shed sporulated oöcysts measuring 13-18×9-13 (16×12) μm with a prepatent period of 16 to 17 days. Phylogenetic analysis based on 18S rRNA gene sequences revealed a close relationship between S. clethrionomyelaphis and other colubrid-transmitted species of Sarcocystis Lankester, 1882. This is the first report identifying S. clethrionomyelaphis from its natural intermediate host. PMID:26063304

  19. An improved amplification and sequencing strategy for phylogenetic studies using the mitochondrial large subunit rRNA gene.

    PubMed

    Parker, A; Kornfield, I

    1996-08-01

    Numerous molecular systematic studies have employed variation in the mitochondrial large subunit (16s) rRNA gene to infer patterns of relationship among species and higher taxa. The primers most commonly employed in 16s rRNA amplification and sequencing bracket an approximately 600 bp portion of this gene. However, most of the informative variation occurs within a 200 bp subset of this segment. We describe a novel primer pair designed to amplify this variable region in a wide range of taxa, allowing broader application and considerable streamlining of data acquisition for studies using this gene.

  20. Ultrafast approximation for phylogenetic bootstrap.

    PubMed

    Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt

    2013-05-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.

  1. Are large carbon-reserve pools beneficial for trees under drought?

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Moesch, Anna; Buehler, Severin

    2014-05-01

    All plants store parts of the assimilated carbon (C) as non-structural C reserves (mainly starch, sugars and lipids) that can be re-allocated to growth or metabolism during times when the demand of C-sinks exceeds the current C-assimilation. It is generally assumed that the size of the C-reserve pool of a plant is indicative of its net C-balance. In contrast, it has been recently hypothesized that the often observed increase of C-reserve concentrations in trees exposed to climatic stress like drought or cold, are not caused by the overabundance of photoassimilates following the stress-induced cessation of growth, but might be intrinsic reactions to anticipate potential C-limitation under stressful situations (Wiley and Helliker 2012, New Phytologist 195). Within two experiments, we (1) tested the responsiveness of non-structural carbohydrates (NSC) in seedlings of three deciduous tree species (Carpinus, Fagus, Quercus) to C-shortage and -surplus, and (2) assessed the significance of the size of C-reserve stores to survive drought stress. We quantified the changes of NSC concentrations in seedlings that were exposed to different C-supplies for the first three month of the growing season (April to June), by exposing them to either different light regimes (100 %, 30 %, 3 % of full sunlight) or different atmospheric CO2 concentrations (200 ppm, 400 ppm, 600 ppm CO2). In all species, the concentrations of NSC reacted very strongly to the different treatments, with seedlings growing under low C-supply showing a significant depletion (especially starch), thereby corroborating the principal responsiveness of C-reserve pools to C-source-sink imbalances. Following this preconditioning, half of the seedlings from each light and CO2 treatment were exposed to moderate drought situations that led to the death of most of the seedlings by the end of the growing season (October). Differences in the drying-out rates between the light and CO2 treatments were compensated by selective

  2. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees

    NASA Astrophysics Data System (ADS)

    Gross-Camp, Nicole D.; Kaplin, Beth A.

    2011-11-01

    We examined the influence of seed handling by two semi-terrestrial African forest primates, chimpanzees ( Pan troglodytes) and l'Hoest's monkeys ( Cercopithecus lhoesti), on the fate of large-seeded tree species in an afromontane forest. Chimpanzees and l'Hoest's monkeys dispersed eleven seed species over one year, with quantity and quality of dispersal varying through time. Primates differed in their seed handling behaviors with chimpanzees defecating large seeds (>0.5 cm) significantly more than l'Hoest's. Furthermore, they exhibited different oral-processing techniques with chimpanzees discarding wadges containing many seeds and l'Hoest's monkeys spitting single seeds. A PCA examined the relationship between microhabitat characteristics and the site where primates deposited seeds. The first two components explained almost half of the observed variation. Microhabitat characteristics associated with sites where seeds were defecated had little overlap with those characteristics describing where spit seeds arrived, suggesting that seed handling in part determines the location where seeds are deposited. We monitored a total of 552 seed depositions through time, recording seed persistence, germination, and establishment. Defecations were deposited significantly farther from an adult conspecific than orally-discarded seeds where they experienced the greatest persistence but poorest establishment. In contrast, spit seeds were deposited closest to an adult conspecific but experienced the highest seed establishment rates. We used experimental plots to examine the relationship between seed handling, deposition site, and seed fate. We found a significant difference in seed handling and fate, with undispersed seeds in whole fruits experiencing the lowest establishment rates. Seed germination differed by habitat type with open forest experiencing the highest rates of germination. Our results highlight the relationship between primate seed handling and deposition site and seed

  3. Systematic Conservation Planning for Groundwater Ecosystems Using Phylogenetic Diversity

    PubMed Central

    Asmyhr, Maria G.; Linke, Simon; Hose, Grant; Nipperess, David A.

    2014-01-01

    Aquifer ecosystems provide a range of important services including clean drinking water. These ecosystems, which are largely inaccessible to humans, comprise a distinct invertebrate fauna (stygofauna), which is characterized by narrow distributions, high levels of endemism and cryptic species. Although being under enormous anthropogenic pressure, aquifers have rarely been included in conservation planning because of the general lack of knowledge of species diversity and distribution. Here we use molecular sequence data and phylogenetic diversity as surrogates for stygofauna diversity in aquifers of New South Wales, Australia. We demonstrate how to incorporate these data as conservation features in the systematic conservation planning software Marxan. We designated each branch of the phylogenetic tree as a conservation feature, with the branch length as a surrogate for the number of distinct characters represented by each branch. Two molecular markers (nuclear 18S ribosomal DNA and mitochondrial cytochrome oxidase subunit I) were used to evaluate how marker variability and the resulting tree topology affected the site-selection process. We found that the sites containing the deepest phylogenetic branches were deemed the most irreplaceable by Marxan. By integrating phylogenetic data, we provide a method for including taxonomically undescribed groundwater fauna in systematic conservation planning. PMID:25514422

  4. Systematic conservation planning for groundwater ecosystems using phylogenetic diversity.

    PubMed

    Asmyhr, Maria G; Linke, Simon; Hose, Grant; Nipperess, David A

    2014-01-01

    Aquifer ecosystems provide a range of important services including clean drinking water. These ecosystems, which are largely inaccessible to humans, comprise a distinct invertebrate fauna (stygofauna), which is characterized by narrow distributions, high levels of endemism and cryptic species. Although being under enormous anthropogenic pressure, aquifers have rarely been included in conservation planning because of the general lack of knowledge of species diversity and distribution. Here we use molecular sequence data and phylogenetic diversity as surrogates for stygofauna diversity in aquifers of New South Wales, Australia. We demonstrate how to incorporate these data as conservation features in the systematic conservation planning software Marxan. We designated each branch of the phylogenetic tree as a conservation feature, with the branch length as a surrogate for the number of distinct characters represented by each branch. Two molecular markers (nuclear 18S ribosomal DNA and mitochondrial cytochrome oxidase subunit I) were used to evaluate how marker variability and the resulting tree topology affected the site-selection process. We found that the sites containing the deepest phylogenetic branches were deemed the most irreplaceable by Marxan. By integrating phylogenetic data, we provide a method for including taxonomically undescribed groundwater fauna in systematic conservation planning.

  5. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Heald, C. L.; Silva, S. J.; Martin, R. V.

    2015-10-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to emissions is controlled by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that average 8 h O3 exceeds 65 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 to 2 μg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally important. These simulations suggest that changes in biosphere-atmosphere exchange must be considered when predicting future air quality and climate. We point to

  6. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, Jeffrey A.; Heald, Colette L.; Silva, Sam J.; Martin, Randall V.

    2016-02-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to the projected change in emissions is affected by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that 8 h average O3 exceeds 70 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. The influence of changes in dry deposition demonstrated here underscores the need to evaluate treatments of this physical process in models. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 and 2 µg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally

  7. A phylogenetic blueprint for a modern whale.

    PubMed

    Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R

    2013-02-01

    The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.

  8. Irrational exuberance for resolved species trees.

    PubMed

    Hahn, Matthew W; Nakhleh, Luay

    2016-01-01

    Phylogenomics has largely succeeded in its aim of accurately inferring species trees, even when there are high levels of discordance among individual gene trees. These resolved species trees can be used to ask many questions about trait evolution, including the direction of change and number of times traits have evolved. However, the mapping of traits onto trees generally uses only a single representation of the species tree, ignoring variation in the gene trees used to construct it. Recognizing that genes underlie traits, these results imply that many traits follow topologies that are discordant with the species topology. As a consequence, standard methods for character mapping will incorrectly infer the number of times a trait has evolved. This phenomenon, dubbed "hemiplasy," poses many problems in analyses of character evolution. Here we outline these problems, explaining where and when they are likely to occur. We offer several ways in which the possible presence of hemiplasy can be diagnosed, and discuss multiple approaches to dealing with the problems presented by underlying gene tree discordance when carrying out character mapping. Finally, we discuss the implications of hemiplasy for general phylogenetic inference, including the possible drawbacks of the widespread push for "resolved" species trees.

  9. Entanglement, Invariants, and Phylogenetics

    NASA Astrophysics Data System (ADS)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  10. Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference.

    PubMed

    Chernomor, Olga; Minh, Bui Quang; von Haeseler, Arndt

    2015-12-01

    In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original "full" terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206

  11. Conservation action based on threatened species capture taxonomic and phylogenetic richness in breeding and wintering populations of Central Asian birds.

    PubMed

    Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias

    2014-01-01

    Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species.

  12. Conservation Action Based on Threatened Species Capture Taxonomic and Phylogenetic Richness in Breeding and Wintering Populations of Central Asian Birds

    PubMed Central

    Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias

    2014-01-01

    Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. PMID:25337861

  13. Conservation action based on threatened species capture taxonomic and phylogenetic richness in breeding and wintering populations of Central Asian birds.

    PubMed

    Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias

    2014-01-01

    Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. PMID:25337861

  14. Tree height–diameter allometry across the United States

    PubMed Central

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  15. Tree height-diameter allometry across the United States.

    PubMed

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-03-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.

  16. [Analysis phylogenetic relationship of Gynostemma (Cucurbitaceae)].

    PubMed

    Qin, Shuang-shuang; Li, Hai-tao; Wang, Zhou-yong; Cui, Zhan-hu; Yu, Li-ying

    2015-05-01

    The sequences of ITS, matK, rbcL and psbA-trnH of 9 Gynostemma species or variety including 38 samples were compared and analyzed by molecular phylogeny method. Hemsleya macrosperma was designated as outgroup. The MP and NJ phylogenetic tree of Gynostemma was built based on ITS sequence, the results of PAUP phylogenetic analysis showed the following results: (1) The eight individuals of G. pentaphyllum var. pentaphyllum were not supported as monophyletic in the strict consensus trees and NJ trees. (2) It is suspected whether G. longipes and G. laxum should be classified as the independent species. (3)The classification of subgenus units of Gynostemma plants is supported.

  17. Automated Large Scale Parameter Extraction of Road-Side Trees Sampled by a Laser Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Lindenbergh, R. C.; Berthold, D.; Sirmacek, B.; Herrero-Huerta, M.; Wang, J.; Ebersbach, D.

    2015-08-01

    In urbanized Western Europe trees are considered an important component of the built-up environment. This also means that there is an increasing demand for tree inventories. Laser mobile mapping systems provide an efficient and accurate way to sample the 3D road surrounding including notable roadside trees. Indeed, at, say, 50 km/h such systems collect point clouds consisting of half a million points per 100m. Method exists that extract tree parameters from relatively small patches of such data, but a remaining challenge is to operationally extract roadside tree parameters at regional level. For this purpose a workflow is presented as follows: The input point clouds are consecutively downsampled, retiled, classified, segmented into individual trees and upsampled to enable automated extraction of tree location, tree height, canopy diameter and trunk diameter at breast height (DBH). The workflow is implemented to work on a laser mobile mapping data set sampling 100 km of road in Sachsen, Germany and is tested on a stretch of road of 7km long. Along this road, the method detected 315 trees that were considered well detected and 56 clusters of tree points were no individual trees could be identified. Using voxels, the data volume could be reduced by about 97 % in a default scenario. Processing the results of this scenario took ~2500 seconds, corresponding to about 10 km/h, which is getting close to but is still below the acquisition rate which is estimated at 50 km/h.

  18. Allometric theory and the mechanical stability of large trees: proof and conjecture.

    PubMed

    Niklas, Karl J; Spatz, Hanns-Christof

    2006-06-01

    Recent allometric theory has postulated that standing leaf mass will scale as the 3/4 power of stem mass and as the 3/4 power of root mass such that stem mass scales isometrically with respect to root mass across very large vascular plant species with self-supporting stems. We show that the isometric scaling of stem mass with respect to root mass (i.e., M(S) ∝ M(R)) can be derived directly from mechanical theory, specifically from the requirement that wind-induced bending moments acting at the base of stems must be balanced by a counter-resisting moment provided by the root system to prevent uprooting. This derivation provides indirect verification of the allometric theory. It also draws attention to the fact that leaf, stem, and root biomass partitioning patterns must accommodate the simultaneous performance of manifold functional obligations.

  19. Gypsum amendment to rice paddy soil stimulated bacteria involved in sulfur cycling but largely preserved the phylogenetic composition of the total bacterial community.

    PubMed

    Wörner, Susanne; Zecchin, Sarah; Dan, Jianguo; Todorova, Nadezhda Hristova; Loy, Alexander; Conrad, Ralf; Pester, Michael

    2016-06-01

    Rice paddies are indispensable for human food supply but emit large amounts of the greenhouse gas methane. Sulfur cycling occurs at high rates in these water-submerged soils and controls methane production, an effect that is increased by sulfate-containing fertilizers or soil amendments. We grew rice plants until their late vegetative phase with and without gypsum (CaSO4 ·2H2 O) amendment and identified responsive bacteria by 16S rRNA gene amplicon sequencing. Gypsum amendment decreased methane emissions by up to 99% but had no major impact on the general phylogenetic composition of the bacterial community. It rather selectively stimulated or repressed a small number of 129 and 27 species-level operational taxonomic units (OTUs) (out of 1883-2287 observed) in the rhizosphere and bulk soil, respectively. Gypsum-stimulated OTUs were affiliated with several potential sulfate-reducing (Syntrophobacter, Desulfovibrio, unclassified Desulfobulbaceae, unclassified Desulfobacteraceae) and sulfur-oxidizing taxa (Thiobacillus, unclassified Rhodocyclaceae), while gypsum-repressed OTUs were dominated by aerobic methanotrophs (Methylococcaceae). Abundance correlation networks suggested that two abundant (>1%) OTUs (Desulfobulbaceae, Rhodocyclaceae) were central to the reductive and oxidative parts of the sulfur cycle. PMID:27085098

  20. Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests.

    PubMed

    Wills, Christopher; Harms, Kyle E; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S; Erickson, David; Kress, W John; Hubbell, Stephen P; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2016-01-01

    Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species' gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that

  1. Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests.

    PubMed

    Wills, Christopher; Harms, Kyle E; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S; Erickson, David; Kress, W John; Hubbell, Stephen P; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2016-01-01

    Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species' gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that

  2. SUMAC: Constructing Phylogenetic Supermatrices and Assessing Partially Decisive Taxon Coverage.

    PubMed

    Freyman, William A

    2015-01-01

    The amount of phylogenetically informative sequence data in GenBank is growing at an exponential rate, and large phylogenetic trees are increasingly used in research. Tools are needed to construct phylogenetic sequence matrices from GenBank data and evaluate the effect of missing data. Supermatrix Constructor (SUMAC) is a tool to data-mine GenBank, construct phylogenetic supermatrices, and assess the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. SUMAC calculates a novel metric, Missing Sequence Decisiveness Scores (MSDS), which measures how much each individual missing sequence contributes to the decisiveness of the matrix. MSDS can be used to compare supermatrices and prioritize the acquisition of new sequence data. SUMAC constructs supermatrices either through an exploratory clustering of all GenBank sequences within a taxonomic group or by using guide sequences to build homologous clusters in a more targeted manner. SUMAC assembles supermatrices for any taxonomic group recognized in GenBank and is optimized to run on multicore computer systems by parallelizing multiple stages of operation. SUMAC is implemented as a Python package that can run as a stand-alone command-line program, or its modules and objects can be incorporated within other programs. SUMAC is released under the open source GPLv3 license and is available at https://github.com/wf8/sumac. PMID:26648681

  3. Maximum Parsimony on Phylogenetic networks

    PubMed Central

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  4. Facilitative-Competitive Interactions in an Old-Growth Forest: The Importance of Large-Diameter Trees as Benefactors and Stimulators for Forest Community Assembly

    PubMed Central

    Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035

  5. Facilitative-competitive interactions in an old-growth forest: the importance of large-diameter trees as benefactors and stimulators for forest community assembly.

    PubMed

    Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.

  6. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    NASA Astrophysics Data System (ADS)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation

  7. Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle.

    PubMed

    McCabe, Matthew Sean; Cormican, Paul; Keogh, Kate; O'Connor, Aaron; O'Hara, Eoin; Palladino, Rafael Alejandro; Kenny, David Anthony; Waters, Sinéad Mary

    2015-01-01

    Periodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10(-20)) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10(-20)) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10(-20)) and solid (ρ = 0.69, P = <1x10(-20)) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction.

  8. Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

    PubMed Central

    Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

    2013-01-01

    Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments. PMID:24244618

  9. Do orthologous gene phylogenies really support tree-thinking?

    PubMed Central

    Bapteste, E; Susko, E; Leigh, J; MacLeod, D; Charlebois, RL; Doolittle, WF

    2005-01-01

    Background Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes) likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes. Results Heat map analyses were used to investigate the congruence of orthologues in four datasets (archaeal, bacterial, eukaryotic and alpha-proteobacterial). We conclude that we simply cannot determine if a large portion of the genes have a common history. In addition, none of these datasets can be considered free of lateral gene transfer. Conclusion Our phylogenetic analyses do not support tree-thinking. These results have important conceptual and practical implications. We argue that representations other than a tree should be investigated in this case because a non-critical concatenation of markers could be highly misleading. PMID:15913459

  10. Biases of tree-independent-character-subsampling methods.

    PubMed

    Simmons, Mark P; Gatesy, John

    2016-07-01

    Observed Variability (OV) and Tree Independent Generation of Evolutionary Rates (TIGER) are quick and easy-to-apply tree-independent methods that have been proposed to provide unbiased estimates of each character's rate of evolution and serve as the basis for excluding rapidly evolving characters. Both methods have been applied to multiple phylogenomic datasets, and in many cases the authors considered their trees inferred from the OV- and TIGER-delimited sub-matrices to be better estimates of the phylogeny than their trees based on all characters. In this study we use four sets of simulations and an empirical phylogenomic example to demonstrate that both methods share a systematic bias against characters with more symmetric distributions of character states, against characters with greater observed character-state space, and against large clades in the context of character conflict. As a result these methods can favor convergences and reversals over synapomorphy, exacerbate long-branch attraction, and produce mutually exclusive phylogenetic inferences that are dependent upon differential taxon sampling. We assert that neither OV nor TIGER should be relied upon to increase the ratio of phylogenetic to non-phylogenetic signal in a data matrix. We also assert that skepticism is warranted for empirical phylogenetic results that are based on OV- and/or TIGER-based character deletion wherein a small clade is supported after deletion of characters, yet is contradicted by a larger clade when the entire data matrix was analyzed. PMID:27103257

  11. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  12. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  13. Experimental design in phylogenetics: testing predictions from expected information.

    PubMed

    San Mauro, Diego; Gower, David J; Cotton, James A; Zardoya, Rafael; Wilkinson, Mark; Massingham, Tim

    2012-07-01

    Taxon and character sampling are central to phylogenetic experimental design; yet, we lack general rules. Goldman introduced a method to construct efficient sampling designs in phylogenetics, based on the calculation of expected Fisher information given a probabilistic model of sequence evolution. The considerable potential of this approach remains largely unexplored. In an earlier study, we applied Goldman's method to a problem in the phylogenetics of caecilian amphibians and made an a priori evaluation and testable predictions of which taxon additions would increase information about a particular weakly supported branch of the caecilian phylogeny by the greatest amount. We have now gathered mitogenomic and rag1 sequences (some newly determined for this study) from additional caecilian species and studied how information (both expected and observed) and bootstrap support vary as each new taxon is individually added to our previous data set. This provides the first empirical test of specific predictions made using Goldman's method for phylogenetic experimental design. Our results empirically validate the top 3 (more intuitive) taxon addition predictions made in our previous study, but only information results validate unambiguously the 4th (less intuitive) prediction. This highlights a complex relationship between information and support, reflecting that each measures different things: Information is related to the ability to estimate branch length accurately and support to the ability to estimate the tree topology accurately. Thus, an increase in information may be correlated with but does not necessitate an increase in support. Our results also provide the first empirical validation of the widely held intuition that additional taxa that join the tree proximal to poorly supported internal branches are more informative and enhance support more than additional taxa that join the tree more distally. Our work supports the view that adding more data for a single (well

  14. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions

    PubMed Central

    Sundaram, Mekala; Willoughby, Janna R.; Lichti, Nathanael I.; Steele, Michael A.; Swihart, Robert K.

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is

  15. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  16. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  17. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale

    PubMed Central

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines. PMID

  18. [Phylogenetic analysis of Pleurotus species].

    PubMed

    Shnyreva, A A; Shnyreva, A V

    2015-02-01

    We performed phylogenetic analysis for ten Pleurotus species, based on internal transcribed spacer (ITS) sequences of rDNA. A phylogenetic tree was constructed on the basis of 31 oyster fungi strains of different origin and 10 reference sequences from GenBank. Our analysis demonstrates that the tested Pleurotus species are of monophyletic origin. We evaluated the evolutionary distances between these species. Classic genetic analysis of sexual compatibility based on monocaryon (mon)-mon crosses showed no reproductive barriers within the P. cornucopiae-P. euosmus species complex. Thus, despite the divergence (subclustering) between commercial strains and natural isolates of P. ostreatus revealed by phylogenetic analysis, there is no reproductive isolation between these groups. A common allele of the matB locus was identified for the commercial strains Sommer and L/4, supporting the common origin of these strains. PMID:25966583

  19. Phylogenetic and Biological Significance of Evolutionary Elements from Metazoan Mitochondrial Genomes

    PubMed Central

    Yuan, Jianbo; Zhu, Qingming; Liu, Bin

    2014-01-01

    The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between

  20. Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests

    PubMed Central

    Wills, Christopher; Harms, Kyle E.; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S.; Erickson, David; Kress, W. John; Hubbell, Stephen P.; Gunatilleke, C. V. Savitri; Gunatilleke, I. A. U. Nimal

    2016-01-01

    Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species’ gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that

  1. A Metric on the Space of Partly Reduced Phylogenetic Networks

    PubMed Central

    2016-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of evolutionary events acting at the population level, such as recombination between genes, hybridization between lineages, and horizontal gene transfer. The researchers have designed several measures for computing the dissimilarity between two phylogenetic networks, and each measure has been proven to be a metric on a special kind of phylogenetic networks. However, none of the existing measures is a metric on the space of partly reduced phylogenetic networks. In this paper, we provide a metric, de-distance, on the space of partly reduced phylogenetic networks, which is polynomial-time computable. PMID:27419137

  2. Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats.

    PubMed

    Schauer, Michael; Hahn, Martin W

    2005-04-01

    Filamentous bacteria with a conspicuous morphology were found in the majority of the bacterioplankton samples from a variety of freshwater habitats that were studied. These heterotrophic filaments typically account for < 1 to 11% of the total number of bacteria. The biovolume of this morphotype can exceed 40% of the biovolume for all bacteria. Surprisingly, we found hardly any data on these morphologically conspicuous filaments in the literature. Mixed cultures containing these filamentous bacteria were established by cultivation and isolation experiments with samples from different freshwater lakes. Nearly full-length 16S rRNA gene sequences were obtained from several mixed cultures and environmental samples from habitats in Europe, Africa, China, Australia, and New Zealand. Phylogenetic analysis of the sequences showed that three groups form a single monophyletic cluster, the SOL cluster, in the family Saprospiraceae. We developed a set of six nested probes for fluorescence in situ hybridization. Of the six probes, one probe was specific for Haliscomenobacter hydrossis, three probes were specific for the three subclusters (each probe was specific for one subcluster), one probe was specific for the entire SOL cluster, and another probe targeted almost the entire Saprospiraceae family. Specific hybridization of environmental samples and enrichments showed that the members of the three subclusters exhibited the same filamentous morphology. So far, using the subcluster-specific probes, we have not been able to detect any bacteria with a differing morphology. We conclude that the SOL cluster bacteria are an integral part of bacterioplankton in many freshwater habitats. They potentially account for a large fraction of the total bacterial biomass but have been underrepresented in molecular diversity studies so far.

  3. Rapid progress on the vertebrate tree of life

    PubMed Central

    2010-01-01

    Background Among the greatest challenges for biology in the 21st century is inference of the tree of life. Interest in, and progress toward, this goal has increased dramatically with the growing availability of molecular sequence data. However, we have very little sense, for any major clade, of how much progress has been made in resolving a full tree of life and the scope of work that remains. A series of challenges stand in the way of completing this task but, at the most basic level, progress is limited by data: a limited fraction of the world's biodiversity has been incorporated into a phylogenetic analysis. More troubling is our poor understanding of what fraction of the tree of life is understood and how quickly research is adding to this knowledge. Here we measure the rate of progress on the tree of life for one clade of particular research interest, the vertebrates. Results Using an automated phylogenetic approach, we analyse all available molecular data for a large sample of vertebrate diversity, comprising nearly 12,000 species and 210,000 sequences. Our results indicate that progress has been rapid, increasing polynomially during the age of molecular systematics. It is also skewed, with birds and mammals receiving the most attention and marine organisms accumulating far fewer data and a slower rate of increase in phylogenetic resolution than terrestrial taxa. We analyse the contributors to this phylogenetic progress and make recommendations for future work. Conclusions Our analyses suggest that a large majority of the vertebrate tree of life will: (1) be resolved within the next few decades; (2) identify specific data collection strategies that may help to spur future progress; and (3) identify branches of the vertebrate tree of life in need of increased research effort. PMID:20211001

  4. Phylogenetic analysis of otospiralin protein

    PubMed Central

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  5. Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle.

    PubMed

    McCabe, Matthew Sean; Cormican, Paul; Keogh, Kate; O'Connor, Aaron; O'Hara, Eoin; Palladino, Rafael Alejandro; Kenny, David Anthony; Waters, Sinéad Mary

    2015-01-01

    Periodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10(-20)) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10(-20)) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10(-20)) and solid (ρ = 0.69, P = <1x10(-20)) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction. PMID:26226343

  6. Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle

    PubMed Central

    McCabe, Matthew Sean; Cormican, Paul; Keogh, Kate; O’Connor, Aaron; O’Hara, Eoin; Palladino, Rafael Alejandro; Kenny, David Anthony; Waters, Sinéad Mary

    2015-01-01

    Periodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10-20) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10-20) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10-20) and solid (ρ = 0.69, P = <1x10-20) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction. PMID:26226343

  7. Phylogenetics of the laboratory rat Rattus norvegicus.

    PubMed

    Canzian, F

    1997-03-01

    A genealogic tree was constructed for inbred strains of the laboratory rat, including 63 strains and 214 of their substrains. Information on genetic and biochemical marker typings of these lines was collected from the literature and from the World Wide Web. Data on 995 polymorphisms were processed into a phylogenetic distance matrix, and a tree was obtained by the Fitch-Margoliash distance matrix method. The inbred strains of the laboratory rat showed an average polymorphism for pairwise comparison of 53%. Strain BN showed the highest genetic divergence from all the other ones. Comparison with the mouse phylogenetic tree indicated that laboratory rats possess a higher diversity than inbred strains of mice not derived from wild species. These results provide a phylogenetic basis in the choice of rat strains for genetic linkage experiments.

  8. Species Tree Inference Using a Mixture Model.

    PubMed

    Ullah, Ikram; Parviainen, Pekka; Lagergren, Jens

    2015-09-01

    Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714-5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1-44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG (Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013. Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323-330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic

  9. An explosive innovation: Phylogenetic relationships of Solanum section Gonatotrichum (Solanaceae)

    PubMed Central

    Stern, Stephen; Bohs, Lynn

    2012-01-01

    Abstract Solanum is one of the largest plant genera and exhibits a wide range of morphological diversity. Solanum section Gonatotrichum, the focus of this study, is unique within the genus because of its fruits that swell with turgor pressure and explosively dehisce to disperse the seeds. We infer phylogenetic relationships within section Gonatotrichum using DNA sequence data from two nuclear regions (ITS and the granule-bound starch synthase gene [GBSSI or waxy]) and the chloroplast region trnT-F. The resulting phylogenetic trees support the monophyly of the section with the inclusion of Solanum lignescens, a species not previously thought to belong to the group due to the presence of stellate hairs. This inclusion of this species in section Gonatotrichum suggests that the simple, often geniculate hairs of species in the group may represent reduced stellate hairs. The presence of heterantherous flowers appears to be derived in the section, but this character is largely lost in Solanum parcistrigosum. PMID:22287931

  10. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    PubMed

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies. PMID:27478706

  11. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes

    PubMed Central

    de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5–21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies. PMID:27478706

  12. Adaptive semi-supervised recursive tree partitioning: The ART towards large scale patient indexing in personalized healthcare.

    PubMed

    Wang, Fei

    2015-06-01

    With the rapid development of information technologies, tremendous amount of data became readily available in various application domains. This big data era presents challenges to many conventional data analytics research directions including data capture, storage, search, sharing, analysis, and visualization. It is no surprise to see that the success of next-generation healthcare systems heavily relies on the effective utilization of gigantic amounts of medical data. The ability of analyzing big data in modern healthcare systems plays a vital role in the improvement of the quality of care delivery. Specifically, patient similarity evaluation aims at estimating the clinical affinity and diagnostic proximity of patients. As one of the successful data driven techniques adopted in healthcare systems, patient similarity evaluation plays a fundamental role in many healthcare research areas such as prognosis, risk assessment, and comparative effectiveness analysis. However, existing algorithms for patient similarity evaluation are inefficient in handling massive patient data. In this paper, we propose an Adaptive Semi-Supervised Recursive Tree Partitioning (ART) framework for large scale patient indexing such that the patients with similar clinical or diagnostic patterns can be correctly and efficiently retrieved. The framework is designed for semi-supervised settings since it is crucial to leverage experts' supervision knowledge in medical scenario, which are fairly limited compared to the available data. Starting from the proposed ART framework, we will discuss several specific instantiations and validate them on both benchmark and real world healthcare data. Our results show that with the ART framework, the patients can be efficiently and effectively indexed in the sense that (1) similarity patients can be retrieved in a very short time; (2) the retrieval performance can beat the state-of-the art indexing methods.

  13. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    PubMed

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies.

  14. Detection of selection utilizing molecular phylogenetics: a possible approach.

    PubMed

    Yang, Ming; Wyckoff, Gerald J

    2011-05-01

    The neutral theory of molecular evolution (Kimura 1985) is the basis for most current statistical tests for detecting selection, mainly using polymorphism data within species, divergence data between species, and/or genomic structures like linkage disequilibrium (Wang et al. 2006). In most cases informative tests can only be constructed with ample variations within these parameters and many common tests are difficult to formulate when identity-by-descent is not clear, for example in gene families or repetitive elements. With the current progress being made toward whole-genome sequencing and re-sequencing efforts, as well as protein sequencing via tandem mass spectrometry where genomic sequencing is lacking, we felt it was necessary to re-visit possible methods for rapid screening and detection of evolutionary outliers. These outliers might be of interest for other research, such as candidate gene association studies or genome annotations, drug- and disease-target searches, and functional studies. We focused on methods that would work on both protein and nucleotide data, could be used on large gene or protein domain families, and could be generated quickly in order for "first pass" annotation of large scale data. For these reasons, we chose properties of trees generated routinely in molecular phylogenetic studies; genetic distance, tree shape and balance, and internal node statistics (Heard 1992). Our current research looking at protein domain family data and phylogenetic trees from PFAM (Finn et al. 2008) suggests this approach towards detecting evolutionary outliers is feasible, but additional work will be necessary to determine the parameters that suggest either positive or negative selection is occurring in specific gene families. This is particularly true when other factors such as rapid duplication and deletion of genes containing these domains is taking place, and we suggest phylogenetic statistics may be useful in combination with existing methodologies for

  15. Reconstructing phylogenetic networks using maximum parsimony.

    PubMed

    Nakhleh, Luay; Jin, Guohua; Zhao, Fengmei; Mellor-Crummey, John

    2005-01-01

    Phylogenies - the evolutionary histories of groups of organisms - are one of the most widely used tools throughout the life sciences, as well as objects of research within systematics, evolutionary biology, epidemiology, etc. Almost every tool devised to date to reconstruct phylogenies produces trees; yet it is widely understood and accepted that trees oversimplify the evolutionary histories of many groups of organims, most prominently bacteria (because of horizontal gene transfer) and plants (because of hybrid speciation). Various methods and criteria have been introduced for phylogenetic tree reconstruction. Parsimony is one of the most widely used and studied criteria, and various accurate and efficient heuristics for reconstructing trees based on parsimony have been devised. Jotun Hein suggested a straightforward extension of the parsimony criterion to phylogenetic networks. In this paper we formalize this concept, and provide the first experimental study of the quality of parsimony as a criterion for constructing and evaluating phylogenetic networks. Our results show that, when extended to phylogenetic networks, the parsimony criterion produces promising results. In a great majority of the cases in our experiments, the parsimony criterion accurately predicts the numbers and placements of non-tree events.

  16. The most parsimonious tree for random data.

    PubMed

    Fischer, Mareike; Galla, Michelle; Herbst, Lina; Steel, Mike

    2014-11-01

    Applying a method to reconstruct a phylogenetic tree from random data provides a way to detect whether that method has an inherent bias towards certain tree 'shapes'. For maximum parsimony, applied to a sequence of random 2-state data, each possible binary phylogenetic tree has exactly the same distribution for its parsimony score. Despite this pleasing and slightly surprising symmetry, some binary phylogenetic trees are more likely than others to be a most parsimonious (MP) tree for a sequence of k such characters, as we show. For k=2, and unrooted binary trees on six taxa, any tree with a caterpillar shape has a higher chance of being an MP tree than any tree with a symmetric shape. On the other hand, if we take any two binary trees, on any number of taxa, we prove that this bias between the two trees vanishes as the number of characters k grows. However, again there is a twist: MP trees on six taxa for k=2 random binary characters are more likely to have certain shapes than a uniform distribution on binary phylogenetic trees predicts. Moreover, this shape bias appears, from simulations, to be more pronounced for larger values of k.

  17. A phylogenetic analysis of Aquifex pyrophilus

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Olsen, G. J.; Stetter, K. O.; Woese, C. R.

    1992-01-01

    The 16S rRNA of the bacterion Aquifex pyrophilus, a microaerophilic, oxygen-reducing hyperthermophile, has been sequenced directly from the the PCR amplified gene. Phylogenetic analyses show the Aq. pyrophilus lineage to be probably the deepest (earliest) in the (eu)bacterial tree. The addition of this deep branching to the bacterial tree further supports the argument that the Bacteria are of thermophilic ancestry.

  18. Regional and Large-Scale Climate Influences on Tree-Ring Reconstructed Null Zone Position in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Stahle, D.; Griffin, D.; Cleaveland, M.; Fye, F.; Meko, D.; Cayan, D.; Dettinger, M.; Redmond, K.

    2007-05-01

    A new network of 36 moisture sensitive tree-ring chronologies has been developed in and near the drainage basins of the Sacramento and San Joaquin Rivers. The network is based entirely on blue oak (Quercus douglasii), which is a California endemic found from the lower forest border up into the mixed conifer zone in the Coast Ranges, Sierra Nevada, and Cascades. These blue oak tree-ring chronologies are highly correlated with winter-spring precipitation totals, Sacramento and San Joaquin streamflow, and with seasonal variations in salinity and null zone position in San Francisco Bay. Null zone is the non-tidal bottom water location where density-driven salinity and river-driven freshwater currents balance (zero flow). It is the area of highest turbidity, water residence time, sediment accumulation, and net primary productivity in the estuary. Null zone position is measured by the distance from the Golden Gate of the 2 per mil bottom water isohaline and is primarily controlled by discharge from the Sacramento and San Joaquin Rivers (and ultimately by winter-spring precipitation). The location of the null zone is an estuarine habitat indicator, a policy variable used for ecosystem management, and can have a major impact on biological resources in the San Francisco estuary. Precipitation-sensitive blue oak chronologies can be used to estimate null zone position based on the strong biogeophysical interaction among terrestrial, aquatic, and estuarine ecosystems, orchestrated by precipitation. The null zone reconstruction is 626-years long and provides a unique long term perspective on the interannual to decadal variability of this important estuarine habitat indicator. Consecutive two-year droughts (or longer) allow the null zone to shrink into the confined upper reaches of Suisun Bay, causing a dramatic reduction in phytoplankton production and favoring colonization of the estuary by marine biota. The reconstruction indicates an approximate 10 year recurrence interval

  19. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  20. Secondary structure and phylogenetic utility of the ribosomal large subunit (28S) in monogeneans of the genus Thaparocleidus and Bifurcohaptor (Monogenea: Dactylogyridae).

    PubMed

    Chaudhary, Anshu; Singh, Hridaya Shanker

    2013-04-01

    Present communication deals with secondary structure of 28S rDNA of two already known species of monogeneans viz., Bifurcohaptor indicus and Thaparocleidus parvulus parasitizing gill filaments of a freshwater fish, Mystus vittatus for phylogenetic inference. Secondary structure data are best used as accessory taxonomic characters as their phylogenetic resolving power and confidence in validity. Secondary structure of the 28S rDNA transcript could provide information for identifying homologous nucleotide characters, useful for cladistic inference of relationships. Such structure data could be used as taxonomic character. The study supports that species-level sequence variability renders 28S sequence as a unique window for examining the behavior of fast evolving, non-coding DNA sequences. Apart from this it also confirms that molecular similarity present in various species could be host-induced. PMID:24431545

  1. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    PubMed Central

    2011-01-01

    Background Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies. Results The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci. Conclusion The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for

  2. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae)

    PubMed Central

    2011-01-01

    Background Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. Results We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from

  3. Estimating Bayesian Phylogenetic Information Content

    PubMed Central

    Lewis, Paul O.; Chen, Ming-Hui; Kuo, Lynn; Lewis, Louise A.; Fučíková, Karolina; Neupane, Suman; Wang, Yu-Bo; Shi, Daoyuan

    2016-01-01

    Measuring the phylogenetic information content of data has a long history in systematics. Here we explore a Bayesian approach to information content estimation. The entropy of the posterior distribution compared with the entropy of the prior distribution provides a natural way to measure information content. If the data have no information relevant to ranking tree topologies beyond the information supplied by the prior, the posterior and prior will be identical. Information in data discourages consideration of some hypotheses allowed by the prior, resulting in a posterior distribution that is more concentrated (has lower entropy) than the prior. We focus on measuring information about tree topology using marginal posterior distributions of tree topologies. We show that both the accuracy and the computational efficiency of topological information content estimation improve with use of the conditional clade distribution, which also allows topological information content to be partitioned by clade. We explore two important applications of our method: providing a compelling definition of saturation and detecting conflict among data partitions that can negatively affect analyses of concatenated data. [Bayesian; concatenation; conditional clade distribution; entropy; information; phylogenetics; saturation.] PMID:27155008

  4. Ancient phylogenetic relationships.

    PubMed

    Gribaldo, Simonetta; Philippe, Hervé

    2002-06-01

    Traditional views on deep evolutionary events have been seriously challenged over the last few years, following the identification of major pitfalls affecting molecular phylogeny reconstruction. Here we describe the principally encountered artifacts, notably long branch attraction, and their causes (i.e., difference in evolutionary rates, mutational saturation, compositional biases). Additional difficulties due to phenomena of biological nature (i.e., lateral gene transfer, recombination, hidden paralogy) are also discussed. Moreover, contrary to common beliefs, we show that the use of rare genomic events can also be misleading and should be treated with the same caution as standard molecular phylogeny. The universal tree of life, as described in most textbooks, is partly affected by tree reconstruction artifacts, e.g. (i) the bacterial rooting of the universal tree of life; (ii) the early emergence of amitochondriate lineages in eukaryotic phylogenies; and (iii) the position of hyperthermophilic taxa in bacterial phylogenies. We present an alternative view of this tree, based on recent evidence obtained from reanalyses of ancient data sets and from novel analyses of large combination of genes.

  5. Fast Computations for Measures of Phylogenetic Beta Diversity

    PubMed Central

    2016-01-01

    For many applications in ecology, it is important to examine the phylogenetic relations between two communities of species. More formally, let T be a phylogenetic tree and let A and B be two samples of its tips, representing the examined communities. We want to compute a value that expresses the phylogenetic diversity between A and B in T. There exist several measures that can do this; these are the so-called phylogenetic beta diversity (β-diversity) measures. Two popular measures of this kind are the Community Distance (CD) and the Common Branch Length (CBL). In most applications, it is not sufficient to compute the value of a beta diversity measure for two communities A and B; we also want to know if this value is relatively large or small compared to all possible pairs of communities in T that have the same size. To decide this, the ideal approach is to compute a standardised index that involves the mean and the standard deviation of this measure among all pairs of species samples that have the same number of elements as A and B. However, no method exists for computing exactly and efficiently this index for CD and CBL. We present analytical expressions for computing the expectation and the standard deviation of CD and CBL. Based on these expressions, we describe efficient algorithms for computing the standardised indices of the two measures. Using standard algorithmic analysis, we provide guarantees on the theoretical efficiency of our algorithms. We implemented our algorithms and measured their efficiency in practice. Our implementations compute the standardised indices of CD and CBL in less than twenty seconds for a hundred pairs of samples on trees with 7 ⋅ 104 tips. Our implementations are available through the R package PhyloMeasures. PMID:27054697

  6. Fast Computations for Measures of Phylogenetic Beta Diversity.

    PubMed

    Tsirogiannis, Constantinos; Sandel, Brody

    2016-01-01

    For many applications in ecology, it is important to examine the phylogenetic relations between two communities of species. More formally, let [Formula: see text] be a phylogenetic tree and let A and B be two samples of its tips, representing the examined communities. We want to compute a value that expresses the phylogenetic diversity between A and B in [Formula: see text]. There exist several measures that can do this; these are the so-called phylogenetic beta diversity (β-diversity) measures. Two popular measures of this kind are the Community Distance (CD) and the Common Branch Length (CBL). In most applications, it is not sufficient to compute the value of a beta diversity measure for two communities A and B; we also want to know if this value is relatively large or small compared to all possible pairs of communities in [Formula: see text] that have the same size. To decide this, the ideal approach is to compute a standardised index that involves the mean and the standard deviation of this measure among all pairs of species samples that have the same number of elements as A and B. However, no method exists for computing exactly and efficiently this index for CD and CBL. We present analytical expressions for computing the expectation and the standard deviation of CD and CBL. Based on these expressions, we describe efficient algorithms for computing the standardised indices of the two measures. Using standard algorithmic analysis, we provide guarantees on the theoretical efficiency of our algorithms. We implemented our algorithms and measured their efficiency in practice. Our implementations compute the standardised indices of CD and CBL in less than twenty seconds for a hundred pairs of samples on trees with 7 ⋅ 10(4) tips. Our implementations are available through the R package PhyloMeasures. PMID:27054697

  7. Phylogenetic mixture models for proteins.

    PubMed

    Le, Si Quang; Lartillot, Nicolas; Gascuel, Olivier

    2008-12-27

    Standard protein substitution models use a single amino acid replacement rate matrix that summarizes the biological, chemical and physical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors: genetic code; solvent exposure; secondary and tertiary structure; protein function; etc. These impact the substitution pattern and, in most cases, a single replacement matrix is not enough to represent all the complexity of the evolutionary processes. This paper explores in maximum-likelihood framework phylogenetic mixture models that combine several amino acid replacement matrices to better fit protein evolution.We learn these mixture models from a large alignment database extracted from HSSP, and test the performance using independent alignments from TREEBASE.We compare unsupervised learning approaches, where the site categories are unknown, to supervised ones, where in estimations we use the known category of each site, based on its exposure or its secondary structure. All our models are combined with gamma-distributed rates across sites. Results show that highly significant likelihood gains are obtained when using mixture models compared with the best available single replacement matrices. Mixtures of matrices also improve over mixtures of profiles in the manner of the CAT model. The unsupervised approach tends to be better than the supervised one, but it appears difficult to implement and highly sensitive to the starting values of the parameters, meaning that the supervised approach is still of interest for initialization and model comparison. Using an unsupervised model involving three matrices, the average AIC gain per site with TREEBASE test alignments is 0.31, 0.49 and 0.61 compared with LG (named after Le & Gascuel 2008 Mol. Biol. Evol. 25, 1307-1320), WAG and JTT, respectively. This three-matrix model is significantly better than LG for 34 alignments (among 57), and significantly worse for 1 alignment only. Moreover

  8. Phylogenetic Patterns of Extinction Risk in the Eastern Arc Ecosystems, an African Biodiversity Hotspot

    PubMed Central

    Yessoufou, Kowiyou; Daru, Barnabas H.; Davies, T. Jonathan

    2012-01-01

    There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains – an important African biodiversity hotspot – and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits) in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking. PMID:23056587

  9. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives.

    PubMed

    Gerhold, Pille; Pärtel, Meelis; Tackenberg, Oliver; Hennekens, Stephan M; Bartish, Igor; Schaminée, Joop H J; Fergus, Alexander J F; Ozinga, Wim A; Prinzing, Andreas

    2011-05-01

    Alien species can be a major threat to ecological communities, but we do not know why some community types allow the entry of many more alien species than do others. Here, for the first time, we suggest that evolutionary diversity inherent to the constituent species of a community may determine its present receptiveness to alien species. Using recent large databases from observational studies, we find robust evidence that assemblage of plant community types from few phylogenetic lineages (in plots without aliens) corresponds to higher receptiveness to aliens. Establishment of aliens in phylogenetically poor communities corresponds to increased phylogenetic dispersion of recipient communities and to coexistence with rather than replacement of natives. This coexistence between natives and distantly related aliens in recipient communities of low phylogenetic dispersion may reflect patterns of trait assembly. In communities without aliens, low phylogenetic dispersion corresponds to increased dispersion of most traits, and establishment of aliens corresponds to increased trait concentration. We conclude that if quantified across the tree of life, high biodiversity correlates with decreasing receptiveness to aliens. Low phylogenetic biodiversity, in contrast, facilitates coexistence between natives and aliens even if they share similar trait states. PMID:21508612

  10. Morphological and molecular convergences in mammalian phylogenetics

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2016-01-01

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference. PMID:27585543

  11. Morphological and molecular convergences in mammalian phylogenetics.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2016-01-01

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference. PMID:27585543

  12. Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data.

    PubMed

    Fernandes, Noemi M; Paiva, Thiago da Silva; da Silva-Neto, Inácio D; Schlegel, Martin; Schrago, Carlos G

    2016-02-01

    Most studies of the molecular evolution of Heterotrichea have been based solely on the 18S-rDNA gene, which were inconsistent with morphological classification. Because of the limitations of single locus phylogenies and the recurring problem of lack of resolution of deeper nodes found in previous studies, we present hypotheses of the evolution of internal groups of the class Heterotrichea based on multi-loci analyses (18S-rDNA, 28S-rDNA, ITS1-5.8S-ITS2 region, COI and alpha-tubulin) and morphological data. Phylogenetic trees from protein coding gene data are presented for Heterotrichea for the first time. Phylogenetic analyses included Bayesian inference, maximum likelihood, maximum parsimony methods, and optimal trees were statistically compared to alternative topologies from the literature. Additionally, the Bayesian concordance approach (BCA algorithm) was used to assess the concordance factor between topologies obtained from isolated analyses. Because different loci may evolve at different rates, resulting in different gene topologies, we also estimated a species tree for Heterotrichea using the STAR coalescence-based method. The results show that: (1) single gene trees are inconsistent regarding the position of some heterotrichean families; (2) the concatenation of all data in a total-evidence tree improved the resolution of deep nodes among the heterotrichean families and genera; (3) the coalescent-based species tree is consistent with phylogenies based on the 18S-rDNA gene and shows Spirostomidae as the stem group of Heterotrichea; (4) however, the total-evidence tree suggests that the large Heterotrichea cluster is divided into nine lineages in which Peritromidae diverges at the base of the Heterotrichea tree.

  13. Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data.

    PubMed

    Fernandes, Noemi M; Paiva, Thiago da Silva; da Silva-Neto, Inácio D; Schlegel, Martin; Schrago, Carlos G

    2016-02-01

    Most studies of the molecular evolution of Heterotrichea have been based solely on the 18S-rDNA gene, which were inconsistent with morphological classification. Because of the limitations of single locus phylogenies and the recurring problem of lack of resolution of deeper nodes found in previous studies, we present hypotheses of the evolution of internal groups of the class Heterotrichea based on multi-loci analyses (18S-rDNA, 28S-rDNA, ITS1-5.8S-ITS2 region, COI and alpha-tubulin) and morphological data. Phylogenetic trees from protein coding gene data are presented for Heterotrichea for the first time. Phylogenetic analyses included Bayesian inference, maximum likelihood, maximum parsimony methods, and optimal trees were statistically compared to alternative topologies from the literature. Additionally, the Bayesian concordance approach (BCA algorithm) was used to assess the concordance factor between topologies obtained from isolated analyses. Because different loci may evolve at different rates, resulting in different gene topologies, we also estimated a species tree for Heterotrichea using the STAR coalescence-based method. The results show that: (1) single gene trees are inconsistent regarding the position of some heterotrichean families; (2) the concatenation of all data in a total-evidence tree improved the resolution of deep nodes among the heterotrichean families and genera; (3) the coalescent-based species tree is consistent with phylogenies based on the 18S-rDNA gene and shows Spirostomidae as the stem group of Heterotrichea; (4) however, the total-evidence tree suggests that the large Heterotrichea cluster is divided into nine lineages in which Peritromidae diverges at the base of the Heterotrichea tree. PMID:26549427

  14. Phylogeny.fr: robust phylogenetic analysis for the non-specialist

    PubMed Central

    Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; Gascuel, O.

    2008-01-01

    Phylogenetic analyses are central to many research areas in biology and typically involve the identification of homologous sequences, their multiple alignment, the phylogenetic reconstruction and the graphical representation of the inferred tree. The Phylogeny.fr platform transparently chains programs to automatically perform these tasks. It is primarily designed for biologists with no experience in phylogeny, but can also meet the needs of specialists; the first ones will find up-to-date tools chained in a phylogeny pipeline to analyze their data in a simple and robust way, while the specialists will be able to easily build and run sophisticated analyses. Phylogeny.fr offers three main modes. The ‘One Click’ mode targets non-specialists and provides a ready-to-use pipeline chaining programs with recognized accuracy and speed: MUSCLE for multiple alignment, PhyML for tree building, and TreeDyn for tree rendering. All parameters are set up to suit most studies, and users only have to provide their input sequences to obtain a ready-to-print tree. The ‘Advanced’ mode uses the same pipeline but allows the parameters of each program to be customized by users. The ‘A la Carte’ mode offers more flexibility and sophistication, as users can build their own pipeline by selecting and setting up the required steps from a large choice of tools to suit their specific needs. Prior to phylogenetic analysis, users can also collect neighbors of a query sequence by running BLAST on general or specialized databases. A guide tree then helps to select neighbor sequences to be used as input for the phylogeny pipeline. Phylogeny.fr is available at: http://www.phylogeny.fr/ PMID:18424797

  15. Phylogeny.fr: robust phylogenetic analysis for the non-specialist.

    PubMed

    Dereeper, A; Guignon, V; Blanc, G; Audic, S; Buffet, S; Chevenet, F; Dufayard, J-F; Guindon, S; Lefort, V; Lescot, M; Claverie, J-M; Gascuel, O

    2008-07-01

    Phylogenetic analyses are central to many research areas in biology and typically involve the identification of homologous sequences, their multiple alignment, the phylogenetic reconstruction and the graphical representation of the inferred tree. The Phylogeny.fr platform transparently chains programs to automatically perform these tasks. It is primarily designed for biologists with no experience in phylogeny, but can also meet the needs of specialists; the first ones will find up-to-date tools chained in a phylogeny pipeline to analyze their data in a simple and robust way, while the specialists will be able to easily build and run sophisticated analyses. Phylogeny.fr offers three main modes. The 'One Click' mode targets non-specialists and provides a ready-to-use pipeline chaining programs with recognized accuracy and speed: MUSCLE for multiple alignment, PhyML for tree building, and TreeDyn for tree rendering. All parameters are set up to suit most studies, and users only have to provide their input sequences to obtain a ready-to-print tree. The 'Advanced' mode uses the same pipeline but allows the parameters of each program to be customized by users. The 'A la Carte' mode offers more flexibility and sophistication, as users can build their own pipeline by selecting and setting up the required steps from a large choice of tools to suit their specific needs. Prior to phylogenetic analysis, users can also collect neighbors of a query sequence by running BLAST on general or specialized databases. A guide tree then helps to select neighbor sequences to be used as input for the phylogeny pipeline. Phylogeny.fr is available at: http://www.phylogeny.fr/

  16. Phylogenetic Analysis of Poliovirus Sequences.

    PubMed

    Jorba, Jaume

    2016-01-01

    Comparative genomic sequencing is a major surveillance tool in the Polio Laboratory Network. Due to the rapid evolution of polioviruses (~1 % per year), pathways of virus transmission can be reconstructed from the pathways of genomic evolution. Here, we describe three main phylogenetic methods; estimation of genetic distances, reconstruction of a maximum-likelihood (ML) tree, and estimation of substitution rates using Bayesian Markov chain Monte Carlo (MCMC). The data set used consists of complete capsid sequences from a survey of poliovirus sequences available in GenBank. PMID:26983737

  17. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive

  18. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis.

    PubMed

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W; Nakhleh, Luay

    2016-06-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of 'network thinking' and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  19. Molecular Characterization and Phylogenetic Evaluation of the Hsp90 Gene from Selected Nematodes

    PubMed Central

    Skantar, Andrea M.; Carta, Lynn K.

    2004-01-01

    While multiple genes are optimal for corroborating nematode phylogenies, only a few are commonly used. Here we examine the phylogenetic potential of the nuclear Hsp90 chaperone gene. We used degenerate primers to obtain partial Hsp90 sequences from several plant-parasitic and free-living nematodes. Hsp90 was single-copy in Heterodera glycines and Meloidogyne javanica, similar to the situation for Caenorhabditis elegans. The full-length H. glycines Hsp90 protein sequence showed homology to sequences from C. elegans and Brugia pahangi and to other eukaryotes, and contains several functionally important regions common to cytoplasmic Hsp90 proteins. The Hsp90 amino acid phylogeny supported the Coelomata hypothesis for metazoan evolution. Phylogenetic trees, substitution scatter plots, and statistics for phylogenetic signal were made for Hsp90, 18S small subunit (SSU), and 28S large subunit (LSU) over a limited but broad sampling of nematode taxa. Only the LSU data set failed to recover any of the expected topology and showed extensive substitution saturation. In an intensive sampling of plant-parasitic nematode taxa, the Hsp90 tree topologies were generally congruent with rDNA results and alignments were unambiguous. Hsp90 sequences may help strengthen branch support or clarify tree topologies when other molecules show ambiguous alignments, greater branch-length heterogeneity, or codon bias in certain taxonomic groups. PMID:19262827

  20. Current Methods for Automated Filtering of Multiple Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference

    PubMed Central

    Tan, Ge; Muffato, Matthieu; Ledergerber, Christian; Herrero, Javier; Goldman, Nick; Gil, Manuel; Dessimoz, Christophe

    2015-01-01

    Phylogenetic inference is generally performed on the basis of multiple sequence alignments (MSA). Because errors in an alignment can lead to errors in tree estimation, there is a strong interest in identifying and removing unreliable parts of the alignment. In recent years several automated filtering approaches have been proposed, but despite their popularity, a systematic and comprehensive comparison of different alignment filtering methods on real data has been lacking. Here, we extend and apply recently introduced phylogenetic tests of alignment accuracy on a large number of gene families and contrast the performance of unfiltered versus filtered alignments in the context of single-gene phylogeny reconstruction. Based on multiple genome-wide empirical and simulated data sets, we show that the trees obtained from filtered MSAs are on average worse than those obtained from unfiltered MSAs. Furthermore, alignment filtering often leads to an increase in the proportion of well-supported branches that are actually wrong. We confirm that our findings hold for a wide range of parameters and methods. Although our results suggest that light filtering (up to 20% of alignment positions) has little impact on tree accuracy and may save some computation time, contrary to widespread practice, we do not generally recommend the use of current alignment filtering methods for phylogenetic inference. By providing a way to rigorously and systematically measure the impact of filtering on alignments, the methodology set forth here will guide the development of better filtering algorithms. PMID:26031838

  1. Current Methods for Automated Filtering of Multiple Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference.

    PubMed

    Tan, Ge; Muffato, Matthieu; Ledergerber, Christian; Herrero, Javier; Goldman, Nick; Gil, Manuel; Dessimoz, Christophe

    2015-09-01

    Phylogenetic inference is generally performed on the basis of multiple sequence alignments (MSA). Because errors in an alignment can lead to errors in tree estimation, there is a strong interest in identifying and removing unreliable parts of the alignment. In recent years several automated filtering approaches have been proposed, but despite their popularity, a systematic and comprehensive comparison of different alignment filtering methods on real data has been lacking. Here, we extend and apply recently introduced phylogenetic tests of alignment accuracy on a large number of gene families and contrast the performance of unfiltered versus filtered alignments in the context of single-gene phylogeny reconstruction. Based on multiple genome-wide empirical and simulated data sets, we show that the trees obtained from filtered MSAs are on average worse than those obtained from unfiltered MSAs. Furthermore, alignment filtering often leads to an increase in the proportion of well-supported branches that are actually wrong. We confirm that our findings hold for a wide range of parameters and methods. Although our results suggest that light filtering (up to 20% of alignment positions) has little impact on tree accuracy and may save some computation time, contrary to widespread practice, we do not generally recommend the use of current alignment filtering methods for phylogenetic inference. By providing a way to rigorously and systematically measure the impact of filtering on alignments, the methodology set forth here will guide the development of better filtering algorithms. PMID:26031838

  2. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    SciTech Connect

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincingly resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.

  3. Genome trees constructed using five different approaches suggest new major bacterial clades

    PubMed Central

    Wolf, Yuri I; Rogozin, Igor B; Grishin, Nick V; Tatusov, Roman L; Koonin, Eugene V

    2001-01-01

    Background The availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes. Results Five largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the

  4. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation

    PubMed Central

    Roger, Andrew J; Hug, Laura A

    2006-01-01

    Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods

  5. Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference

    PubMed Central

    Minh, Bui Quang; von Haeseler, Arndt

    2015-01-01

    Abstract In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original “full” terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206

  6. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence.

    PubMed

    Villalobos, Fabricio; Rangel, Thiago F; Diniz-Filho, José Alexandre F

    2013-04-01

    Differential coexistence among species underlies geographical patterns of biodiversity. Understanding such patterns has relied either on ecological or historical approaches applied separately. Recently, macroecology and community phylogenetics have tried to integrate both ecological and historical approaches. However, macroecology is mostly non-phylogenetic, whereas community phylogenetics is largely focused on local scales. Here, we propose a conceptual framework to link macroecology and community phylogenetics by exploring the evolutionary context of large-scale species coexistence, introducing the phylogenetic field concept. This is defined as the phylogenetic structure of species co-occurrence within a focal species' geographical range. We developed concepts and methods for analysing phylogenetic fields and applied them to study coexistence patterns of the bat family Phyllostomidae. Our analyses showed that phyllostomid bats coexist mostly with closely related species, revealing a north-south gradient from overdispersed to clustered phylogenetic fields. Patterns at different phylogenetic levels (i.e. all species versus close relatives only) presented the same gradient. Results support the tropical niche conservatism hypothesis, potentially mediated by higher speciation rates in the region of origin coupled with shared environmental preferences among species. The phylogenetic field approach enables species-based community phylogenetics, instead of those that are site-based, allowing the description of historical processes at more appropriate macroecological and biogeographic scales.

  7. Phylogenetic analysis of Maverick/Polinton giant transposons across organisms.

    PubMed

    Haapa-Paananen, Saija; Wahlberg, Niklas; Savilahti, Harri

    2014-09-01

    Polintons are a recently discovered group of large transposable elements (<40Kb in size) encoding up to 10 different proteins. The increasing number of genome sequencing projects has led to the discovery of these elements in genomes of protists, fungi, and animals, but not in plants. The RepBase database of eukaryotic repetitive elements currently contains consensus sequences and information of 70 Polinton elements from 28 organisms. Previous phylogenetic analyses have shown the relationship of Polintons to linear plasmids, bacteriophages, and retroviruses. However, a comprehensive phylogenetic analysis of all known Polintons has been lacking. We retrieved the Polinton consensus sequences from the most recent version of RepBase, and compiled amino acid sequences for the two most common Polinton-specific genes, the DNA polymerase-B and retroviral-like integrase. Open reading frame predictions and homology comparisons revealed partial or full sequences for 54 polymerases and 55 Polinton integrases. Multiple sequence alignments portrayed conservation in several functional motifs of these proteins. Phylogenetic analyses based on Bayesian inference using single- and combined-gene datasets revealed seven distinct lineages of Polintons that broadly follow the tree of life. Two of the seven lineages are found within the same species, indicating that ancient divergences have been retained to this day.

  8. Probabilistic phylogenetic inference with insertions and deletions.

    PubMed

    Rivas, Elena; Eddy, Sean R

    2008-01-01

    A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm. PMID:18787703

  9. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an e