Effects of Stormwater Pipe Size and Rainfall on Sediment and Nutrients Delivered to a Coastal Bayou
Pollutants discharged from stormwater pipes can cause water quality and ecosystem problems in coastal bayous. A study was conducted to characterize sediment and nutrients discharged by small and large (, 20 cm and .20 cm in internal diameters, respectively) pipes under different ...
Determination of ac conductor and pipe loss in pipe-type cable systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, D.A.; Seman, G.W.
1982-02-01
The results are presented of investigations into the determination of the ac/dc resistance ratios of high and extra high voltage pipe-type cables with conventional and large size segmental conductors in carbon steel, stainless steel and aluminum pipes in three cable per pipe and single cable per pipe configurations. The measurements included 115 through 765 kV cables with copper, enamel coated copper, and aluminum conductors in sizes of 2000 kcmil (1015 mm/sup 2/), 3250 kcmil (1650 mm/sup 2/), and 3500 kcmil (1776 mm/sup 2/). Calculations using presently available techniques were employed to provide correlation between measured and calculated values in bothmore » magnetic and non-magnetic pipes. In addition, a number of new techniques in conductor construction, pipe material and pipe liners and cable wraps were investigated as means of decreasing the ac/dc resistance ratios of pipe-type cables. Finally, the various systems studied were compared on the basis of system MVA rating and by evaluation of installed and overall operating costs as compared to conventional three cable per pipe systems installed in carbon steel pipes.« less
Experimental study of geysers through a vent pipe connected to flowing sewers.
Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E
2017-04-01
Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.
Development of a probe for inner profile measurement and flaw detection
NASA Astrophysics Data System (ADS)
Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa
2011-08-01
It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Pipe sizes and discharge rates for enclosed ventilation... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the initial...
NASA Technical Reports Server (NTRS)
1996-01-01
Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.
46 CFR 76.25-10 - Size and arrangement of sprinkler heads and pipe sizes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-10 Size and arrangement of sprinkler heads and pipe sizes. (a) General. (1) The system shall be so designed and arranged that the... 46 Shipping 3 2012-10-01 2012-10-01 false Size and arrangement of sprinkler heads and pipe sizes...
46 CFR 76.25-10 - Size and arrangement of sprinkler heads and pipe sizes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-10 Size and arrangement of sprinkler heads and pipe sizes. (a) General. (1) The system shall be so designed and arranged that the... 46 Shipping 3 2013-10-01 2013-10-01 false Size and arrangement of sprinkler heads and pipe sizes...
46 CFR 76.25-10 - Size and arrangement of sprinkler heads and pipe sizes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-10 Size and arrangement of sprinkler heads and pipe sizes. (a) General. (1) The system shall be so designed and arranged that the... 46 Shipping 3 2014-10-01 2014-10-01 false Size and arrangement of sprinkler heads and pipe sizes...
46 CFR 76.25-10 - Size and arrangement of sprinkler heads and pipe sizes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-10 Size and arrangement of sprinkler heads and pipe sizes. (a) General. (1) The system shall be so designed and arranged that the... 46 Shipping 3 2011-10-01 2011-10-01 false Size and arrangement of sprinkler heads and pipe sizes...
46 CFR 76.25-10 - Size and arrangement of sprinkler heads and pipe sizes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-10 Size and arrangement of sprinkler heads and pipe sizes. (a) General. (1) The system shall be so designed and arranged that the... 46 Shipping 3 2010-10-01 2010-10-01 false Size and arrangement of sprinkler heads and pipe sizes...
75 FR 36698 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... information based on the likelihood of pipe breaks of different sizes. The rule would divide all coolant... to and including a ``transition break size,'' and breaks larger than the transition size up to the largest pipe in the reactor coolant system. Selection of the transition size was based upon pipe break...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2014 CFR
2014-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2011 CFR
2011-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2012 CFR
2012-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2013 CFR
2013-10-01
... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...
Investigation on size tolerance of pore defect of girth weld pipe.
Li, Yan; Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.
Investigation on size tolerance of pore defect of girth weld pipe
Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986
Double wall vacuum tubing and method of manufacture
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1989-01-01
An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.
Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation
NASA Astrophysics Data System (ADS)
Abdullah, J.; Yahya, R.
2007-05-01
Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
A review of nondestructive examination technology for polyethylene pipe in nuclear power plant
NASA Astrophysics Data System (ADS)
Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng
2018-05-01
Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.
Small, Untethered, Mobile Robots for Inspecting Gas Pipes
NASA Technical Reports Server (NTRS)
Wilcox, Brian
2003-01-01
Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.
46 CFR 76.15-5 - Quantity, pipe sizes, and discharge rate.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Quantity, pipe sizes, and discharge rate. 76.15-5... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-5 Quantity, pipe sizes, and... dioxide required for each space in cubic feet shall be equal to the gross volume of the space in cubic...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. 108.437 Section 108.437 Shipping COAST GUARD, DEPARTMENT OF... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for...
Hendricks, Charles D.
1990-01-01
Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm.
24 CFR 3280.705 - Gas piping systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...
24 CFR 3280.705 - Gas piping systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...
24 CFR 3280.705 - Gas piping systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...
24 CFR 3280.705 - Gas piping systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...
Mixing at double-Tee junctions with unequal pipe sizes in ...
Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a water distribution system. Many studies have been conducted on the mixing at the cross junctions. Yet a few have focused on double-Tee junctions of unequal pipe sizes. To investigate the solute mixing at double-Tee junctions with unequal pipe sizes, a series of experiments were conducted in a turbulent regime (Re=12500–50000) with different Reynolds number ratios and connecting pipe lengths. It is shown that dimensionless outlet concentrations depended on mixing mechanism at the impinging interface of junctions. Junction with a larger pipe size ratio is associated with more complete mixing. The inlet Reynolds number ratio affects mixing more strongly than the outlet Reynolds number ratio. Furthermore, the dimensionless connecting pipe length in a double-Tee played an important and complicated role in the flow mixing. Based on these results, two-dimensional isopleth maps were developed for the calculation of normalized north outlet concentration. This journal article is to communicate the research results on pipe juncture mixing, a widespread and important phenomena in distribution system water quality analysis. The research outcome improves EPANET modeling capability for safe water supplies. In addition, the research is one of the outputs from the EPA-MOST bilateral cooperative research Project #1
76 FR 9608 - Certain Welded Large Diameter Line Pipe From Mexico
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... Large Diameter Line Pipe From Mexico AGENCY: United States International Trade Commission. ACTION... duty order on certain welded large diameter line pipe from Mexico. For further information concerning... welded large diameter line pipe from Mexico would not be likely to lead to continuation or recurrence of...
Worker piping triggers hissing for coordinated colony defence in the dwarf honeybee Apis florea.
Sen Sarma, Moushumi; Fuchs, Stefan; Werber, Christian; Tautz, Jürgen
2002-01-01
Defending a large social insect colony containing several thousands of workers requires the simultaneous action of many individuals. Ideally this action involves communication between the workers, enabling coordinated action and a fast response. The Asian dwarf honeybee, Apis florea, is a small honeybee with an open nesting habit and a comparatively small colony size, features that leave them particularly exposed to predators. We describe here a novel defence response of these bees in which the emission of an initial warning signal from one individual ("piping") is followed 0.3 to 0.7 seconds later by a general response from a large number of bees ("hissing"). Piping is audible to the human ear, with a fundamental frequency of 384 +/- 31Hz and lasting for 0.82 +/- 0.35 seconds. Hissing is a broad band, noisy signal, clearly audible to the human observer and produced by slight but visible movements of the bees' wings. Hissing begins in individuals close to the piping bee, spreads rapidly to neighbours and results in an impressive coordinated crescendo occasionally involving the entire colony. Piping and hissing are accompanied by a marked decrease, or even cessation, of worker activities such as forager dancing and departures from the colony. We show that whereas hissing of the colony can be elicited without piping, the sequential and correlated piping and hissing response is specific to the presence of potential predators close to the colony. We suggest that the combined audio-visual effect of the hissing might deter small predators, while the cessation of flight activity could decrease the risk of predation by birds and insects which prey selectively on flying bees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... which restricts wind motion across the open space between the outlet of the pipe discharging the... pump) or is operated with no more than slight fluctuations in the liquid level. Large changes in the size of the junction box vapor headspace created by using a pump to repeatedly empty and then refill...
Hydrodynamics of octagonal culture tanks with Cornell-type dual-drain system
USDA-ARS?s Scientific Manuscript database
Large culture tanks of several hundred or thousand m3 size are generally encouraged for economic advantages in Recirculation Aquaculture Systems (RAS). Out of numerous possibilities in designing the inlet and outlet configurations in octagonal culture tanks, the inlet pipes near the corner walls and...
24 CFR 3280.706 - Oil piping systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... described in § 3280.706(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil piping shall be wrought-iron, malleable iron, steel, or brass (containing...
24 CFR 3280.706 - Oil piping systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... described in § 3280.706(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil piping shall be wrought-iron, malleable iron, steel, or brass (containing...
Experimental study of Siphon breaker about size effect in real scale reactor design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S. H.; Ahn, H. S.; Kim, J. M.
2012-07-01
Rupture accident within the pipe of a nuclear reactor is one of the main causes of a loss of coolant accident (LOCA). Siphon-breaking is a passive method that can prevent a LOCA. In this study, either a line or a hole is used as a siphon-breaker, and the effect of various parameters, such as the siphon-breaker size, pipe rupture point, pipe rupture size, and the presence of an orifice, are investigated using an experimental facility similar in size to a full-scale reactor. (authors)
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pressure of not less than 6,000 p.s.i. (b) All piping, in nominal sizes not over 3/4 inch, shall be at least Schedule 40 (standard weight), and in nominal sizes over 3/4 inch, shall be at least Schedule 80 (extra heavy). (c) All piping, valves, and fittings of ferrous materials shall be protected inside and...
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm. PMID:22778615
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Pipe From Japan: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on welded large diameter line pipe from Japan. The review covers 4 producers/exporters of welded large diameter line pipe from Japan, which are, JFE Steel Corporation, Nippon Steel...
HPAC Info-dex 6: Manufacturers` product information
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is a listing of manufacturers` product information published by Heating, Piping, and Air Conditioning magazine. The information details ranges of capacities, sizes, and other data needed for the selection and application of these products for mechanical systems in large plants and buildings. This listing is cross referenced to other indexes published by HPAC magazine.
NASA Astrophysics Data System (ADS)
Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao
2009-11-01
Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.
24 CFR 3280.706 - Oil piping systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil... Seamless Copper Tube for Air Conditioning and Refrigeration Field Service. (4) Steel tubing shall have a...
24 CFR 3280.705 - Gas piping systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... consist of one or more of the materials described in § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded... Specification for Seamless Red Brass Pipe, Standard Sizes. (2) Fittings for gas piping shall be wrought iron...
Code of Federal Regulations, 2013 CFR
2013-10-01
... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...
Code of Federal Regulations, 2012 CFR
2012-10-01
... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...
Code of Federal Regulations, 2010 CFR
2010-10-01
... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Administration [A-588-857] Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty... Japan. The review covers five producers/exporters of welded large diameter line pipe from Japan, which... diameter line pipe from Japan for the period December 1, 2010, through November 30, 2011. See Antidumping...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International Trade Commission... revocation of the antidumping duty order on welded large diameter line pipe from Japan would be likely to...
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Pipe From Japan: Final Results of the Expedited Second Sunset Review of the Antidumping Duty Order... antidumping duty order on welded large diameter line pipe (line pipe) from Japan pursuant to section 751(c) of... Department initiated the sunset review of the antidumping duty order on line pipe from Japan pursuant to...
Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.
Wenrich, K.J.
1986-01-01
Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various geochemical and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level geochemical signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance geochemical surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed geochemical surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest potential for distinguishing mineralized breccia pipes from the surrounding terrane. Although the soil anomalies are only twice the background concentrations for most anomalous elements, traverses made over collapse features show consistent enrichment inside of the feature as compared to outside; (3) B. Cereus surveys over a known mineralized pipe show significantly more anomalous samples collected from within the ring fracture than from outside of the breccia pipe; (4) Helium soil-gas surveys were made over 7 collapse features with discouraging results from 5 of the 7 features. Geophysical surveys indicate that scaler audio-magnetotelluric (AMT) and E-field telluric profile data show diagnostic conductivity differences over mineralized pipes as compared to the surrounding terrane. These surveys, coupled with the geochemical surveys conducted as detailed studies over features mapped by field and aerial photograph examination, can be a significant asset in the selection of potential breccia pipes for drilling. ?? 1986.
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
24 CFR 3280.605 - Joints and connections.
Code of Federal Regulations, 2014 CFR
2014-04-01
... assembled for tightness. Pipe threads shall be fully engaged with the threads of the fitting. Plastic pipe... standard. Pipe ends shall be reamed out to size of bore. All burrs, chips, cutting oil and foreign matter..., made with solder having not more than 0.2 percent lead. (4) Plastic pipe, fittings and joints. Plastic...
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
78 FR 60897 - Certain Welded Large Diameter Line Pipe From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... Diameter Line Pipe From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on certain welded large diameter line pipe from Japan would likely to lead to continuation or... Line Pipe from Japan: Investigation No. 731-TA-919 (Second Review). By order of the Commission. Issued...
Probabilistic pipe fracture evaluations for leak-rate-detection applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, S.; Ghadiali, N.; Paul, D.
1995-04-01
Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less
ERIC Educational Resources Information Center
Han, Duanduan; Ugaz, Victor
2017-01-01
Three self-contained mini-labs were integrated into a core undergraduate fluid mechanics course, with the goal of delivering hands-on content in a manner scalable to large class sizes. These mini-labs supported learning objectives involving friction loss in pipes, flow measurement, and centrifugal pump analysis. The hands-on experiments were…
Marine floc strength and breakup response in turbulent flow
NASA Astrophysics Data System (ADS)
Rau, Matthew; Ackleson, Steven; Smith, Geoffrey
2017-11-01
The effect of turbulence on marine floc formation and breakup is studied experimentally using a recirculating breakup facility. Flocs of bentonite clay particles are grown in a large, stirred aggregation tank of salt water (salinity of 10 ppt) before being subjected to fully-developed pipe flow. Pipe flow conditions range from laminar to turbulent with dissipation rates up to 2.1 m2/s3. Particle size distributions are measured through in-situ sampling of the small-angle forward volume scattering function and through microscopic imaging. Floc size is compared before and after exposure to turbulence and found to be a strong function of the dissipation rate of turbulent kinetic energy. Hydrodynamic conditions within the aggregation tank have a large influence on overall floc strength; flocs formed with stirred aggregation resist breakup compared to flocs formed without stirring. Floc shape and structure statistics are quantified through image analysis and the results are discussed in relation to the measured floc breakup response. Finally, the relevance of these findings to quantifying and predicting marine floc dynamics and the eventual fate of particles in the ocean is presented. The authors thank the National Research Council Postdoctoral Program for their support of this work.
Heat Pipes Cool Power Magnetics
NASA Technical Reports Server (NTRS)
Hansen, I.; Chester, M.; Luedke, E.
1983-01-01
Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4 \\1/2\\ Inches) From Japan: Preliminary... seamless standard, line, and pressure pipe (over 4 \\1/2\\ inches) (large diameter seamless pipe) from Japan.../exporters of subject merchandise, Canadian Natural Resources Limited (CNRL), JFE Steel Corporation (JFE...
Dynamics of large-diameter water pipes in hydroelectric power plants
NASA Astrophysics Data System (ADS)
Pavić, G.; Chevillotte, F.; Heraud, J.
2017-04-01
An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.
46 CFR 169.652 - Bilge piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less...
46 CFR 169.652 - Bilge piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less...
The design of light pipe with microstructures for touch screen
NASA Astrophysics Data System (ADS)
Yang, Bo; Lu, Kan; Liu, Pengfei; Wei, Xiaona
2010-11-01
Touch screen has a very wide range of applications. Most of them are used in public information inquiries, for instance, service inquiries in telecommunication bureau, tax bureau, bank system, electric department, etc...Touch screen can also be used for entertainment and virtual reality applications too. Traditionally, touch screen was composed of pairs of infrared LED and correspondent receivers which were all installed in the screen frame. Arrays of LED were set in the adjacent sides of the frame of an infrared touch screen while arrays of the infrared receivers were fixed in each opposite side, so that the infrared detecting network was formed. While the infrared touch screen has some technical limitations nowadays such as the low resolution, limitations of touching methods and fault response due to environmental disturbances. The plastic material has a relatively high absorption rate for infrared light, which greatly limits the size of the touch screen. Our design uses laser diode as source and change the traditional inner structure of touch screen by using a light pipe with microstructures. The geometric parameters of the light pipe and the microstructures were obtained through equation solving. Simulation results prove that the design method for touch screen proposed in this paper could achieve high resolution and large size of touch screen.
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Keane, S.E.; Fraser, J.D.; Buckley, P.A.
2002-01-01
The large population of breeding herring gulls and great black-backed gulls on South Monomoy Island, Cape Cod, Massachusetts has been thought to negatively affect the breeding success of the threatened piping plover. Following the Piping Plover Recovery Plan's call for gull colonies to be removed from piping plover breeding sites, in 1996, the USFWS conducted gull removal on part of South Monomoy Island. We determined relative gull abundance on South Monomoy Island from 1998-2000 by counting gulls within 100-m radius plots located on the shoreline. We quantified piping plover behavior and habitat use by conducting instantaneous and 5-minute behavioral observations. We quantified characteristics of piping plover nesting habitat by measuring characteristics along random transects. We measured gull abundance, beach width, and prey abundance, and then used logistic regression to determine what habitat characteristics influenced piping plover nesting area selection. We monitored piping plover reproductive success and population fluctuations on South Monomoy Island. Gull abundance in the gull-removal area was lower than gull abundance in the reference area throughout the piping plover breeding season. The difference in gull abundance between the areas did not affect piping plover behavior, nest success, chick survival, or productivity. We found that gull removal did not result in an increased piping plover population on the island. In both management areas, prenesting plovers preferred to forage in moist substrate habitats. Wide backshore and open vegetation habitats characterized nesting areas. Broods spent most of their time foraging and preferred moist substrate habitats when available. Plovers were not prevented from occupying more suitable habitat by large gulls. Fewer large gulls were observed near prenesting plovers, plover nests, and plover broods than near random plots. Fewer large gulls were observed in plover nesting areas than in unused areas when the nesting areas were defined by all area within 100-m or 500-m of a plover nest. We argue that this apparent spatial separation between piping plovers and large gulls is due to different habitat preferences among the species. We found that gull removal on South Monomoy Island did not result in increased piping plover reproductive success, and large gulls did not affect breeding piping plovers on South Monomoy Island from 1998-2000.
46 CFR 76.15-5 - Quantity, pipe sizes, and discharge rate.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-5 Quantity, pipe sizes, and discharge rate. (a) General. The amount of carbon dioxide required for each space shall be as determined by... the purpose of determining the amount of carbon dioxide required, a cargo compartment will be...
46 CFR 76.15-5 - Quantity, pipe sizes, and discharge rate.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-5 Quantity, pipe sizes, and discharge rate. (a) General. The amount of carbon dioxide required for each space shall be as determined by... the purpose of determining the amount of carbon dioxide required, a cargo compartment will be...
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each.... A separate supply of carbon dioxide need not be provided for each space protected. The total...
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each.... A separate supply of carbon dioxide need not be provided for each space protected. The total...
46 CFR 76.15-5 - Quantity, pipe sizes, and discharge rate.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-5 Quantity, pipe sizes, and discharge rate. (a) General. The amount of carbon dioxide required for each space shall be as determined by... the purpose of determining the amount of carbon dioxide required, a cargo compartment will be...
46 CFR 76.15-5 - Quantity, pipe sizes, and discharge rate.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-5 Quantity, pipe sizes, and discharge rate. (a) General. The amount of carbon dioxide required for each space shall be as determined by... the purpose of determining the amount of carbon dioxide required, a cargo compartment will be...
46 CFR 76.23-10 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 76.23-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-10 Quantity, pipe sizes, and discharge rates. (a) General. (1) The system shall be so designed and arranged that the overhead is effectively...
46 CFR 76.23-10 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 76.23-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-10 Quantity, pipe sizes, and discharge rates. (a) General. (1) The system shall be so designed and arranged that the overhead is effectively...
46 CFR 76.23-10 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 76.23-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-10 Quantity, pipe sizes, and discharge rates. (a) General. (1) The system shall be so designed and arranged that the overhead is effectively...
46 CFR 76.23-10 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 76.23-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-10 Quantity, pipe sizes, and discharge rates. (a) General. (1) The system shall be so designed and arranged that the overhead is effectively...
46 CFR 76.23-10 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 76.23-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-10 Quantity, pipe sizes, and discharge rates. (a) General. (1) The system shall be so designed and arranged that the overhead is effectively...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.
2012-04-16
A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound fieldmore » image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.« less
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-12
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-19
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 193.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
46 CFR 95.15-5 - Quantity, pipe sizes, and discharge rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-5 Quantity, pipe sizes, and discharge rates. (a) General. The amount of carbon dioxide required for each space shall be... supply of carbon dioxide need not be provided for each space protected. The total available supply shall...
Mixing at double-Tee junctions with unequal pipe sizes in water distribution systems
Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a water distribution system. Many studies have been conducted on the mixing at the cross junctions. Yet a few have focu...
Electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Sagara, Tomoya; Horiuchi, Toshiyuki
2017-07-01
Recently, it is required to develop a method for fabricating cylindrical micro-components in the field of measurement and medical engineering. Here, electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography was researched. The pipe diameter was 100 μm. At first, a pipe coated with 3-7 μm thick positive resist (tok, PMER P LA-900) was exposed to a violet laser beam with a wavelength of 408 nm (Neoark,TC20-4030-45). The laser beam was reshaped in a circle by placing a pinhole, and irradiated on the pipe by reducing the size in 1/20 using a reduction projection optics. Linearly arrayed 22 slit patterns with a width of 25 μm and a length of 175 μm were delineated in every 90-degree circumferential direction. That is, 88 slits in total were delineated at an exposure speed of 110 μm/s. In the axial direction, patterns were delineated at intervals of 90 μm. Following the pattern delineation, the pipe masked by the resist patterns was electrolytically etched. The pipe was used as an anode and an aluminum cylinder was set as a cathode around the pipe. As the electrolyte, aqueous solution of NaCl and NH4Cl was used. After etching the pipe, the resist was removed by ultrasonic cleaning in acetone. Although feasibility for fabricating multi-slit pipes was demonstrated, sizes of the etched slits were enlarged being caused by the undercut, and the shapes were partially deformed, and all the pipes were snapped at the chuck side.
Heat pipes for wing leading edges of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.
1990-01-01
Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.
Lightweight Heat Pipes Made from Magnesium
NASA Technical Reports Server (NTRS)
Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale
2010-01-01
Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.
The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...
46 CFR 34.15-5 - Quantity, pipe sizes, and discharge rates-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Carbon Dioxide Extinguishing Systems, Details § 34.15-5 Quantity, pipe sizes, and discharge rates—T/ALL. (a) General. (1) The amount of carbon dioxide required for each space shall be as determined by... carbon dioxide required for each space shall be equal to the gross volume of the space in cubic feet...
46 CFR 34.15-5 - Quantity, pipe sizes, and discharge rates-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Carbon Dioxide Extinguishing Systems, Details § 34.15-5 Quantity, pipe sizes, and discharge rates—T/ALL. (a) General. (1) The amount of carbon dioxide required for each space shall be as determined by... carbon dioxide required for each space shall be equal to the gross volume of the space in cubic feet...
46 CFR 34.15-5 - Quantity, pipe sizes, and discharge rates-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Carbon Dioxide Extinguishing Systems, Details § 34.15-5 Quantity, pipe sizes, and discharge rates—T/ALL. (a) General. (1) The amount of carbon dioxide required for each space shall be as determined by... carbon dioxide required for each space shall be equal to the gross volume of the space in cubic feet...
Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.
1998-01-01
The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Quagliato, Luca; Lee, Wontaek; Kim, Naksoo
2017-09-01
In the ERW (electric resistance welding) pipe manufacturing, material properties, process conditions and settings strongly influences the mechanical performances of the final product, as well as they can make them to be not uniform and to change from point to point in the pipe. The present research work proposes an integrated numerical model for the study of the whole ERW process, considering roll forming, welding and sizing stations, allowing to infer the influence of the process parameters on the final quality of the pipe, in terms of final shape and residual stress. The developed numerical model has been initially validated comparing the dimensions of the pipe derived from the simulation results with those of industrial production, proving the reliability of the approach. Afterwards, by varying the process parameters in the numerical simulation, namely the roll speed, the sizing ratio and the friction factor, the influence on the residual stress in the pipe, at the end of the process and after each station, is studied and discussed along the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.
2012-12-31
The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less
Testing of a single graded groove variable conductance heat pipe
NASA Astrophysics Data System (ADS)
Kapolnek, Michael R.; Holmes, H. R.; Hager, Brian
1992-07-01
Variable conductance heat pipes (VCHPs) with transport capacities in the 50,000 to 100,000 Watt-inch range will be required to transport the large heat loads anticipated for advanced spacecraft. A high-reliability, nonarterial constant conductance heat pipe with this capacity, the Single Graded Groove (SGG) heat pipe, was developed for NASA's Space Station Freedom. The design and testing of a variable conductance SGG heat pipe are described. Response of the pipe to startup and heat load changes was excellent. After correcting for condenser temperature changes, the evaporator temperature varied by only +/- 4 F for large evaporator heat load changes. The surface tension difference between ends of the gas blocked region was found to measurably affect the performance of the pipe. Performance was negligibly affected by Marangoni flow in the gas blocked region.
NASA Astrophysics Data System (ADS)
Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.
2013-12-01
The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www.vistrails.org) workflow engine in the backend.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan: Extension of Time Limit for... review of the antidumping duty order on certain large diameter carbon and alloy seamless standard, line... Carbon and Alloy Seamless Standard, Line and Pressure Pipe from Japan: Extension of Time Limit for...
Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser
NASA Astrophysics Data System (ADS)
Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki
2012-12-01
An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact potential difference between the PMMA and the stainless steel. Furthermore, the current in air using the dual coaxial glass pipes was less than that using the ejector.
46 CFR 182.510 - Bilge piping system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... feet) in length must be not less than 40 millimeters (1.5 inches) nominal pipe size. A bilge suction... meters (26 feet) in length must be provided with individual bilge lines and bilge suctions for each... provided. (b) A bilge pipe in a vessel of not more than 19.8 meters (65 feet) in length must be not less...
46 CFR 182.510 - Bilge piping system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... feet) in length must be not less than 40 millimeters (1.5 inches) nominal pipe size. A bilge suction... meters (26 feet) in length must be provided with individual bilge lines and bilge suctions for each... provided. (b) A bilge pipe in a vessel of not more than 19.8 meters (65 feet) in length must be not less...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... conditions, and prescriptions. k. Deadline for filing responsive documents: Due to the small size of the... proposed 80-foot-long, 16-inch-diameter intake pipe; (3) a proposed 18- foot by 18-foot powerhouse..., 50-foot discharge pipe, connecting to existing 42-inch diameter and 10- inch diameter pipes conveying...
International Field Reversible Thermal Connector (RevCon) Challenge
2016-07-01
Design ....................................................................... 80 Figure 74: Pulsating - heat - pipe Embedded Design Delivered by MissStateU...University MissStateU finally delivered a pulsating - heat - pipe thermal connector. However, the performance did not amaze the audiences. The size and...We also cannot observe any oscillating dynamics during heating . Figure 74: Pulsating - heat - pipe Embedded Design Delivered by MissStateU
Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations
NASA Technical Reports Server (NTRS)
Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)
2002-01-01
A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.
Analysis of the bacterial communities associated with different drinking water treatment processes.
Zeng, Dan-Ning; Fan, Zhen-Yu; Chi, Liang; Wang, Xia; Qu, Wei-Dong; Quan, Zhe-Xue
2013-09-01
A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.
Cool-down and frozen start-up behavior of a grooved water heat pipe
NASA Technical Reports Server (NTRS)
Jang, Jong Hoon
1990-01-01
A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was studied under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.
NASA Technical Reports Server (NTRS)
Wilcox, Brian (Inventor)
2004-01-01
A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.
Large variable conductance heat pipe. Transverse header
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.
NASA Astrophysics Data System (ADS)
Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah
2018-05-01
Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe grade API 5L X60 which size from 8 to 20mm thickness with a water depth of 50 to 300m. Result shown that pipeline installation will fail from the wall thickness of 18mm onwards since it has been passed the critical yield percentage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J.S.; Huttelmaier, H.P.; Cheng, B.R.
1995-12-31
For a heavy object falling on a free-span pipeline, this study assesses three-dimensional (3-D) pipe-span responses with the torsional ({theta}x-) coupling of a pipeline through the biaxial (y) bending responses. The static pipe-span equilibrium is achieved with its self-weight and buoyancy and the external torsional moment induced by the cross-flow (y-directional) current on the sagged pipe span. Load steps taken for 2 different sequences of applying static loads induced different pipe deformations, and the pipe twists in entirely different pattern. The two types of impact loads are applied in the vertical (z-) direction to excite the pipe span in itsmore » static equilibrium: (1) triangular impulse loading and (2) ramp loading. Boundary condition of the span supports is ``fixed-fixed`` at both ends in both displacement and rotation. 3-D coupled axial (x-), bending (y- and z-) and torsional ({theta}x-) responses, both state and dynamic, to the z-directional impact loadings, are modeled and analyzed by a nonlinear FEM method for a 16-in pipeline. The 3-D responses are compared with 2-D responses. The comparison shows significant torsional vibrations caused by the cross-flow current, especially for longer spans. The torsional ({theta}x-) coupling is very sensitive to the time-step size in achieving numerical stability and accuracy, particularly for the ramp loading and for a shorter span. For very large impact loads, the response frequencies differ from the fundamental frequencies of the span, exhibiting beatings and strong bending-to-axial and to-twist couplings. Also, the eigenvalues for the linear system are not necessarily the resonance frequencies for these nonlinear coupled responses.« less
Visualisation of flow patterns in straight and C-shape thermosyphons
NASA Astrophysics Data System (ADS)
Ong, K. S.; Tshai, K. H.; Firwana, A.
2017-04-01
A heat pipe is a passive heat transfer device capable of transferring a large quantity of heat effectively and efficiently over a long distance and with a small temperature difference between the heat source and heat sink. A heat pipe consists of a metal pipe initially vacuumed and then filled with a small quantity of fluid inside. The pipe is separated into a heating (evaporator) section and a cooling (condenser) section by an adiabatic section. In a run-around-coil heating, ventilation and air conditioning system, a wrap-around heat pipe heat exchanger could be employed to increase dehumidification and to reduce cooling costs. The thermal performance of a thermosyphon is dependent upon type of fill liquid, fill ratio, power input, pipe inclination and pipe dimensions. The boiling and condensation processes that occur inside a thermosyphon are quite complex. During operation, dry-out, burn-out or boiling limit, entrainment or flooding limit and geysering occur. These phenomena would lead to non-uniform axial wall temperature distribution in the pipe, or worse still, ineffective operation. In order to have a better understanding of the internal heat transfer phenomena, a visual study using transparent glass tubes and high speed camera recording of the internal flow patterns would be most helpful. This paper reports on an experimental investigation conducted to visualise the flow patterns in straight and C-shape thermosyphons. The pictures recorded enabled the internal flow boiling and condensation pattern occurring inside a straight and a C-shape thermosyphon to be observed. The thermosyphons were fabricated from 10 mm O/D × 8 mm I/D × 300 mm long glass tubes and filled with water with fill ratios from 0.5 - 1.5. The evaporator sections of the thermosyphons were immersed into a hot water tank that was electrically heated from cold at ambient temperature till boiling. Cooling of the condenser section was achieved using a fan. Preliminary results showed that dry-out occurred earlier at lower evaporator temperatures with small fill ratios. Further investigations to determine saturation and thermosyphon wall temperatures with various fill liquids and at different fill ratios, inclinations and pipe sizes are necessary with a more sophisticated video recording system.
Rapid sonic characterisation of sewer change and obstructions.
Podd, F J; Ali, M T B; Horoshenkov, K V; Wood, A S; Tait, S J; Boot, J C; Long, R; Saul, A J
2007-01-01
This paper reports on the development of a low-cost, rapidly deployable sensor for surveying live sewers for blockages and structural failures. The anticipated cost is an order of magnitude lower than current techniques. The technology is based on acoustic normal model decomposition, The instrument emits short coded acoustic signals which are reflected from any sewer wall defect. The acoustic signals can be short Gaussian pulses or longer sinusoidal sweeps and pseudo-random noise. The processing algorithms used on the reflected signal can predict the extent and geometry of the pipe deformation, and the locations and approximate size of common blockages. The effect of the water level on the frequency of the fundamental mode has also been investigated. It is shown that the technique can be adapted to work reliably in relatively large 600 mm diameter sewer pipes.
Welding needs specified for X-80 offshore line pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J.C.
1993-12-20
High-quality, defect-free welds can be deposited in API Grade 5L X-80 line pipe with pulsed gas-metal-arc welding (GMAW) and shielded metal-arc welding (SMAW) processes. The newly developed Grade X-80 combines higher yield-strength pipe with thinner walls to reduce fabrication costs and improve some projects' economics. Use of X-80 pipe can yield as much as 7.5% cost savings over construction with X-65 steel. Increased demand of natural gas has prompted development of large gas fields which will require large-diameter pipelines at higher operating pressures. API 5L X-80 line pipe could, therefore, become commonplace by the end of the decade if weldingmore » technology can be developed to match mechanical properties without affecting productivity. The paper discusses large-diameter projects, welding processes, GMAW shielding gas, SMAW filler wires, hardness and weldability, toughness and corrosion resistance, economics, and what's been learned.« less
46 CFR 76.13-90 - Installations contracted for prior to January 1, 1962.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the cargo compartments and similar spaces shall be not less than 11/2-inch pipe size and shall emanate... small spaces may be taken from the nearest stream supply line and shall be not less than 3/4-inch pipe... distribution piping and the number of branches to the various spaces shall be as given in table 76.13-90(b)(4...
46 CFR 76.13-90 - Installations contracted for prior to January 1, 1962.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the cargo compartments and similar spaces shall be not less than 11/2-inch pipe size and shall emanate... small spaces may be taken from the nearest stream supply line and shall be not less than 3/4-inch pipe... distribution piping and the number of branches to the various spaces shall be as given in table 76.13-90(b)(4...
46 CFR 76.13-90 - Installations contracted for prior to January 1, 1962.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the cargo compartments and similar spaces shall be not less than 11/2-inch pipe size and shall emanate... small spaces may be taken from the nearest stream supply line and shall be not less than 3/4-inch pipe... distribution piping and the number of branches to the various spaces shall be as given in table 76.13-90(b)(4...
46 CFR 76.13-90 - Installations contracted for prior to January 1, 1962.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the cargo compartments and similar spaces shall be not less than 11/2-inch pipe size and shall emanate... small spaces may be taken from the nearest stream supply line and shall be not less than 3/4-inch pipe... distribution piping and the number of branches to the various spaces shall be as given in table 76.13-90(b)(4...
46 CFR 76.13-90 - Installations contracted for prior to January 1, 1962.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the cargo compartments and similar spaces shall be not less than 11/2-inch pipe size and shall emanate... small spaces may be taken from the nearest stream supply line and shall be not less than 3/4-inch pipe... distribution piping and the number of branches to the various spaces shall be as given in table 76.13-90(b)(4...
Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement
NASA Astrophysics Data System (ADS)
Khalaj, Omid; Joz Darabi, N.; Moghaddas Tafreshi, S. N.; Mašek, Bohuslav
2017-12-01
With increase in cities’ population and development of urbane life, passing buried pipelines near ground’s surface is inevitable in urban areas, roads, subways and highways. This paper presents the results of three-dimensional full scale model tests on high-density polyethylene (HDPE) pipe with diameter of 250 mm in geocell reinforced soil, subjected to repeated loading to simulate the vehicle loads. The effect of geocell’s pocket size (55*55 mm and 110*110 mm) and embedment depth of buried pipe (1.5 and 2 times pipe diameter) in improving the behaviour of buried pipes was investigated. The geocell’s height of 100 mm was used in all tests. The repeated load of 800 kPa was applied on circular loading plate with diameter of 250 mm. The results show that the pipe displacement, soil surface settlement and transferred pressure on the pipe’s crown has been influenced significantly upon the use of geocells. For example, the vertical diametric strain (VDS) and soil surface settlement (SSS), in a way that using a geocell with pocket size of 110*110 mm reduces by 27% and 43%, respectively, compared with the unreinforced one. Meanwhile, by increasing buried depth of pipe from 1.5D to 2D, the use of geocell of 110*110 mm delivers about 50% reduction in SSS and VDS, compared with the unreinforced soil.
Velocity of mist droplets and suspending gas imaged separately
NASA Astrophysics Data System (ADS)
Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.
2012-03-01
Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
NASA Technical Reports Server (NTRS)
Enginer, J. E.; Luedke, E. E.; Wanous, D. J.
1976-01-01
Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.
Study on pipe deflection by using numerical method
NASA Astrophysics Data System (ADS)
Husaini; Zaki Mubarak, Amir; Agustiar, Rizki
2018-05-01
Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.
Corrosion of Spiral Rib Aluminized Pipe
DOT National Transportation Integrated Search
2012-08-01
Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...
Corrosion of Spiral Rib Aluminized Pipe : [Summary
DOT National Transportation Integrated Search
2012-01-01
Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...
NASA Astrophysics Data System (ADS)
Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira
2018-03-01
Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.
Nuclear reactor heat transport system component low friction support system
Wade, Elman E.
1980-01-01
A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if...
Comparison of carbon footprints of steel versus concrete pipelines for water transmission.
Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie
2016-05-01
The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.
NASA Astrophysics Data System (ADS)
Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.
2017-09-01
The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.
Static elastica formulations of a pine conveying fluid
NASA Astrophysics Data System (ADS)
Thompson, J. M. T.; Lunn, T. S.
1981-07-01
An elastic pipe in an equilibrium configuration of arbitrary large deflection discharging fluid from its end experiences static centrifugal and frictional drag forces along its complete length. These are, however, entirely equivalent to an end follower force of magnitude ρ AV2. This equivalence is examined in detail by using the intrinsic field equations which are suitable for closed form solutions in terms of elliptic integrals. Once the pipe moves it also experiences gyroscopic Coriolis forces along its length, but these are not considered in this static examination. It is shown in detail how a discharging pipe with end forces and moments is statically equivalent to a beam or strut with the same end forces and moments plus the reversed momentum vector ρ AV2. It is seen that a cantilevered pipe with a free end can have no statical equilibrium states at all, at either large or small deflections, while pipes with constrained ends have large static deflections identical to those of the equivalent struts.
A bubble detection system for propellant filling pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Wen; Zong, Guanghua; Bi, Shusheng
2014-06-15
This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It canmore » generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.« less
Dynamics of heat-pipe reactors
NASA Technical Reports Server (NTRS)
Niederauer, G. F.
1971-01-01
A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.
Insulating Cryogenic Pipes With Frost
NASA Technical Reports Server (NTRS)
Stephenson, J. G.; Bova, J. A.
1985-01-01
Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.
NASA Technical Reports Server (NTRS)
Burbach, T.
1985-01-01
The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.
Parallel-plate heat pipe apparatus having a shaped wick structure
Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.
2004-12-07
A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.
Beam-based measurement of the center of the new STAR pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert-Demolaize, G.
During the RHIC Shutdown preceding Run13 for polarized protons, various upgrades were brought to the STAR detector, one of which being the partial installation of the Forward GEM Tracker (FGT). This installation includes a new beam pipe at the center of the detector with an internal radius half the size of what the replaced pipe was, from 40 mm to 20 mm. The following reviews the results of a vertical aperture scans in the STAR interaction region performed at injection energy with both beams, and gives an estimate of the measured transverse offset of the new STAR pipe.
DOT National Transportation Integrated Search
2014-02-01
In 1994 the Michigan Department of Transportation (MDOT) initiated a sewer and culvert : condition research conducted at various locations throughout Southeast and Southwest : Michigan to review the performance of concrete, plastic and metal pipe tha...
Refined pipe theory for mechanistic modeling of wood development.
Deckmyn, Gaby; Evans, Sam P; Randle, Tim J
2006-06-01
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Flow of High Internal Phase Ratio Emulsions through Pipes
NASA Astrophysics Data System (ADS)
Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.
2015-04-01
The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.
Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge
NASA Technical Reports Server (NTRS)
Glass, David E.
1998-01-01
A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.
BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schempf, H.; Bares, J.E.
This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potentialmore » of a robotic pipe-insulation abatement system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... DEPARTMENT OF COMMERCE International Trade Administration [A-588-850] Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4\\1/2\\ Inches) From Japan: Extension of... administrative review of the antidumping duty order on certain large diameter carbon and alloy seamless standard...
Systems evaluation of thermal bus concepts
NASA Technical Reports Server (NTRS)
Stalmach, D. D.
1982-01-01
Thermal bus concepts, to provide a centralized thermal utility for large, multihundred kilowatt space platforms, were studied and the results are summarized. Concepts were generated, defined, and screened for inclusion in system level thermal bus trades. Parametric trade studies were conducted in order to define the operational envelope, performance, and physical characteristics of each. Two concepts were selected as offering the most promise for thermal bus development. All of four concepts involved two phase flow in order to meet the required isothermal nature of the thermal bus. Two of the concepts employ a mechanical means to circulate the working fluid, a liquid pump in one case and a vapor compressor in another. Another concept utilizes direct osmosis as the driving force of the thermal bus. The fourth concept was a high capacity monogroove heat pipe. After preliminary sizing and screening, three of these concepts were selected to carry into the trade studies. The monogroove heat pipe concept was deemed unsuitable for further consideration because of its heat transport limitations. One additional concept utilizing capillary forces to drive the working fluid was added. Parametric system level trade studies were performed. Sizing and weight calculations were performed for thermal bus sizes ranging from 5 to 350 kW and operating temperatures in the range of 4 to 120 C. System level considerations such as heat rejection and electrical power penalties and interface temperature losses were included in the weight calculations.
Investigation of a hydrostatic azimuth thrust bearing for a large steerable antenna
NASA Technical Reports Server (NTRS)
Rumbarger, J.; Castelli, V.; Rippel, H.
1972-01-01
The problems inherent in the design and construction of a hydrostatic azimuth thrust bearing for a tracking antenna of very large size were studied. For a load of 48,000,000 lbs., it is concluded that the hydrostatic bearing concept is feasible, provided that a particular multiple pad arrangement, high oil viscosity, and a particular load spreading arrangement are used. Presently available computer programs and techniques are deemed to be adequate for a good portion of the design job but new integrated programs will have to be developed in the area of the computation of the deflections of the supporting bearing structure. Experimental studies might also be indicated to ascertain the life characteristics of grouting under cyclic loading, and the optimization of hydraulic circuits and pipe sizes to insure the long life operation of pumps with high viscosity oil while avoiding cavitation.
Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development
NASA Astrophysics Data System (ADS)
Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.
2009-05-01
Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2017-02-01
In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.
Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.
Nemec, Patrik; Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622
Program Solicitation Number 86.1, Small Business Innovation Research Program.
1986-01-31
Temperature Heat Pipe Technology DESCRIPTION: Heat pipes have been shown to provide superior growth conditions for the growth of bulk semiconductor crystals... Heat pipes allow for the establishment of isothermal conditions over large areas. This thermal property controls the distribution of impurities, and...reliable high temperature heat pipes to operate at 1325 degrees C with inert overpressures of 60 atmospheres is required for the processing of III-V
Superconducting pipes and levitating magnets.
Levin, Yan; Rizzato, Felipe B
2006-12-01
Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.
Superconducting pipes and levitating magnets
NASA Astrophysics Data System (ADS)
Levin, Yan; Rizzato, Felipe B.
2006-12-01
Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Walkemeyer, Phillip E. (Inventor); Tosi, Phillipe (Inventor); Corbett, Thomas Gary (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Arrazola, Alvaro Jose (Inventor); Sherrit, Stewart (Inventor); Colonius, Tim (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor)
2016-01-01
A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.
Miniature Heat Transport System for Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)
2002-01-01
Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes, pressure gradients, and local heat transfer coefficients using ammonia, propylene, and R134, are carried out.
Use of heat pipes in electronic hardware
NASA Technical Reports Server (NTRS)
Graves, J. R.
1977-01-01
A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.
24 CFR 3280.609 - Water distribution systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...
24 CFR 3280.609 - Water distribution systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...
24 CFR 3280.609 - Water distribution systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products... Fahrenheit, at various American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes...
Startup analysis for a high temperature gas loaded heat pipe
NASA Technical Reports Server (NTRS)
Sockol, P. M.
1973-01-01
A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.
Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Zeman, Patrick L.
1991-01-01
The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.
NASA Technical Reports Server (NTRS)
Nikuradse, J
1950-01-01
An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.
OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, Robert; Halkyard, John; Johnson, Peter
A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y.J.; Sohn, G.H.; Kim, Y.J.
Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to accountmore » for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.« less
Capillary Pump Loop (CPL) heat pipe development status report
NASA Technical Reports Server (NTRS)
1982-01-01
The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.
On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Dillhöfer, A.
2011-06-01
This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.
Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses
2015-08-07
Pipes (SHLHP), we developed a set of mathematical models and experimental approaches. Our models provide design rules for heat transfer systems that could...number of fronts: 1) Design concepts and modeling tools: We have proposed a new design for loop heat pipes that operates with superheated liquid...and completed a mathematical model of steady state operation of such superheated loop heat pipes (SHLHP). We have also developed a transport theories
Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars
Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.
2004-01-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest. ?? 2004 Elsevier Inc. All rights reserved.
Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars
NASA Astrophysics Data System (ADS)
Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro
2004-09-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest.
Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota
Hayes, Timothy Scott
1999-01-01
Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage
A Study on Optimal Sizing of Pipeline Transporting Equi-sized Particulate Solid-Liquid Mixture
NASA Astrophysics Data System (ADS)
Asim, Taimoor; Mishra, Rakesh; Pradhan, Suman; Ubbi, Kuldip
2012-05-01
Pipelines transporting solid-liquid mixtures are of practical interest to the oil and pipe industry throughout the world. Such pipelines are known as slurry pipelines where the solid medium of the flow is commonly known as slurry. The optimal designing of such pipelines is of commercial interests for their widespread acceptance. A methodology has been evolved for the optimal sizing of a pipeline transporting solid-liquid mixture. Least cost principle has been used in sizing such pipelines, which involves the determination of pipe diameter corresponding to the minimum cost for given solid throughput. The detailed analysis with regard to transportation of slurry having solids of uniformly graded particles size has been included. The proposed methodology can be used for designing a pipeline for transporting any solid material for different solid throughput.
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
24 CFR 3280.609 - Water distribution systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Water distribution systems. 3280....609 Water distribution systems. Link to an amendment published at 78 FR 73986, Dec. 9, 2013. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each...
Code of Federal Regulations, 2011 CFR
2011-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distribution manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2014 CFR
2014-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distributing manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2013 CFR
2013-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distributing manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2011 CFR
2011-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distributing manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2010 CFR
2010-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distributing manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2012 CFR
2012-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distributing manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Code of Federal Regulations, 2010 CFR
2010-10-01
... a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal sizes... square inch shall be installed in the distribution manifold or such other location as to protect the... manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...
Recent developments in guided wave travel time tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zon, Tim van; Volker, Arno
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improvemore » the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.« less
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.
2017-09-01
The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.
Recent evaluations of crack-opening-area in circumferentially cracked pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, S.; Brust, F.; Ghadiali, N.
1997-04-01
Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less
Sulfur and Metal Fertilization of the Lower Continental Crust
NASA Technical Reports Server (NTRS)
Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo, Jr.; Adam, John; Denyszyn, Steven W.
2015-01-01
Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (<300 m diameter) and primarily composed of a matrix of subhedral to anhedral amphibole (pargasite), phlogopite and orthopyroxene that enclose sub-centimeter-sized grains of olivine. The 1 to 5 m wide rim portions of the pipes locally contain significant blebby and disseminated Fe-Ni-Cu-PGE sulfide mineralization.Stratigraphic relationships, mineral chemistry, geochemical modeling and phase equilibria suggest that the pipes represent open-ended conduits within a large magmatic plumbing system. The earliest formed pipe rocks were olivine-rich cumulates that reacted with hydrous melts to produce orthopyroxene, amphibole and phlogopite.Sulfides precipitated as immiscible liquid droplets that were retained within a matrix of silicate crystals and scavenged metals from the percolating hydrous melt. New high-precision chemical abrasion TIMS-UPb dating of zircons from one of the pipes indicates that these pipes were emplaced at 249.1+/-0.2 Ma, following partial melting of lithospheric mantle pods that were metasomatized during the Eo-Variscan oceanic to continental subduction (approx. 420-310 Ma). The thermal energy required to generate partial melting of the metasomatized mantle was most likely derived from crustal extension, lithospheric decompression and subsequent asthenospheric rise during the orogenic collapse of the Variscan belt (<300 Ma). Unlike previous models, outcomes from this study suggest a significant temporal gap between the occurrence of mantle metasomatism, subsequent partial melting and emplacement of the pipes.We argue that this multi-stage process is a very effective mechanism to fertilize the commonly dry and refractory lower continental crust in metals and volatiles. During the four-dimensional evolution of the thermo-tectonic architecture of any given terrain, metals and volatiles stored in the lower continental crust may become available as sources for subsequent ore-forming processes, thus enhancing the prospectivity of continental block margins for a wide range of mineral systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan: Extension of Time Limit for... review of the antidumping duty order on certain large diameter carbon and alloy seamless standard, line... manufacturers/exporters: JFE Steel Corporation; Nippon Steel Corporation; NKK Tubes; and Sumitomo Metal...
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.; Perkins, James
2017-03-01
Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its pitch a semitone.
An automated repair method of water pipe infrastructure using carbon fiber bundles
NASA Astrophysics Data System (ADS)
Wisotzkey, Sean; Carr, Heath; Fyfe, Ed
2011-04-01
The United States water pipe infrastructure is made up of over 2 million miles of pipe. Due to age and deterioration, a large portion of this pipe is in need of repair to prevent catastrophic failures. Current repair methods generally involve intrusive techniques that can be time consuming and costly, but also can cause major societal impacts. A new automated repair method incorporating innovative carbon fiber technology is in development. This automated method would eliminate the need for trenching and would vastly cut time and labor costs, providing a much more economical pipe repair solution.
Thermographic inspection of pipes, tanks, and containment liners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Muthu, Nathan; Lhota, James R.
2015-03-31
Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concretemore » for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.« less
Thermographic inspection of pipes, tanks, and containment liners
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.
2015-03-01
Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.
NASA Astrophysics Data System (ADS)
Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki
2018-07-01
Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products... stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels...
Detection probability of least tern and piping plover chicks in a large river system
Roche, Erin A.; Shaffer, Terry L.; Anteau, Michael J.; Sherfy, Mark H.; Stucker, Jennifer H.; Wiltermuth, Mark T.; Dovichin, Colin M.
2014-01-01
Monitoring the abundance and stability of populations of conservation concern is often complicated by an inability to perfectly detect all members of the population. Mark-recapture offers a flexible framework in which one may identify factors contributing to imperfect detection, while at the same time estimating demographic parameters such as abundance or survival. We individually color-marked, recaptured, and re-sighted 1,635 federally listed interior least tern (Sternula antillarum; endangered) chicks and 1,318 piping plover (Charadrius melodus; threatened) chicks from 2006 to 2009 at 4 study areas along the Missouri River and investigated effects of observer-, subject-, and site-level covariates suspected of influencing detection. Increasing the time spent searching and crew size increased the probability of detecting both species regardless of study area and detection methods were not associated with decreased survival. However, associations between detection probability and the investigated covariates were highly variable by study area and species combinations, indicating that a universal mark-recapture design may not be appropriate.
Needleless Electrospinning Experimental Study and Nanofiber Application in Semiconductor Packaging
NASA Astrophysics Data System (ADS)
Sun, Tianwei
Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
Introduction to Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.
Gravity flow rate of solids through orifices and pipes
NASA Technical Reports Server (NTRS)
Gardner, J. F.; Smith, J. E.; Hobday, J. M.
1977-01-01
Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3.
Fracture control for the Oman India Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, T.V.
1996-12-31
This paper describes the evaluation of the resistance to fracture initiation and propagation for the high-strength, heavy-wall pipe required for the Oman India Pipeline (OIP). It discusses the unique aspects of this pipeline and their influence on fracture control, reviews conventional fracture control design methods, their limitations with regard to the pipe in question, the extent to which they can be utilized for this project, and other approaches being explored. Test pipe of the size and grade required for the OIP show fracture toughness well in excess of the minimum requirements.
Djordjevic, A.
1982-07-08
A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.
Djordjevic, A.
1983-12-27
A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.
Djordjevic, Aleksandar
1983-12-27
A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.
Characteristics of low-temperature short heat pipes with a nozzle-shaped vapor channel
NASA Astrophysics Data System (ADS)
Seryakov, A. V.
2016-01-01
This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.
Users manual for program NYQUIST: Liquid rocket nyquist plots developed for use on a PC computer
NASA Astrophysics Data System (ADS)
Armstrong, Wilbur C.
1992-06-01
The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the NYQUIST code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, and the splitting of a pipe into unequal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines. The code is too large to compile as one program using Microsoft FORTRAN 5; therefore, the code was broken into two segments: NYQUIST1.FOR and NYQUIST2.FOR. These are compiled separately and then linked together. The final run code is not too large (approximately equals 344,000 bytes).
Users manual for program NYQUIST: Liquid rocket nyquist plots developed for use on a PC computer
NASA Technical Reports Server (NTRS)
Armstrong, Wilbur C.
1992-01-01
The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the NYQUIST code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, and the splitting of a pipe into unequal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines. The code is too large to compile as one program using Microsoft FORTRAN 5; therefore, the code was broken into two segments: NYQUIST1.FOR and NYQUIST2.FOR. These are compiled separately and then linked together. The final run code is not too large (approximately equals 344,000 bytes).
Responses of buried corrugated metal pipes to earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.A.; Bardet, J.P.
2000-01-01
This study describes the results of field investigations and analyses carried out on 61 corrugated metal pipes (CMP) that were shaken by the 1994 Northridge earthquake. These CMPs, which include 29 small-diameter (below 107 cm) CMPs and 32 large-diameter (above 107 cm) CMPs, are located within a 10 km{sup 2} area encompassing the Van Normal Complex in the Northern San Fernando Valley, in Los Angeles, California. During the Northridge earthquake, ground movements were extensively recorded within the study area. Twenty-eight of the small-diameter CMPs performed well while the 32 large-diameter CMPs underwent performances ranging from no damage to complete collapse.more » The main cause of damage to the large-diameter CMPs was found to be the large ground strains. Based on this unprecedented data set, the factors controlling the seismic performance of the 32 large-diameter CMPs were identified and framed into a pseudostatic analysis method for evaluating the response of large diameter flexible underground pipes subjected to ground strain. The proposed analysis, which is applicable to transient and permanent strains, is capable of describing the observed performance of large-diameter CMPs during the 1994 Northridge earthquake. It indicates that peak ground velocity is a more reliable parameter for analyzing pipe damage than is peak ground acceleration. Results of this field investigation and analysis are useful for the seismic design and strengthening of flexible buried conduits.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... between 168 and 196 kilograms per square centimeter (2,400 and 2,800 pounds per square inch) in the...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... between 168 and 196 kilograms per square centimeter (2,400 and 2,800 pounds per square inch) in the...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... between 168 and 196 kilograms per square centimeter (2,400 and 2,800 pounds per square inch) in the...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... between 168 and 196 kilograms per square centimeter (2,400 and 2,800 pounds per square inch) in the...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... between 168 and 196 kilograms per square centimeter (2,400 and 2,800 pounds per square inch) in the...
Projectile Activity for the Laboratory: A Safe and Inexpensive Approach to Several Concepts
ERIC Educational Resources Information Center
Farkas, N.; Ramsier, R. D.
2006-01-01
We present a simple laboratory activity for introductory-level physics students which involves rolling balls down pipes and analysing their subsequent flight trajectories. Using balls of equal size but different mass allows students to confront their misconceptions of a mass dependence of the exit speed of the balls from the pipes. The concepts of…
Asymptotic scalings of developing curved pipe flow
NASA Astrophysics Data System (ADS)
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
ERIC Educational Resources Information Center
Ruiz, Michael J.; Perkins, James
2017-01-01
Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which…
Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building
NASA Astrophysics Data System (ADS)
Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.
2017-11-01
The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.
An Investigation of the Cryogenic Freezing of Water in Non-Metallic Pipelines
NASA Astrophysics Data System (ADS)
Martin, C. I.; Richardson, R. N.; Bowen, R. J.
2004-06-01
Pipe freezing is increasingly used in a range of industries to solve otherwise intractable pipe line maintenance and servicing problems. This paper presents the interim results from an experimental study on deliberate freezing of polymeric pipelines. Previous and contemporary works are reviewed. The object of the current research is to confirm the feasibility of ice plug formation within a polymeric pipe as a method of isolation. Tests have been conducted on a range of polymeric pipes of various sizes. The results reported here all relate to freezing of horizontal pipelines. In each case the process of plug formation was photographed, the frozen plug pressure tested and the pipe inspected for signs of damage resulting from the freeze procedure. The time to freeze was recorded and various temperatures logged. These tests have demonstrated that despite the poor thermal and mechanical properties of the polymers, freezing offers a viable alternative method of isolation in polymeric pipelines.
Corrugated pipe adhesive applicator apparatus
Shirey, R.A.
1983-06-14
Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.
Heat pipe systems using new working fluids
NASA Technical Reports Server (NTRS)
Chao, David F. (Inventor); Zhang, Nengli (Inventor)
2004-01-01
The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.
NASA Astrophysics Data System (ADS)
Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro
2017-10-01
This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.
The specific light output of cesium iodide crystals
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1976-01-01
Large area ion chambers for a high energy cosmic ray experiment, scintillating plastic fibers as light pipes for a cosmic ray hodoscope, and an evaluation of clad scintillating light pipes were considered.
NASA Astrophysics Data System (ADS)
Webb, S. J.; Van Buren, R.
2013-12-01
Airborne geophysical methods play an important role in the exploration for kimberlites. As regions become more intensively explored, smaller kimberlites, which can be extremely difficult to find, are being targeted. These smaller kimberlites, as evidenced by the M-1 Maarsfontein pipe in the Klipspringer cluster in South Africa, can be highly profitable. The Goedgevonden and Syferfontein pipes are small kimberlites (~0.2 ha) ~25 km NNE of Klerksdorp in South Africa. The Goedgevonden pipe has been known since the 1930s and is diamondiferous, but not commercially viable due to small stone size and low quality of stones. In the early 1990s, Gold Fields used this pipe as a typical kimberlite to collect example geophysical data. The nearby (~1 km to the east) Syferfontein pipe is not diamondiferous but was discovered in 1994 as part of a speculative airborne EM survey conducted by Gold Fields and Geodass (now CGG) as part of their case study investigations. Both kimberlites have had extensive ground geophysical survey data collected and have prominent magnetic, gravity and EM responses that aided in the delineation of the pipes. These pipes represent a realistic and challenging case study target due to their small size and the magnetically noisy environment into which they have been emplaced. The discovery of the Syferfontein pipe in 1994 stimulated further testing of airborne methods, especially as the surface was undisturbed. These pipes are located in a region that hosts highly variably magnetized Hospital Hill shales, dolerite dykes and Ventersdorp lavas, a 2-3 m thick resistive ferricrete cap and significant cultural features such as an electric railroad and high tension power line. Although the kimberlites both show prominent magnetic anomalies on ground surveys, the airborne data are significantly noisy and the pipes do not show up as well determined targets. However, the clay-rich weathered zone of the pipes provides an ideal target for the EM method, and both pipes have significant responses on the DIGHEM system. The HELITEM, helicopter borne time domain EM system also clearly mapped both pipes as did the TEMPEST time domain system from a fixed wing platform. Although there are other EM anomalies in the area, these are easily associated with dykes in the area based on joint interpretation with the aeromagnetic data. The lack of kimberlite exploration in this region is likely due to the lack of alluvial diamonds, the magnetically noisy environment, and the well-developed ferricrete and calcrete layers on surface which trap and resorb heavy minerals such as garnet, traditionally used in soil sampling. In this challenging environment, airborne EM combined with magnetic and ground geophysical methods for ground truthing are viable exploration methods.
NASA Astrophysics Data System (ADS)
Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda
2009-11-01
In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.
Best practices for quality management of stormwater pipe construction : [summary].
DOT National Transportation Integrated Search
2014-02-01
Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
NASA Astrophysics Data System (ADS)
Faghri, Amir; Chen, Ming-Ming
1989-10-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, Gene T.
1987-01-01
The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
NASA Astrophysics Data System (ADS)
Bersan, Silvia; Koelewijn, André R.; Simonini, Paolo
2018-02-01
Internal erosion is the cause of a significant percentage of failure and incidents involving both dams and river embankments in many countries. In the past 20 years the use of fibre-optic Distributed Temperature Sensing (DTS) in dams has proved to be an effective tool for the detection of leakages and internal erosion. This work investigates the effectiveness of DTS for dike monitoring, focusing on the early detection of backward erosion piping, a mechanism that affects the foundation layer of structures resting on permeable, sandy soils. The paper presents data from a piping test performed on a large-scale experimental dike equipped with a DTS system together with a large number of accompanying sensors. The effect of seepage and piping on the temperature field is analysed, eventually identifying the processes that cause the onset of thermal anomalies around piping channels and thus enable their early detection. Making use of dimensional analysis, the factors that influence this thermal response of a dike foundation are identified. Finally some tools are provided that can be helpful for the design of monitoring systems and for the interpretation of temperature data.
NASA Astrophysics Data System (ADS)
Silkoset, Petter; Svensen, Henrik; Planke, Sverre
2014-05-01
The Toarcian (Early Jurassic) event was manifested by globally elevated temperatures and anoxic ocean conditions that particularly affected shallow marine taxa. The event coincided with the emplacement of the vast Karoo-Ferrar Large Igneous Province. Among the suggestions for trigger mechanisms for the climatic perturbation is metamorphic methane generation from black shale around the sills in the Karoo Basin, South Africa. The sill emplacement provides a mechanism for voluminous in-situ production and emission of greenhouse gases, and establishes a distinct link between basin-trapped and atmospheric carbon. In the lower stratigraphic levels of the Karoo Basin, black shales are metamorphosed around sills and the sediments are cut by a large number of pipe structures with metamorphic haloes. The pipes are vertical, cylindrical structures that contain brecciated and baked sediments with variable input of magmatic material. Here, we present borehole, petrographic, geochemical and field data from breccia pipes and contact aureoles based on field campaigns over a number of years (2004-2014). The metamorphism around the pipes show equivalent metamorphic grade as the sediments around nearby sills, suggesting a more prominent phreatomagmatic component than previously thought. The stratigraphic position of pipes and the breccia characteristics strengthens the hypothesis of a key role in the Toarcian carbon isotope excursion.
On prediction of crack in different orientations in pipe using frequency based approach
NASA Astrophysics Data System (ADS)
Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.
2008-04-01
A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.
Flow separation characteristics of unstable dispersions
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Zhai, Lusheng; Angeli, Panagiota
2016-11-01
Drops of a low viscosity oil are introduced through a multi-capillary inlet during the flow of water in a horizontal pipe. The flow rates of the continuous water phase are kept in the turbulent region while the droplets are injected at similar flow rates (with oil fractions ranging from 0.15 to 0.60). The acrylic pipe (ID of 37mm) is approximately 7m long. Measurements are conducted at three different axial locations to illustrate how the flow structures are formed and develop along the pipe. Initial observations are made on the flow patterns through high-speed imaging. Stratification is observed for the flow rates studied, indicating that the turbulent dispersive forces are lower than the gravity ones. These results are complemented with a tomography system acquiring measurements at the same locations and giving the cross-sectional hold-up. The coalescence dynamics are strong in the dense-packed drop layer and thus measurements with a dual-conductance probe are conducted to capture any drop size changes. It is found that the drop size variations depend on the spatial configuration of the drops, the initial drop size along with the continuous and dispersed phase velocities. Project funded under Chevron Energy Technology.
Status of the Development of Low Cost Radiator for Surface Fission Power - II
NASA Technical Reports Server (NTRS)
Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.
2016-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.
Primer on Condition Curves for Water Mains
ABSTRACT The development of economical tools to prioritize pipe renewal based upon structural condition and remaining asset life is essential to effectively manage water infrastructure assets for both large and small diameter pipes. One tool that may facilitate asset management...
Analysis of the Earthquake Impact towards water-based fire extinguishing system
NASA Astrophysics Data System (ADS)
Lee, J.; Hur, M.; Lee, K.
2015-09-01
Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.
Investigation of propulsion system for large LNG ships
NASA Astrophysics Data System (ADS)
Sinha, R. P.; Nik, Wan Mohd Norsani Wan
2012-09-01
Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.
The age of unusual xenogenic zircons from Yakutian kimberlites
NASA Astrophysics Data System (ADS)
Vladykin, N. V.; Lepekhina, E. A.
2009-12-01
Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870-1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200-2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800-1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220-2700 Ma). It is known that the period of 1800-1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672-2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.
Friction Stir Welding of Line-Pipe Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Samuel; Mahoney, Murray; Feng, Zhili
Friction stir welding (FSW) offers both economic and technical advantages over conventional fusion welding practices for welding line-pipe. For offshore line-pipe construction, the economic savings has been shown to be considerable, approaching a calculated 25%. Offshore pipe is relatively small diameter but heavy wall compared to onshore pipe. One concern is the ability to achieve consistent full weld penetration in an on-site offshore FSW operation, e.g., on a lay-barge. In addition, depending on the size and morphology of the unwelded zone, lack of penetration at the weld root can be difficult if not impossible to detect by conventional NDE methods.more » Thus, an approach to assure consistent full penetration via process control is required for offshore line-pipe construction using FSW. For offshore construction, an internal structural mandrel can be used offering the opportunity to use a sacrificial anvil FSW approach. With this approach, a small volume of sacrificial material can be inserted into the structural anvil. The FSW tool penetrates into the sacrificial anvil, beyond the inner diameter of the pipe wall, thus assuring full penetration. The sacrificial material is subsequently removed from the pipe inner wall. In the work presented herein, FSW studies were completed on both 6 mm and 12 mm wall thickness line-pipe. Lastly, post-FSW evaluations including radiography, root-bend tests, and metallography demonstrated the merits of the sacrificial anvil approach to achieve consistent full penetration.« less
Water driven turbine/brush pipe cleaner
NASA Technical Reports Server (NTRS)
Werlink, Rudy J. (Inventor)
1995-01-01
Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.
Chemical laser exhaust pipe design research
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde
2016-10-01
In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.
NASA Astrophysics Data System (ADS)
Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul
2017-01-01
A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.
Hamilton, A; Hu, J
1993-01-01
A hand-held fully electrically powered and programmable cryoprobe for general-purpose cryosurgery and cryotherapy has been developed. By combining the technologies of thermoelectric cooling and heat pipes, the temperature at the tip of the probe can easily reach -50 to -60 degrees C. It can hold below -40 degrees C when it cools a load of 10 W at the tip. Previous efforts developing cryoprobes made of thermoelectric modules have been hindered by the inherent characteristics of commercially available thermoelectric coolers: low efficiency, size and inflexible shape and very sensitive to heat intensity and thermal insulation. Matching thermoelectrics with heat pipes uses the advantages of both technologies. In the cryoprobe the heat pipe is used to focus and transport the cooling power of multi-thermoelectric modules. The heat flux for the thermoelectric modules is reduced and their efficiencies are increased. The transport of heat by a heat pipe also allows flexible access to treated spots of patients.
NASA Astrophysics Data System (ADS)
Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.
2011-12-01
There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.
High temperature thermal energy storage in steel and sand
NASA Technical Reports Server (NTRS)
Turner, R. H.
1979-01-01
The technical and economic potential for high temperature (343 C, 650 F) thermal energy storage in hollow steel ingots, pipes embedded in concrete, and for pipes buried in sand was evaluated. Because it was determined that concrete would separate from pipes due to thermal stresses, concrete was replaced by sand, which is free from thermal stresses. Variations of the steel ingot concept were not cost effective compared to the sand-pipe approach, therefore, the sand-pipe thermal storage unit (TSU) was evaluated in depth to assess the approximate tube spacing requirements consistent with different system performance characteristics and also attendant system costs. For large TSUs which do not require fast response times, the sand-pipe approach offers attractive possibilities. A pipe diameter about 9 cm (3.5 in) and pipe spacing of approximately 25 cm (10 in), with sand filling the interspaces, appears appropriate. Such a TSU system designed for 8 hours charge/discharge cycle has an energy unit storage cost (CE) of $2.63/kWhr-t and a power unit storage cost (Cp) of $42/kW-t (in 1977 dollars).
Acoustic Guided Wave Testing of Pipes of Small Diameters
NASA Astrophysics Data System (ADS)
Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.
2017-10-01
Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavignet, A.A.; Sobey, I.J.
At present, drilling of highly deviated wells is complicated by the possibility of the formation of a thick bed of cuttings at low flow rates. The bed of cuttings can cause large torque loads on drill pipe and can fall back around the bit resulting in a stuck bit. Previous investigators have made experimental observations which show that bed formation is characterized by a relatively rapid increase in bed thickness as either the flow rate is lowered past some critical value, or as the deviation from the vertical increases. The authors present a simple model which explains these observations. Themore » model shows that the bed thickness is controlled by the interfacial stress caused by the different velocities of the mud and the cuttings layer. The results confirm previous observations that bed formation is relatively insensitive to mud rheology. Eccentricity of the drill pipe in the hole is an important factor. The model is used to determine critical flow rate needed to prevent the formation of a thick bed of cuttings and the inclination, hole size and rate of penetration are varied.« less
Han, Dan; Zhao, Youcai; Xue, Binjie; Chai, Xiaoli
2010-01-01
An experimental bio-column composed of aged refuse was installed around the exhaust pipe as a new way to mitigate methane in refuse landfill. One of the objectives of this work was to assess the effect of aged refuse thickness in bio-column on reducing CH4 emissions. Over the study period, methane oxidation was observed at various thicknesses, 5 cm (small size), 10 cm (middle size) and 15 cm (large size), representing one to three times of pipeline diameters. The middle and large size both showed over 90% methane conversion, and the highest methane conversion rate of above 95% occurred in the middle-size column cell. Michaelis-Menten equation addressed the methanotrophs diffusion in different layers of the bio-columns. Maximum methanotrophic activity (Vmax) measured at the three thicknesses ranged from 6.4 x 10(-3) to 15.6 x 10(-3) units, and the half-saturation value (K(M)) ranged from 0.85% to 1.67%. Both the highest Vmax and K(M) were observed at the middle-size of the bio-column, as well as the largest methanotrophs population, suggesting a significant efficiency of methane mitigation happened in the optimum zone with greatest affinity and methanotrophic bacteria activities. Therefore, bio-column is a potential style for methane abatement in landfill, and the aged refuse both naturally formed and artificially placed in the column plays a critical role in CH4 emission.
NASA Astrophysics Data System (ADS)
Kurszlaukis, S.; Mahotkin, I.; Rotman, A. Y.; Kolesnikov, G. V.; Makovchuk, I. V.
2009-11-01
The Yubileinaya kimberlite pipe, with a surface area of 59 ha, is one of the largest pipes in the Yakutian kimberlite province. The Devonian pipe was emplaced under structural control into Lower Paleozoic karstic limestone. The pipe complex consists of several smaller precursor pipes which are cut by the large, round Main pipe. While the precursor pipes show many features typical for root zones, Main pipe is younger, cuts into the precursor pipes and exposes well-bedded volcaniclastic sediments. The maximum estimated erosion since emplacement is 250 m. Open pit mapping of a 180 m thick kimberlite sequence documents the waning phases of the volcanic activity in the kimberlite pipe and the onset of its crater infill by resedimentation. Three volcanic lithofacies types can be differentiated. The deepest and oldest facies type is a massive volcaniclastic rock ("AKB") only accessible in drill core. It is equivalent to Tuffisitic Kimberlite in South African pipes and thought to be related to the main volcanic phase which was characterized by violent explosions. The overlying lithofacies type comprises primary and resedimented volcaniclastic sediments as well as rock avalanche deposits sourced from the exposed maar crater collar. It represents the onset of sedimentation onto the crater floor during the waning phase of volcanic eruptions, where primary pyroclastic deposition was contemporaneous with resedimentation from the tephra wall and the widening maar crater. Ongoing volcanic activity is also testified by the presence of a vertical feeder conduit marking the area of the last volcanic eruption clouds piercing through the diatreme. This feeder conduit is overlain by the third and youngest lithofacies type which consists mainly of resedimented volcaniclastic material and lake beds. During the sedimentation of this facies, primary volcanic activity was only minor and finally absent and resedimentation processes dominated the crater infill. The Yubileinaya pipe complex exposes root zones, contact breccias as well as diatreme and crater infill sediments. It has all features typical of large South African-style pipes and much can be learned from Yubileinaya about the emplacement sequence and behaviour of these pipes. Emplacement of the pipe occurred over an extended time span with intermittent phases of volcanic quiescence and consolidation. The AKB reveals little direct evidence of what sort of emplacement process was dominant during the main period of volcanic activity. There is neither textural evidence that violent degassing of a juvenile gas phase has caused pipe excavation, nor that external water was present during the main phase of volcanic eruptions. However, there is clear evidence in rock textures that meteoric surface water was present during crater infill. Base surge deposits forming part of the bedded crater infill sequence indicate that water was present in the eruption clouds and, hence, the root zone of the pipe. There is no reason to assume that groundwater did not also have access to the ascending magma during the main phase of volcanic activity that excavated the pipe and formed the AKB.
Rotating optical geometry sensor for inner pipe-surface reconstruction
NASA Astrophysics Data System (ADS)
Ritter, Moritz; Frey, Christan W.
2010-01-01
The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.
NASA Astrophysics Data System (ADS)
Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare
2016-04-01
Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.
Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.
Lee, Ho Min; Sadollah, Ali
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252
Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann
2005-01-01
Abstract. As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NFL4 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (MLHP) thermal management system design suitable for future small spacecraft. The proposed MLHP thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The miniature loop heat pipe was supplied by the Jet Propulsion Laboratory (PL), while the variable emittance technology were supplied by Johns Hopkins University Applied Physics Laboratory and Sensortex, Inc. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.
An asymptotic analysis of the laminar-turbulent transition of yield stress fluids in pipes
NASA Astrophysics Data System (ADS)
Myers, Tim G.; Mitchell, Sarah L.; Slatter, Paul
2017-02-01
The work in this paper concerns the axisymmetric pipe flow of a Herschel-Bulkley fluid, with the aim of determining a relation between the critical velocity (defining the transition between laminar and turbulent flow) and the pipe diameter in terms of the Reynolds number Re 3. The asymptotic behaviour for large and small pipes is examined and simple expressions for the leading order terms are presented. Results are then compared with experimental data. A nonlinear regression analysis shows that for the tested fluids the transition occurs at similar values to the Newtonian case, namely in the range 2100 < Re 3 < 2500.
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
A study of start-up characteristics of a potassium heat pipe from the frozen state
NASA Technical Reports Server (NTRS)
Jang, Jong Hoon
1992-01-01
The start up characteristics of a potassium heat pipe were studied both analytically and experimentally. Using the radiation heat transfer mode the heat pipe was tested in a vacuum chamber. The transition temperature calculated for potassium was then compared with the experimental results of the heat pipe with various heat inputs. These results show that the heat pipe was inactive until it reached the transition temperature. In addition, during the start up period, the evaporator experienced dry-out with a heat input smaller than the capillary limit calculated at the steady state. However, when the working fluid at the condensor was completely melted, the evaporation was rewetted without external aid. The start up period was significantly reduced with a large heat input.
Durability and Reliability of Large Diameter HDPE Pipe for Water Main Applications (Web Report 4485)
Research validates HDPE as a suitable material for use in municipal piping systems, and more research may help users maximize their understanding of its durability and reliability. Overall, corrosion resistance, hydraulic efficiency, flexibility, abrasion resistance, toughness, f...
Effect of Structure Factor on High-Temperature Ductility of Pipe Steels
NASA Astrophysics Data System (ADS)
Kolbasnikov, N. G.; Matveev, M. A.; Mishnev, P. A.
2016-05-01
Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
Spacecraft Crew Cabin Condensation Control
NASA Technical Reports Server (NTRS)
Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.
2013-01-01
A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.
Intermittent gravity-driven flow of grains through narrow pipes
NASA Astrophysics Data System (ADS)
Alvarez, Carlos A.; de Moraes Franklin, Erick
2017-01-01
Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.
Tests of cryogenic pigs for use in liquefied gas pipelines
NASA Astrophysics Data System (ADS)
Hipple, D. L.; Oneal, W. C.
1982-09-01
Pipeline pigs are a key element in the design of a proposed spill test facility whose purpose is to evaluate the hazards of large spills of liquefied gaseous fuels (LGFs). A long pipe runs from the LGF storage tanks to the spill point; to produce a rapid spill, the pipe is filled with LGF and a pig will be pneumatically driven through the pipe to force out the LGF quickly and cleanly. Several pig designs were tested in a 6 inch diameter, 420 foot long pipe to evaluate their performance at liquid-nitrogen temperature and compare it with their performance at ambient temperature. For each test, the pig was placed in one end of the pipe and either water or liquid nitrogen was put into the pipe in front of the pig. Then pressurized drive gas, either nitrogen or helium, was admitted to the pipe behind the pig to push the pig and the fluid ahead of it out the exit nozzle. For some tests, the drive gas supply was shut off when the pig was part way through the pipe as a method of velocity control; in these cases, the pressurized gas trapped behind the pig continued to expand until it pushed the pig the remaining distance out of the pipe.
Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.
Mao, Feng; Ong, Say Kee; Gaunt, James A
2015-09-01
Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.
NASA Astrophysics Data System (ADS)
Wilson, Jeffrey M.
This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results indicate a large amount of scatter is associated with this test method. Due to the large amount of scatter present in the leaking pipe evaluations (energy release rate tests), a new laboratory specimen was created to evaluate mixed mode debonding of composite over-wrapped piping. The laboratory specimen results are much more conservative than the leaking pipe evaluations. The laboratory specimen results, however, agree quite favorably to a closed form solution developed in this Dissertation, as well as to energy release rate calculations performed by two different finite element analysis methods, the Modified Crack Closure Integral and the change in compliance method.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Transition to Turbulence in curved pipe
NASA Astrophysics Data System (ADS)
Hashemi, Amirreza; Loth, Francis
2014-11-01
Studies have shown that transitional turbulence in a curved pipe is delayed significantly compared with straight pipes. These analytical, numerical and experimental studies employed a helical geometry that is infinitely long such that the effect of the inlet and outlet can be neglected. The present study examined transition to turbulence in a finite curved pipe with a straight inlet/outlet and a 180 degrees curved pipe with a constant radius of curvature and diameter (D). We have employed the large scale direct numerical simulation (DNS) by using the spectral element method, nek5000, to simulate the flow field within curved pipe geometry with different curvature radii and Reynolds numbers to determine the point of the transition to turbulence. Long extensions for the inlet (5D) and outlet (20D) were used to diminish the effect of the boundary conditions. Our numerical results for radius of curvatures of 1.5D and 5D show transition turbulence is near Re = 3000. This is delayed compared with a straight pipe (Re = 2200) but still less that observed for helical geometries (Reynolds number less than 5000). Our research aims to describe the critical Reynolds number for transition to turbulence for a finite curved pipe at various curvature radii.
Time Reversal Method for Pipe Inspection with Guided Wave
NASA Astrophysics Data System (ADS)
Deng, Fei; He, Cunfu; Wu, Bin
2008-02-01
The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.
Thermion: Verification of a thermionic heat pipe in microgravity
NASA Technical Reports Server (NTRS)
1991-01-01
The design and development is examined of a small excore heat pipe thermionic space nuclear reactor power system (SEHPTR). The need was identified for an in-space flight demonstration of a solar powered, thermionic heat pipe element. A demonstration would examine its performance and verify its operation in microgravity. The design of a microsatellite based technology demonstration experiment is proposed to measure the effects of microgravity on the performance of an integrated thermionic heat pipe device in low earth orbit. The specific objectives are to verify the operation of the liquid metal heat pipe and the cesium reservior in the space environment. Two design configurations are described; THERMION-I and THERMION-II. THERMION-I is designed for a long lifetime study of the operations of the thermionic heat pipe element in low earth orbit. Heat input to the element is furnished by a large mirror which collects solar energy and focuses it into a cavity containing the heat pipe device. THERMION-II is a much simpler device which is used for short term operation. This experiment remains attached to the Delta II second stage and uses energy from 500 lb of alkaline batteries to supply heat energy to the heat pipe device.
NASA Technical Reports Server (NTRS)
1994-01-01
In Stennis Space Center's Component Test Facility, piping lines carry rocket propellants and high pressure cryogenic fuels. When the lines are chilled to a pretest temperature of 400 degrees below zero, ordinary piping connectors can leak. Under contract to Stennis, Reflange, Inc. developed the T-Con connector, which included a secondary seal that tolerates severe temperature change. Because of the limited need for the large and expensive T-Con product, Reflange also developed the less costly E-Con, a smaller more compact design with the same technical advantages as the T-Con.
A study on fatigue strength reduction factor for small diameter socket welded pipe joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Makoto; Nakagawa, Akira; Hayashi, Makoto
1996-12-01
Factors that may exert influence on the fatigue strength of small diameter socket welded joints of nominal diameter in the 20--50 mm range have been investigated by the fully reversed four-point bending fatigue test with the material, diameter, pipe schedule, throat depth, bead shape, slip-on gap, and root defect as the testing parameters. The fatigue strength of socket joints depended acutely on the diameter. When the diameter is large, the fatigue strength tended to be low and the fracture is of the root-failure mode; when it is small, on the other hand, the fatigue strength is high and the fracturemore » is of the toe-failure mode. Stainless steel proved to be superior to carbon steel; it gave rise to 1.37 times the fatigue strength of the latter for socket joints of nominal diameter 50 mm; the fatigue strength reduction factor determined at 10{sup 7} cycles with respect to the fatigue strength of smooth base metal in the fully reversed fatigue was about 4 for stainless steel and about 5 for carbon steel. The fatigue strength was higher, the larger the Sche number (i.e., the thicker the pipe wall); it was improved markedly by placing one final refinement pass on the toe or by eliminating the slip-on gap. An empirical formula relating the size of the root defect to the fatigue strength reduction has been proposed.« less
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.
Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime
2017-09-26
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul
The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performedmore » due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, A.; Wilowski, G.; Scott, P.
1997-03-01
The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validatemore » LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst`s group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs.« less
[Appropriate dust control measures for jade carving operations].
Liu, Jiang; Wang, Qiushui; Liu, Guangquan
2002-12-01
To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.
NASA Astrophysics Data System (ADS)
Ivankovic, A.; Muzaferija, S.; Demirdzic, I.
1997-07-01
Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.
Isothermal pumping analysis for high-altitude tethered balloons
Kuo, Kirsty A.; Hunt, Hugh E. M.
2015-01-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573
Isothermal pumping analysis for high-altitude tethered balloons.
Kuo, Kirsty A; Hunt, Hugh E M
2015-06-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.
Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe
NASA Astrophysics Data System (ADS)
Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong
2018-05-01
Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.
Application of heat pipe technology in permanent mold casting of nonferrous alloys
NASA Astrophysics Data System (ADS)
Elalem, Kaled
The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The results show a promising future for heat pipe technology in cooling permanent molds for the casting of nonferrous alloys.
Assessment of water pipes durability under pressure surge
NASA Astrophysics Data System (ADS)
Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia
2017-10-01
Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.
Ogunwande, Gbolabo A; Osunade, James A
2011-01-01
A passive aeration composting study was undertaken to investigate the effects of aeration pipe orientation (PO) and perforation size (PS) on some physico-chemical properties of chicken litter (chicken manure + sawdust) during composting. The experimental set up was a two-factor completely randomised block design with two pipe orientations: horizontal (Ho) and vertical (Ve), and three perforation sizes: 15, 25 and 35 mm diameter. The properties monitored during composting were pile temperature, moisture content (MC), pH, electrical conductivity (EC), total carbon (C(T)), total nitrogen (N(T)) and total phosphorus (P(T)). Moisture level in the piles was periodically replenished to 60% for efficient microbial activities. The results of the study showed that optimum composting conditions (thermophilic temperatures and sanitation requirements) were attained in all the piles. During composting, both PO and PS significantly affected pile temperature, moisture level, pH, C(T) loss and P(T) gain. EC was only affected by PO while N(T) was affected by PS. Neither PO nor PS had a significant effect on the C:N ratio. A vertical pipe was effective for uniform air distribution, hence, uniform composting rate within the composting pile. The final values showed that PO of Ve and PS of 35 mm diameter resulted in the least loss in N(T). The PO of Ho was as effective as Ve in the conservation of C(T) and P(T). Similarly, the three PSs were equally effective in the conservation of C(T) and P(T). In conclusion, the combined effects of PO and PS showed that treatments Ve35 and Ve15 were the most effective in minimizing N(T) loss. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stopped-pipe wind instruments: Acoustics of the panpipes
NASA Astrophysics Data System (ADS)
Fletcher, N. H.
2005-01-01
Stopped-pipe jet-excited musical instruments are known in many cultures, those best-known today being the panpipes or syrinx of Eastern Europe and of the Peruvian Andes. Although the playing style differs, in each case the instrument consists of a set of graduated bamboo pipes excited by blowing across the open tops. Details of the excitation aerodynamics warrant examination, particularly as the higher notes contain amplitudes of the even harmonics approaching those of the odd harmonics expected from a stopped pipe. Analysis shows that the jet offset is controlled by the fluid dynamics of the jet, and is such that appreciable even-harmonic excitation is generated. The theory is largely confirmed by measurements on a player. .
Stopped-pipe wind instruments: acoustics of the panpipes.
Fletcher, N H
2005-01-01
Stopped-pipe jet-excited musical instruments are known in many cultures, those best-known today being the panpipes or syrinx of Eastern Europe and of the Peruvian Andes. Although the playing style differs, in each case the instrument consists of a set of graduated bamboo pipes excited by blowing across the open tops. Details of the excitation aerodynamics warrant examination, particularly as the higher notes contain amplitudes of the even harmonics approaching those of the odd harmonics expected from a stopped pipe. Analysis shows that the jet offset is controlled by the fluid dynamics of the jet, and is such that appreciable even-harmonic excitation is generated. The theory is largely confirmed by measurements on a player.
Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.
NASA Astrophysics Data System (ADS)
Horiuchi, Toshiyuki; Furuhata, Takahiro; Muro, Hideyuki
2016-06-01
The scan-projection exposure of small-diameter pipe surfaces was investigated using a newly developed prototype exposure system. It is necessary to secure a very large depth of focus for printing thick resist patterns on round pipe surfaces with a roughness larger than that of semiconductor wafers. For this reason, a camera lens with a low numerical aperture of 0.089 was used as a projection lens, and the momentary exposure area was limited by a narrow slit with a width of 800 µm. Thus, patterns on a flat reticle were replicated on a pipe surface by linearly moving the reticle and rotating the pipe synchronously. By using a reticle with inclined line-and-space patterns, helical patterns with a width of 30 µm were successfully replicated on stainless-steel pipes with an outer diameter of 2 mm and coated with a 10-µm-thick negative resist. The patterns replicated at the start and stop edges were smoothly stitched seamlessly.
PipeOnline 2.0: automated EST processing and functional data sorting.
Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A
2002-11-01
Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.
Evaluation of Jet Fuel Induced Hearing Loss in Rats
2011-10-13
flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3
Katurji, M; Daher, N; Sheheitli, H; Saleh, R; Shihadeh, A
2010-11-01
While narghile water pipe smoking has become a global phenomenon, knowledge regarding its toxicant content and delivery, addictive properties, and health consequences is sorely lagging. One challenge in measuring toxicant content of the smoke in the laboratory is the large number of simplifying assumptions that must be made to model a "typical" smoking session using a smoking machine, resulting in uncertainty over the obtained toxicant yields. In this study, we develop an alternative approach in which smoke generated by a human water pipe user is sampled directly during the smoking session. The method, dubbed real-time in situ sampling (RINS), required developing a self-powered portable instrument capable of automatically sampling a fixed fraction of the smoke generated by the user. Instrument performance was validated in the laboratory, and the instrument was deployed in a field study involving 43 ad libitum water pipe use sessions in Beirut area cafés in which we measured inhaled nicotine, carbon monoxide (CO), and water pipe ma'ssel-derived "tar." We found that users drew a mean of 119 L of smoke containing 150 mg of CO, 4 mg of nicotine, and 602 mg of ma'ssel-derived "tar" during a single use session (mean duration = 61 min). These first direct measurements of toxicant delivery demonstrate that ordinary water pipe use involves inhaling large quantities of CO, nicotine, and dry particulate matter. Results are compared with those obtained using the Beirut method smoking machine protocol.
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2013 CFR
2013-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2014 CFR
2014-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2012 CFR
2012-10-01
... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
Leak location using the pattern of the frequency response diagram in pipelines: a numerical study
NASA Astrophysics Data System (ADS)
Lee, Pedro J.; Vítkovský, John P.; Lambert, Martin F.; Simpson, Angus R.; Liggett, James A.
2005-06-01
This paper presents a method of leak detection in a single pipe where the behaviour of the system frequency response diagram (FRD) is used as an indicator of the pipe integrity. The presence of a leak in a pipe imposes a pattern on the resonance peaks of the FRD that can be used as a clear indication of leakage. Analytical expressions describing the pattern of the resonance peaks are derived. Illustrations of how this pattern can be used to individually locate and size multiple leaks within the system are presented. Practical issues with the technique, such as the procedure for frequency response extraction, the impact of measurement position, noise- and frequency-dependent friction are also discussed.
Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products, natural gas and other... high temperature service. They are intended for the low temperature and pressure conveyance of water...
78 FR 64477 - Welded Large Diameter Line Pipe From Japan: Continuation of Antidumping Duty Order
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... Pipe From Japan: Continuation of Antidumping Duty Order AGENCY: Enforcement and Compliance, Formerly...) from Japan would likely lead to continuation or recurrence of dumping and material injury to an... Department published the antidumping duty order on LDLP from Japan.\\1\\ On October 1, 2012, the Department...
Calibration and testing of selected portable flowmeters for use on large irrigation systems
Luckey, Richard R.; Heimes, Frederick J.; Gaggiani, Neville G.
1980-01-01
Existing methods for measuring discharge of irrigation systems in the High Plains region are not suitable to provide the pumpage data required by the High Plains Regional Aquifer System Analysis. Three portable flowmeters that might be suitable for obtaining fast and accurate discharge measure-ments on large irrigation systems were tested during 1979 under both laboratory and field conditions: propeller type gated-pipe meter, a Doppler meter, and a transient-time meter.The gated-pipe meter was found to be difficult to use and sensitive to particulate matter in the fluid. The Doppler meter, while easy to use, would not function suitably on steel pipe 6 inches or larger in diameter, or on aluminum pipe larger than 8 inches in diameter. The transient-time meter was more difficult to use than the other two meters; however, this instrument provided a high degree of accuracy and reliability under a variety of conditions. Of the three meters tested, only the transient-time meter was found to be suitable for providing reliable discharge measurements on the variety of irrigation systems used in the High Plains region.
Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2011-11-01
Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
NASA Astrophysics Data System (ADS)
Wei, Xin; Sun, Bing
2011-10-01
The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.
Lower San Fernando corrugated metal pipe failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardet, J.P.; Davis, C.A.
1995-12-31
During the January 17, 1994, Northridge earthquake, a 2.4 m diameter corrugated metal pipe was subjected to 90 m of extensive lateral crushing failure at the Lower San Fernando Dam. The dam and outlet works were reconstructed after the 1971 San Fernando Earthquake. In 1994, the dam underwent liquefaction upstream of the reconstructed berm. The pipe collapsed on the west side of the liquefied zone and a large sinkhole formed over the drain line. The failure of this drain line provides a unique opportunity to study the seismic response of buried drains and culverts.
Morphometric study of pillow-size spectrum among pillow lavas
NASA Astrophysics Data System (ADS)
Walker, George P. L.
1992-08-01
Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is a common lava type in the flow-foot breccias. It forms irregular flow-sheets that are locally less than 5 cm thick, and failed to be inflated to pillows perhaps because of an inadequate lava-supply rate or too high a flow velocity.
NASA Astrophysics Data System (ADS)
Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.
2012-12-01
Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.
USCG Oily Water Separator System Cartridge Usage Data Survey
1976-03-01
where a separate system is installed). 3. What spaces that have bilge water are not piped? Non- oily spaces. 4. Is existing ships piping used...NO. 4305.2/12 00 CO o ÄS! USC6 OILY WATER SEPARATOR SYSTEM CARTRIDGE USAGE DATA SURVEY ROBERT L. SKEWES U. S. CfAST GUARD (6-DET-l) OFFIU... Oily Water Separator Systems installed were surveyed. These cutters range in size from 65 foot river buoy tenders to 378 foot high endurance
Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems
NASA Astrophysics Data System (ADS)
Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.
2018-03-01
The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.
Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats
2012-01-01
square inch (psi) pressure was attached to the side arm of the Sonomist. At this pressure the spray nozzle developed an air flow of approximately 20...L/min (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an ultrasonic whistle that aerosolized the droplets...pipe contained the spray pattern. The pipe was reduced in size to accept an orifice plate, which was used to measure flow rate by the pressure drop
Handbook of corrosion resistant piping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweitzer, P.A.
1985-01-01
The book deals with pertinent design, installation, corrosion resistance, and economic factors necessary to determine the optimum system to handle specific corrodents. Each of the materials, both metallic and nonmetallic, is discussed individually. Suitable construction materials are indicated for over 500 corrodents. Available sizes, weights, and types of fittings are given for each material. Tables of permissible working pressures based on the Petroleum Refinery Piping Code, USAS B31.3, have been calculated for each alloy. Service ratings are included for everything discussed.
Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan
2017-01-01
Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in DWDS.
Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment
2017-01-01
Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392
Evolution of turbulence characteristics from straight to curved pipes
NASA Astrophysics Data System (ADS)
El Khoury, George K.; Noorani, Azad; Schlatter, Philipp; Fischer, Paul F.
2012-11-01
Large-scale direct numerical simulations are performed to study turbulent flow in straight and bent pipes at four different Reynolds numbers: Reb = 5300 , 11700 (bent and straight) and 19000 and 37700 (only straight). We consider a pipe of radius R and axial length 25 R with curvature parameter κ taken to be 0 , 0 . 01 and 0 . 1 for zero, mild and strong curvatures, respectively. The code used is Nek5000 based on the spectral element method. In the straight configuration, the obtained DNS data is carefully checked against other recent simulations, highlighting minute differences between the available data. Owing to a centrifugal instability mechanism, the flow in bent pipe (κ ≠ 0) develops counter-rotating vortices, so-called Dean vortices. The presence of the secondary motion thus induces substantial asymmetries both in the mean flow and turbulence characteristics for the bent pipe. These asymmetries tend to damp turbulence along the inner side and correspondingly enhance it along the upper side. The results are validated with recent experiments, and we could confirm the peculiar behaviour of the friction factor for specific curvatures and Re , leading to a lower friction in curved pipes than in straight pipes for the same mass flux.
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data
2017-01-01
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823
Falling Magnets and Electromagnetic Braking
NASA Astrophysics Data System (ADS)
Culbreath, Christopher; Palffy-Muhoray, Peter
2009-03-01
The slow fall of a rare earth magnet through a copper pipe is a striking example of electromagnetic braking; this remarkable phenomenon has been the subject of a number of scientific paper s [1, 2]. In a pipe having radius R and wall thickness D, the terminal velocity of the falling magnet is proportional to (R̂4)/D. It is interesting to ask what happens in the limit as D becomes very large. We report our experimental observations and theoretical predictions of the dependence of the terminal velocity on pipe radius R for large D. [1] Y. Levin, F.L. da Silveira, and F.B. Rizzato, ``Electromagnetic braking: A simple quantitative model''. American Journal of Physics, 74(9): p. 815-817 (2006). [2] J.A. Pelesko, M. Cesky, and S. Huertas, Lenz's law and dimensional analysis. American Journal of Physics, 3(1): p. 37-39. 2005.
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.
Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls
2017-10-06
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.
A risk-based approach to sanitary sewer pipe asset management.
Baah, Kelly; Dubey, Brajesh; Harvey, Richard; McBean, Edward
2015-02-01
Wastewater collection systems are an important component of proper management of wastewater to prevent environmental and human health implications from mismanagement of anthropogenic waste. Due to aging and inadequate asset management practices, the wastewater collection assets of many cities around the globe are in a state of rapid decline and in need of urgent attention. Risk management is a tool which can help prioritize resources to better manage and rehabilitate wastewater collection systems. In this study, a risk matrix and a weighted sum multi-criteria decision-matrix are used to assess the consequence and risk of sewer pipe failure for a mid-sized city, using ArcGIS. The methodology shows that six percent of the uninspected sewer pipe assets of the case study have a high consequence of failure while four percent of the assets have a high risk of failure and hence provide priorities for inspection. A map incorporating risk of sewer pipe failure and consequence is developed to facilitate future planning, rehabilitation and maintenance programs. The consequence of failure assessment also includes a novel failure impact factor which captures the effect of structurally defective stormwater pipes on the failure assessment. The methodology recommended in this study can serve as a basis for future planning and decision making and has the potential to be universally applied by municipal sewer pipe asset managers globally to effectively manage the sanitary sewer pipe infrastructure within their jurisdiction. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Subramanian, S. V.; Ma, Xiaoping; Rehman, Kashif
There is a growing demand for thicker gage pipes particularly for off-shore projects. Austenite grain size control in upstream processing before pancaking is essential to obtain excellent DBTT and DWTT properties in thicker gage product. This paper examines the basic science aspects of austenite grain size control by nano-scale precipitate engineering.
Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.
Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit
2014-02-01
To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scaling of the Urban Water Footprint: An Analysis of 65 Mid- to Large-Sized U.S. Metropolitan Areas
NASA Astrophysics Data System (ADS)
Mahjabin, T.; Garcia, S.; Grady, C.; Mejia, A.
2017-12-01
Scaling laws have been shown to be relevant to a range of disciplines including biology, ecology, hydrology, and physics, among others. Recently, scaling was shown to be important for understanding and characterizing cities. For instance, it was found that urban infrastructure (water supply pipes and electrical wires) tends to scale sublinearly with city population, implying that large cities are more efficient. In this study, we explore the scaling of the water footprint of cities. The water footprint is a measure of water appropriation that considers both the direct and indirect (virtual) water use of a consumer or producer. Here we compute the water footprint of 65 mid- to large-sized U.S. metropolitan areas, accounting for direct and indirect water uses associated with agricultural and industrial commodities, and residential and commercial water uses. We find that the urban water footprint, computed as the sum of the water footprint of consumption and production, exhibits sublinear scaling with an exponent of 0.89. This suggests the possibility of large cities being more water-efficient than small ones. To further assess this result, we conduct additional analysis by accounting for international flows, and the effects of green water and city boundary definition on the scaling. The analysis confirms the scaling and provides additional insight about its interpretation.
Procedure improves line pipe Charpy test interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, M.J.
1997-04-14
The Charpy V-notch (CVN) impact test is a method of characterizing a line-pipe material`s notch toughness and resistance to fracture growth. Although CVN testing of line pipe material is routine, test results are sometimes misinterpreted because of specimen size and load rate on actual toughness transition behavior. These effects are readily accounted for by a simple mathematical procedure, offered here, which enables extrapolation of the full-scale transition curve from as little as a single subsize specimen test. This procedure is useful when the toughness transition curve is incomplete or nonexistent. Toughness data may be incomplete because the API 5L toughnessmore » test establishes minimum performance at a single temperature, which does not reveal the full transition curve. Toughness data may be nonexistent because the first requirements for toughness testing of line pipe appeared in the 16th Edition of API 5LX in 1969, and those requirements remain at the option of the purchaser today.« less
NASA Astrophysics Data System (ADS)
Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai
2018-04-01
In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.
Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less
Construction and demolition waste as a source of PVC for recycling.
Prestes, Sabrina Moretto Darbello; Mancini, Sandro Donnini; Rodolfo, Antonio; Keiroglo, Raquel Carramillo
2012-02-01
Construction and demolition waste can contain considerable amounts of polyvinyl chloride (PVC). This paper describes a study of the recycling of PVC pipes collected from such waste materials. In a sorting facility for the specific disposal of construction and demolition waste, PVC was found to represent one-third of the plastics separated by workers. Pipes were sorted carefully to preclude any possible contamination by poly(ethylene terephthalate) (PET) found in the waste. The material was ground into two distinct particle sizes (final mesh of 12.7 and 8 mm), washed, dried and recycled. The average formulation of the pipes was determined based on ash content tests and used in the fabrication of a similar compound made mainly of virgin PVC. Samples of recycled pipes and of compound based on virgin material were subjected to tensile and impact tests and provided very similar results. These results are a good indication of the application potential of the recycled material and of the fact that longer grinding to obtain finer particles is not necessarily beneficial.
Welding High Strength Modern Line Pipe Steel
NASA Astrophysics Data System (ADS)
Goodall, Graeme Robertson
The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.
Advanced spacecraft thermal control techniques
NASA Technical Reports Server (NTRS)
Fritz, C. H.
1977-01-01
The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.
Cascetta, Furio; Palombo, Adolfo; Scalabrini, Gianfranco
2003-04-01
In this paper the metrological behavior of two different insertion flowmeters (magnetic and turbine types) in large water pipes is described. A master-slave calibration was carried out in order to estimate the overall uncertainty of the tested meters. The experimental results show that (i) the magnetic insertion tested flowmeter performs the claimed accuracy (+/- 2%) within all the flow range (20:1); (ii) the insertion turbine tested meter, instead, reaches the claimed accuracy just in the upper zone of the flow range.
24 CFR 3280.610 - Drainage systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... foot, when a full size cleanout is installed at the upper end. [40 FR 58752, Dec. 18, 1975... shall be designed to provide for a 1/4 inch per foot grade in horizontal piping. (i) Fittings for screw..., correctly located according to the size and type of fixture to be connected. (1) Water closet connection...
Leak and Pipe Detection Method and System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
A method and system for locating leaks of conductive fluids from non-conductive pipes and other structures or for locat- ing non-conductive pipes or structures having conductive fluid contained therein, employ a charge generator to apply a time varying charge to the conductive fluid, and a capaci- tive type detector that can detect the variable charge that is induced in the fluid. The capacitive detector, which prefer- ably includes a handheld housing, employs a large conduc- tive pickup plate that is used to locate the pipe or leak by scanning the plate over the ground and detecting the induced charge that is generated when the plate comes in close proximity to the pipe or leak. If a leak is encountered, the resulting signal will appear over an area larger than expected for a buried pipe, assuming the leak provides an electrically conductive path between the flow and the wet surrounding ground. The detector uses any suitable type of indicator device, such as a pair of headphones that enable an operator to hear the detected signal as a chirping sound, for example.
Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas
NASA Astrophysics Data System (ADS)
Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan
2011-05-01
The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.
Ediacaran Seepage-related Cloudina-Microbialites from Southern Namibia
NASA Astrophysics Data System (ADS)
Reitner, Joachim, , Dr
2015-04-01
Little is known about the lifestyle of the calcified tube organisms of the Cloudina group. This late Proterozoic group, whose overall morphology slightly resembles modern calcified worm tubes, were the first animals with calcified skeletons. The modern seep-related vestimentiferan worm tubes of Escarpia are composed of chitin; in few cases we note the beginning of CaCO3 (aragonite) mineralisation on the chitin surfaces. The calcified skeleton of C. hartmannae exhibits a more complicated microstructure. The calcareous skeleton, which was probably originally aragonitic, appears to be produced by a probably enzymatically controlled biomineralisation. Seilacher (1999) reconstructed the Cloudina group as typical soft bottom dwellers. Some millimeter-sized C. riemkeae specimens are indeed common in soft micritic, lagoonal carbonates. However, we have observed large C. hartmannae tubes inside very large (5-8 meters high, 30-50 cm in diameter) pillar-like microbialites ("organ-pipes") from the Zaris Mountains/Zebra River (Omkyk Member, Kuibis Subgroup, Nama Group). These microbialiates have a complex structure. The inner portions of these microbialites are formed by large, cm-sized recrystallized aragonitic spherulites covered by calcified microbial matter exhibiting a typical thrombolitic structure. The outer portions of the microbialites exhibit a typical stromatolitic structure. These "organ-pipe" microbialites strongly resemble the modern ones known from Lake Van and Mono Lake. In both modern cases the microbialites grow in extremely alkaline water located at sites where Ca2+-rich ground water is seeping in the lake water. Geochemical data, from the still Sr-rich neomorphic former aragonitic spherulites and all other noted carbonate phases, suggest that the microbialites from the Zaris Mountains in Namibia formed under comparable conditions. Cloudina is very common within the thrombolitic portion of the microbialites and the occurrence is definitely autochthonous; Cloudina has probably filtered the seep fluids. A chemosynthetic life style cannot be excluded and will be the subject of further investigations. The occurrence of the heavy calcified metazoan skeletons in potentially Ca2+-rich seep fluid environments support the idea that Ca2+-detoxification was a driving force of the beginning of an enzymatically controlled biomineralisation. Seilacher, A. (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86-93.
Testing large volume water treatment and crude oil ...
Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1993-11-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.
1993-01-01
NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.
NASA Astrophysics Data System (ADS)
Cong, Li; Qifei, Jian; Wu, Shifeng
2017-02-01
An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robin Gordon; Bill Bruce; Ian Harris
2004-04-12
The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforcedmore » composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.« less
Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels
NASA Astrophysics Data System (ADS)
Sikora, Małgorzata; Bohdal, Tadeusz
2017-12-01
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
On the impact bending test technique for high-strength pipe steels
NASA Astrophysics Data System (ADS)
Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.
2015-10-01
It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.
Heat pipe thermal conditioning panel
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Loose, J. D.; Mccoy, K. E.
1974-01-01
Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.
Improved Ultrasonic Fuel Mass Flowmeter for Army Aircraft Engine Diagnostics
1975-06-01
B-6), at least for large pipes , with diameters from ~0, 2 m to over 1 m. See Refs. 3-7. For area-averaging over a limited range of flow...u l a r c r o s s section. Sheet -meta l duct can be instal led to operate at hydrosta t ic p r e s s u r e within pipes of normal or heavy...practical limit is on the order of 1/4 of the pipe radius. To avoid this limit , and at the same time obtain propagation over a path independent of
Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen
2011-05-01
Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus since living A. aquaticus were nearly only found in samples with sediment contents higher than 100 ml/m(3) sample. Presence of A. aquaticus was not correlated to turbidity of the water. Measurements by ATP, heterotrophic plate counting and Colilert(®) showed that the microbial quality of the water was high at all locations with or without animals. Four other large Danish drinking water supplies were additionally sampled (nine pipe samples and one elevated tank), and invertebrates were found in all systems, three of four containing A. aquaticus, indicating a nationwide occurrence. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
Radiatively coupled thermionic and thermoelectric power system concept
NASA Technical Reports Server (NTRS)
Shimada, K.; Ewell, R.
1981-01-01
The study presented showed that the large power systems (about 100 kW) utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a Space Shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), and (3) elimination of radiator heat pipes, which are required in an all-heat-pipe power system. In addition, the specific weight of the radiatively coupled power systems favorably compares with that of the all-heat-pipe systems.
Comparison of Cryogenic Temperature Sensor Installation Inside or Outside the Piping
NASA Astrophysics Data System (ADS)
Müller, R.; Süßer, M.
2010-04-01
Cryogenic thermometers for large cryogenic facilities, like superconducting particle accelerator or fusion devices, must be able to withstand very severe conditions over the lifetime of the facility. In addition to the proper selection of the sensor, the choice of the appropriate installation method plays an important role for satisfying operation. Several characteristics must be taken into account, for instance: large numbers of sensors, different claims of accuracy, qualified preparation methods and at least qualified attachment of the sensor holder on the piping. One remedy to get satisfying results is the development of simple thermometer mounting fixtures, because thermometer mounting often may be realized by personnel with limited experience. This contribution presents two different methods for sensor installations, namely inside or outside installation on the piping. These have been the standard applications in the superconducting coil test facility TOSKA for many years. The characteristics of each of these methods will be discussed and compared.
Vikre, Peter; Graybeal, Frederick T.; Koutz, Fleetwood R.
2014-01-01
The Santa Cruz porphyry Cu-(Mo) system near Casa Grande, Arizona, includes the Sacaton mine deposits and at least five other concealed, mineralized fault blocks with an estimated minimum resource of 1.5 Gt @ 0.6% Cu. The Late Cretaceous-Paleocene system has been dismembered and rotated by Tertiary extension, partially eroded, and covered by Tertiary-Quaternary basin-fill deposits. The mine and mineralized fault blocks, which form an 11 km (~7 miles) by 1.6 km (~1 mile) NE-SW–trending alignment, represent either pieces of one large deposit, several deposits, or pieces of several deposits. The southwestern part of the known system is penetrated by three or more diatremes that consist of heterolithic breccia pipes with basalt and clastic matrices, and subannular tuff ring and maar-fill sedimentary deposits associated with vents. The tephra and maar-fill deposits, which are covered by ~485 to 910 m (~1,600–3,000 ft) of basin fill, lie on a mid-Tertiary erosion surface of Middle Proterozoic granite and Late Cretaceous porphyry, which compose most xenoliths in pipes and are the host rocks of the system. Some igneous xenoliths in the pipes contain bornite-chalcopyrite-covellite assemblages with hypogene grades >1 wt % Cu, 0.01 ounces per ton (oz/t) Au, 0.5 oz/t Ag, and small amounts of Mo (<0.01 wt %). These xenoliths were derived from mineralized rocks that have not been encountered in drill holes, and attest to additional, possibly higher-grade deposits within or subjacent to the known system.The geometry, stratigraphy, and temporal relationships of pipes and tephras, interpreted from drill hole spacing and intercepts, multigenerational breccias and matrices, reequilibrated and partially decomposed sulfide-oxide mineral assemblages, melted xenoliths, and breccia matrix compositions show that the diatremes formed in repeated stages. Initial pulses of basalt magma fractured granite, porphyry, and other crustal rocks during intrusion, transported multi-sized fragments of these rocks upward, and partially melted small fragments. Rapid decompression of magma induced catastrophic devolatilization that ruptured overlying rocks to the surface, and generated fragment-volatile suspensions that abraded conduits into near-vertical cylindrical structures. Fragments entrained in suspensions were milled and sorted, and ejected as basal surge, pyroclastic deposits, and airfall tephra that built tuff rings around vents and filled vent depressions. Comminuted m- to mm-sized fragments of wall rocks in magma and suspensions that remained in conduits solidified as heterolithic breccias. Subsequent pulses of basalt magma ascended through the same conduits, brecciated older heterolithic breccias, devolatilized, and quenched, leaving two or more generations of nested and mingled heterolithic breccias and internal zones of fluidized fragments. Tephra and maar-fill deposits from later eruptions are composed of more hydrous and oxidized minerals than earlier tephras, reflecting a higher proportion of water in transport fluid which, based on fluid inclusion populations in mineralized xenoliths, was saline water and CO2. The large vertical extent (~600 m; ~2,000 ft) of basalt matrix in pipes, near-paleosurface matrix vesiculation, and plastically deformed basalt lapilli indicates that diatreme eruptions were predominantly phreatic.Diatreme xenoliths represent crustal stratigraphy and, as in the Santa Cruz system, provide evidence of concealed mineral resources that can guide exploration drilling through cover. Vectors to the source of bornite-dominant xenoliths containing >1% Cu and significant Au and Ag could be determined by refinement of breccia pipe geometries, by reassembly of mineralized fault blocks using modal, chemical, and temporal characteristics of hydrothermal mineral assemblages and fluid inclusions, and by paleodrainage analysis.
Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motriuk, R.W.; Harvey, D.P.
1998-08-01
High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less
NASA Astrophysics Data System (ADS)
Muggleton, J. M.; Rustighi, E.; Gao, Y.
2016-09-01
Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.
A study of buried pipeline response to fault movement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiou, Y.J.; Chi, S.Y.; Chang, H.Y.
1994-02-01
This study investigates the buried pipeline response to strike slip fault movement. The large deflection pipe crossing the fault zone is modeled as an elastica, while the remaining portion of small deflection pipe is modeled as a semi-infinite beam on elastic foundation. The finite difference method is applied for the numerical solution and the results agree qualitatively with the earlier works.
Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage
NASA Astrophysics Data System (ADS)
Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.
2018-02-01
The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.
Transient thermohydraulic heat pipe modeling
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, Joseph M.
Many space based reactor designs employ heat pipes as a means of conveying heat. In these designs, thermal radiation is the principle means for rejecting waste heat from the reactor system, making it desirable to operate at high temperatures. Lithium is generally the working fluid of choice as it undergoes a liquid-vapor transformation at the preferred operating temperature. The nature of remote startup, restart, and reaction to threats necessitates an accurate, detailed transient model of the heat pipe operation. A model is outlined of the vapor core region of the heat pipe which is part of a large model of the entire heat pipe thermal response. The vapor core is modeled using the area averaged Navier-Stokes equations in one dimension, which take into account the effects of mass, energy and momentum transfer. The core model is single phase (gaseous), but contains two components: lithium gas and a noncondensible vapor. The vapor core model consists of the continuity equations for the mixture and noncondensible, as well as mixture equations for internal energy and momentum.
Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes
NASA Technical Reports Server (NTRS)
Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.
1976-01-01
The paper discusses the production concept and efficiency of two new energy transmission and storage media intended to overcome the disadvantages of electricity as an overall energy carrier. These media are hydrogen produced by water-splitting and the chemical heat pipe. Hydrogen can be transported or stored, and burned as energy is needed, forming only water and thus obviating pollution problems. The chemical heat pipe envisions a system in which heat is stored as the heat of reaction in chemical species. The thermodynamic analysis of these two methods is discussed in terms of first-law and second-law efficiency. It is concluded that chemical heat pipes offer large advantages over thermochemical hydrogen generation schemes on a first-law efficiency basis except for the degradation of thermal energy in temperature thus providing a source of low-temperature (800 K) heat for process heat applications. On a second-law efficiency basis, hydrogen schemes are superior in that the amount of available work is greater as compared to chemical heat pipes.
[Experimental study on particle size distributions of an engine fueled with blends of biodiesel].
Lu, Xiao-Ming; Ge, Yun-Shan; Han, Xiu-Kun; Wu, Si-Jin; Zhu, Rong-Fu; He, Chao
2007-04-01
The purpose of this study is to obtain the particle size distributions of an engine fueled biodiesel and its blends. A turbocharged DI diesel engine was tested on a dynamometer. A pump of 80 L/min and fiber glass filters with diameter of 90 mm were used to sample engine particles in exhaust pipe. Sampling duration was 10 minutes. Particle size distributions were measured by a laser diffraction particle size analyzer. Results indicated that higher engine speed resulted in smaller particle sizes and narrower distributions. The modes on distribution curves and mode variation were larger with dry samples than with wet samples (dry: around 10 - 12 microm vs. wet: around 4 - 10 microm). At low speed, Sauter mean diameter d32 of dry samples was the biggest with B100, the smallest with diesel fuel, and among them with B20, while at high speed, d32 the biggest with B20, the smallest with B100, and in middle with diesel. Median diameter d(0.5) also reflected the results. Except for 2 000 r/min, d32 of wet with B20 is the biggest, the smallest with diesel, and in middle with B100. The large mode variation resulted in increase of d32.
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin
1988-01-01
A wick for use in a capillary loop pump heat pipe is described. The wick material is an essentially uniformly porous, permeable, open-cell, polyethylene thermoplastic foam having an ultrahigh average molecular weight of from approximately 1 to 5 million, and an average pore size of about 10 to 12 microns. A representative material having these characteristics is POREX UF, which has an average molecular weight of about 3 million. This material is fully compatible with the FREONs and anhydrous ammonia and allows for the use of these very efficient working fluids in capillary loops.
Economics of PPP-insulated pipe-type cable: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, A.
1987-10-01
This study has been designed to establish the economic range of application and the potential cost advantage of PPP-insulated pipe-type cable compared with presently utilized paper-insulated designs. The study is in two parts. In the first part the electrical and thermal characteristics of a range of cable sizes are tabulated. This data can be utilized for planning and economic comparison purposes. In the second part 12 transmission load scenarios are studied to determine the relative cost of various designs considering materials, installation and the losses over a wide range of assumptions.
Resonator coiling in thermoacoustic engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.R.; Swift, G.W.
1995-11-01
Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.
Alternative acceptance criteria of girth weld defects in cross country pipelines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Lefevre, T.
1997-06-01
The failure behaviour of defective girth welds in large diameter pipe lines was assessed using radiographic and mechanised ultrasonic inspection, small scale (tensile, hardness, Charpy and CTOD) and wide plate tests. The specimens were taken from girth welds in API 5LX70 pipe of 1219 mm (48 inches) in diameter by 8,0 mm (0,323 inch) and 13,3 mm (0,524 inch) wall. The test welds were made with the SMAW (8 welds) and GMAW (9 welds) welding processes. Upon completion of the non-destructive tests, 96 curved wide plate specimens were tested to destruction under tensile load. Testing was performed at low temperaturemore » (-50{degrees}C/-58{degrees}F). Defect type, defect position and size were determined from photographs of the fracture face and macro sections (defect characterisation and sizing). In total, 290 typical surface breaking and embedded defects in SMAW or GMAW girth welds have been evaluated. The vast majority of these defects were grossly out of tolerance with respect to current weld quality (workmanship) acceptance levels. To allow the defect tolerance to be determined, the failure strains and stresses were correlated with a defect length determined for an equivalent 3 mm (0, 118 inch) deep defect. This target depth was chosen to represent the average height of one weld pass. The results of this approach have been compared to wall thickness, current workmanship and the EPRG Tier 2 defect limit for planar defects. The defect lengths were derived for rectangular, parabolic and elliptical defect representations.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... following data: (1) The name or identifying trademark of the manufacturer. (2) Manufacturer's design or type number. (3) Size __ inches. (The pipe size of the valve inlet). (4) Set pressure __ p.s.i. (5) Rated capacity __ cubic feet per minute of the gas or vapor (at 60 °F. and 14.7 p.s.i.a.). (6) Coast Guard...
Code of Federal Regulations, 2010 CFR
2010-10-01
... following data: (1) The name or identifying trademark of the manufacturer. (2) Manufacturer's design or type number. (3) Size __ inches. (The pipe size of the valve inlet). (4) Set pressure __ p.s.i. (5) Rated capacity __ cubic feet per minute of the gas or vapor (at 60 °F. and 14.7 p.s.i.a.). (6) Coast Guard...
NASA Astrophysics Data System (ADS)
Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin
2018-04-01
Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.
24 CFR 3280.609 - Water distribution systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and temperature relief valve installed for this purpose shall have the temperature sensing element...) Size of branch. Start at the most remote outlet on any branch of the hot or cold water piping and...
Nonlinear elastic instability in channel flows at low Reynolds numbers.
Pan, L; Morozov, A; Wagner, C; Arratia, P E
2013-04-26
It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.
Assessing the efficiency of different CSO positions based on network graph characteristics.
Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W
2013-01-01
The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.
The "Long Pipe" in CICLoPE: A Design for Detailed Turbulence Measurements
NASA Astrophysics Data System (ADS)
Talamelli, A.; Bellani, G.; Rossetti, A.
A new facility to study high Reynolds number wall bounded turbulent flow has been designed. It will be installed in the laboratory of Center for International Collaboration on Long Pipe Experiments "CICLoPE" in Predappio (Italy). The facility consists of a large pipe, allowing to reach high Reynolds numbers, where all turbulent scales can be resolved with standard measurement techniques. The pipe operates with air at ambient conditions with a maximum speed of 60 m/s in order to avoid any compressibility effect. In order to maintain stable conditions over long period of time the pipe is part of a close loop circuit. The pipe will be located in a tunnel 60 m underground, thus ensuring very low level of external perturbations. The layout resembles an ordinary wind tunnel where the main difference is the long test section, which produces most of the friction losses. This requires the use of a multiple stage axial fan driven by two independent motors. Even though many of the various aerodynamic components are similar to those ordinary used in wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have been designed aiming at obtaining a very good quality of the flow and minimizing the overall pressure losses.
Watts, John D.
2003-06-17
Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.
Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator
NASA Astrophysics Data System (ADS)
Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.
2014-01-01
This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.
Flow-permeability feedbacks and the development of segregation pipes in volcanic materials
NASA Astrophysics Data System (ADS)
Rust, Alison
2014-05-01
Flow and transformation in volcanic porous media is important for the segregation of melts and aqueous fluids from magmas as well as elutriation of fine ash from pyroclastic flows and vents. The general topic will be discussed in the framework of understanding sets of vertical pipes found in two very different types of volcanic deposits: 1) vesicular (bubbly) cylinders in basalt lava flows and 2) gas escape pipes in pyroclastic flow deposits. In both cases the cylinders can be explained by a flow-permeability feedback where perturbations in porosity and thus permeability cause locally higher flow speeds that in turn locally increase the permeability. For vesicular cylinders in lava flows, the porous medium is a framework of crystals within the magma. Above a critical crystallinity, which depends on the shape and size distribution of the crystals, the crystals form a touching framework. As the water-saturated magma continues to cool, it crystallizes anhydrous minerals, resulting in the exsolution of water vapour bubbles that can drive flow of bubbly melt through the crystal network. It is common to find sets of vertical cylinders of bubby melt in solidified lava flows, with compositions that match the residual melt from 35-50% crystallization of the host basalt. These cylinders resemble chimneys in experiments of crystallising ammonium chloride solution that are explained by reactive flow with porous medium convection. The Rayleigh number for the magmatic case is too low for convection but the growth of steam bubbles as the magma crystallizes induces pore fluid flow up through the permeable crystal pile even if there is no convective instability. This bubble-growth-driven upward flow is reactive and can lead to channelization because of a feedback between velocity and permeability. For the gas escape pipes in pyroclastic flows, the porous medium is a very poorly sorted granular material composed of fragments of solid magma with a huge range of grain sizes from ash (microns to 2 mm) to clasts of decimeters or greater. The vertical gas escape pipes are distinguished from the surrounding pyroclastic flow deposit by the lack of fine ash in the pipes; this missing ash was transported up out of the pyroclastic flow by gas flow, a process called elutriation. Laboratory experiments with beds of binary mixtures of spheres aerated through a porous plate at the base, demonstrate that the size ratio, density ratio, and proportions of the two populations of spheres all affect the pattern and efficiency of segregation. Decompaction of the upper portion of the bed separates the grains and thus facilitated the elutriation of the finer particles, which must be transported up through the spaces between the larger particles. A variety of segregation feature are found including pipes lacking fines that grow down from the top of the bed. These could be explained by channelizing of gas flow due to a feedback between local reduction in fines increasing the local permeability and gas velocity.
Statespace geometry of puff formation in pipe flow
NASA Astrophysics Data System (ADS)
Budanur, Nazmi Burak; Hof, Bjoern
2017-11-01
Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.
NASA Astrophysics Data System (ADS)
Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.
SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.
Seismic Design of ITER Component Cooling Water System-1 Piping
NASA Astrophysics Data System (ADS)
Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.
2017-04-01
The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.
Turner, J A McM; Sillett, R W; McNicol, M W
1977-01-01
Five ex-cigarette smokers and five primary pipe and cigar smokers each smoked a large cigar. Carboxyhaemoglobin (COHb) and plasma nicotine levels were measured. In the ex-cigarette smokers mean COHb rose from 2·9% to 9·6% and plasma nicotine from 79·0 nmol/l to 281 nmol/l (12·8-45·6 ng/ml). This response was similar to that of cigarette smokers smoking cigarettes, which indicated that the subjects had inhaled and absorbed significant amounts of nicotine. In the primary pipe and cigar smokers the mean COHb rose from 0·8% to 1·0% and the plasma nicotine from 21 nmol/l to 32 nmol/l (3·4-5·2 ng/ml), indicating neither significant inhalation nor significant nicotine absorption. Since ex-cigarette smokers do not seem to lose their habit of inhaling when they change to cigars, measures aimed at persuading smokers to switch to cigars will have little effect on their health. Pipe and cigar smokers who have never smoked cigarettes do not inhale, which probably accounts for their reduced incidence of coronary heart disease and lung cancer. But they also appear not to absorb nicotine, which suggests that nicotine is absorbed largely from the lung and that the buccal mucosa is unimportant. It also raises the interesting question of why primary pipe and cigar smokers do smoke. PMID:589225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.; Kameyama, M.; Urabe, Y.
At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel thanmore » for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.« less
Infrasound-array-element frequency response: in-situ measurement and modeling
NASA Astrophysics Data System (ADS)
Gabrielson, T.
2011-12-01
Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command
NASA Astrophysics Data System (ADS)
Zhao, Rui; Gu, Junjie; Liu, Jie
2015-01-01
An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brickstad, B.; Bergman, M.
A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presentedmore » for cracked pipes subjected to both stress corrosion and vibration fatigue.« less
Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig
2000-01-01
This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.
Vapor Flow Patterns During a Start-Up Transient in Heat Pipes
NASA Technical Reports Server (NTRS)
Issacci, F.; Ghoniem, N, M.; Catton, I.
1996-01-01
The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.
Guided wave attenuation in coated pipes buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.
2016-02-01
Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.
Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.
You, Borwen; Lu, Ja-Yu
2016-08-08
The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.
49 CFR 195.266 - Construction records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rejected weld. (b) The amount, location; and cover of each size of pipe installed. (c) The location of each... overhead crossing. (f) The location of each valve and corrosion test station. [Amdt. 195-22, 46 FR 38360...
24 CFR 3280.611 - Vents and venting.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...
24 CFR 3280.611 - Vents and venting.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...
NASA Astrophysics Data System (ADS)
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2016-04-01
This contribution describes a feasibility study carried out in the laboratory for the detection of leakages in lake pressure pipes using high-resolution fiber-optic temperature measurements (DTS). The usage of the DTS technology provides spatiotemporal high-resolution temperature measurements along a fibre optic cable. An opto-electrical device serves both as a light emitter as well as a spectrometer for measuring the scattering of light. The fiber optic cable serves as linear sensor. Measurements can be taken at a spatial resolution of up to 25 cm with a temperature accuracy of higher than 0.1 °C. The first warmer days after the winter stagnation provoke a temperature rise of superficial layers of lakes with barely stable temperature stratification. The warmer layer in the epilimnion differs 4 °C to 5 °C compared to the cold layers in the meta- or hypolimnion before water circulation in spring starts. The warmer water from the surface layer can be rinsed on the entire length of the pipe. Water intrudes at leakages by generating a slightly negative pressure in the pipe. This provokes a local temperature change, in case that the penetrating water (seawater) differs in temperature from the water pumped through the pipe. These temperature changes should be detectable and localized with a DTS cable introduced in the pipe. A laboratory experiment was carried out to determine feasibility as well as limits and problems of this methodology. A 6 m long pipe, submerged in a water tank at constant temperature, was rinsed with water 5-10 °C warmer than the water in the tank. Temperature measurements were taken continuously along the pipe. A negative pressure of 0.1 bar provoked the intrusion of colder water from the tank into the pipe through the leakages, resulting in local temperature changes. Experiments where conducted with different temperature gradients, leakage sizes, number of leaks as well as with different positioning of the DTS cable inside the pipe. Results showed that already small leakages (4mm) can be detected. Problems have arisen from the inside positioning of DTS cable, measuring a reduced temperature difference in the transition layer at the inside wall of the pipe.
NASA Astrophysics Data System (ADS)
Hruschka, R.; Klatt, D.
2018-03-01
The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.
The stationary flow in a heterogeneous compliant vessel network
NASA Astrophysics Data System (ADS)
Filoche, Marcel; Florens, Magali
2011-09-01
We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, R.; Malekian, C.; Meessen, O.
The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports inmore » the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.« less
Experimental apparatus to test air trap valves
NASA Astrophysics Data System (ADS)
Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.
2010-08-01
It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.
NASA Astrophysics Data System (ADS)
Jiao, Xue; Yang, Bo
2017-10-01
To study the lightning electromagnetic pulse (LEMP) coupling and protection problems of shielding enclosure with penetrating wire, we adopt the model with proper size which is close to the practical engineering and the two-step finite-difference time-domain (FDTD) method is used for calculation in this paper. It is shown that the coupling voltage on the circuit lead inside the enclosure increases about 34 dB, when add 1.0 m long penetrating wire at the aperture, comparing with the case without penetrating wire. Meanwhile, the waveform, has the same wave outline as the lightning current source, shows that the penetrating wire brings a large number of low frequency component into the enclosure. The coupling effect in the enclosure will reduce greatly when penetrating wire has electrical connection with the enclosure at the aperture and the coupling voltage increase only about 12 dB than the case without penetrating wire. Moreover, the results show that though the waveguide pipe can reduce the coupling effect brought by the penetrating wire, the exposing part of penetrating wire can increase the coupling when the penetrating wire outside the enclosure is longer than the waveguide pipe and the longer the exposing part is, the stronger the coupling is.
NASA Astrophysics Data System (ADS)
Szarf, Krzysztof; Combe, Gael; Villard, Pascal
2015-02-01
The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.
Qualification of coolants and cooling pipes for future high-energy-particle detectors
NASA Astrophysics Data System (ADS)
Ilie, Sorin; Tavlet, Marc
2001-12-01
In the next generation of high-energy-particle detectors to be installed at the Large Hadron Collider (LHC) at CERN, materials and components will be exposed to a significant level of ionising radiation. Silicon detectors and related electronics will have to be cooled down to -20 °C and therefore appropriate cooling fluids and cooling pipes have to be selected. Analytical methods such as UV-visible and FT-IR spectrometries, electronic microscopy and gas chromatography were used to characterise the radiation-induced effects on some organic coolants irradiated with both gamma and neutron fields. Some impurities were identified as a major source for radio-induced polymerisation and also for hydrofluoric acid (HF) evolution. Mechanical tests were performed to assess the operability of the rubber hoses and plastic pipes. Possible synergistic effects between the pipe material and the environment had to be considered.
A high performance cocurrent-flow heat pipe for heat recovery applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hartl, J. C.
1980-01-01
By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.
Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications
NASA Technical Reports Server (NTRS)
Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.
2016-01-01
Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.
NASA Astrophysics Data System (ADS)
Frend, Chauncey; Boyles, Michael
2015-03-01
This paper describes an environmental feedback device (EFD) control system aimed at simplifying the VR development cycle. Programmable Immersive Peripheral Environmental System (PIPES) affords VR developers a custom approach to programming and controlling EFD behaviors while relaxing the required knowledge and expertise of electronic systems. PIPES has been implemented for the Unity engine and features EFD control using the Arduino integrated development environment. PIPES was installed and tested on two VR systems, a large format CAVE system and an Oculus Rift HMD system. A photocell based end-to-end latency experiment was conducted to measure latency within the system. This work extends previously unpublished prototypes of a similar design. Development and experiments described in this paper are part of the VR community goal to understand and apply environment effects to VEs that ultimately add to users' perceived presence.
Advanced space solar dynamic receivers
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.
1988-01-01
A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.
Critical parameters for coarse coal underground slurry haulage systems
NASA Technical Reports Server (NTRS)
Maynard, D. P.
1981-01-01
Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.
Aqueous Solution Heat Pipe Transport: Qu-Tube vs. Capillary-Pumped Heat Pipe
2013-07-01
independently of gravity , exhibit very high conductivity, work over large distances and temperature ranges, and operate at a lower pressure than...tubes” or “Qu-tubes.” These purportedly superior tubes were claimed to have such desirable qualities as entirely dry operation, gravity -independence... gravity -dependent. Our detailed and quantitative findings suggest that the devices we purchased are not revolutionary in performance, and may in fact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.
Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)
1989-01-01
A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.
Degradation of homogeneous polymer solutions in high shear turbulent pipe flow
NASA Astrophysics Data System (ADS)
Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.
2009-12-01
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
A permanently installed guided wave system for pipe monitoring
NASA Astrophysics Data System (ADS)
Galvagni, Andrea; Cawley, Peter
2012-04-01
Ultrasonic guided waves are routinely used to inspect pipes. The advantage of this technique is that it enables a fullyvolumetric screening of several metres of pipe from a single transducer location, resulting in substantial time and cost savings. However, it suffers from limitations such as relatively low damage sensitivity and difficulties in dealing with intricate pipe networks; furthermore, for a pipe that is buried, submerged or high up in a plant, access to even a single point can be prohibitively expensive. The use of permanently attached sensors can overcome these limitations since access needs to be obtained only once during installation and they enable the use of baseline subtraction, so that any reading from a sensor can be compared to previous readings. This paper discusses the advantages of baseline subtraction and the challenge of compensating for signal changes due to effects other than the growth of damage. It is shown that the use of baseline subtraction allows significant damage sensitivity improvements, particularly in the vicinity of large reflectors. Data from four years of field experience is backed up by accelerated laboratory testing.
Urinary nicotine concentrations in cigarette and pipe smokers.
Wald, N J; Idle, M; Boreham, J; Bailey, A; Van Vunakis, H
1984-01-01
Urinary concentrations of nicotine were studied in men who did not smoke (27) and in men who smoked cigarettes only (145) or pipes only (48). The median urinary nicotine concentrations were less than 50 ng/ml (the detection limit of the assay for urine tests) in the non-smokers, 1393 ng/ml in the cigarette smokers, and 1048 ng/ml in the pipe smokers. These values were standardised for urinary pH and creatinine concentration to allow for the fact that nicotine excretion is influenced by the acidity of the urine and by urinary flow rate. The high urinary nicotine concentrations in the pipe and cigarette smokers indicated that both types of smoker have relatively high systemic nicotine concentrations. This observation, together with the fact that large prospective studies have shown that pipe smokers have no material excess risk of coronary heart disease whereas cigarette smokers do, provides evidence that nicotine is unlikely to be the major cause of the excess deaths from coronary heart disease in cigarette smokers. This conclusion is consistent with earlier observations based on serum cotinine concentrations in smokers and non-smokers. PMID:6740539
Modelling and simulation of heat pipes with TAIThermIR (Conference Presentation)
NASA Astrophysics Data System (ADS)
Winkelmann, Max E.
2016-10-01
Regarding thermal camouflage usually one has to reduce the surface temperature of an object. All vehicles and installations having a combustion engine usually produce a lot of heat with results on hot spots on the surface which are highly conspicuous. Using heat pipes to transfer this heat to another place on the surface more efficiently might be a way to reduce those hotspots and the overall conspicuity. In a first approach, a model for the Software TAIThermIR was developed to test which parameters of the heat pipes are relevant and what effects can be achieved. It will be shown, that the thermal resistivity of contact zones are quite relevant and the thermal coupling of the engine (source of heat) defines if the alteration of the thermal signature is large or not. Furthermore the impact of the use of heat pipes in relation to surface material is discussed. The influence of different weather scenarios on the change of signatures due to the use of heat pipes is of minor relevance and depends on the choice of the surface material. Finally application issues for real systems are discussed.
NASA Astrophysics Data System (ADS)
Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.
2013-01-01
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Factors affecting economies of scale in combined sewer systems.
Maurer, Max; Wolfram, Martin; Anja, Herlyn
2010-01-01
A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Makoto; Nakagawa, Akira; Chujo, Noriyuki
1996-12-01
Rotating bending fatigue tests were conducted on socket welded joints of a nominal diameter 20 mm, and effects of root defect and other various factors, including post-weld heat treatment (PWHT), pipe wall thickness, and socket wall thickness, were investigated. The socket joints exhibited, in the rotating bending fatigue mode, fatigue strengths that were markedly lower than the same 20 mm diameter joints in four-point bending fatigue. Also, where the latter specimens failed always at the toe, root-failures occurred in rotating bending fatigue. When PWHT`d, however, the fatigue strength showed a remarkable improvement, while the failure site reverted to toe. Thickermore » pipe walls and socket walls gave rise to higher fatigue strength. A formula relating the size of root defects to the fatigue strength reduction has been proposed.« less
How to recycle asbestos containing materials (ACM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.
The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminatedmore » ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Martin, J.T.
1995-02-01
Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, amore » series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.« less
Procedures, considerations for welding X-80 line pipe established
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillenbrand, H.G.; Niederhoff, K.A.; Hauck, G.
1997-09-15
The possibility of manufacturing and laying high-strength Grade X-80 (GRS 550) linepipe has been proven in large projects that have already been implemented. Two welding methods for pipeline construction are well established: manual deposition of root and hot passes with cellulosic electrodes and of filler and cap passes with basic vertical-down electrodes (combined-electrode welding) and mechanized-gas-metal arc welding (GMAW). This is also true for the welding consumables, which have been well-tuned to match the pipe material in strength. The pipe material is suitable for unrestricted use in onshore and offshore applications. The paper discusses higher grades, composition, weldability, welding methods,more » and economics.« less
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, Gareth W.
1989-01-01
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.
Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?
Metje, Nicole; Chapman, David N.; Cheneler, David; Ward, Michael; Thomas, Andrew M.
2011-01-01
Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods. PMID:22164027
Nordin, Carl F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Delaney, B.M.
1979-01-01
One-hundred-eight samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil , and Iquitos, Peru. Samples were taken with a standard BM-54 sampler or with pipe dredges from May 18 to June 5, 1977. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated. (Woodard-USGS)
Nordin, Carl F.; Meade, R.H.; Mahoney, H.A.; Delany, B.M.
1977-01-01
Sixty-five samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil, and Iquitos, Peru. Samples were taken with a standard BM-54 sampler, a pipe dredge, or a Helley-Smith bedload sampler. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated.
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
49 CFR 192.183 - Vaults: Structural design requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maintained. (c) Each pipe entering, or within, a regulator vault or pit must be steel for sizes 10 inch (254... vault or pit structure, provision must be made to prevent the passage of gases or liquids through the...
Ultrasonic multi-skip tomography for pipe inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno; Zon, Tim van
The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, butmore » it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm.« less
Komeiji, Y; Yokoyama, H; Uebayasi, M; Taiji, M; Fukushige, T; Sugimoto, D; Takata, R; Shimizu, A; Itsukashi, K
1996-01-01
GRAPE (GRavity PipE) processors are special purpose computers for simulation of classical particles. The performance of MD-GRAPE, one of the GRAPEs developed for molecular dynamics, was investigated. The effective speed of MD-GRAPE was equivalent to approximately 6 Gflops. The precision of MD-GRAPE was good judging from the acceptable fluctuation of the total energy. Then a software named PEACH (Program for Energetic Analysis of bioCHemical molecules) was developed for molecular dynamics of biomolecules in combination with MD-GRAPE. Molecular dynamics simulation was performed for several protein-solvent systems with different sizes. Simulation of the largest system investigated (27,000 atoms) took only 5 sec/step. Thus, the PEACH-GRAPE system is expected to be useful in accurate and reliable simulation of large biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poloski, Adam P.; Adkins, Harold E.; Abrefah, John
The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication ofmore » slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.« less
NASA Astrophysics Data System (ADS)
Wu, Qiujie; Tan, Liu; Xu, Sen; Liu, Dabin; Min, Li
2018-04-01
Numerous accidents of emulsion explosive (EE) are attributed to uncontrolled thermal decomposition of ammonium nitrate emulsion (ANE, the intermediate of EE) and EE in large scale. In order to study the thermal decomposition characteristics of ANE and EE in different scales, a large-scale test of modified vented pipe test (MVPT), and two laboratory-scale tests of differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC) were applied in the present study. The scale effect and water effect both play an important role in the thermal stability of ANE and EE. The measured decomposition temperatures of ANE and EE in MVPT are 146°C and 144°C, respectively, much lower than those in DSC and ARC. As the size of the same sample in DSC, ARC, and MVPT successively increases, the onset temperatures decrease. In the same test, the measured onset temperature value of ANE is higher than that of EE. The water composition of the sample stabilizes the sample. The large-scale test of MVPT can provide information for the real-life operations. The large-scale operations have more risks, and continuous overheating should be avoided.
Ultrasonic isolation of buried pipes
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2016-02-01
Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.
Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors
NASA Astrophysics Data System (ADS)
Singh, J. L.; Kumar, Umesh; Kumawat, N.; Kumar, Sunil; Kain, Vivekanand; Anantharaman, S.; Sinha, A. K.
2012-10-01
Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS#2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.
The algorithm of verification of welding process for plastic pipes
NASA Astrophysics Data System (ADS)
Rzasinski, R.
2017-08-01
The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.
NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Blackstone
1996-01-25
The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows throughmore » the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.« less
NASA Astrophysics Data System (ADS)
Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel
2018-06-01
The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.
Reeled pipelay cost reduction using workboat-based installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, J.G.; El Laithy, W.F.; Rothberg, R.H.
1995-11-01
Coiled ``tubing`` is a rapidly growing pipeline technology. because this technology is relatively new, cost can vary significantly depending on deployment strategies and installation techniques. Up until recently coiled pipe was used primarily by service companies for coiled tubing workovers. As the technology expanded the industry began using coiled tubing for other applications such as drilling, coring, logging, well cleanout operations and artificial lift. With the recent advent of larger sizes, three and one half inches, it was now possible to consider using coiled tubing as pipelines. The coiled pipe was proving to be a low cost, time saving, economicmore » alternative to conventional welded pipe for flowlines. Coiled pipe applications have been used in 4 to 100 feet of water in the Gulf of Mexico area and the installation techniques have varied significantly. Considerable engineering work has been done in preparation for GUPCO`s first dynamic lay installation for a subsea well tie-in on Ramadan 22. Subsequently GUPCO installed the worlds longest known coiled pipeline on SB 367. This paper will cover the significant findings of that engineering work and present actual field case histories on Egypt`s first two coiled pipeline projects.« less
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
NASA Astrophysics Data System (ADS)
Cas, R. A. F.; Hayman, P.; Pittari, A.; Porritt, L.
2008-06-01
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.
Hydrothermal alteration of kimberlite by convective flows of external water.
Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.
Noise generated by flow through large butterfly valves
NASA Technical Reports Server (NTRS)
Huff, Ronald G.
1987-01-01
A large butterfly valve (1.37 m diam) was acoustically tested to measure the noise generated and propagating in both the upstream and downstream directions. The experimental investigation used wall mounted pressure transducers to measure the fluctuating component of the pipe static pressure upstream and downstream of the valve. Microphones upstream of the pipe inlet and located in a plenum were used to measure the noise radiated from the valve in the upstream direction. Comparison of the wall pressure downstream of the valve to a prediction were made. Reasonable agreement was obtained with the valve operating at a choked condition. The noise upstream of the valve is 30 dB less than that measured downstream.
NASA Astrophysics Data System (ADS)
Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.
2017-07-01
The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.
Innovative Corrosion-Resistant Coatings for Heat Distribution Piping at Fort Jackson
2007-06-01
installations are served by district heat distribution sys- tems (HDSs) that provide space heating and hot water to the facilities. HDSs are large, complex...corrosive to exposed steel. Furthermore, water tends to infiltrate the manhole from outside or though pinhole leaks in pipes. When water collects in the man...energized. A typical HDS services a number of installa- tion customers all year for both space heating and domestic hot water . Scheduled maintenance is
OTEC cold water pipe design for problems caused by vortex-excited oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, O. M.
1980-03-14
Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given asmore » examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.« less
Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro
2013-01-01
Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.
NASA Astrophysics Data System (ADS)
Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian
Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.
Distribution of carboxyhaemoglobin concentrations in smokers and non-smokers.
Turner, J A; McNicol, M W; Sillett, R W
1986-01-01
Carboxyhaemoglobin concentrations were measured in 3487 subjects comprising 1255 non-smokers, 1933 cigarette smokers, 193 cigar smokers (39 primary, 154 secondary), and 106 pipe smokers (30 primary, 76 secondary). In cigarette smokers the mean carboxyhaemoglobin concentration was 4.78% of the total haemoglobin and 94.7% of smokers had a concentration greater than 1.7%. Primary cigar smokers had a much lower mean carboxyhaemoglobin concentration (0.93%), and only 10.3% had concentrations greater than 1.7%. Primary pipe smokers also had a low mean carboxyhaemoglobin concentration (1.36%) and none had a concentration above 1.7%. Secondary cigar smokers had a high mean concentration (6.80%) and 97.4% had values above 1.7%; the findings in secondary pipe smokers were similar--the mean concentration was 3.39%, 94.7% having values greater than 1.7%. The lower carboxyhaemoglobin concentrations in primary pipe and cigar smokers suggest that in general they do not inhale, and the raised concentrations in cigarette smokers who change to pipes or cigars suggest that they usually continue to inhale and to absorb large amounts of carbon monoxide and other constituents of tobacco smoke. PMID:3704963
NASA Astrophysics Data System (ADS)
Wang, Haibo; Swee Poo, Gee
2004-08-01
We study the provisioning of virtual private network (VPN) service over WDM optical networks. For this purpose, we investigate the blocking performance of the hose model versus the pipe model for the provisioning. Two techniques are presented: an analytical queuing model and a discrete event simulation. The queuing model is developed from the multirate reduced-load approximation technique. The simulation is done with the OPNET simulator. Several experimental situations were used. The blocking probabilities calculated from the two approaches show a close match, indicating that the multirate reduced-load approximation technique is capable of predicting the blocking performance for the pipe model and the hose model in WDM networks. A comparison of the blocking behavior of the two models shows that the hose model has superior blocking performance as compared with pipe model. By and large, the blocking probability of the hose model is better than that of the pipe model by a few orders of magnitude, particularly at low load regions. The flexibility of the hose model allowing for the sharing of resources on a link among all connections accounts for its superior performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J. R.; Carmichael, J. R.; Gebhart, T. E.
Injection of multiple large (~10 to 30 mm diameter) shattered pellets into ITER plasmas is presently part of the scheme planned to mitigate the deleterious effects of disruptions on the vessel components. To help in the design and optimize performance of the pellet injectors for this application, a model referred to as “the gas gun simulator” has been developed and benchmarked against experimental data. The computer code simulator is a Java program that models the gas-dynamics characteristics of a single-stage gas gun. Following a stepwise approach, the code utilizes a variety of input parameters to incrementally simulate and analyze themore » dynamics of the gun as the projectile is launched down the barrel. Using input data, the model can calculate gun performance based on physical characteristics, such as propellant-gas and fast-valve properties, barrel geometry, and pellet mass. Although the model is fundamentally generic, the present version is configured to accommodate cryogenic pellets composed of H2, D2, Ne, Ar, and mixtures of them and light propellant gases (H2, D2, and He). The pellets are solidified in situ in pipe guns that consist of stainless steel tubes and fast-acting valves that provide the propellant gas for pellet acceleration (to speeds ~200 to 700 m/s). The pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event. The calculated speeds from the code simulations of experiments were typically in excellent agreement with the measured values. With the gas gun simulator validated for many test shots and over a wide range of physical and operating parameters, it is a valuable tool for optimization of the injector design, including the fast valve design (orifice size and volume) for any operating pressure (~40 bar expected for the ITER application) and barrel length for any pellet size (mass, diameter, and length). Key design parameters and proposed values for the pellet injectors for the ITER disruption mitigation systems are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S. K.; Reed, J. R.; Lyttle, M. S.
2016-01-01
Injection of multiple large (~10 to 30 mm diameter) shattered pellets into ITER plasmas is presently part of the scheme planned to mitigate the deleterious effects of disruptions on the vessel components. To help in the design and optimize performance of the pellet injectors for this application, a model referred to as “the gas gun simulator” has been developed and benchmarked against experimental data. The computer code simulator is a Java program that models the gas-dynamics characteristics of a single-stage gas gun. Following a stepwise approach, the code utilizes a variety of input parameters to incrementally simulate and analyze themore » dynamics of the gun as the projectile is launched down the barrel. Using input data, the model can calculate gun performance based on physical characteristics, such as propellant-gas and fast-valve properties, barrel geometry, and pellet mass. Although the model is fundamentally generic, the present version is configured to accommodate cryogenic pellets composed of H2, D2, Ne, Ar, and mixtures of them and light propellant gases (H2, D2, and He). The pellets are solidified in situ in pipe guns that consist of stainless steel tubes and fast-acting valves that provide the propellant gas for pellet acceleration (to speeds ~200 to 700 m/s). The pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event. The calculated speeds from the code simulations of experiments were typically in excellent agreement with the measured values. With the gas gun simulator validated for many test shots and over a wide range of physical and operating parameters, it is a valuable tool for optimization of the injector design, including the fast valve design (orifice size and volume) for any operating pressure (~40 bar expected for the ITER application) and barrel length for any pellet size (mass, diameter, and length). Key design parameters and proposed values for the pellet injectors for the ITER disruption mitigation systems are discussed.« less
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2017-12-01
The relations to calculate the maximum value of strains in processes of bending tubes on benders, in stretched layers of tubes, are presented in this work on the basis of the EU-Directive concerning production of pressure equipment. It has been shown that for large deformations that occur during bending of the pipes on knees, logarithmic strain measures (real) and relative strain measures give different values of strain but equal wall thicknesses in the bending zone. Logarithmic measures are frequently used in engineering practice and are valid for large and small deformations. Reverse expressions were also derived to calculate the required initial wall thickness of the tube to be bent, in order to obtain the desired wall thickness of the knee after bending.
Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes
NASA Astrophysics Data System (ADS)
Meniconi, S.; Brunone, B.; Ferrante, M.
2012-08-01
In view of scarcity of both experimental data and numerical models concerning transient behavior of cross-section area changes in pressurized liquid flow, the paper presents laboratory data and numerical simulation of the interaction of a surge wave with a partial blockage by a valve, a single pipe contraction or expansion and a series of pipe contraction/expansion in close proximity.With regard to a single change of cross-section area, laboratory data point out the completely different behavior with respect to one of the partially closed in-line valves with the same area ratio. In fact, for the former the pressure wave interaction is not regulated by the steady-state local head loss. With regard to partial blockages, transient tests have shown that the smaller the length, the more intense the overlapping of pressure waves due to the expansion and contraction in series.Numerically, the need for taking into account both the viscoelasticity and unsteady friction is demonstrated, since the classical water-hammer theory does not simulate the relevant damping of pressure peaks and gives rise to a time shifting between numerical and laboratory data. The transient behavior of a single local head loss has been checked by considering tests carried out in a system with a partially closed in-line valve. As a result, the reliability of the quasi steady-state approach for local head loss simulation has been demonstrated in viscoelastic pipes. The model parameters obtained on the basis of transients carried out in single pipe systems have then been used to simulate transients in the more complex pipe systems. These numerical experiments show the great importance of the length of the small-bore pipe with respect to one of the large-bore pipes. Precisely, until a gradually flow establishes in the small-bore pipe, the smaller such a length, the better the quality of the numerical simulation.
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
NASA Astrophysics Data System (ADS)
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
Surveillance of Nicotine and pH in Cigarette and Cigar Filler
Lawler, Tameka S.; Stanfill, Stephen B.; deCastro, B. Rey; Lisko, Joseph G.; Duncan, Bryce W.; Richter, Patricia; Watson, Clifford H.
2017-01-01
Objective We examined differences between nicotine concentrations and pH in cigarette and cigar tobacco filler. Methods Nicotine and pH levels for 50 cigarette and 75 cigar brands were measured. Non-mentholated and mentholated cigarette products were included in the analysis along with several cigar types as identified by the manufacturer: large cigars, pipe tobacco cigars, cigarillos, mini cigarillos, and little cigars. Results There were significant differences found between pH and nicotine for cigarette and cigar tobacco products. Mean nicotine concentrations in cigarettes (19.2 mg/g) and large cigars (15.4 mg/g) were higher than the other cigars types, especially the pipe tobacco cigars (8.79 mg/g). The mean pH for cigarettes was pH 5.46. Large cigars had the highest mean pH value (pH 6.10) and pipe tobacco cigars had the lowest (pH 5.05). Conclusions Although cigarettes are the most common combustible tobacco product used worldwide, cigar use remains popular. Our research provides a means to investigate the possibility of distinguishing the 2 tobacco product types and offers information on nicotine and pH across a wide range of cigarette and cigar varieties that may be beneficial to help establish tobacco policies and regulations across product types. PMID:28989950
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
Heat Transfer Study for HTS Power Transfer Cables
NASA Technical Reports Server (NTRS)
Augustynowicz, S.; Fesmire, J.
2002-01-01
Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.
Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khamlichi, A.; Jezequel, L.; Jacques, Y.
1995-11-01
Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less
Further experiments for mean velocity profile of pipe flow at high Reynolds number
NASA Astrophysics Data System (ADS)
Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.
2018-05-01
This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.
Evaluation of flaws in carbon steel piping. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahoor, A.; Gamble, R.M.; Mehta, H.S.
1986-10-01
The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less
NASA Astrophysics Data System (ADS)
Nazarimanesh, Meysam; Yousefi, Tooraj; Ashjaee, Mehdi
2016-07-01
In this study, the impact of Entrance Power and Silver nanofluid concentration (with base fluid ethanol and DI-water) on heat pipe thermal performance are considered. In order to reach the aim a U-shaped sintered heat pipe is utilized which causes occupied space to decline. The length of the heat pipe is 135 mm in each branch. On account of recognition the effect of working fluid on heat pipe thermal performance, thermal resistance and overall heat transfer coefficient in base working fluid and nano-colloidal silver are measured in the shape of thermosyphon. The working fluid is with volume percentages of 70 ethanol and 30 distilled water. The average size pertaining to the nanoparticle applied is 40 nm. In addition, the influences of nanofluid concentrations are measured by comparing three concentrations 0.001, 0.005, 0.1 vol%. The range of entrance power is from 10 to 40 W and the temperature of coolant has been changed from 20 to 40 °C. The results of the experiment indicate that by increasing entrance power, the temperatures of the condenser, evaporator and working temperature experience a rise. Furthermore, this causes a decrease of thermal resistance and an increase of overall heat transfer coefficient. A comparison of three concentrations reveals that in concentration of 50 ppm, thermal resistance compared to the base fluid has decreased to 42.26 % and overall heat transfer coefficient has gone up to 1883 (W/m2·°K) . Also, due to unexpected changes in concentration of 1000 ppm, the existence of an optimized concentration for the silver nanofluid in this heat pipe with this geometry has been clear.
Numerical simulation of X90 UOE pipe forming process
NASA Astrophysics Data System (ADS)
Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu
2013-12-01
The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.
Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots
NASA Astrophysics Data System (ADS)
Saati, Ferina; Arik, Mehmet
2018-02-01
Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.
Spatial optimization for decentralized non-potable water reuse
NASA Astrophysics Data System (ADS)
Kavvada, Olga; Nelson, Kara L.; Horvath, Arpad
2018-06-01
Decentralization has the potential to reduce the scale of the piped distribution network needed to enable non-potable water reuse (NPR) in urban areas by producing recycled water closer to its point of use. However, tradeoffs exist between the economies of scale of treatment facilities and the size of the conveyance infrastructure, including energy for upgradient distribution of recycled water. To adequately capture the impacts from distribution pipes and pumping requirements, site-specific conditions must be accounted for. In this study, a generalized framework (a heuristic modeling approach using geospatial algorithms) is developed that estimates the financial cost, the energy use, and the greenhouse gas emissions associated with NPR (for toilet flushing) as a function of scale of treatment and conveyance networks with the goal of determining the optimal degree of decentralization. A decision-support platform is developed to assess and visualize NPR system designs considering topography, economies of scale, and building size. The platform can be used for scenario development to explore the optimal system size based on the layout of current or new buildings. The model also promotes technology innovation by facilitating the systems-level comparison of options to lower costs, improve energy efficiency, and lower greenhouse gas emissions.
Reduction of noise radiated from open pipe terminations
NASA Astrophysics Data System (ADS)
Davis, M. R.
1989-07-01
A modified Quincke tube has been tested to determine the extent to which sound radiation from an open tube end can be reduced by conversion of the monopole source into a dipole form. It has been found that directivity patterns of the dipole with approximately 20 dB variation can be achieved provided that the out-of-phase tube ends are not too closely spaced. Very large spacings also reduce the effectiveness of the arrangement in reducing radiated power since the source system does not then approximate a simple dipole. Consideration has been given to compact designs which achieve path length differentials by the use of four concentric tubes. The relative size of the two acoustic paths has to be adjusted to allow for the size effect on radiation, requiring a somewhat larger area for the smaller tube. Through flow would require an opposite adjustment of the smaller tube area in this case if the smaller tube presented a smaller resistance to flow, as is likely since it involves straight-through flow. Flow through the system would increase the tuned operating frequency.
NASA Astrophysics Data System (ADS)
Shih, Hong-Yan; Goldenfeld, Nigel
Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.
2014-09-01
monitors were Daniel J. Dunmire [OUSD(AT&L)], Bernie Rodri- guez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Materials and...the electrode, a large voltage po- tential is created between the two plates of the capacitor (i.e., the electrode and the grounded steel of the...return (CWR) piping of each condenser. To install the capacitor rods, 1.5 in. mild steel thread-o-lets* were welded into a pipe elbow. Figure 5 shows
Solidification and Acceleration of Large Cryogenic Pellets Relevant for Plasma Disruption Mitigation
Combs, Stephen Kirk; Meitner, S. J.; Gebhart, T. E.; ...
2016-01-01
The technology for producing, accelerating, and shattering large pellets (before injection into plasmas) for disruption mitigation has been under development at the Oak Ridge National Laboratory for several years, including a system on DIII-D that has been used to provide some significant experimental results. The original proof-of-principle testing was carried out using a pipe gun injector cooled by a cryogenic refrig- erator (temperatures ~8-20 K) and equipped with a stainless steel tube to produce 16.5-mm pellets composed of either pure D 2, pure Ne, or a dual layer with a thin outer shell of D 2 and core of Ne.more » Recently, significant progress has been made in the laboratory using that same pipe gun and a new injector that is an ITER test apparatus cooled with liquid helium. The new injector operates at ~5-8 K, which is similar to temperatures expected with cooling provided by the flow of supercritical helium on ITER. An alternative technique for producing/solidifying large pellets directly from a premixed gas has now been successfully tested in the laboratory. Also, two additional pellet sizes have been tested recently (nominal 24.4 and 34.0 mm diameters). With larger pellets, the number of injectors required for ITER disruption mitigation can be reduced, resulting in less cost and a smaller footprint for the hardware. An attractive option is longer pellets, and 24.4-mm pellets with a length/diameter ratio of ~3 have been successfully tested. Since pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event, recent tests have concentrated on documenting the speeds with different hardware configurations and operating parameters; speeds of ~100-800 m/s have been recorded. The data and results from laboratory testing are presented and discussed, and a simple model for the pellet solidification process is described.« less
IN-HOUSE COPPER AND LEAD SOLUBILITY/CORROSION STUDIES
Understanding and predicting metal release from pipes of all sizes and types from the treatment plant to the consumer’s tap is critical, specifically for regulatory compliance with the Lead and Copper Rule, as well as the performance, corrosion morphology, and longevity of infras...
Theoretical research of helium pulsating heat pipe under steady state conditions
NASA Astrophysics Data System (ADS)
Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.
2015-12-01
As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.
Heat pipe cooling of power processing magnetics
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Chester, M.
1979-01-01
The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.
Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints
NASA Astrophysics Data System (ADS)
Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio
2003-08-01
By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.
NASA Astrophysics Data System (ADS)
Sun, Weihua; Hu, Shu-e.; Li, Guobao; Yu, Hao
This paper analyzes precipitation and dislocation strengthening behaviors of a 27mm thick Niobium-bearing Grade X80 steel plate for strain based design line pipe manufacture. The steel is produced by thermal-mechanical processing (TMCP) and is characterized with granular bainite and polygonal ferrite microstructure. Mechanical properties of both the steel and the UOE pipe are briefly introduced. Transmission electron microscope (TEM) is used to investigate the fine grain structure, distribution of the precipitates and dislocations in the steel. Precipitate morphologies, volume fractions of M(C,N), M3C, CaS, AlN and Cu are extensively studied respectively by Electrolytic Chemical Phase Analysis (ECPA) and X-ray Small Angle Diffraction (X-ray SAD). Dislocations in the steel are characterized with Positron Annihilation analysis. The results prove that precipitation hardening reveal a 58.1MPa strengthening contribution by the precipitates less than 20nm in size. Dislocation hardening is approximately 176MPa to the present studied steel and 198MPa to the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliwell, Stephen
2012-07-01
At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less
Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines
NASA Astrophysics Data System (ADS)
Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji
Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.
49 CFR 192.717 - Transmission lines: Permanent field repair of leaks.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance... pipe in size. (4) If the leak is on a submerged offshore pipeline or submerged pipeline in inland...
Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Burke, Kenneth A.
2003-01-01
The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.
NASA Astrophysics Data System (ADS)
Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.
2018-03-01
Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.
Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.
Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C
2018-05-30
High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.
Optical measurements in evolving dispersed pipe flows
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Angeli, Panagiota
2017-12-01
Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.
FY 2017-Progress Report on the Design and Construction of the Sodium Loop SMT-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.
This report provides an update on the design of a forced-convection sodium loop to be used for the evaluation of sodium compatibility of advanced Alloy 709 with emphasis on long term exposures of tensile, creep, fatigue, creep fatigue, and fracture toughness ASTM-size specimens in support of ASME Code qualification and NRC licensing. The report is a deliverable (Level 4) in FY17 (M4AT-17AN1602094), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of the Advanced Materials Program for the Advanced Reactor Technology. This work package enables the development of advanced structural materials by providing corrosion,more » microstructure, and mechanical property data from the standpoint of sodium compatibility of advanced structural alloys. The first sodium loop (SMT-1) with a single tank was constructed in 2011 at ANL and has been in operation for exposure of subsize sheet specimens of advanced alloys at a single temperature. The second sodium loop with dual tanks (SMT-2) was constructed in 2013 and has been in operation for the exposure of subsize sheet specimens of advanced alloys at two different temperatures. The current loop (SMT-3) has been designed to incorporate sufficient chamber capacity to expose a large number of ASTM-size specimens to evaluate the sodium effects on tensile, creep, fatigue, creep-fatigue, and fracture toughness properties, in support of ASME Code Qualification and USNRC Licensing. The design of individual components for the third sodium loop SMT-3 is almost complete. The design also has been sent to an outside vendor for piping analysis to be in compliance with ASME Code. A purchase order has been placed with an outside vendor for the fabrication of major components such as the specimen exposure tanks. However, we have contracted with another vendor to establish the piping design in compliance with ASME design codes. The piping design was completed in FY2017 and the information is being transmitted to the tank fabricator. The SMT-3 loop will be located in Building 206 adjacent to the currently operating SMT-2 loop. In addition, we have demolished the aged power supply system in Building 206 and installed a new transformer, wiring, and power panels for the new loop. Procurement of some of the long lead items such as valves, EM pumps, EM flowmeters, etc. is in progress and will continue in FY 2018. The construction of components such as cold trap, economizers, piping arrangement etc. will be performed in the central shops at ANL. About 150 liters of sodium for the loop will be procured in early FY2018. The loop system is designed to circulate sodium through the sample tanks and the associated loop without an operator for an extended period of time. With the three sodium loops (with single-tank, dual-tank and four–tanks), materials can be tested at different sodium temperatures, and large tensile, creep, fatigue, creep-fatigue, and fracture toughness specimens can be exposed to sodium for extended periods of time and generate data on mechanical properties in support of ASME Code Qualification and USNRC Licensing of advanced Alloy 709 for use as a structural material in SFRs.« less
Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher
2006-06-30
Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need formore » large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.« less
NASA Astrophysics Data System (ADS)
Svensen, Henrik H.; Planke, Sverre; Silkoset, Petter; Hammer, Øyvind; Iyer, Karthik; Schmid, Dani W.; Chevallier, Luc
2017-04-01
Most of the Large Igneous Provinces (LIPs) formed during the last 260 million years are associated with climatic change, oceanic anoxia, or extinctions in marine and terrestrial environments. Current hypotheses involve A) degassing of carbon either from oceans or shallow sea-bed reservoirs, B) carbon and sulfur degassing from flood basalts, C) degassing from sedimentary basins heavily intruded by LIPs. Here we present new data on gas generation and degassing from the Karoo LIP, based on fieldwork, borehole studies (geochemistry, petrography), and thermal modeling. Our data expand and corroborate earlier work on the sub-volcanic processes in the Karoo Basin. We show that 1) hundreds of breccia pipes are rooted in Early Jurassic sill complexes and contact aureoles within the organic-rich Ecca Group, 2) statistical analyses reveal a fractal distribution of pipes and that they are overdispersed at small scales (<50 m), but clustered at larger scales (>800 m), 3) contact aureoles show a reduction in organic matter content towards the sill contacts, reduced to zero in the nearest zones, producing more carbon gas compared to thermal model calculations, 4) we find up to 3 permil reduction in the d13C of the organic matter remaining in the aureoles, and finally 5) some pipes contain recent oil seeps. We conclude that the sill-pipe system released thermogenic gases to the Early Jurassic atmosphere and that the pipes may have acted as permanent fluid flow pathways.
Volcanology of Tuzo pipe (Gahcho Kué cluster) — Root-diatreme processes re-interpreted
NASA Astrophysics Data System (ADS)
Seghedi, I.; Maicher, D.; Kurszlaukis, S.
2009-11-01
The Middle Cambrian (~ 540 Ma) Gahcho Kué Kimberlite Field is situated about 275 km ENE of Yellowknife, NWT, Canada. The kimberlites were emplaced into 2.6 Ga Archean granitic rocks of the Yellowknife Supergroup. Four larger kimberlite bodies (5034, Tesla, Tuzo, and Hearne) as well as a number of smaller pipes and associated sheets occur in the field. In plan view, the Tuzo pipe has a circular outline at the surface, and it widens towards deeper levels. The pipe infill consists of several types of coherent and fragmental kimberlite facies. Coherent or apparent coherent (possibly welded) kimberlite facies dominate at depth, but also occur at shallow levels, as dikes intruded late in the eruptive sequence or individual coherent kimberlite clasts. The central and shallower portions of the pipe consist of several fragmental kimberlite varieties that are texturally classified as Tuffisitic Kimberlites. The definition, geometry and extent of the geological units are complex and zones controlled by vertical elements are most significant. The fluidal outlines of some of the coherent kimberlite clasts suggest that at least some are the product of disruption of magma that was in a semi-plastic state or even of welded material. Ragged clasts at low levels are inferred to form part of a complex peperite-like system that intrudes the base of the root zone. A variable, often high abundance of local wall-rock xenoliths between and within the kimberlite phases is observed, varying in size from sub-millimeter to several tens of meters. Wall-rock fragments are common at all locations within the pipe but are especially frequent in a domain with a belt-like geometry between 120 and 200 m depth in the pipe. Steeply outward-dipping bedded deposits made up of wall-rock fragments occur in deep levels of the pipe and are especially common under the downward-widening roof segments. The gradational contact relationships of these deposits with the surrounding kimberlite-bearing rocks as well as their location suggest that they formed more-or-less in situ. Different breccia facies inside the pipe suggest an origin by slumping, grain flows, rock fall or pyroclastic deposition. The shape and facies architecture of the Tuzo pipe suggests that the studied section of the pipe lies at a root zone-diatreme transitional structural level. Composite coherent kimberlite clasts imply that recycling processes were active over time, while reworked wall-rock rich deposits and ductily-deformed clasts of welded kimberlite point to the presence of temporary cavities in the root zone. The emplacement of the Tuzo pipe did not occur in a single, violent explosion, but involved repetitive volcanic explosions alternating with periods of relative quiescence. The observed features are typical of phreatomagmatic processes, which may include phases of less-explosive magmatic activity.
Compendium of Nitromethane Data Relevant to the Tactical Explosive System (TEXS) Program
1989-04-01
reduced charge size. Confined NM in glass tubes and added silica impurities with a known particle size distribution, and used guar gum to hold silica...internal ignition test. The explosive in the pipe bomb is subjected to the action of a cen- trally located black powder (20 g) igniter. A positive...Laboratory 2800 Powder Mill Road Adelphia, MD 20783-1145 Commander U.S. Army Test and Evaluation Command ATTN: AMSTE-TE-AT, B. Hawley Aberdeen
Coaxial EMI Sensor for UXO Detection and Discrimination
2008-05-01
Raleigh, North Carolina. Geophex has a 10 m x 10 m test bed in which 21 metal pipes of various sizes, some ferrous (steel) and some nonferrous (3...spectral matching was expected to lower the FAR, but with the wide range of anticipated UXO in terms of size and metal content, the corresponding wide...warrant further investigation.” Grid squares with a response stage below the stated noise threshold are declared empty (neither UXO nor metallic
Safe water supply without disinfection in a large city case study: Berlin.
Grohmann, A; Petersohn, D
2000-01-01
Berlin's water supplies originate exclusively from groundwater. For sustainable water management, river water is treated by flocculation and filtration and used either for artificial groundwater recharge (rivers Spree and Havel) or for bank filtration (Nordgraben and Lake Tegel). Drinking water chlorination was abandoned in Berlin (West) in 1978, and in Berlin (East) in 1992, following German unification. Chlorine consumption for the purpose of weekly performance checks in the chlorination plants of Berlin's 11 waterworks and occasional chlorination within the pipe system following pipe burst events amounts to 2500 kg per year. Based on the annual water demand of 250 million cubic metres, this is equivalent to 0.01 mg of chlorine per litre. Microbiological monitoring at the 11 waterworks and at 383 sampling points within the pipe system shows CFU at less than 10/1 ml-1 and coliforms and E. coli invariably at 0/100 ml-1. In view of the low AOX content, a multiplication of bacteria within the pipe system can be expected to occur not at all or only to a small extent. Resource protection measures, filter backwashing and pipe system maintenance in observance of the relevant technical rules will continue to ensure that the quality of Berlin's drinking water meets stringent hygiene requirements without chlorination.
NASA Astrophysics Data System (ADS)
Tiari, Saeed
A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No..., and Welding Practices of Large Diameter Line Pipe AGENCY: Pipeline and Hazardous Materials Safety... bulletin to notify owners and operators of recently constructed large diameter natural gas pipeline and...
17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO ...
17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO POUR MOLDS ON THE CONVEYORS FROM BULL LADLES THAT WERE USED TO STORE BATCH QUANTITIES OF IRON TAPPED FROM THE CUPOLA, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Towards CFD modeling of turbulent pipeline material transportation
NASA Astrophysics Data System (ADS)
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended to generate an optimized LES solver to model turbulent pipe flow for larger Reynolds numbers. The validations are carried out using experiments conducted in Cottbus Large Pipe Test Facility at BTU as a reference [3]. In the mentioned experimental research, evolution of statistical pipe flow quantities, such as turbulence intensity, skewness and flatness are investigated to clarify the development length needed to achieve fully developed turbulence. These observations take place in a relatively large pipe test facility with an inner pipe diameter of Di = 0.19 m and a total length of L = 27 m where a bulk Reynolds number of 8.5×105 can be reached. 1. CO2 pipeline Infrastructure: An analysis of global challenges and opportunities, Final Report For International Energy Agency of Greenhouse Gas Program (2010) 2. J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J.Fluid Mech. 177, 133-166, (1987) 3. F. Zimmer, E.-S. Zanoun and C. Egbers, A study on the influence of triggering pipe flow regarding mean and higher order statistics, Journal of Physics: Conference Series 318 (2011) 032039
Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage.
Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli
2016-01-01
For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images.
49 CFR 192.181 - Distribution line valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... line valves. (a) Each high-pressure distribution system must have valves spaced so as to reduce the... pressure, the size of the mains, and the local physical conditions. (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping...
Scaling effects in spiral capsule robots.
Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan
2017-04-01
Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2 m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.
NASA Astrophysics Data System (ADS)
Rabas, T.; Panchal, C. B.; Genens, L.
There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. Different OTEC plants are described that can supply various mixes of desalinated water and vapor; the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs where appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed; 40 inch high density polyethylene pipe at Keahole Point in Hawaii.