Production of a large, quiescent, magnetized plasma
NASA Technical Reports Server (NTRS)
Landt, D. L.; Ajmera, R. C.
1976-01-01
An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.
Development and experimental study of large size composite plasma immersion ion implantation device
NASA Astrophysics Data System (ADS)
Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN
2018-01-01
Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.
Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun
NASA Astrophysics Data System (ADS)
Mabey, K.; Smith, B. L.; Whichard, G.; McKechnie, T.
2011-06-01
A Coanda-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun. The two-piece retrofit device replaces the standard faceplate. Two separate collars were tested: one designed for small vector angles and one for larger vector angles. It was demonstrated that the small-angle device could modify the trajectory of zirconia powder up to several degrees. Doing so could realign the plasma with the powder resulting in increased powder temperature and velocity. The large-angle device was capable of vectoring the plasma jet up to 45°. However, the powder did not vector as much. Under large-angle vectoring, the powder velocity and temperature decreased steadily with vector angle. Both devices were tested using a supersonic configuration to demonstrate that CSM is capable of vectoring supersonic plasmas.
NASA Astrophysics Data System (ADS)
Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.
2006-10-01
Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.
The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.
Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T
2016-02-01
In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.
Large-Area Permanent-Magnet ECR Plasma Source
NASA Technical Reports Server (NTRS)
Foster, John E.
2007-01-01
A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.
NASA Astrophysics Data System (ADS)
Martin, M. J.; Gekelman, W.; Van Compernolle, B.; Pribyl, P.; Carter, T.
2017-11-01
An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E →×B→0 flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.
Martin, M J; Gekelman, W; Van Compernolle, B; Pribyl, P; Carter, T
2017-11-17
An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.
Center for Electro Optics & Plasma Research
1990-04-01
inversely proportional to the diameter of the plasma ring , the device had a large resistance and thus a large portion of the stored energy dissipated within...which produced an array of plasma rings concentric with the dye tube. These plasma rings emitted intense radiation over a wide range of the spectrum. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchev, Nikolay; Batanov, German; Petrov, Alexandr
2008-10-15
A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.
NASA Astrophysics Data System (ADS)
Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun
2018-02-01
Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.
Laboratory development and testing of spacecraft diagnostics
NASA Astrophysics Data System (ADS)
Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric
2017-10-01
The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.
Nonlinear excitation of long-wavelength modes in Hall plasmas
NASA Astrophysics Data System (ADS)
Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.
2016-10-01
Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.
Electro-mechanical probe positioning system for large volume plasma device
NASA Astrophysics Data System (ADS)
Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.
2018-05-01
An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi
The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.
The HelCat dual-source plasma device.
Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-10-01
The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.
Pierre, Th
2013-01-01
In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.
The next large helical devices
NASA Astrophysics Data System (ADS)
Iiyoshi, Atsuo; Yamazaki, Kozo
1995-06-01
Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.
Method of processing a substrate
Babayan, Steven E [Huntington Beach, CA; Hicks, Robert F [Los Angeles, CA
2008-02-12
The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.
NASA Astrophysics Data System (ADS)
Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.
2015-04-01
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.
A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime
NASA Astrophysics Data System (ADS)
Joshi, Garima; Ravi, G.; Mukherjee, S.
2018-06-01
A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of < 1 mm. The plasma is produced by a multifilamentary cathode and external magnetic field by Helmholtz coils, both designed and constructed in-house. The plasma parameters can be measured by Langmuir probes and electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.
Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.
Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K
2012-06-22
We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.
Microwave produced plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, A. K.; Edwards, W. F.; Held, E. D.
2010-11-01
A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.
NASA Astrophysics Data System (ADS)
Fedele, R.; Vaccaro, V. G.; Miano, G.
1990-01-01
The use of a large-amplitude plasma wave as an electrostatic undulator is presently analyzed on the basis of the existing theory of FEL magnetic undulator devices. An account is given of prospective plasma-undulator configurations; it is noted that very small wavelength electromagnetic radiation can be generated through the use of low energy electron beams. Thresholds for the plasma undulator-employing FEL action are discussed, and an analysis of the intrinsic efficiency of such a device is conducted with a view to its emittance and wake-field effects.
Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials
NASA Astrophysics Data System (ADS)
Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.
2000-12-01
Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
NASA Astrophysics Data System (ADS)
Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.
2001-08-01
The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haid, D.A.; Fietz, W.A.
1969-06-01
The effort to scale-up the plasma-arc process to produce large solenoids and saddle coils is described. Large coils (up to 16-/sup 3///sub 4/ in. and 41-in. length) of three different configurations, helical, ''pancake'' and ''saddle,'' were fabricated using the plasma arc process.
In situ calibration of an infrared imaging video bolometer in the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; Pandya, S. N.
The InfraRed imaging Video Bolometer (IRVB) is a powerful diagnostic to measure multi-dimensional radiation profiles in plasma fusion devices. In the Large Helical Device (LHD), four IRVBs have been installed with different fields of view to reconstruct three-dimensional profiles using a tomography technique. For the application of the measurement to plasma experiments using deuterium gas in LHD in the near future, the long-term effect of the neutron irradiation on the heat characteristics of an IRVB foil should be taken into account by regular in situ calibration measurements. Therefore, in this study, an in situ calibration system was designed.
Baker, W.R.
1961-08-22
A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)
A High-Efficiency Superhydrophobic Plasma Separator
Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.
2016-01-01
To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765
NASA Astrophysics Data System (ADS)
Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the
2018-07-01
The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.
EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.
2014-11-01
We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.
Slot-Antenna/Permanent-Magnet Device for Generating Plasma
NASA Technical Reports Server (NTRS)
Foster, John E.
2007-01-01
A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.
On the generation of magnetized collisionless shocks in the large plasma device
NASA Astrophysics Data System (ADS)
Schaeffer, D. B.; Winske, D.; Larson, D. J.; Cowee, M. M.; Constantin, C. G.; Bondarenko, A. S.; Clark, S. E.; Niemann, C.
2017-04-01
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, background magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. The results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.
On the generation of magnetized collisionless shocks in the large plasma device
Schaeffer, D. B.; Winske, D.; Larson, D. J.; ...
2017-03-22
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
Laboratory simulation of space plasma phenomena*
NASA Astrophysics Data System (ADS)
Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.
2017-12-01
Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.
Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates
NASA Astrophysics Data System (ADS)
Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi
High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
Large Arrays of Microcavity Plasma Devices for Active Displays and Backlighting
NASA Astrophysics Data System (ADS)
Eden, J. Gary; Park, Sung-Jin; Ostrom, Nels P.; Chen, Kuo-Feng; Kim, Kwang Soo
2005-09-01
Developments of the past several years in the technology of microcavity plasma devices having characteristic dimensions of 10-100 µm suggests their applicability to the next generation of active and passive displays. Two examples of device structures that are well suited for economically manufactured arrays of large active area are presented. Arrays as large as 500 x 500 (2.5 ṡ 105) pixels of Si inverted pyramid microplasma devices, with emitting apertures of 50 x 50 µm2 and designed for AC or bipolar excitation, have been designed and operated successfully in the rare gases at pressures up to and beyond one atmosphere. Multilayer Al/nanostructured Al2O3 microplasma devices having 100-300 µm diam. cylindrical microcavities are robust and operate in the abnormal glow mode for rare gas or Ar/2-5% N2 mixture pressures of 500-700 torr. Grown by a wet chemical process, the nanoporous Al2O3 dielectric yields a lightweight, flexible structure that produces intense visible or ultraviolet emission when driven by sinusoidal AC or bipolar voltage waveforms.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents. PMID:28098192
NASA Astrophysics Data System (ADS)
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-01
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
Jung, Heesoo; Seo, Jin Ah; Choi, Seungki
2017-01-18
One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design-wearable APP (WAPP)-that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.
EBW and Whistler propagation and damping in a linear device
NASA Astrophysics Data System (ADS)
Diem, S. J.; Caughman, J. B. O.; Harvey, R. W.; Petrov, Yu.
2011-10-01
Linear plasma devices are an economic method to study plasma-material interactions under high heat and particle fluxes. ORNL is developing a large cross section, high-density helicon plasma generator with additional resonant electron heating to study plasma-material interactions in ITER like conditions. The device will produce a heat flux of 10-20 MW/m2 and particle flux of 1024 /m2/s in a high recycling plasma near a target plate with a magnetic field of ~1 T. As part of this effort, heating of overdense plasma is being studied using a microwave-based plasma experiment. The plasma is initiated with a high-field launch of 18 GHz whistler waves producing a moderate-density plasma of ne ~1018 m-3. Electron heating of the overdense plasma can be provided by either whistler waves or EBW at 6 and 18 GHz. A modified GENRAY (GENRAY-C) ray-tracing code has been used to determine EBW and ECH whistler wave accessibility for these overdense plasmas. These results combined with emission measurements will be used to determine launcher designs and their placement. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.
Development of high-density helicon plasma sources and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, Shunjiro; Hada, Tohru; Motomura, Taisei
2009-05-15
We report on the development of unique, high-density helicon plasma sources and describe their applications. Characterization of one of the largest helicon plasma sources yet constructed is made. Scalings of the particle production efficiency are derived from various plasma production devices in open literature and our own data from long and short cylinder devices, i.e., high and low values of the aspect ratio A (the ratio of the axial length to the diameter), considering the power balance in the framework of a simple diffusion model. A high plasma production efficiency is demonstrated, and we clarify the structures of the excitedmore » waves in the low A region down to 0.075 (the large device diameter of 73.8 cm with the axial length as short as 5.5 cm). We describe the application to plasma propulsion using a new concept that employs no electrodes. A very small diameter (2.5 cm) helicon plasma with 10{sup 13} cm{sup -3} density is produced, and the preliminary results of electromagnetic plasma acceleration are briefly described.« less
Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2002-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.
Plasma generating apparatus for large area plasma processing
Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.
1991-07-16
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.
Plasma generating apparatus for large area plasma processing
Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.
1991-01-01
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.
Laboratory Simulations of the Solar Wind's Effect on Surface Interactions and Plasma Wakes
NASA Astrophysics Data System (ADS)
Munsat, T. L.; Ulibarri, Z.; Han, J.; Horanyi, M.; Wang, X.; Yeo, L. H.
2016-12-01
The Colorado Solar Wind Experiment (CSWE) is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT) at the University of Colorado. This large ion source is being developed for studies of the interaction of solar wind plasma with planetary surfaces and cosmic dust, and for the investigation of plasma wake physics. With a plasma beam diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 1 mA/cm^2, a large cross-section Kaufman Ion Source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. Chamber pressure can be reduced to 3x10^-5 Torr under operating conditions to suppress ion-neutral collisions and create a uniform ion velocity distribution. Diagnostic instruments such as a double Langmuir probe and an ion energy analyzer are mounted on a two-dimensional translation stage that allow the beam to be characterized throughout the chamber. Initial experimental results and technical details of the device will be explained.
Hybrid simulations of a parallel collisionless shock in the large plasma device
Weidl, Martin S.; Winske, Dan; Jenko, Frank; ...
2016-12-01
We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic- eld direction with a blow-o speed of four times the Alfv en velocity excite strong magnetic uctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satis es the Rankine{Hugoniot conditions and can therefore propagate onmore » its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.« less
Characterization of an electrothermal plasma source for fusion transient simulations
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2018-01-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
3D Global Fluid Simulations of Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Rogers, Barrett; Ricci, Paolo; Li, Bo
2009-05-01
We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.
Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousselin, G.; Cavalier, J.; Pautex, J. F.
Ball-pen probes have been used in fusion devices for direct measurements of the plasma potential. Their application in low-temperature magnetized plasma devices is still subject to studies. In this context, a ball-pen probe has been recently implemented on the linear plasma device Mirabelle. Produced by a thermionic discharge, the plasma is characterized by a low electron temperature and a low density. Plasma confinement is provided by an axial magnetic field that goes up to 100 mT. The principle of the ball-pen probe is to adjust the saturation current ratio to 1 by reducing the electron current contribution. In that case,more » the floating potential of the probe is close to the plasma potential. A thorough study of the ball-pen probe operation is performed for different designs of the probe over a large set of plasma conditions. Comparisons between ball-pen, Langmuir, and emissive probes are conducted in the same plasma conditions. The ball-pen probe is successfully measuring the plasma potential in these specific plasma conditions only if an adapted electronics and an adapted probe size to the plasma characteristic lengths ({lambda}{sub D}, {rho}{sub ce}) are used.« less
Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device
NASA Astrophysics Data System (ADS)
Thomas, Edward
2015-11-01
Dusty (or complex) plasmas are four-component plasma systems consisting of electrons, ions, neutral atoms and charged, solid particulates. These particulates, i.e., the ``dust,'' become charged through interactions with the surrounding plasma particles and are therefore fully coupled to the background. The study of dusty plasmas began with astrophysical studies and has developed into a distinct area of plasma science with contributions to industrial, space, and fundamental plasma science. However, the vast majority of the laboratory studies are performed without the presence of a magnetic field. This is because, compared to the masses of the electrons and ions, the dust particles are significantly more massive and therefore the charge-to-mass ratio of the dust is very small. As a result, large (B > 1 T) magnetic fields are required to achieve conditions in which the dynamics of electrons, ions, and dust particles are dominated by the magnetic field. This presentation will provide a brief description of the design of the large bore (50 cm diameter x 158 cm long), multi-configuration, 4-Tesla class, superconducting magnet and integrated plasma chamber optimized for the study of dusty plasmas at high magnetic field - the MDPX device. The presentation will then focus on initial results of measurements made using MDPX - including observations of a new type of imposed ordered structures formed by the dust particles in a magnetized plasma, E x B driven flows of the particles, and observations of instabilities. This work is a collaboration of the author with Uwe Konopka (Auburn), Robert L. Merlino (Univ. of Iowa), Marlene Rosenberg (UCSD), and the MDPX team at Auburn University. Construction of the MDPX device was supported by the NSF-MRI program. Operations are supported by the NSF and DOE.
Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R
The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group
2017-06-01
The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.
A large ion beam device for laboratory solar wind studies
NASA Astrophysics Data System (ADS)
Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia
2017-11-01
The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma
Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; ...
2017-05-29
Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.
Turbulent Stresses in LAPD and CSDX
NASA Astrophysics Data System (ADS)
Light, A. D.; Sechrest, Y.; Schaffner, D. A.; Muller, S. H.; Rossi, G. D.; Guice, D.; Carter, T. A.; Tynan, G. R.; Vincena, S.; Munsat, T.
2011-10-01
Turbulent momentum transport can affect phenomena as diverse as intrinsic rotation in self-organized systems, stellar dynamo, astrophysical accretion, and the mechanism of internal transport barriers in fusion devices. Contributions from turbulent fluctuations, in the form of Reynolds and Maxwell stress terms, have been predicted theoretically and observed in toroidal devices. In an effort to gain general insight into the physics, we present new results from turbulent stress measurements on two linear devices: the LArge Plasma Device (LAPD) at the University of California, Los Angeles, and the Controlled Shear De-correlation eXperiment (CSDX) at the University of California, San Diego. Both experiments are well-characterized linear machines in which the plasma beta can be varied. Electrostatic and magnetic fluctuations are measured over a range of plasma parameters in concert with fast imaging. Maxwell and Reynolds stresses are calculated from probe data and fluctuations are compared with fast camera images using velocimetry techniques.
Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project
NASA Astrophysics Data System (ADS)
Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.
2015-11-01
The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.
2007-02-28
of magnitude in size. Also unlike corona -like devices such as the plasma needle , which generates 2-3 mm long plasma at the tip of a sharp wire...Distribution Unlimited Table of Contents Abstract AC System with Water Electrode Current voltage characteristics Plasma diagnostics results Experimental setup...Laroussi, PI. 4 AC SYSTEM WITH WATER ELECTRODE Recently, non-equilibrium atmospheric pressure plasmas have been used in a variety of material processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, R. H.; Chen, G.; Meitner, S.
2009-11-26
Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n{sub e}{>=}10{sup 19} m{sup -3}, T{sub e} = 4-10 eV, particle flux {gamma}{sub p}>10{sup 23}m{sup -3} s{sup -1}, and magnetic field strength |B| up to 1 T inmore » the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10-26 MHz, and power levels up to {approx}100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.« less
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.
2014-05-15
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less
Characterization of an electrothermal plasma source for fusion transient simulations
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...
2018-01-21
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
Characterization of an electrothermal plasma source for fusion transient simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
Equilibrium Reconstruction on the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki
Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested fluxmore » surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di
2011-04-18
This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.
A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less
Energy storage device with large charge separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
Energy storage device with large charge separation
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei
2016-04-12
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
Power density measurements to optimize AC plasma jet operation in blood coagulation.
Ahmed, Kamal M; Eldeighdye, Shaimaa M; Allam, Tarek M; Hassanin, Walaa F
2018-06-14
In this paper, the plasma power density and corresponding plasma dose of a low-cost air non-thermal plasma jet (ANPJ) device are estimated at different axial distances from the nozzle. This estimation is achieved by measuring the voltage and current at the substrate using diagnostic techniques that can be easily made in laboratory; thin wire and dielectric probe, respectively. This device uses a compressed air as input gas instead of the relatively-expensive, large-sized and heavy weighed tanks of Ar or He gases. The calculated plasma dose is found to be very low and allows the presented device to be used in biomedical applications (especially blood coagulation). While plasma active species and charged-particles are found to be the most effective on blood coagulation formation, both air flow and UV, individually, do not have any effect. Moreover, optimal conditions for accelerating blood coagulation are studied. Results showed that, the power density at the substrate is shown to be decreased with increasing the distance from the nozzle. In addition, both distances from nozzle and air flow rate play an important role in accelerating blood coagulation process. Finally, this device is efficient, small-sized, safe enough, of low cost and, hence, has its chances to be wide spread as a first aid and in ambulance.
Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.
2012-10-01
Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.
Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, Eric J.; Yousefi, Hamid R.
2014-10-15
Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less
NASA Astrophysics Data System (ADS)
Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.
2017-08-01
We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.
Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?
NASA Astrophysics Data System (ADS)
Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna
2012-10-01
Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).
Studies of large amplitude Alfvén waves and wave-wave interactions in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.; Brugman, B.; Auerbach, D. W.
2006-10-01
Electromagnetic turbulence is thought to play an important role in plasmas in astrophysical settings (e.g. the interstellar medium, accretion disks) and in the laboratory (e.g. transport in magnetic fusion devices). From a weak turbulence point of view, nonlinear interactions between shear Alfvén waves are fundamental to the turbulent energy cascade in magnetic turbulence. An overview of experiments on large amplitude shear Alfvén waves in the Large Plasma Device (LAPD) will be presented. Large amplitude Alfvén waves (δB/B ˜1%) are generated either using a resonant cavity or loop antennas. Properties of Alfvén waves generated by these sources will be discussed, along with evidence of heating, background density modification and electron acceleration by the waves. An overview of experiments on wave-wave interactions will be given along with a discussion of future directions.
Plasma density injection and flow during coaxial helicity injection in a tokamak
NASA Astrophysics Data System (ADS)
Hooper, E. B.
2018-02-01
Whole device, resistive MHD simulations of spheromaks and tokamaks have used a large diffusion coefficient that maintains a nearly constant density throughout the device. In the present work, helicity and plasma are coinjected into a low-density plasma in a tokamak with a small diffusion coefficient. As in previous simulations [Hooper et al., Phys. Plasmas 20, 092510 (2013)], a flux bubble is formed, which expands to fill the tokamak volume. The injected plasma is non-uniform inside the bubble. The flow pattern is analyzed; when the simulation is not axisymmetric, an n = 1 mode on the surface of the bubble generates leakage of plasma into the low-density volume. Closed flux is generated following injection, as in experiments and previous simulations. The result provides a more detailed physics analysis of the injection, including density non-uniformities in the plasma that may affect its use as a startup plasma [Raman et al., Phys. Rev. Lett. 97, 175002 (2006)].
A numerical study of neutral-plasma interaction in magnetically confined plasmas
NASA Astrophysics Data System (ADS)
Taheri, S.; Shumlak, U.; King, J. R.
2017-10-01
Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.
Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K
2016-07-01
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
Measurements of Ion and Neutral Fluctuation Changes with Pressure in a Large-Scale Helicon Plasma
NASA Astrophysics Data System (ADS)
Dwyer, R. H.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Gilmore, M.
2017-10-01
Neutral particle dynamics may play an important role both in laboratory plasmas and in the edge of magnetic fusion devices. However, studies of neutral dynamics in these plasmas have been limited to date. Here we report on a basic study of ion and neutral fluctuations as a function of background neutral gas pressure. These experiments have been conducted in helicon discharges in the HelCat (Helicon-Cathode) dual-source plasma device at the University of New Mexico. The goal is to measure changes in ion and neutral density fluctuations with pressure and to gain an improved understanding of plasma-neutral interactions. Langmuir probe, Ar-I LIF, and high-speed imaging measurements of the fluctuations will be presented. Supported by U.S. National Science Foundation Award 1500423 and The University of New Mexico School of Engineering.
Plasma MRI Experiments at UW-Madison
NASA Astrophysics Data System (ADS)
Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.
2015-11-01
Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.
The hybrid reactor project based on the straight field line mirror concept
NASA Astrophysics Data System (ADS)
Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.
2012-06-01
The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.
Current and Perspective Applications of Dense Plasma Focus Devices
NASA Astrophysics Data System (ADS)
Gribkov, V. A.
2008-04-01
Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.
Studies of a plasma with a hot dense core in LAPD
NASA Astrophysics Data System (ADS)
van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Cooper, Chris
2009-11-01
Recently, considerable effort in the LArge Plasma Device at UCLA (LAPD) has gone into the study of large cathodes which would enable higher discharge currents and higher densities. The new cathode is made out of Lanthanum HexaBoride (LaB6). LaB6 has a low work function and has higher emissivity than Barium oxide coated cathodes. The operating temperature of LaB6 cathodes lies above 1600 degrees Celsius. Tests of this cathode in the Enormous Toroidal Plasma Device (ETPD) showed that densities in excess of 2 10^13 cm-3 and electron temperatures of 12 eV are feasible. Small LaB6 cathodes (3mm - 2cm) have been used before in LAPD in several experiments on heat transport and on magnetized flux ropes. The cathode presented in this paper has a 8 cm diameter, and can be positioned at different radial locations. The cathode will be pulsed into the standard background plasma (ne= 2 10^12 cm-3, .25 <=Te<=6 eV, dia = 60 cm, L = 18 m) creating a plasma with a hot dense core. We present the characterization of the core plasma at different conditions. Studies of the heat transport and density spreading at the interface between the core plasma and background plasma will be done by use of a variety of probes (Langmuir, magnetic, Mach, emissive) as well as fast photography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.
Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less
NASA Astrophysics Data System (ADS)
Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.
2011-11-01
A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.
NASA Astrophysics Data System (ADS)
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained
NASA Technical Reports Server (NTRS)
Gourrier, S.; Mircea, A.; Simondet, F.
1980-01-01
The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.
Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid
NASA Astrophysics Data System (ADS)
Jothiramalingam Sankaran, Kamatchi; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2017-02-01
Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.
Experimental results on current-driven turbulence in plasmas - a survey
NASA Astrophysics Data System (ADS)
de Kluiver, H.; Perepelkin, N. F.; Hirose, A.
1991-01-01
The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093
2016-08-15
We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less
Plasma devices to guide and collimate a high density of MeV electrons.
Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T
2004-12-23
The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, Richard Howell; Caughman, John B.; Rapp, Juergen
Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower densitymore » plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.« less
NASA Astrophysics Data System (ADS)
Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph
2014-10-01
We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.
Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.
Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi
2013-08-01
A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.
NASA Astrophysics Data System (ADS)
Carter, T. A.
2017-10-01
The Basic Plasma Science Facility at UCLA is a national user facility for studies of fundamental processes in magnetized plasmas. The centerpiece is the Large Plasma Device, a 20 m, magnetized linear plasma device. Two hot cathode plasma sources are available. A Barium Oxide coated cathode produces plasmas with n 1012 cm-3, Te 5 eV, Ti < 1 eV with magnetic field from 400G-2kG. This low- β plasma has been used to study fundamental processes, including: dispersion and damping of kinetic and inertial Alfvén waves, flux ropes and magnetic reconnection, three-wave interactions and parametric instabilities of Alfvén waves, turbulence and transport, and interactions of energetic ions and electrons with plasma waves. A new Lanthanum Hexaboride (LaB6) cathode is now available which produces significantly higher densities and temperatures: n < 5 ×1013 cm-3, Te 12 eV, Ti 6 eV. This higher pressure plasma source enabled the observation of laser-driven collisionless magnetized shocks and, with lowered magnetic field, provides magnetized plasmas with β approaching or possibly exceeding unity. This opens up opportunities for investigating processes relevant to the solar wind and astrophysical plasmas. BaPSF is jointly supported by US DOE and NSF.
A theoretical analysis of vacuum arc thruster performance
NASA Technical Reports Server (NTRS)
Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre
2001-01-01
In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma
NASA Astrophysics Data System (ADS)
Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.
2012-12-01
The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.
Studying Electromagnetic Beam Instabilities in Laser Plasmas for Alfvénic Parallel Shock Formation
NASA Astrophysics Data System (ADS)
Dorst, R. S.; Heuer, P. V.; Weidl, M. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Winske, D.; Niemann, C.
2017-10-01
We present measurements of the collisionless interaction between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP is created by focusing a high energy laser on a target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting super-Alfvénic (MA = 5) ablated material moves parallel to the background magnetic field (300 G) through 12m (80 δ i) of the LAPD, interacting with the ambient Helium plasma (ni = 9 ×1012 cm-3) through electromagnetic beam instabilities. The debris is characterized by Langmuir probes and a time-resolved fluorescence monochromator. Waves in the magnetic field produced by the instabilities are diagnosed by an array of 3-axis `bdot' magnetic field probes. Measurements are compared to hybrid simulations of both the experiment and of parallel shocks.
21 CFR 862.1665 - Sodium test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... serum, plasma, and urine. Measurements obtained by this device are used in the diagnosis and treatment... excretion of large amounts of dilute urine, accompanied by extreme thirst), adrenal hypertension, Addison's...
21 CFR 862.1665 - Sodium test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... serum, plasma, and urine. Measurements obtained by this device are used in the diagnosis and treatment... excretion of large amounts of dilute urine, accompanied by extreme thirst), adrenal hypertension, Addison's...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang
In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CHmore » species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI
The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.
Nosocomial infections—a new approach towards preventive medicine using plasmas
NASA Astrophysics Data System (ADS)
Morfill, G. E.; Shimizu, T.; Steffes, B.; Schmidt, H.-U.
2009-11-01
A new, very efficient, large area scalable and robust electrode design for plasma production in air at atmosphere pressures has been developed and tested. This has made the development of a 'plasma dispenser' for hospital disinfection possible, which has certain advantages over current fluid disinfection systems. The properties of this device are presented, in particular the bactericidal and fungicidal efficiency, and the advantages are described. Such plasma dispensers could play an important role in the future fight against the alarming and growing threat posed by nosocomial (=hospital and community associated) bacterial infections.
NASA Astrophysics Data System (ADS)
Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.
2015-12-01
The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.
NASA Technical Reports Server (NTRS)
Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)
2014-01-01
An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.
Space-plasma campaign on UCLA's Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.
2007-05-01
Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.
Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma
NASA Astrophysics Data System (ADS)
Tokitani, M.; Kajita, S.; Masuzaki, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.; LHD Experiment Group
2011-10-01
The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 × 10 mm2). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 µm and 1 µm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ≈ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, Chin-Chi; Haselton, Halsey H.
1994-01-01
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, C.C.; Haselton, H.H.
1994-03-08
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Bacterial decontamination using ambient pressure nonthermal discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birmingham, J.G.; Hammerstrom, D.J.
2000-02-01
Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemicalmore » and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.« less
Layer-controllable graphene by plasma thinning and post-annealing
NASA Astrophysics Data System (ADS)
Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)
2018-05-01
The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.
A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device
NASA Astrophysics Data System (ADS)
Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.
2014-03-01
A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.
Electron heat transport comparison in the Large Helical Device and TJ-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, J.; Dies, J.; Castejon, F.
2007-10-15
The electron heat transport in the Large Helical Device (LHD) [K. Ida, T. Shimozuma, H. Funaba et al., Phys. Rev. Lett. 91, 085003 (2003)] and TJ-II [F. Castejon, V. Tribaldos, I. Garcia-Cortes, E. de la Luna, J. Herranz, I. Pastor, T. Estrada, and TJ-II Team, Nucl. Fusion 42, 271 (2002)] is analyzed by means of the TOTAL [K. Yamazaki and T. Amano, Nucl. Fusion 32, 4 (1992)] and PRETOR-Stellarator [J. Dies, F. Castejon, J. M. Fontdecaba, J. Fontanet, J. Izquierdo, G. Cortes, and C. Alejaldre, Proceedings of the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, Montreux,more » 2002, Europhysics Conference Abstracts, 2004, Vol. 26B, P-5.027] plasma simulation codes and assuming a global transport model mixing GyroBohm-like drift wave model and other drift wave model with shorter wavelength. The stabilization of the GyroBohm-like model by the ExB shear has been also taken into account. Results show how such kind of electron heat transport can simulate experimental evidence in both devices, leading to the electron internal transport barrier (eITB) formation in the LHD and to the so-called 'enhanced heat confinement regimes' in TJ-II when electron density is low enough. Therefore, two sources for the anomalous electron heat transport can coexist in plasmas with eITB; however, for each device the relative importance of anomalous and neoclassical transport can be different.« less
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T. A.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.; Sydora, R. D.
2013-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. While the linear behavior of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar corona and solar wind. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in the coronal heating problem. Specifically, the decay of large-amplitude Alfvén waves propagating outward from the photosphere could lead to heating of the corona by the daughter ion acoustic modes [2]. As direct observational evidence of parametric decay is limited [3], laboratory experiments may play an important role in validating simple theoretical predictions and aiding in the interpretation of space measurements. Recent counter-propagating Alfvén wave experiments in the Large Plasma Device (LAPD) have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability [4]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. Strong damping observed after the pump Alfvén waves are turned off is under investigation; a novel ion acoustic wave launcher is under development to launch the mode directly for damping studies. New experiments also aim to identify decay instabilities from a single large-amplitude Alfvén wave. In conjunction with these experiments, gyrokinetic simulation efforts are underway to scope out the relevant parameter space. [1] W. Gekelman, et. al., Phys. Plasmas 18, 055501 (2011). [2] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [3] S. R. Spangler, et. al., Phys. Plasmas 4, 846 (1997). [4] S. Dorfman and T. Carter, Phys. Rev. Lett. 110, 195001 (2013).
Design and Construction of a Dense Plasma Focus Device
1976-10-01
This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Habibi, M.; Ramezani, V.
2017-02-01
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.
2017-08-01
We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 866.2160 - Coagulase plasma.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 866.2160 - Coagulase plasma.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...
21 CFR 866.2160 - Coagulase plasma.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 866.2160 - Coagulase plasma.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 866.2160 - Coagulase plasma.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that is...
D.C. Arcjet Diamond Deposition
NASA Astrophysics Data System (ADS)
Russell, Derrek Andrew
1995-01-01
Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by counting the number of radiated Swan band photons. This is big enough to account for a significant amount (10%) of the diamond growth.
Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility
NASA Astrophysics Data System (ADS)
Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon
2007-10-01
A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.
Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.
Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon
2007-10-01
A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.
Towards large-scale plasma-assisted synthesis of nanowires
NASA Astrophysics Data System (ADS)
Cvelbar, U.
2011-05-01
Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.
Investigation of Recombination Processes In A Magnetized Plasma
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.
NASA Astrophysics Data System (ADS)
Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.
2000-02-01
Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.
The onset of plasma potential locking
Hopkins, Matthew M.; Yee, Benjamin T.; Baalrud, Scott D.; ...
2016-06-22
In this study, we provide insight into the role and impact that a positively biased electrode (anode) has on bulk plasma potential. Using two-dimensional Particle-in-Cell simulations, we investigate the plasma potential as an anode transitions from very small (“probe” mode) to large (“locking” mode). Prior theory provides some guidance on when and how this transition takes place. Initial experimental results are also compared. The simulations demonstrate that as the surface area of the anode is increased transitions in plasma potential and sheath polarity occur, consistent with experimental observations and theoretical predictions. It is expected that understanding this basic plasma behaviormore » will be of interest to basic plasma physics communities, diagnostic developers, and plasma processing devices where control of bulk plasma potential is important.« less
Plasma propulsion for space applications
NASA Astrophysics Data System (ADS)
Fruchtman, Amnon
2000-04-01
The various mechanisms for plasma acceleration employed in electric propulsion of space vehicles will be described. Special attention will be given to the Hall thruster. Electric propulsion utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Because of limitations on electric power density, electric thrusters will be low thrust engines compared with chemical rockets. The large jet velocity and small thrust of electric thrusters make them most suitable for space applications such as station keeping of GEO communication satellites, low orbit drag compensation, orbit raising and interplanetary missions. The acceleration in the thruster is either thermal, electrostatic or electromagnetic. The arcjet is an electrothermal device in which the propellant is heated by an electric arc and accelerated while passing through a supersonic nozzle to a relatively low velocity. In the Pulsed Plasma Thruster a solid propellant is accelerated by a magnetic field pressure in a way that is similar in principle to pulsed acceleration of plasmas in other, very different devices, such as the railgun or the plasma opening switch. Magnetoplasmadynamic thrusters also employ magnetic field pressure for the acceleration but with a reasonable efficiency at high power only. In an ion thruster ions are extracted from a plasma through a double grid structure. Ion thrusters provide a high jet velocity but the thrust density is low due to space-charge limitations. The Hall thruster, which in recent years has enjoyed impressive progress, employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. An applied radial magnetic field impedes the mobility of the electrons so that the applied potential drops across a large region inside the plasma. Methods for separately controlling the profiles of the electric and the magnetic fields will be described. The role of the sonic transition in plasma accelerators will be discussed. It will be shown that large potential drops can be localized to regions of an abrupt sonic transition in a Hall plasma. A configuration with segmented side electrodes can be used to further control the electric field profile and to increase the efficiency.
Leung, K.N.
1996-10-08
An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.
Leung, Ka-Ngo
1996-01-01
An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.
NASA Astrophysics Data System (ADS)
Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group
2018-04-01
A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.
Statistical properties of edge plasma turbulence in the Large Helical Device
NASA Astrophysics Data System (ADS)
Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.
2008-09-01
Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.
Recent high-speed ballistics experiments at ORNL
NASA Astrophysics Data System (ADS)
Combs, S. K.; Gouge, M. J.; Baylor, L. R.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.
Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures less than 20 K) and typically accelerated to speeds of (approximately) 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are of particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.
Recent high-speed ballistics experiments at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Gouge, M.J.; Baylor, L.R.
1994-12-31
Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures <20 K) and typically accelerated to speeds of {approximately} 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are ofmore » particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.« less
Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices
NASA Astrophysics Data System (ADS)
Velasco, J. L.; Calvo, I.; Satake, S.; Alonso, A.; Nunami, M.; Yokoyama, M.; Sato, M.; Estrada, T.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Van Milligen, B. Ph; Ochando, M.; Parra, F.; Sugama, H.; Zhezhera, A.; The LHD Experimental Team; The TJ-II Team
2017-01-01
Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.
Pablant, N A; Bitter, M; Delgado-Aparicio, L; Goto, M; Hill, K W; Lazerson, S; Morita, S; Roquemore, A L; Gates, D; Monticello, D; Nielson, H; Reiman, A; Reinke, M; Rice, J E; Yamada, H
2012-08-01
First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar(16 +). The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Desjardins, T. R.; Gilmore, M.
2016-05-01
Grid biasing is utilized in a large-scale helicon plasma to modify an existing instability. It is shown both experimentally and with a linear stability analysis to be a hybrid drift-Kelvin-Helmholtz mode. At low magnetic field strengths, coherent fluctuations are present, while at high magnetic field strengths, the plasma is broad-band turbulent. Grid biasing is used to drive the once-coherent fluctuations to a broad-band turbulent state, as well as to suppress them. There is a corresponding change in the flow shear. When a high positive bias (10Te) is applied to the grid electrode, a large-scale ( n ˜/n ≈50 % ) is excited. This mode has been identified as the potential relaxation instability.
Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.
Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua
2018-06-21
Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.
Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver
2017-01-01
The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO2). Investigations on AlN substrates reveal highly different surface properties compared to SiO2 regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm2) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices. PMID:28820462
Towards a parallel collisionless shock in LAPD
NASA Astrophysics Data System (ADS)
Weidl, M. S.; Heuer, P.; Schaeffer, D.; Dorst, R.; Winske, D.; Constantin, C.; Niemann, C.
2017-09-01
Using a high-energy laser to produce a super-Alfvénic carbon-ion beam in a strongly magnetized helium plasma, we expect to be able to observe the formation of a collisionless parallel shock inside the Large Plasma Device. We compare early magnetic-field measurements of the resonant right-hand instability with analytical predictions and find excellent agreement. Hybrid simulations show that the carbon ions couple to the background plasma and compress it, although so far the background ions are mainly accelerated perpendicular to the mean-field direction.
Sheared-flow induced confinement transition in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
Plasma wall interaction, a key issue on the way to a steady state burning fusion device
NASA Astrophysics Data System (ADS)
Philipps, V.
2006-04-01
The International Tokamak Experimental Reactor (ITER), the first burning fusion plasma experiment based on the tokamak principle, is ready for construction. It is based on many years of fusion research resulting in a robust design in most of the areas. Present day fusion research concentrates on the remaining critical issues which are, to a large extent, connected with processes of plasma wall interaction. This is mainly due to extended duty cycle and the increase of the plasma stored energy in comparison with present-day machines. Critical topics are the lifetime of the plasma facing components (PFC) and the long-term tritium retention. These processes are controlled mainly by material erosion, both during steady state operation and transient power losses (disruptions and edge localized modes (ELMs)) and short- and long-range material migration and re-deposition. The extrapolation from present-day 'full carbon wall' devices suggests that the long-term tritium retention in a burning fusion device would be unacceptably high under these conditions allowing for only an unacceptable limited number of pulses in a D T mixture. As a consequence of this, research activities have been strengthened to understand in more detail the underlying processes of material erosion and re-deposition, to develop methods to remove retained tritium from the PFCs and remote areas of a fusion device and to explore these processes and the plasma performance in more detail with metallic PFC, such as beryllium (Be) and tungsten (W), which are foreseen for the ITER experiment. This paper outlines the main physical mechanisms leading to material erosion, migration and re-deposition and the associated fuel retention. It addresses the experimental database in these areas and describes the further research strategies that will be needed to tackle critical issues.
Production of hard X rays in a plasma focus
NASA Technical Reports Server (NTRS)
Newman, C. E.; Petrosian, V.
1975-01-01
A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.
Colliding Laser-Produced Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew; Gekelman, Walter
2008-11-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.
Research and Development of Large Area Color AC Plasma Displays
NASA Astrophysics Data System (ADS)
Shinoda, Tsutae
1998-10-01
Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.
The Roles and Developments needed for Diagnostics in the ITER Fusion Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Michael
2015-07-01
Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasmamore » current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One amongst them is the parasitic effect of the neutrons on the while all the performing with great accuracy and precision. The levels of neutral particle flux, neutron flux and neutron fluence will be respectively about 5, 10 and 10,000 times higher than the harshest experienced in today's machines. The pulse length of the fusion reaction-or the amount of time the reaction is sustained-will be about 100 times longer. (authors)« less
Scaling of Turbulence and Transport with ρ* in LAPD
NASA Astrophysics Data System (ADS)
Guice, Daniel; Carter, Troy; Rossi, Giovanni
2014-10-01
The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.
Control of Transitional and Turbulent Flows Using Plasma-Based Actuators
2006-06-01
by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar
Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide.
Dey, Avishek; Krishnamurthy, Satheesh; Bowen, James; Nordlund, Dennis; Meyyappan, M; Gandhiraman, Ram P
2018-05-23
Miniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state. Here, we introduce an approach to print GO films from highly acidic suspensions with in situ reduction using an atmospheric pressure plasma jet. Low-temperature plasma of a He and H 2 mixture was used successfully to reduce a highly acidic GO suspension (pH < 2) in situ during deposition. This technique overcomes the multiple intermediate steps required to increase the conductivity of deposited GO. X-ray spectroscopic studies confirmed that the reaction intermediates and the concentration of oxygen functionalities bonded to GO have been reduced significantly by this approach without any additional steps. Moreover, the reduced GO films showed enhanced conductivity. Hence, this technique has a strong potential for printing conducting patterns of GO for a range of large-scale applications.
Suppressed ion-scale turbulence in a hot high-β plasma
NASA Astrophysics Data System (ADS)
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-12-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Suppressed ion-scale turbulence in a hot high-β plasma
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-01-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675
Waves and instabilities in high β, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.; Dorfman, S. E.; Rossi, G.; Guice, D.
2014-12-01
The LArge Plasma Device (LAPD) has been upgraded with a second LaB6 cathode plasma source that permits the creation of higher density (~ 3×1013 cm-3), higher temperature (Te ~ 12eV), warm ion (Ti ~ 6eV) plasmas. Along with lowered magnetic field, significant increases in plasma β can be achieved with this new source (e.g. at B=100G, β~1). These new plasma conditions permit a range of new experimental opportunities on LAPD including: linear and nonlinear studies of Alfvén waves in warm ion, high β plasmas; pressure-gradient driven instabilities in increased β plasmas and electromagnetic modifications to turbulence and transport; instabilities driven by ion temperature anisotropies (e.g. firehose and mirror instabilities). The characteristics of the new plasma will be presented along with a discussion of these new research areas.
Waves and instabilities in high β, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Rossi, Giovanni; Guice, Daniel; Gekelman, Walter; Klein, Kris; Howes, Greg
2014-10-01
The LArge Plasma Device (LAPD) has been upgraded with a second LaB6 cathode plasma source that permits the creation of higher density (~ 3 ×1013 cm-3), higher temperature (Te ~ 12 eV), warm ion (Ti ~ 6 eV) plasmas. Along with lowered magnetic field, significant increases in plasma β can be achieved with this new source (e.g. at B = 100 G , β ~ 1). These new plasma conditions permit a range of new experimental opportunities on LAPD including: linear and nonlinear studies of Alfvén waves in warm ion, high β plasmas; pressure-gradient driven instabilities in increased β plasmas and electromagnetic modifications to turbulence and transport; instabilities driven by ion temperature anisotropies (e.g. firehose and mirror instabilities). The characteristics of the new plasma will be presented along with a discussion of these new research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.
2017-02-15
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less
NASA Astrophysics Data System (ADS)
Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.
2015-08-01
We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.
Investigation of radiofrequency plasma sources for space travel
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Takahashi, K.
2012-12-01
Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).
3D Global Two-Fluid Simulations of Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett; Ricci, Paolo
2012-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the physics of instabilities that arise in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. The LAPD, with its wide range of tunable parameters and device configurations, is ideally suited for studying space and laboratory plasmas. Moreover, the highly detailed and reproducible measurements of the LAPD lend themselves amicably to comparisons with simulations. Ongoing modeling is done using a modified version of the Global Braginskii Solver (GBS) [1] that models the plasma from source to edge region in a fully 3D two-fluid code. The reduced Braginskii equations are solved on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping and are parallelized on Dartmouth's Discovery cluster. Recent progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and it is now possible to vary the potential on the front and side walls. Preliminary results, seen from the density and temperature profiles, show that the low frequency Kelvin Helmholtz instability still dominates the turbulence in the device.[4pt] [1] B. Rogers and P. Ricci. Phys. Rev. Lett. 104:225002, 2010
Environmentally benign semiconductor processing for dielectric etch
NASA Astrophysics Data System (ADS)
Liao, Marci Yi-Ting
Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.
Arc spray process for the aircraft and stationary gas turbine industry
NASA Astrophysics Data System (ADS)
Sampson, E. R.; Zwetsloot, M. P.
1997-06-01
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.
Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films
NASA Astrophysics Data System (ADS)
Chen, Jikun; Palla-Papavlu, Alexandra; Li, Yulong; Chen, Lidong; Shi, Xun; Döbeli, Max; Stender, Dieter; Populoh, Sascha; Xie, Wenjie; Weidenkaff, Anke; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2014-06-01
A two-step process combining pulsed laser deposition of calcium cobaltite thin films and a subsequent laser induced forward transfer as micro-pixel is demonstrated as a direct writing approach of micro-scale thin film structures for potential applications in thermoelectric micro-devices. To achieve the desired thermo-electric properties of the cobaltite thin film, the laser induced plasma properties have been characterized utilizing plasma mass spectrometry establishing a direct correlation to the corresponding film composition and structure. The introduction of a platinum sacrificial layer when growing the oxide thin film enables a damage-free laser transfer of calcium cobaltite thereby preserving the film composition and crystallinity as well as the shape integrity of the as-transferred pixels. The demonstrated direct writing approach simplifies the fabrication of micro-devices and provides a large degree of flexibility in designing and fabricating fully functional thermoelectric micro-devices.
Study of Inactivation Factors in Low Temperature Surface-wave Plasma Sterilization
NASA Astrophysics Data System (ADS)
Singh, Mrityunjai Kumar; Xu, Lei; Ogino, Akihisa; Nagatsu, Masaaki
In this study we investigated the low temperature surface-wave plasma sterilization of directly and indirectly exposed Geobacillus stearothermophilus spores with a large-volume microwave plasma device. The air-simulated gas mixture was used to produce the plasma. The water vapor addition to the gas mixture improved the sterilization efficiency significantly. The effect of ultraviolet photons produced along with plasma to inactivate the spores was studied using a separate chamber, which was evacuated to less than one mTorr and was observed that spores were sterilized within 60 min. The scanning electron microscopy images revealed no significant changes in the actual size of the spores with that of untreated spores despite the survival curve shown that the spores were inactivated.
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.
2012-05-01
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.
Magnetic Nozzle and Plasma Detachment Experiment
NASA Technical Reports Server (NTRS)
Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher
2006-01-01
High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Hao; Li, Z.; Levin, D.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Opticalmore » and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar results, the dominant species in the reactor, produced by the DSMC-HPEM coupled simulation will be shown in comparison with the original HPEM results. The effects of the DSMC calculations for ion/neutral species on HPEM plasma simulation will be further analyzed.« less
Demonstration of the hollow channel plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gessner, Spencer J.
2016-09-17
A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration ofmore » electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.« less
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio
2014-06-01
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly "trial and error," with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
High-power and steady-state operation of ICRF heating in the large helical device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less
Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment
NASA Astrophysics Data System (ADS)
Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk
2017-10-01
Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.
Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E
2010-02-01
We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.
Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H
2013-11-05
Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.
Membrane-based, sedimentation-assisted plasma separator for point-of-care applications
Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.
2014-01-01
Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566
NASA Astrophysics Data System (ADS)
Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.
2013-09-01
Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Suzuki, Y.; Sakakibara, S.; Watanabe, K. Y.; Ida, K.; Goto, M.; Du, X. D.; Narushima, Y.; Takemura, Y.; Yamada, H.
In the high beta experiments of the Large Helical Device (LHD), the plasma tends to expand from the last closed flux surface (LCFS) determined by the vacuum magnetic field. The pressure/temperature gradient in the external region is finite. The scale length of the pressure profile does not change so much even when the mean free path of electrons exceeds the connection length of the magnetic field line to the wall. There appear MHD instabilities with amplitude of 10-4 of the toroidal magnetic field. From the mode number of the activities (m/n = 2/3, 1/2, 2/4), the location of the corresponding rational surface is outside the vacuum LCFS. The location of the mode is consistent with the fluctuation measurement, e.g., soft X-ray detector arrays. The MHD mode localized in the magnetic stochastic region is affected by the magnetic field structure estimated by the connection length to the wall using 3D equilibrium calculation.
Electrodeless plasma thrusters for spacecraft: A review
NASA Astrophysics Data System (ADS)
Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.
2017-08-01
The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.
NASA Astrophysics Data System (ADS)
Kolobov, V. I.; Vaidya, N.; Krishnan, A.
1998-10-01
Plasma processing of 300 mm wafers and flat panels places stringent demands on plasma uniformity across large surfaces. A natural solution towards an uniform plasma in a minimum discharge volume is to maintain the plasma by an array of individual sources. Although the design of the individual sources can differ considerably, there is a common feature for all such devices which have been recently suggested by several groups: their essentially 3D geometry. Engineering design of these devices is a challenging task and computational modeling could be a very useful tool. CFD Research Corp. has developed a comprehensive software for virtual prototyping of ICP sources designed for complex 3D geometries with unstructured solution-adaptive mesh. In this paper we shall present the results of our simulation of the multipole high density source [1] which is an example of MultiCoil ICP. We shall describe the procedure of solving the electromagnetic part of the problem using magnetic vector potential and analyse design issues such as the size of dielectric windows. We shall present results of parametric studies of the source for different geometries, gas pressures and plasma densities for simple argon chemistry. [1] J.Ogle. Proc. VI Int. Workshop on Advanced Plasma Tools and Process Engineering, pp. 85-90, May 1998, Millbrae, USA.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
Cooperative Lamb shift and superradiance in an optoelectronic device
NASA Astrophysics Data System (ADS)
Frucci, G.; Huppert, S.; Vasanelli, A.; Dailly, B.; Todorov, Y.; Beaudoin, G.; Sagnes, I.; Sirtori, C.
2017-04-01
When a single excitation is shared between a large number of two-level systems, a strong enhancement of the spontaneous emission appears. This phenomenon is known as superradiance. This enhanced rate can be accompanied by a shift of the emission frequency, the cooperative Lamb shift, issued from the exchange of virtual photons between the emitters. In this work we present a semiconductor optoelectronic device allowing the observation of these two phenomena at room temperature. We demonstrate experimentally and theoretically that plasma oscillations in spatially separated quantum wells interact through real and virtual photon exchange. This gives rise to a superradiant mode displaying a large cooperative Lamb shift.
Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M
2001-06-04
Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.
Progress towards large gain-length products on the Li-like recombination scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitoun, P.; Jamelot, G.; Carillon, A.
1995-05-01
Investigating possibilities of attaining large gain-length products on the recombination scheme using lithium-like ions, we have examined two approaches aimed at overcoming the problem of plasma non-uniformity susceptible to destroy gain by a number of processes. In the first approach we studied amplification on the transitions 5f-3d and 4f-3d in Li-like Al{sup 10+} plasma column produced by smoothing optics using lens arrays. Employing this device resulted in the gain holding up significantly longer than when no smoothing optics was used. Second, we have investigated numerically and experimentally the 5g-4f transition in Li-like S{sup 13+}, as the gain should be barelymore » affected by the plasma nonuniformities. Encouraging results were obtained and their various aspects are discussed.« less
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Everson, E.; Schaeffer, D.; Constantin, C.; Vincena, S.; Van Compernolle, B.; Clark, S.; Niemann, C.
2013-06-01
Emission spectroscopy is currently being utilized in order to assess collision-less momentum and energy coupling between super-Alfvénic debris plasmas and magnetized, ambient plasmas of astrophysical relevance. In a recent campaign on the Large Plasma Device (LAPD) utilizing the Phoenix laboratory Raptor laser (130 J, 25 ns FWHM), laser-ablated carbon debris plasmas were generated within magnetized, ambient helium plasmas (nelec ≈ 3×1012 cm-3, Telec ≈ 5.5 eV, B0 = 200 G), and prominent spectral lines of carbon and helium ions were studied in high resolution (˜ 0.01 nm). Time-resolved Doppler shift and width measurements of a C V ion spectral line reveal significant deceleration as the ions stream through the background plasma, which may indirectly indicate momentum coupling. Spectral lines of He II ions are observed to intensify by orders of magnitude and broaden, indicating energy transfer from the debris plasma to the background plasma.
Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-01-05
The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less
Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.
2012-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.
NASA Astrophysics Data System (ADS)
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
Interaction of plasmas with lithium and tungsten fusion plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, Peter Robert
One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.
Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung
2012-11-30
A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF(4)) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd(2)O(3)-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd(2)O(3)-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd(2)O(3)-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd(2)O(3)-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.
Exhaust system with emissions storage device and plasma reactor
Hoard, John W.
1998-01-01
An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.
The Colorado Solar Wind Experiment
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Han, Jia; Horanyi, Mihaly; Ulibarri, Zach; Wang, Xu; Yeo, Lihsia
2016-10-01
The Colorado Solar Wind Experiment (CSWE) is a new device developed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT) at the University of Colorado. This large ion source is for studies of the interaction of solar wind plasma with planetary surfaces and cosmic dust, and for the investigation of plasma wake physics. With a plasma beam diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 1 mA/cm2, a large cross-section Kaufman Ion Source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. Chamber pressure can be reduced to 3e-5 Torr under operating conditions to suppress ion-neutral collisions and create a uniform ion velocity distribution. Diagnostic instruments such as a double Langmuir probe and an ion energy analyzer are mounted on a two-dimensional translation stage that allow the beam to be characterized throughout the chamber. Early experiments include the measurement of dust grain charging from the interaction with flowing plasma, and measurements of the plasma sheath created by the interaction of the flowing plasma impinging on a surface with a dipole magnetic field. This poster will describe the facility and the scientific results obtained to date.
NASA Astrophysics Data System (ADS)
Roytershteyn, V.; Delzanno, G. L.; Dorfman, S. E.; Cattell, C. A.; Van Compernolle, B.
2017-12-01
We discuss plans for an experiment that will investigate interaction of energetic electron beam with magnetized plasma. The planned experiment will be conducted on the Large Plasma Device (LAPD) at UCLA and will utilize a variable-energy (0.1-1) MeV electron beam. Such energetic beams have recently attracted renewed attention as a basis for a number of active experiments in space, largely due to possibility of overcoming limitations imposed by spacecraft charging in low-density (e.g. magnetospheric) plasma. In this talk, we will discuss theoretical and computation studies of the plasma modes excited by the beam and beam stability. Energetic beams radiate both whistler and high-frequency R-X mode via Cherenkov resonances, with the relative efficiency of coupling to R-X mode increasing with beam energy. The stability of a finite-size, modulated beam (as produced by the available beam sources) is investigated and relative significance of instabilities and direct radiation is discussed. Special attention will be paid to discussing how laboratory experiments relate to conditions in space.
Toward validation of a 3-D plasma turbulence model using LAPD data
NASA Astrophysics Data System (ADS)
Umansky, M. V.
2010-11-01
Detailed results from a 3-D fluid simulation of plasma turbulence are compared with experimental data from the Large Plasma Device (LAPD) at UCLA. LAPD is a magnetized plasma column experiment with a high repetition rate, allowing detailed time-and-space resolved probe data on plasma turbulence and transport. The large amount of data allows a thorough comparison with the simulation results. For the observed drift-type modes, LAPD plasmas are strongly collisional (φ*/νei1 and λei/L1), providing justification for a fluid treatment. Accordingly, the model is based on reduced Braginskii equations and is implemented in the framework of the BOUT code, originally developed at LLNL for tokamak edge plasmas. Analysis of linear plasma instabilities shows that resistive drift modes, rotation-driven interchange modes, and Kelvin-Helmholtz modes can all be important in LAPD and have comparable frequencies and growth rates. In nonlinear simulations using measured LAPD density profiles, evolution of instabilities and self-generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good agreement, in particular in the frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. Also, consistent with the experiment, the simulations indicate a great deal of similarity between plasma turbulence in LAPD and some features of tokamak edge turbulence. Similar to tokamak edge plasmas, density transport appears to be predominantly carried by large particle-flux events. Despite the intermittent character of the calculated turbulence, as indicated by fluctuation statistics, the turbulent particle flux is consistent with a diffusive model with diffusion coefficient close to the Bohm value.
High mobility and high stability glassy metal-oxynitride materials and devices
NASA Astrophysics Data System (ADS)
Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun
2016-04-01
In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.
Lee, Jun Suk; Sahu, Bibhuti Bhusan; Han, Jeon Geon
2016-11-30
Due to the problem of degradation by moisture or oxygen, there is growing interest in efficient gas diffusion barriers for organic optoelectronic devices. Additionally, for the continuous and long-term operation of a device, dedicated flexible thin film encapsulation is required, which is the foremost challenge. Many efforts are being undertaken in the plasma assisted deposition process control for the optimization of film properties. Control of the plasma density along with the energy of the principal plasma species is critical to inducing alteration of the plasma reactivity, chemistry, and film properties. Here, we have used the radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) technique to deposit amorphous silicon nitride (SiN x ) barrier films onto a plastic substrate at different pressures. A large part of our efforts is devoted to a detailed study of the process parameters controlling the plasma treatment. Numerous plasma diagnostic techniques combined with various characterization tools are purposefully used to characterize and investigate the plasma environment and the associated film properties. This contribution also reports a study of the correlations between the plasma chemistry and the chemical, mechanical, barrier, and optical properties of the deposited films. The data reveal that the film possesses a very low stress for the condition where the net energy imparted on the substrate is at a minimum. Simultaneously, a relatively high ion flux and high energy of the ions impinging on the film growth surfaces are crucial for controlling the film stress and the resulting barrier properties.
Stable sustainment of plasmas with electron internal transport barrier by ECH in the LHD
NASA Astrophysics Data System (ADS)
Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Marushchenko, N. B.; Seki, R.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Akiyama, T.; Tanaka, K.; Tokuzawa, T.; Yamada, I.; Yamada, H.; Mutoh, T.; Takeiri, Y.; the LHD Experiment Group
2018-02-01
The long pulse experiments in the Large Helical Device has made progress in sustainment of improved confinement states. It was found that steady-state sustainment of the plasmas with improved confinement at the core region, that is, electron internal transport barrier (e-ITB), was achieved with no significant difficulty. Sustainment of a plasma having e-ITB with the line average electron density n e_ave of 1.1 × 1019 m-3 and the central electron temperature T e0 of ˜3.5 keV for longer than 5 min only with 340 kW ECH power was successfully demonstrated.
Investigation of flows in LAPD and their relation to edge turbulence and intermittency
NASA Astrophysics Data System (ADS)
Schaffner, D.; Carter, T. A.; Friedman, B.; Vincena, S.; Auerbach, D. W.; Popovich, P.
2009-11-01
We report on measurements of spontaneous flows and turbulence in the Large Plasma Device (LAPD) at UCLA. Measurements of perpendicular and parallel flow using a six-sided Mach probe reveal edge-localized perpendicular flows. The source of this flow is under investigation and may be generated by boundary effects or turbulent processes. Particular cases where a plasma depletion zone is created, including inserting a blocking disk within the cathode region and forming a compressed column, are used to analyze the effects on plasma flows. Ultimately, the relationship between the flows, turbulence and intermittency---the formation of blobs---is sought.
Plasma phenomena at magnetic neutral points
NASA Technical Reports Server (NTRS)
Sturrock, P. A.
1975-01-01
A model of the plasma focus is considered, in which large axial electric fields are induced by the imploding current sheet during the final few nanoseconds of the collapse phase. This field provides a mechanism for creation of a beam of electrons of highly suprathermal energies. For this beam, the bremsstrahlung radiation is calculated, which is expected either from electron-deuteron collisions in the focused plasma itself or from the beam as it reaches the walls of the device. Comparison with experimental results indicates that the walls are the more likely source of these hard X-rays and also find qualitative agreement of the expected angular distribution of X-rays with experiment.
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
Experimental and Numerical Study of Drift Alfv'en Waves in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett; Popovich, P.; Carter, T. A.; Auerbach, D.; Schaffner, D.
2009-11-01
We present a study of drift Alfv'en waves in linear geometry using experiments in the Large Plasma Device (LAPD) at UCLA and simulations from the Boundary Turbulence code (BOUT). BOUT solves the 3D time evolution of plasma parameters and turbulence using Braginskii fluid equations. First, we present a verification study of linear drift Alfven wave physics in BOUT, which has been modified to simulate the cylindrical geometry of LAPD. Second, we present measurements of density and magnetic field fluctuations in the LAPD plasma and the correlation of these fluctuations as a function of plasma parameters, including strength of the background field and discharge current. We also compare the measurements to nonlinear BOUT calculations using experimental LAPD profiles.
NASA Astrophysics Data System (ADS)
Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group
2018-04-01
The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.
Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.
Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo
2016-08-05
Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).
The HelCat basic plasma science device
NASA Astrophysics Data System (ADS)
Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.
2015-01-01
The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.
Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2017-08-01
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
Active spacecraft potential control system selection for the Jupiter orbiter with probe mission
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Goldstein, R.
1977-01-01
It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: mortezahabibi@aut.ac.ir; Sharifi, R.; Amrollahi, R.
2013-12-15
The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrexmore » surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.« less
NASA Astrophysics Data System (ADS)
Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment
NASA Astrophysics Data System (ADS)
Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool
2016-01-01
Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.
Napp, Judith; Daeschlein, Georg; Napp, Matthias; von Podewils, Sebastian; Gümbel, Denis; Spitzmueller, Romy; Fornaciari, Paolo; Hinz, Peter; Jünger, Michael
2015-01-01
Background: Cold atmospheric pressure plasma (CAP) with its many bioactive properties has defined a new medical field: the plasma medicine. However, in the related form of high-frequency therapy, CAP was even used briefly a century ago. The aim of this study was to review historic CAP treatments and to obtain data regarding the antimicrobial efficacy of a historical high-frequency plasma device. Methods: First, historic literature regarding the history of CAP treatment was evaluated, because in the modern literature no data were available. Second, the susceptibility of 5 different bacterial wound isolates, cultured on agar, to a historic plasma source (violet wand [VW]) and two modern devices (atmospheric pressure plasma jet [APPJ] and Dielectric Barrier Discharge [DBD]) was analyzed . The obtained inhibition areas (IA) were compared. Results: First, the most convenient popular historical electromedical treatments produced a so-called effluvia by using glass electrodes, related to today’s CAP. Second, all three tested plasma sources showed complete eradication of all tested microbial strains in the treated area. The “historical” cold VW plasma showed antimicrobial effects similar to those of modern APPJ and DBD regarding the diameter of the IA. Conclusion: Some retrograde evidence may be deducted from this, especially for treatment of infectious diseases with historical plasma devices. The underlying technology may serve as model for construction of modern sucessive devices. PMID:26124985
Preionization Techniques in a kJ-Scale Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea
2016-10-01
A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.
3-D plasma boundary and plasma wall interaction research at UW-Madison
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Akerson, Adrian; Bader, Aaron; Barbui, Tullio; Effenberg, Florian; Flesch, Kurt; Frerichs, Heinke; Green, Jonathan; Hinson, Edward; Kremeyer, Thierry; Norval, Ryan; Stephey, Laurie; Waters, Ian; Winters, Victoria
2016-10-01
The necessity of considering 3-D effects on the plasma boundary and plasma wall interaction (PWI) in tokamaks, stellarators and reversed field pinches has been highlighted by abundant experimental and numerical results in the recent past. Prominent examples with 3-D boundary situations are numerous: ELM controlled H-modes by RMP fields in tokamaks, research on boundary plasmas and PWI in stellarators in general, quasi-helical states in RFPs, asymmetric fueling situations, and structural and wall elements which are not aligned with the magnetic guiding fields. A systematic approach is being taken at UW-Madison to establish a targeted experimental basis for identifying the most significant effects for plasma edge transport and resulting PWI in such 3-D plasma boundary situations. We deploy advanced 3-D modeling using the EMC3-EIRENE, ERO and MCI codes in combination with laboratory experiments at UW-Madison to investigate the relevance of 3-D effects in large scale devices with a concerted approach on DIII-D, NSTX-U, and Wendelstein 7-X. Highlights of experimental results from the on-site laboratory activities at UW-Madison and the large scale facilities are presented and interlinks will be discussed. This work was supported by US DOE DE-SC0013911, DE-SC00012315 and DE-SC00014210.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
Exploration to generate atmospheric pressure glow discharge plasma in air
NASA Astrophysics Data System (ADS)
Wenzheng, LIU; Chuanlong, MA; Shuai, ZHAO; Xiaozhong, CHEN; Tahan, WANG; Luxiang, ZHAO; Zhiyi, LI; Jiangqi, NIU; Liying, ZHU; Maolin, CHAI
2018-03-01
Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications
NASA Astrophysics Data System (ADS)
Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.
Experiments on and observations of intense Alfvén waves in the laboratory
NASA Astrophysics Data System (ADS)
Gekelman, W.; Vanzeeland, M.; Vincena, S.
2002-11-01
There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device ( LAPD) is a machine, at UCLA, in which Alfvén wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments which involve the expansion of a dense (initially, n_lpp/n_0>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over 10^4 locations. The wave generation mechanism is due to currents from fast electrons which leave the lpp and field aligned return currents provided by the plasma to neutralize space charge. Dramatic movies of the measured wave fields and their associated currents will be presented. *Work supported by the ONR, and DOE/NSF.
Oishi, T; Morita, S; Huang, X L; Zhang, H M; Goto, M
2014-11-01
Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500-2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, T., E-mail: oishi@LHD.nifs.ac.jp; Morita, S.; Goto, M.
2014-11-15
Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.
Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Juergen
Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh.
2014-07-15
Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in themore » graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.« less
An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator
1988-11-01
The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to
Coppi, B.; Montgomery, D.B.
1973-12-11
A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)
Plasma Properties of an Exploding Semiconductor Igniter
NASA Astrophysics Data System (ADS)
McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.
1997-11-01
Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.
Theoretical investigation of crack formation in tungsten after heat loads
NASA Astrophysics Data System (ADS)
Arakcheev, A. S.; Huber, A.; Wirtz, M.; Sergienko, G.; Steudel, I.; Burdakov, A. V.; Coenen, J. W.; Kreter, A.; Linke, J.; Mertens, Ph.; Shoshin, A. A.; Unterberg, B.; Vasilyev, A. A.
2015-08-01
Transient events such as ELMs in large plasma devices lead to significant heat load on plasma-facing components (PFCs). ELMs cause mechanical damage of PFCs (e.g. cracks). The cracks appear due to stresses caused by thermal extension. Analytical calculations of the stresses are carried out for tungsten. The model only takes into account the basic features of solid body mechanics without material modifications (e.g. fatigue or recrystallization). The numerical results of the model demonstrate good agreement with experimental data obtained at the JUDITH-1, PSI-2 and GOL-3 facilities.
Apparatus and method for removing particle species from fusion-plasma-confinement devices
Hamilton, G.W.
1981-10-26
In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.
High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia
2016-10-01
Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.
Bunker probe: A plasma potential probe almost insensitive to its orientation with the magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costea, S., E-mail: stefan.costea@uibk.ac.at; Schneider, B. S.; Schrittwieser, R.
Due to their ability to suppress a large part of the electron current and thus measuring directly the plasma potential, ion sensitive probes have begun to be widely tested and used in fusion devices. For these probes to work, almost perfect alignment with the total magnetic field is necessary. This condition cannot always be fulfilled due to the curvature of magnetic fields, complex magnetic structure, or magnetic field reconnection. In this perspective, we have developed a plasma potential probe (named Bunker probe) based on the principle of the ion sensitive probe but almost insensitive to its orientation with the totalmore » magnetic field. Therefore it can be used to measure the plasma potential inside fusion devices, especially in regions with complex magnetic field topology. Experimental results are presented and compared with Ball-Pen probe measurements taken under identical conditions. We have observed that the floating potential of the Bunker probe is indeed little affected by its orientation with the magnetic field for angles ranging from 90° to 30°, in contrast to the Ball-Pen probe whose floating potential decreases towards that of a Langmuir probe if not properly aligned with the magnetic field.« less
Waves generated in the plasma plume of helicon magnetic nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen
2013-03-15
Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen
The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less
Technical trends of large-size photomasks for flat panel displays
NASA Astrophysics Data System (ADS)
Yoshida, Koichiro
2017-06-01
Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".
UCLA Tokamak Program Close Out Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Robert John
2014-02-04
The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reachingmore » a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.« less
Blood coagulation screening using a paper-based microfluidic lateral flow device.
Li, H; Han, D; Pauletti, G M; Steckl, A J
2014-10-21
A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
Kim, Pilkee; Ong, Eng Hui; Yoon, Yong-Jin; Ng, Sum Huan Gary; Puttachat, Khuntontong
2016-01-01
Blood plasma contains biomarkers and substances that indicate the physiological state of an organism, and it can be used to diagnose various diseases or body condition. To improve the accuracy of diagnostic test, it is required to obtain the high purity of blood plasma. This paper presents a low-cost, disposable microfluidics device for blood plasma extraction using magnetophoretic behaviors of blood cells. This device uses alternating magnetophoretic capture modes to trap and separate paramagnetic and diamagnetic cells away from blood plasma. The device system is composed of two parts, a disposable microfluidics chip and a non-disposable (reusable) magnetic field source. Such modularized device helps the structure of the disposable part dramatically simplified, which is beneficial for low-cost mass production. A series of numerical simulation and parametric study have been performed to describe the mechanism of blood cell separation in the microchannel, and the results are discussed. Furthermore, experimental feasibility test has been carried out in order to demonstrate the blood plasma extraction process of the proposed device. In this experiment, pure blood plasma has been successfully extracted with yield of 21.933% from 75 μl 1:10 dilution of deoxygenated blood. PMID:27042252
First comparative analysis concerning the plasma platelet contamination during MNC collection.
Pfeiffer, Hella; Achenbach, Susanne; Strobel, Julian; Zimmermann, Robert; Eckstein, Reinhold; Strasser, Erwin F
2017-08-01
Monocytes can be cultured into dendritic cells with addition of autologous plasma, which is highly prone to platelet contamination due to the apheresis process. Since platelets affect the maturation process of monocytes into dendritic cells and might even lead to a diminished harvest of dendritic cells, it is very important to reduce the platelet contamination. A new collection device (Spectra Optia) was analyzed, compared to two established devices (COM.TEC, Cobe Spectra) and evaluated regarding the potential generation of source plasma. Concurrent plasma collected during leukapheresis was analyzed for residual cell contamination in a prospective study with the new Spectra Optia apheresis device (n=24) and was compared with COM.TEC and Cobe Spectra data (retrospective analysis, n=72). Donor pre-donation counts of platelets were analyzed for their predictive value of contaminating PLTs in plasma harvests. The newest apheresis device showed the lowest residual platelet count of the collected concurrent plasma (median 3.50×10 9 /l) independent of pre-donation counts. The other two devices and sets had a higher platelet contamination. The contamination of the plasma with leukocytes was very low (only 2.0% were higher than 0.5×10 9 /l). This study showed a significant reduction of platelet contamination of the concurrent plasma collected with the new Spectra Optia device. This plasma product with low residual platelets and leukocytes might also be used as plasma for fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition.
Kim, Y; Song, W; Lee, S Y; Jeon, C; Jung, W; Kim, M; Park, C-Y
2011-06-27
Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω∕sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.
Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition
NASA Astrophysics Data System (ADS)
Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.
2011-06-01
Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.
Development of terahertz laser diagnostics for electron density measurements.
Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S
2008-10-01
A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.
Energy Device Applications of Synthesized 1D Polymer Nanomaterials.
Huang, Long-Biao; Xu, Wei; Hao, Jianhua
2017-11-01
1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Super-Alfvénic translation of a field-reversed configuration into a large-bore dielectric chamber
NASA Astrophysics Data System (ADS)
Sekiguchi, J.; Asai, T.; Takahashi, T.
2018-01-01
An experimental device to demonstrate additional heating and control methods for a field-reversed configuration (FRC) has been developed. The newly developed device, named FRC Amplification via Translation (FAT), has a field-reversed theta-pinch plasma source and a low-elongation dielectric (transparent quartz) confinement chamber with quasi-static confinement field. In the initial experiments on the FAT device, FRC translation and trapping were successfully demonstrated. Although the typical elongation of the trapped FRC in the confinement region was roughly three, no disruptive global instability, such as tilt, was observed. The FAT device increases the latitude to perform translation-related experiments, such as those concerning inductive current drive, equivalent neutral beam injection effects, and wave applications.
The HelCat Helicon-Cathode Device at UNM
NASA Astrophysics Data System (ADS)
Cyrin, Bricette; Watts, Christopher; Gilmore, Mark; Hayes, Tiffany; Kelly, Ralph; Leach, Christopher; Lynn, Alan; Sanchez, Andrew; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-11-01
The HelCat helicon-cathode device is a dual-source linear plasma device for investigating a wide variety of basic plasma phenomena. HelCat is 4 m long, 50 cm diameter, with axial magnetic field < 2.2 kG. An RF helicon source is at one end of the device, and a thermionic BaO-Ni cathode is at the other end. Current research topics include the relationship of turbulence to sheared plasma flows, deterministic chaos, Alfv'en wave propagation and damping, and merging plasma interaction. We present an overview of the ongoing research, and focus on recent results of merging helicon and cathode plasma. We will present some really cool movies.
Towards improved artificial lungs through biocatalysis.
Kaar, Joel L; Oh, Heung-Il; Russell, Alan J; Federspiel, William J
2007-07-01
Inefficient CO(2) removal due to limited diffusion represents a significant barrier in the development of artificial lungs and respiratory assist devices, which use hollow fiber membranes (HFMs) as the blood-gas interface and can require large blood-contacting membrane area. To offset the underlying diffusional challenge, "bioactive" HFMs that facilitate CO(2) diffusion were prepared via covalent immobilization of carbonic anhydrase (CA), an enzyme which catalyzes the conversion of bicarbonate in blood to CO(2), onto the surface of plasma-modified conventional HFMs. This study examines the impact of enzyme attachment on the diffusional properties and the rate of CO(2) removal of the bioactive membranes. Plasma deposition of surface reactive hydroxyls, to which CA could be attached, did not change gas permeance of the HFMs or generate membrane defects, as determined by scanning electron microscopy, when low plasma discharge power and short exposure times were employed. Cyanogen bromide activation of the surface hydroxyls and subsequent modification with CA resulted in near monolayer enzyme coverage (88%) on the membrane. The effect of increased plasma discharge power and exposure time on enzyme loading was negligible while gas permeance studies showed enzyme attachment did not impede CO(2) or O(2) diffusion. Furthermore, when employed in a model respiratory assist device, the bioactive membranes improved CO(2) removal rates by as much as 75% from physiological bicarbonate solutions with no enzyme leaching. These results demonstrate the potential of bioactive HFMs with immobilized CA to enhance CO(2) exchange in respiratory devices.
Development of plasma-on-chip: Plasma treatment for individual cells cultured in media
NASA Astrophysics Data System (ADS)
Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru
2016-01-01
A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas-liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas-liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.
Plasma rotation in the Peking University Plasma Test device.
Xiao, Chijie; Chen, Yihang; Yang, Xiaoyi; Xu, Tianchao; Wang, Long; Xu, Min; Guo, Dong; Yu, Yi; Lin, Chen
2016-11-01
Some preliminary results of plasma rotations in a linear plasma experiment device, Peking University Plasma Test (PPT) device, are reported in this paper. PPT has a cylindrical vacuum chamber with 500 mm diameter and 1000 mm length, and a pair of Helmholtz coils which can generate cylindrical or cusp magnetic geometry with magnitude from 0 to 2000 G. Plasma was generated by a helicon source and the typical density is about 10 13 cm -3 for the argon plasma. Some Langmuir probes, magnetic probes, and one high-speed camera are set up to diagnose the rotational plasmas. The preliminary results show that magnetic fluctuations exist during some plasma rotation processes with both cylindrical and cusp magnetic geometries, which might be related to some electromagnetic processes and need further studies.
Toroidal band limiter for a plasma containment device
Kelley, George G.
1978-01-01
This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.
On non-equilibrium atmospheric pressure plasma jets and plasma bullet
NASA Astrophysics Data System (ADS)
Lu, Xinpei
2012-10-01
Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madan, A
2005-03-01
The work described in this report uses a modified pulsed plasma-enhanced chemical vapor deposition (PECVD) technique that has been successfully developed to fabricate state-of-the-art nc-Si materials and devices. Specifically, we have achieved the following benchmarks: nc SiH device with an efficiency of 8% achieved at a deposition rate of {approx}1 A/s; nc SiH device with an efficiency of 7% achieved at a deposition rate of {approx}5 A/s; large-area technology developed using pulsed PECVD with uniformity of +/-5% over 25 cm x 35 cm; devices have been fabricated in the large-area system (part of Phase 3); an innovative stable four-terminal (4-T)more » tandem-junction device of h> 9% fabricated. (Note that the 4-T device was fabricated with existing technology base and with further development can reach stabilized h of 12%); and with improvement in Voc {approx} 650 mV, from the current value of 480 mV can lead to stable 4-T device with h>16%. Toward this objective, modified pulsed PECVD was developed where layer- by-layer modification of nc-SiH has been achieved. (Note that due to budget cuts at NREL, this project was curtailed by about one year.)« less
NASA Astrophysics Data System (ADS)
Carter, T. A.; Auerbach, D. W.; Brugman, B. T.
2007-11-01
Large amplitude kinetic Alfv'en waves (δB/B ˜1% > k/k) are generated in the Large Plasma Device (LAPD) at UCLA using loop antennas. Substantial electron heating is observed, localized to the wave current channels. The Poynting flux associated with the Alfv'en waves is substantial and the observed heating may be at least in part due to collisional and Landau damping of these waves. However, heating by antenna near inductive electric fields may also be responsible for the observations. A discussion of both possibilities will be presented, including measurements of near fields of the antenna. The heating structures the background plasma and results in the excitation of drift-Alfv'en waves. These drift waves then interact with the incident Alfv'en wave, causing sideband generation which results in a nearly broadband state at high wave power. This process may represent an alternate mechanism by which unidirectional kinetic Alfv'en waves can nonlinearly generate a turbulent spectrum. In addition to electron heating, evidence for background density modification and electron acceleration is observed and will be presented.
Advanced Design Concepts for Dense Plasma Focus Devices at LLNL
NASA Astrophysics Data System (ADS)
Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea
2017-10-01
The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.
NASA Astrophysics Data System (ADS)
Singh, Rajwinder
Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.
Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves
NASA Astrophysics Data System (ADS)
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2014-10-01
Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f
Inductive current startup in large tokamaks with expanding minor radius and RF assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1983-01-01
Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sup 0/ approx.< 0.4 m)more » current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter.« less
NASA Astrophysics Data System (ADS)
Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.
2014-12-01
A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.
NASA Astrophysics Data System (ADS)
Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.
2015-04-01
A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.
Helicity transformation under the collision and merging of two magnetic flux ropes
NASA Astrophysics Data System (ADS)
DeHaas, Timothy; Gekelman, Walter
2017-07-01
Magnetic helicity has become a useful tool in the analysis of astrophysical plasmas. Its conservation in the magnetohydrodynamic limit (and other fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a tube-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed in the near-earth environment and solar atmosphere. In this well-diagnosed experiment (three-dimensional measurements of ne, Te, Vp, B, J, E, and uflow), two magnetic flux ropes are generated in the Large Plasma Device at UCLA. These ropes are driven kink-unstable to trigger complex motion. As they interact, helicity conservation is examined in regions of reconnection. We examine (1) the transport of helicity and (2) the dissipation of the helicity. As the ropes move and the topology of the field lines diverge, a quasi-separatrix layer (QSL) is formed. As the QSL forms, magnetic helicity is dissipated within this region. At the same time, there is an influx of canonical helicity into the region such that the temporal derivative of magnetic helicity is zero.
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)
2016-01-01
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-04-01
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.
Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma
NASA Astrophysics Data System (ADS)
Bondarenko, Anton
2016-10-01
The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.
The Science and Technology Case for High-Field Fusion
NASA Astrophysics Data System (ADS)
Whyte, D.
2017-10-01
This review will focus on the origin, development and new opportunities of a strategy for fusion energy based on the high-field approach. In this approach confinement devices are designed at the maximum possible value of vacuum magnetic field strength, B. The integrated electrical, mechanical and cooling engineering challenges of high-field on coil (Bcoil) , large-bore electromagnets are examined for both copper and superconductor materials. These engineering challenges are confronted because of the profound science advantages provided by high-B, which are derived and reviewed: high fusion power density, B4, in compact devices, thermonuclear plasmas with significant stability margin, and, in tokamaks, access to higher plasma density. Two distinct high-field strategies emerged in the 1980's. The first was compact, cryogenically-cooled copper devices (BPX, IGNITOR, FIRE) with Bcoil>20 T, while the second was a large-volume, Nb3Sn superconductor device with Bcoil <12 T; with the second path exclusively chosen ca. 2000 with the ITER construction decision. The reasoning, advantages and challenges of that decision are discussed. Yet since that decision, a new opportunity has arisen: compact, Rare Earth Barium Copper Oxide (REBCO) superconductor-based devices with Bcoil >20 T; a strategy that essentially combines the best components of the two previous strategies. Recent activities examining the technology and science implications of this new strategy are reviewed. On the technology side, REBCO superconductors have now been used to produce Bcoil>40 T in small-bore electromagnets, enabled by rapid progress in manufactured REBCO conductor quality, coil modularity and flexible operating temperature range. Specific tokamak designs, over a range of aspect ratios, have been developed to take scientific advantage of these features in various ways, and will be described.
Influence of the resonant magnetic perturbations on transport in the Large Helical Device
NASA Astrophysics Data System (ADS)
Jakubowski, M. W.; Drewelow, P.; Masuzaki, S.; Tanaka, K.; Pedersen, T. S.; Akiyama, T.; Bozhenkov, S.; Dinklage, A.; Kobayashi, M.; Narushima, Y.; Sakakibara, S.; Suzuki, Y.; Wolf, R.; Yamada, H.; the LHD Experimental Group
2013-11-01
The purpose of this study is the investigation of the non-linear plasma response of transport due to stochastic effects. On the Large Helical Device, perturbation coils create a resonant magnetic perturbation (RMP) with the m/n = 1/1 and 2/1 Fourier components. Depending on the plasma conditions, the perturbation either enhances or heals the natural m/n = 1/1 magnetic island. For the case of an amplified island the enhanced heat and particle transport across the island causes a rather significant reduction in the confinement. For a healed island, there is a small decrease in beta with increasing perturbation current. These changes coincide with an increasing width of the open stochastic volume at the plasma edge near the x-point. Systematic experiments are performed, changing the amplitude of the perturbation linearly with IRMP in the range from 0 to 2.7 kA. Two scenarios are investigated: first, the discharge is ramped up with an external perturbation already superimposed on the main magnetic field. Second, the external perturbation is applied to the plasma already ignited (similar to experiments with RMPs in tokamaks). As will be shown, there is a clear difference in the size of the 1/1 island and the dependence of ne and Te on the perturbation when comparing these two scenarios. A hysteresis is observed up to a certain amplitude of the external perturbation. The particle transport and confinement are affected substantially in the discharges with a pre-existing magnetic perturbation. Interestingly, a global reduction in Te and ne is observed above a certain value of perturbation current in both cases. However, for the same island width, the plasma reacts differently to the applied perturbation depending on the direction of the ramp. For ramp-downs, we observe steeper electron density and temperature gradients, which leads to better plasma performance.
Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Dux, R.; Casali, L.; Eich, T.; Giannone, L.; Herrmann, A.; McDermott, R.; Mlynek, A.; Müller, H. W.; Reimold, F.; Schweinzer, J.; Sertoli, M.; Tardini, G.; Treutterer, W.; Viezzer, E.; Wenninger, R.; Wischmeier, M.; the ASDEX Upgrade Team
2013-12-01
A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L-H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.
Plasma profile evolution during disruption mitigation via massive gas injection on MAST
NASA Astrophysics Data System (ADS)
Thornton, A. J.; Gibson, K. J.; Chapman, I. T.; Harrison, J. R.; Kirk, A.; Lisgo, S. W.; Lehnen, M.; Martin, R.; Scannell, R.; Cullen, A.; the MAST Team
2012-06-01
Massive gas injection (MGI) is one means of ameliorating disruptions in future devices such as ITER, where the stored energy in the plasma is an order of magnitude larger than in present-day devices. The penetration of the injected impurities during MGI in MAST is diagnosed using a combination of high-speed (20 kHz) visible imaging and high spatial (1 cm) and temporal (0.1 ms) resolution Thomson scattering (TS) measurements of the plasma temperature and density. It is seen that the rational surfaces, in particular q = 2, are the critical surfaces for disruption mitigation. The TS data shows the build-up of density on rational surfaces in the edge cooling period of the mitigation, leading to the collapse of the plasma in a thermal quench. The TS data are confirmed by the visible imaging, which shows filamentary structures present at the start of the thermal quench. The filamentary structures have a topology which matches that of a q = 2 field line in MAST, suggesting that they are located on the q = 2 surface. Linearized magnetohydrodynamic stability analysis using the TS profiles suggests that the large density build-up on the rational surfaces drives modes within the plasma which lead to the thermal quench. The presence of such modes is seen experimentally in the form of magnetic fluctuations on Mirnov coils and the growth of an n = 1 toroidal mode in the period prior to the thermal quench. These results support the observations of other machines that the 2/1 mode is the likely trigger for the thermal quench in a mitigated disruption and suggests that the mitigation process in spherical tokamaks is similar to that in conventional aspect ratio devices.
NASA Astrophysics Data System (ADS)
Chauhan, Manvendra Singh; Chauhan, R. K.
2018-04-01
This paper demonstrates a Junction-less Double Gate n-p-n Impact ionization MOS transistor (JLDG n-IMOS) on a very light doped p-type silicon body. Device structure proposed in the paper is based on charge plasma concept. There is no metallurgical junctions in the proposed device and does not need any impurity doping to create the drain and source regions. Due to doping-less nature, the fabrication process is simple for JLDG n-IMOS. The double gate engineering in proposed device leads to reduction in avalanche breakdown via impact ionization, generating large number of carriers in drain-body junction, resulting high ION current, small IOFF current and great improvement in ION/IOFF ratio. The simulation and examination of the proposed device have been performed on ATLAS device simulatorsoftware.
Experimental investigation of flow induced dust acoustic shock waves in a complex plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.
2016-08-15
We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less
Active cleaning technique device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1973-01-01
The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
NASA Astrophysics Data System (ADS)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; Schaeffer, D. B.; Bondarenko, A. S.; Tripathi, S. K. P.; Van Compernolle, B.; Vincena, S.; Constantin, C. G.; Niemann, C.; Winske, D.
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions were observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. We compared measurements to 2D hybrid simulations of the experiment.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; ...
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; ...
2017-08-11
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Alternative approaches to plasma confinement
NASA Technical Reports Server (NTRS)
Roth, J. R.
1978-01-01
The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
NASA Astrophysics Data System (ADS)
Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi
2018-01-01
Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.
An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Xinpei; Jiang Zhonghe; Xiong Qing
2008-02-25
In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less
Plasma separation process. Betacell (BCELL) code, user's manual
NASA Astrophysics Data System (ADS)
Taherzadeh, M.
1987-11-01
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the Plasma Separation Program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison.
The path to exploring physics in advanced devices with a heavy ion beam probe
NASA Astrophysics Data System (ADS)
Demers, D. R.; Fimognari, P. J.
2012-10-01
The scientific progression of alternative or advanced devices must be met with comparable diagnostic technologies. Heavy ion beam probe innovations from ongoing diagnostic development are meeting this challenge. The diagnostic is uniquely capable of measuring the radial electric field, critically important in stellarators, simultaneously with fluctuations of electron density and electric potential. HIBP measurements can also improve the understanding of edge physics in tokamaks and spherical tori. It can target issues associated with the pedestal region, including the mechanisms underlying the L-H transition, the onset and evolution of ELMs, and the evolution of the electron current density. Beam attenuation (and resulting low signal to noise levels), a challenge to operation on devices with large plasma cross-sections and high ne and Te, can be mitigated with greater beam energies and currents. Other application challenges, such as measurements of plasma fluctuations and profile variations with elevated temporal and spatial resolutions, can be achieved with innovative detectors. The scientific studies motivating the implementation of an HIBP on HSX, ASDEX-U, and W7-X will be presented along with preliminary scoping studies.
Huang, Chuixiu; Eibak, Lars Erik Eng; Gjelstad, Astrid; Shen, Xiantao; Trones, Roger; Jensen, Henrik; Pedersen-Bjergaard, Stig
2014-01-24
In this work, a single-well electromembrane extraction (EME) device was developed based on a thin (100μm) and flat porous membrane of polypropylene supporting a liquid membrane. The new EME device was operated with a relatively large acceptor solution volume to promote a high recovery. Using this EME device, exhaustive extraction of the basic drugs quetiapine, citalopram, amitriptyline, methadone and sertraline was investigated from both acidified water samples and human plasma. The volume of acceptor solution, extraction time, and extraction voltage were found to be important factors for obtaining exhaustive extraction. 2-Nitrophenyl octyl ether was selected as the optimal organic solvent for the supported liquid membrane. From spiked acidified water samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 15min and with an extraction voltage of 250V. Under these conditions, extraction recoveries were in the range 89-112%. From human plasma samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 30min and with an extraction voltage of 300V. Under these conditions, extraction recoveries were in the range of 83-105%. When combined with LC-MS, the new EME device provided linearity in the range 10-1000ng/ml for all analytes (R(2)>0.990). The repeatability at low (10ng/ml), medium (100ng/ml), and high (1000ng/ml) concentration level for all five analytes were less than 10% (RSD). The limits of quantification (S/N=10) were found to be in the range 0.7-6.4ng/ml. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
ELM control with RMP: plasma response models and the role of edge peeling response
NASA Astrophysics Data System (ADS)
Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina
2016-11-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2017-08-14
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Bergsåker, H.; Menmuir, S.; Rachlew, E.; Brunsell, P. R.; Frassinetti, L.; Drake, J. R.
2008-03-01
The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B.; Winske, D.; Larson, D. J.
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
Electron cyclotron plasma startup in the GDT experiment
NASA Astrophysics Data System (ADS)
Yakovlev, D. V.; Shalashov, A. G.; Gospodchikov, E. D.; Solomakhin, A. L.; Savkin, V. Ya.; Bagryansky, P. A.
2017-01-01
We report on a new plasma startup scenario in the gas dynamic trap (GDT) magnetic mirror device. The primary 5 MW neutral beam injection (NBI) plasma heating system fires into a sufficiently dense plasma target (‘seed plasma’), which is commonly supplied by an arc plasma generator. In the reported experiments, a different approach to seed plasma generation is explored. One of the channels of the electron cyclotron resonance (ECR) heating system is used to ionize the neutral gas and build up the density of plasma to a level suitable for NBI capture. After a short transition of approximately 1 ms the discharge becomes essentially similar to a standard one initiated by the plasma gun. This paper presents the discharge scenario and experimental data on the seed plasma evolution during ECRH, along with the dependencies on incident microwave power, magnetic configuration and pressure of a neutral gas. The characteristics of the consequent high-power NBI discharge are studied and differences from the conventional scenario are discussed. A theoretical model describing the ECR breakdown and the seed plasma accumulation in a large-scale mirror trap is developed on the basis of the GDT experiment.
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Schaeffer, Derek; Everson, Erik; Vincena, Stephen; van Compernolle, Bart; Constantin, Carmen; Clark, Eric; Niemann, Christoph
2013-10-01
Emission spectroscopy is currently being utilized in order to assess collision-less momentum and energy coupling between explosive debris plasmas and ambient, magnetized background plasmas of astrophysical relevance. In recent campaigns on the Large Plasma Device (LAPD) (nelec =1012 -1013 cm-3, Telec ~ 5 eV, B0 = 200 - 400 G) utilizing the new Raptor laser facility (1053 nm, 100 J per pulse, 25 ns FWHM), laser-ablated carbon debris plasmas were generated within ambient, magnetized helium background plasmas and prominent spectral lines of carbon and helium ions were studied in high spectral (0 . 01 nm) and temporal (50 ns) resolution. Time-resolved velocity components extracted from Doppler shift measurements of the C+4 227 . 1 nm spectral line along two perpendicular axes reveal significant deceleration as the ions stream and gyrate within the helium background plasma, indicating collision-less momentum coupling. The He+1 320 . 3 nm and 468 . 6 nm spectral lines of the helium background plasma are observed to broaden and intensify in response to the carbon debris plasma, indicative of strong electric fields (Stark broadening) and energetic electrons. The experimental results are compared to 2D hybrid code simulations.
Turbulence and transport in high density, increased β LAPD plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Guice, Danny
2014-10-01
A new LaB6 cathode plasma source has recently been deployed on the Large Plasma Device (LAPD), allowing for the production of significantly higher plasma density (ne ~ 3 ×1013 cm-3) and temperature (Te ~ 12 eV and Ti ~ 6 eV). This source produces a smaller core plasma (~20cm diameter) that can be embedded in the lower temperature, lower density standard LAPD plasma (60 cm diameter, 1012 cm-3, Te ~ 5 eV, Ti ~ 1 eV). We will present first results from experiments exploring the nature of turbulence and transport produced by this high density core plasma. In contrast to the edge of the standard LAPD plasma, coherent fluctuations are observed in the edge of the high density core plasma. These coherent modes are dominant at low field (~400 G) with a transition to a more broadband spectrum at higher fields (~1 kG). The combination of increased density and temperature with lowered field in LAPD leads to significant increases in plasma β (in fact β ~ 1 can be achieved for B ~ 100 G). As the field is lowered, the strength of correlated magnetic fluctuations increases substantially.
Plasma Source Development for LAPD
NASA Astrophysics Data System (ADS)
Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.
2003-10-01
The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.
NASA Astrophysics Data System (ADS)
Ulmen, Benjamin Adam
An inertial electrostatic confinement (IEC) device has several pressure and grid-geometry dependent modes of operation for the confinement of plasma. Although the symmetric grid star-mode is the most often studied for its application to fusion, the asymmetric grid jet-mode has its own potential application for electric space propulsion. The jet-mode gets its name from the characteristic bright plasma jet emanating from the central grid. In this dissertation work, a full study was undertaken to provide an understanding on the formation and propagation of the IEC plasma jet-mode. The IEC device vacuum system and all diagnostics were custom assembled during this work. Four diagnostics were used to measure different aspects of the jet. A spherical plasma probe was used to explore the coupling of an external helicon plasma source to the IEC device. The plasma current in the jet was measured by a combination of a Faraday cup and a gridded energy analyzer (GEA). The Faraday cup also included a temperature sensor for collection of thermal power measurements used to compute the efficiency of the IEC device in coupling power into the jet. The GEA allowed for measurement of the electron energy spectra. The force provided by the plasma jet was measured using a piezoelectric force sensor. Each of these measurements provided an important window into the nature of the plasma jet. COMSOL simulations provided additional evidence needed to create a model to explain the formation of the jet. It will be shown that the jet consists of a high energy electron beam having a peak energy of approximately half of the full grid potential. It is born near the aperture of the grid as a result of the escaping core electrons. Several other attributes of the plasma jet will be presented as well as a way forward to utilizing this device and operational mode for future plasma space propulsion.
Pablant, N. A.; Satake, S.; Yokoyama, M.; ...
2016-01-28
An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less
Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor
Hammond, Jules L.; Rosamond, Mark C.; Sivaraya, Siva; Marken, Frank; Estrela, Pedro
2016-01-01
Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device. PMID:27983655
Development of very small-diameter, inductively coupled magnetized plasma device
NASA Astrophysics Data System (ADS)
Kuwahara, D.; Mishio, A.; Nakagawa, T.; Shinohara, S.
2013-10-01
In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (˜1019 m-3) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ˜1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.
Development of very small-diameter, inductively coupled magnetized plasma device.
Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S
2013-10-01
In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.
Microcrystalline silicon thin-film transistors for large area electronic applications
NASA Astrophysics Data System (ADS)
Chan, Kah-Yoong; Bunte, Eerke; Knipp, Dietmar; Stiebig, Helmut
2007-11-01
Thin-film transistors (TFTs) based on microcrystalline silicon (µc-Si:H) exhibit high charge carrier mobilities exceeding 35 cm2 V-1 s-1. The devices are fabricated by plasma-enhanced chemical vapor deposition at substrate temperatures below 200 °C. The fabrication process of the µc-Si:H TFTs is similar to the low temperature fabrication of amorphous silicon TFTs. The electrical characteristics of the µc-Si:H-based transistors will be presented. As the device charge carrier mobility of short channel TFTs is limited by the contacts, the influence of the drain and source contacts on the device parameters including the device charge carrier mobility and the device threshold voltage will be discussed. The experimental data will be described by a modified standard transistor model which accounts for the contact effects. Furthermore, the transmission line method was used to extract the device parameters including the contact resistance. The modified standard transistor model and the transmission line method will be compared in terms of the extracted device parameters and contact resistances.
Shuttle-era experiments in the area of plasma flow interactions with bodies in space
NASA Technical Reports Server (NTRS)
Samir, U.; Stone, N. H.
1980-01-01
A new experimental approach is discussed that can be adopted for studies in the area of plasma flow interactions with bodies in space. The potential use of the Space Shuttle/Orbiter as a near-earth plasma laboratory for studies in space plasma physics and particularly in solar system plasmas is discussed. This new experimental approach holds great promise for studies in the supersonic and sub-Alfvenic flow regime which has applications to the motion of natural satellites around their mother planets in the solar-system (e.g., the satellite Io around the planet Jupiter). A well conceived experimental and theoretical program can lead to a better physical understanding regarding the validity and range of applicability of using gasdynamic, kinetic, and fluid approaches in describing collisionless plasma flow interactions with bodies in a variety of flow regimes. In addition to the above scientific aspects of the program, significant technological advances can be achieved regarding the interaction of space probes in planetary atmospheres/ionospheres and the reliability of using various plasma diagnostic devices on board spacecraft and large space platforms.
Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space
NASA Astrophysics Data System (ADS)
Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.
2002-12-01
There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF
INPIStron switched pulsed power for dense plasma pinches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Ja H.
1993-01-01
The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
Large-scale generation of cell-derived nanovesicles
NASA Astrophysics Data System (ADS)
Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.
2014-09-01
Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.
A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.
Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
Laser-Produced Colliding Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew
2005-10-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them shocks which transport energy. We study the collision of two dense, laser-produced plasmas expanding perpendicular to the background magnetic field, each with an Alfv'en Mach number of approximately 0.5. The plasmas are launched off of two carbon targets, 9cm apart, by a short pulse of laser energy (Nd:YAG, 1J 8ns). Experiments are currently in progress in a small test chamber at UCLA (background plasma n 3x10^12, 3 meters long, B0<700G) and will shortly be migrated to the LaPD (LArge Plasma Device; n 3x10^12, 18 meters long, 70cm diameter, 400G
Characteristic time for halo current growth and rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H., E-mail: ahb17@columbia.edu
2015-10-15
A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channelmore » in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.« less
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
Intrinsic suppression of turbulence in linear plasma devices
NASA Astrophysics Data System (ADS)
Leddy, J.; Dudson, B.
2017-12-01
Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.
Design of a toroidal device with a high temperature superconductor coil for non-neutral plasma trap
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi; Morikawa, Junji; Nihei, Hitoshi; Ozawa, Daisaku; Yoshida, Zensho; Mito, Toshiyuki; Yanagi, Nagato; Iwakuma, Masataka
2002-01-01
The non-neutral plasma confinement device with a floating internal coil is under construction, where the high temperature superconductor (HTS) Ag-sheathed BSCCO-2223 is employed as the floating coil. We have two topics with this device: one is a trap of a non-neutral plasma consisting of one species, and another is an exploration of a high beta plasma based on two-fluid MHD relaxation theory. In the latter case the plasma should be non-neutralized in order to drive the plasma flow in the toroidal direction. The expected plasma parameters are discussed. Key elements of engineering issues have already developed. In addition, we have fabricated a small HTS coil and succeeded in levitating it within an accuracy of 25˜30 μm for 4 min or more.
Progress in extrapolating divertor heat fluxes towards large fusion devices
NASA Astrophysics Data System (ADS)
Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team
2017-12-01
Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.
Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M
2012-01-10
Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.
Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U
NASA Astrophysics Data System (ADS)
Ida, K.; Sakamoto, Y.; Inagaki, S.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Sakamoto, R.; Tanaka, K.; Ide, S.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; LHD experimental Group; JT-60 Team
2009-01-01
Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.
NASA Astrophysics Data System (ADS)
Schroeder, J. W. R.; Drake, D. J.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.
2012-10-01
Turbulence plays an important role in the transport of mass and energy in many space and astrophysical plasmas ranging from galaxy clusters to Earth's magnetosphere. One active topic of research is the application of idealized Alfv'enic turbulence models to plasma conditions relevant to space and astrophysical plasmas. Alfv'enic turbulence models based on incompressible magnetohydrodynamics (MHD) contain a nonlinear interaction that drives the cascade of energy to smaller scales. We describe experiments at the Large Plasma Device (LaPD) that focus on the interaction of an Alfv'en wave traveling parallel to the mean magnetic field with a counterpropagating Alfv'en wave. Theory predicts the nonlinear interaction of the two primary waves will produce a secondary daughter Alfv'en wave. In this study, we present the first experimental identification of the daughter wave generated by nonlinear interactions between the primary Alfv'en waves.
Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun
NASA Astrophysics Data System (ADS)
Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.
2012-06-01
An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.
Unified first wall - blanket structure for plasma device applications
Gruen, D.M.
A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.
Studies of a driven Alfvénic cavity and cylindrical Alfven eigenmodes in LAPD
NASA Astrophysics Data System (ADS)
Lybarger, Warren; Carter, Troy; Brugman, Brian; Pribyl, Pat
2004-11-01
An Alfven wave MASER has been observed in the Large Plasma Device (LAPD), where an instability drives a resonant Alfven wave in the cavity defined by the cathode and anode of the discharge source(J.E. Maggs and G.J. Morales, PRL, 91, 035004-1 (2003)). We will present a study of external driving of this cavity, motivated by a desire to find a source of large amplitude Alfvén waves for studies of nonlinear interactions. The cavity is driven by modulating the discharge current using a broadband, high power push-pull amplifier. The Alfvén waves launched by exciting the cavity are large amplitude (δ B/B ˜ 1%) and are eigenmodes of the cylindrical column. Experimental results will be presented on the structure of the eigenmodes in the plasma column, the Q-value of the cavity and its dependence on plasma parameters, and deviations in the structure of the eigenmodes from ideal MHD due to kinetic effects. Experimental results will be compared to theories of Alfvén eigenmodes in a cylindrical column. * Work supported by DOE grant # DE-FG03-02ER54688
NASA Astrophysics Data System (ADS)
Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.
2018-01-01
This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.
NASA Astrophysics Data System (ADS)
Sanyasi, A. K.; Awasthi, L. M.; Srivastava, P. K.; Mattoo, S. K.; Sharma, D.; Singh, R.; Paikaray, R.; Kaw, P. K.
2017-10-01
This paper reports experimental and theoretical investigations on plasma turbulence in the source plasma of a Large Volume Plasma Device. It is shown that a highly asymmetrical localized thin rectangular slab of strong plasma turbulence is excited by loss cone instability. The position of the slab coincides with the injection line of the primary ionizing energetic electrons. Outside the slab, in the core, the turbulence is weaker by a factor of 30 . The plasma turbulence consists of oblique [ θ=tan-1(k⊥/k||)≈87 ° ] Quasi-Longitudinal (QL) electromagnetic whistlers in a broad band of 40 kHz
Saito, Koichi; Ohmura, Atsuko; Takekuma, Mikiko; Sasano, Ryoichi; Matsuki, Yasuhiko; Nakazawa, Hiroyuki
2007-06-01
A newly developed large-volume injection (LVI) technique that employs a unique stomach-shaped inlet liner (SSIL) inside of a programmable temperature vaporizer was used for the determination of trace amounts of dioxins in human milk and plasma. The initial temperature and the initial dwelling time of the inlet and the kind of solvent used were found to be critical in determining the analytical sensitivity of dioxins due to the loss of these relatively volatile compounds during solvent vaporization. Human milk and plasma were purified and fractionated by pre-packed multi-layered silica-gel chromatography and activated carbon silica-gel column chromatography. A 20-microL aliquot of the fraction collected from the chromatography with toluene was directly applied to the LVI system in high-resolution gas chromatography/high-resolution mass spectrometry. Excellent correlation (r > 0.97) between the values obtained by the LVI method using the SSIL device and those by the conventional regular-volume splitless injection method was obtained for PCDDs, PCDFs and non-ortho PCBs in human milk and plasma samples.
Ionization effects and linear stability in a coaxial plasma device
NASA Astrophysics Data System (ADS)
Kurt, Erol; Kurt, Hilal; Bayhan, Ulku
2009-03-01
A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.
Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.
Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R
2006-05-19
An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.
NASA Astrophysics Data System (ADS)
Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.
2012-06-01
The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.
Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
Ebrahimi, F.; Raman, R.
2016-03-23
A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less
Si-compatible cleaning process for graphene using low-density inductively coupled plasma.
Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong
2012-05-22
We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
NASA Astrophysics Data System (ADS)
Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.
2013-07-01
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.
Development of high energy pulsed plasma simulator for plasma-lithium trench experiment
NASA Astrophysics Data System (ADS)
Jung, Soonwook
To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe / optics shows that the plasma energies are in agreement with each other. The effect of theta pinch on preionized plasma has been investigated when operated in conjunction with the coaxial plasma gun. The previous theta coil (1 turn, 40 nH) is connected with 72 muF capacitor bank to handle more energy. The theta coil is reconfigured as a two - turn coil (160 nH) to facilitate the operation of a crowbar. The two-turn coil achieves a maximum current of 300 kA (= 1.2 T) at 20 kV of the main capacitor bank voltage and the operation of the crowbar allows for a monotonically decreasing current. With the 2-turn theta coil, a maximum plasma energy of ~ 0.08 MJ/m2 is achieved with 6 kV at the plasma gun and 20 kV at the theta pinch. Plasma velocities of 34 - 74 km/s are observed at the first few peaks of theta pinch current. A problem of plasma transport with short delay times is observed. Finally, the dissertation concludes with a few ways to further improve the device and increase the plasma heat flux. A change in the system design as well as a compact toroid generation are proposed and preliminary results are presented. The dissertation also suggests hardware upgrades which include an increase in the energy at the plasma gun / the theta pinch capacitor banks. At the same time, additional diagnostics will allow to further investigate the effect of pinching on the plasma from the plasma gun as well as determine the overall effect of the guiding magnetic field. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
Electron Heating and Acceleration from High Amplitude Driven Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, David; Carter, Troy; Brugman, Brian
2006-10-01
High amplitude (δB/B ˜1 %) shear Alfvén waves are generated in the Large Plasma Device Upgrade (LAPD) at UCLA, and elevated electron temperatures and high energy electrons are observed using triple probes and Langmuir current traces. The Poynting flux of the observed waves is calculated, and wave power is compared to estimates of power input required to cause the observed heating. Theoretical calculations of power transfer from wave to plasma due to Landau damping and collisional heating are also presented and compared to experimental measurements. Heating by antenna near field effects is also being explored. The density and potential structures of these waves are explored using interferometer and triple probe measurements. Applications to Auroral generation and plasma heating are discussed.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2015-10-01
The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.
A two photon absorption laser induced fluorescence diagnostic for fusion plasmasa)
NASA Astrophysics Data System (ADS)
Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm2), narrow bandwidth (0.1 cm-1) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
Dose Measurements in a 20-J Repetitive Plasma Focus
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.; Mazandarani, A.
2018-02-01
In this article, the results of X-ray dose measurements executed using thermoluminescent dosimeters in experiments with a very small (20 J) repetitive plasma focus device named SORENA-1 are presented and analyzed. The working gas in these experiments was Argon. Also, pinch formation in experiments with this device has been observed. This device has been designed and constructed in Plasma and Nuclear Fusion Research School of Nuclear Science and Technology Research Institute of Iran. From these results, it is concluded that we can do experiments with this device using Ar as working gas all over the working days of year, and a good symmetry for measured dose around the device has been seen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, S. E.; Schaeffer, D. B.; Everson, E. T.
Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparisonmore » to an analytical coupling parameter.« less
NASA Astrophysics Data System (ADS)
Nagayama, Yoshio; Yamaguchi, Soichiro; Tsuchiya, Hayato; Kuwahara, Daisuke; LHD Experimental Team
2016-10-01
Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 - 34 GHz. This corresponds to the electron density of 0.8 - 1.5 × 1019 m-3. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (8 × 8) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1976-01-01
The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.
Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P; Flyimoto, T
The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination,more » and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated.« less
High beta plasma operation in a toroidal plasma producing device
Clarke, John F.
1978-01-01
A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
Baker, W.R.; Brathenahl, A.; Furth, H.P.
1962-04-10
A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)
Aerosol beam-focus laser-induced plasma spectrometer device
Cheng, Meng-Dawn
2002-01-01
An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.
2010-11-02
Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
The plasma separation process as a pre-cursor for large scale radioisotope production
NASA Astrophysics Data System (ADS)
Stevenson, Nigel R.
2001-07-01
Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.
Large tangential electric fields in plasmas close to temperature screening
NASA Astrophysics Data System (ADS)
Velasco, J. L.; Calvo, I.; García-Regaña, J. M.; Parra, F. I.; Satake, S.; Alonso, J. A.; the LHD team
2018-07-01
Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, Dennis Patrick
This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%) despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2-4% Li, 0.6-2% C, 0.4-0.7% O, and Z eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Dennis Patrick
This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%)more » despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with~2-4% Li, ~0.6-2% C, ~0.4-0.7% O, and Z_eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.« less
NASA Astrophysics Data System (ADS)
Chen, Lee
2016-09-01
It is often said that semiconductor technology is approaching the end of scaling. While fundamental device limits do approach, plasma etching has been doing the heavy lifting to supplement the basic limits in lithography. RF plasmas, pulsing in many forms, diffusion plasmas are but a few of the important developments over the last 20 years that have succeeded in the seemingly impossible tasks. The commonality of these plasmas is being self-consistent: their near-Boltzmann EEDf maintains ionization with its tail while providing charge-balance with its Te . To control the plasma chemistry is to control its EEDf; the entanglement of ionization with charge-balance in self-consistent plasmas places a constraint on the decoupling of plasma chemistry from ionization. Example like DC/RF parallel-plate hybridizes stochastic heating with DC-cathode injected e- -beam. While such arrangement offers some level of decoupling, it raised more questions than what it helped answered along the lines of beam-plasma instabilities, bounce-resonance ionization, etc. Pure e- -beam plasmas could be a drastic departure from the self-consistent plasmas. Examples like the NRL e- -beam system and the more recent TEL NEP (Nonambipolar e- Plasma) show strong decoupling of Te from ionization but it is almost certain, many more questions lurk: the functions connecting collisional relaxation with instabilities, the channels causing the dissociation of large fluorocarbons (controlling the ion-to- radical ratio), the production of the damaging deep UV in e- -beam plasmas, etc., and the list goes on. IADf is one factor on feature-profile and IEDf determines the surgical surface-excitation governing the selectivity, and both functions have Ti as the origin; what controls the e- -beam plasmas' Ti ? RF-bias has served well in applications requiring energetic excitation but, are there ways to improve the IEDf tightness? What are the adverse side-effects of ``improved IEDf''? Decades ago an infant RF-plasma was thrown into the dry-etch arena and it hit the ground running with much of the understandings as after the facts. While the etching industry enjoys the heavy lifting by the successful self-consistent plasmas, perhaps time can be used on front-loaded soul searching of the ``maybe needed'' plasmas, for the future etching needs.
Characterization of plasma processing induced charging damage to MOS devices
NASA Astrophysics Data System (ADS)
Ma, Shawming
1997-12-01
Plasma processing has become an integral part of the fabrication of integrated circuits and takes at least 30% of whole process steps since it offers advantages in terms of directionality, low temperature and process convenience. However, wafer charging during plasma processes is a significant concern for both thin oxide damage and profile distortion. In this work, the factors affecting this damage will be explained by plasma issues, device structure and oxide quality. The SPORT (Stanford Plasma On-wafer Real Time) charging probe was developed to investigate the charging mechanism of different plasma processes including poly-Si etching, resist ashing and PECVD. The basic idea of this probe is that it simulates a real device structure in the plasma environment and allows measurement of plasma induced charging voltages and currents directly in real time. This measurement is fully compatible with other charging voltage measurement but it is the only one to do in real-time. Effect of magnetic field induced plasma nonuniformity on spatial dependent charging is well understood by this measurement. In addition, the plasma parameters including ion current density and electron temperature can also be extracted from the probe's plasma I-V characteristics using a dc Langmuir probe like theory. It will be shown that the MOS device tunneling current from charging, the dependence on antenna ratio and the etch uniformity can all be predicted by using this measurement. Moreover, the real-time measurement reveals transient and electrode edge effect during processing. Furthermore, high aspect ratio pattern induced electron shading effects can also be characterized by the probe. On the oxide quality issue, wafer temperature during plasma processing has been experimentally shown to be critical to charging damage. Finally, different MOS capacitor testing methods including breakdown voltage, charge-to-breakdown, gate leakage current and voltage-time at constant current bias were compared to find the optimum method for charging device reliability testing.
Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat
2003-10-01
There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.
Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taherzadeh, M.
1987-11-13
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation andmore » source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.« less
Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2015-11-01
A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.
Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya
2017-01-01
We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800
Reactor plasma facing component designs based on liquid metal concepts supported in porous systems
NASA Astrophysics Data System (ADS)
Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.
2017-01-01
The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.
Understanding and predicting the dynamics of tokamak discharges during startup and rampdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, G. L.; Politzer, P. A.; Humphreys, D. A.
Understanding the dynamics of plasma startup and termination is important for present tokamaks and for predictive modeling of future burning plasma devices such as ITER. We report on experiments in the DIII-D tokamak that explore the plasma startup and rampdown phases and on the benchmarking of transport models. Key issues have been examined such as plasma initiation and burnthrough with limited inductive voltage and achieving flattop and maximum burn within the technical limits of coil systems and their actuators while maintaining the desired q profile. Successful rampdown requires scenarios consistent with technical limits, including controlled H-L transitions, while avoiding verticalmore » instabilities, additional Ohmic transformer flux consumption, and density limit disruptions. Discharges were typically initiated with an inductive electric field typical of ITER, 0.3 V/m, most with second harmonic electron cyclotron assist. A fast framing camera was used during breakdown and burnthrough of low Z impurity charge states to study the formation physics. An improved 'large aperture' ITER startup scenario was developed, and aperture reduction in rampdown was found to be essential to avoid instabilities. Current evolution using neoclassical conductivity in the CORSICA code agrees with rampup experiments, but the prediction of the temperature and internal inductance evolution using the Coppi-Tang model for electron energy transport is not yet accurate enough to allow extrapolation to future devices.« less
NASA Astrophysics Data System (ADS)
Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toi, K.; Ogawa, K.; Isobe, M.
2011-01-01
Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs thatmore » exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.« less
RMP ELM Suppression in DIII-D Plasmas with ITER Similar Shapes and Collisionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T.E.; Fenstermacher, M. E.; Moyer, R.A.
2008-01-01
Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, = 0.53, with ITER relevant collisionalities ve 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller inmore » ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit
2016-09-15
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
Lower hybrid to whistler mode conversion on a density striation
NASA Astrophysics Data System (ADS)
Camporeale, E.; Delzanno, G. L.; Colestock, P.
2012-10-01
When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a criterion could provide an interpretation of recent laboratory experiments carried out on the Large Plasma Device at UCLA.
Planned Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2010-11-01
The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.
Full-f version of GENE for turbulence in open-field-line systems
NASA Astrophysics Data System (ADS)
Pan, Q.; Told, D.; Shi, E. L.; Hammett, G. W.; Jenko, F.
2018-06-01
Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.
Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device
NASA Astrophysics Data System (ADS)
Bandara, R.; Khachan, J.
2013-07-01
A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.
Scattering of magnetic mirror trapped electrons by an Alfven wave
NASA Astrophysics Data System (ADS)
Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.; Karavaev, A. V.; Shao, X.; Sharma, A. S.
2010-12-01
Highly energetic particles from large solar flares or other events can be trapped in the Earth’s magnetic mirror field and pose a danger to intricate space satellites. Aiming for artificially de-trapping these particles, an experimental and theoretical study of the interactions of a shear Alfven wave with electrons trapped in a magnetic mirror was performed on the Large Plasma Device (LaPD) at UCLA, with critical parameter ratios matched in the lab plasma to those in space. The experiment was done in a quiescent afterglow plasma with ne≈5×1011cm-3, Te≈0.5eV, B0≈1000G, L=18m, and diameter=60cm. A magnetic mirror was established in LaPD (mirror ratio≈1.5, Lmirror≈3m). An electron population with large v⊥ (E⊥≈1keV) was introduced by microwave heating at upper-hybrid frequency with a 2.45GHz pulsed microwave source at up to 5kW. A shear Alfven wave with arbitrary polarization (fwave≈0.5fci , Bwave/B0≈0.5%) was launched by a Rotating Magnetic Field (RMF) antenna axially 2m away from the center of the mirror. It was observed that the Alfven wave effectively eliminated the trapped electrons. A diagnostic probe was developed for this experiment to measure electrons with large v⊥ in the background plasma. Plasma density and temperature perturbations from the Alfven wave were observed along with electron scattering. Computer simulations tracking single particle motion with wave field are ongoing. In these the Alfven wave’s effect on the electrons pitch angle distribution by a Monte-Carlo method is studied. Planned experiments include upgrading the microwave source for up to 100kW pulses to make electrons with higher transverse energy and longer mirror trapping time. This work is supported by The Office of Naval Research under a MURI award. Work was done at the Basic Plasma Science Facility which is supported by DOE and NSF.
Studies of waves and instabilities using increased beta, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Vincena, Steve; van Compernolle, Bart; Tripathi, Shreekrishna; Pribyl, Pat; Morales, George
2015-11-01
A new plasma source based on a Lanthanum Hexaboride (LAB6) emissive cathode has been developed and installed on the LArge Plasma Device (LAPD) at UCLA. The new source provides a much higher discharge current density (compared to the standard LAPD Barium Oxide source) resulting in a factor of ~ 50 increase in plasma density and a factor of ~ 2 - 3 increase in electron temperature. Due to the increased density the ion-electron energy exchange time is shorter in the new plasma, resulting in warm ions (measured spectroscopically to be ~ 5 - 6 eV, up from <~ 1 eV in the standard source plasma). This increased pressure combined with lowered magnetic field provides access to magnetized plasmas with β up to order unity. Topics under investigation include the physics of Alfvén waves in increased β plasmas (dispersion and kinetic damping on ions), electromagnetic effects and magnetic transport in drift-Alfvén wave turbulence, and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose instabilities. The capabilities of the new source will be discussed along with initial experimental resuls on electromagnetic drift-Alfvén wave turbulence and Alfvén wave propagation with increased plasma β. Supported by NSF and DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingwen; Wei, Wenfu; Wu, Jian
2013-06-28
Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from {approx}0.1 mm to {approx}0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume frontmore » positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of {approx}80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.« less
Simulations of drift-Alfven turbulence in LAPD using BOUT
NASA Astrophysics Data System (ADS)
Popovich, Pavel; Umansky, Maxim; Carter, Troy; Cowley, Steve
2008-11-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG. The simple geometry and extensive measurement capability on LAPD allows for detailed comparison with and validation of numerical simulations of turbulence and transport. We analyse the LAPD results using simulations with the boundary plasma turbulence code BOUT. BOUT models the 3D electromagnetic plasma turbulence solving a system of fluid moment equations in a general tokamak geometry near the boundary. We will discuss the physical model and modifications of the BOUT code required for the LAPD configuration, and present the first results of the simulations and comparison to experimental measurements. In particular, a confinement transition is observed in LAPD under the application of bias-driven rotation. Also, intermittent generation and convection of filamentary structures (``blobs'' and ``holes'') is observed in the LAPD edge. Application of BOUT to modeling of these two phenomena will be discussed. E. Maggs, T.A. Carter, and R.J. Taylor, Phys. Plasmas 14, (2007) T.A. Carter, Phys. Plasmas 13, (2006)
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics
NASA Astrophysics Data System (ADS)
Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.
Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
Harris, Joseph; Lee, Hyuna; Vahidi, Behrad; Tu, Christina; Cribbs, David; Jeon, Noo Li; Cotman, Carl
2007-01-01
In this video, we demonstrate the technique of soft lithography with polydimethyl siloxane (PDMS) which we use to fabricate a microfluidic device for culturing neurons. Previously, a silicon wafer was patterned with the design for the neuron microfluidic device using SU-8 and photolithography to create a master mold, or what we simply refer to as a "master". Next, we pour the silicon polymer PDMS on top of the master which is then cured by heating the PDMS to 80 degrees C for 1 hour. The PDMS forms a negative mold of the device. The PDMS is then carefully cut and lifted away from the master. Holes are punched where the reservoirs will be and the excess PDMS trimmed away from the device. Nitrogen is used to blow away any excess debris from the device. At this point the devices are now ready for use and can either bonded to corning No. 1 cover glass with a plasma sterilizer/cleaner or can be reversibly bound to the cover glass by simply placing the device on top of the cover glass. The reversible bonding of the device to glass is covered in a separate video and requires first that the device be sterilized either with 70% ethanol or by autoclaving. Plasma treating sterilizes the devices so no further treatment is necessary. It is, however, important, when plasma-treating the devices, to add liquid to the devices within 10 minutes of the plasma treatment while the surfaces are still hydrophilic. Waiting longer than 10 minutes to add liquid to the device makes it difficult for the liquid to enter the device. The neuron devices are typically plasma-bound to cover glass and 0.5 mg/ml poly-L-lysine (PLL) in pH 8.5 borate buffer is immediately added to the device. After a minimum of 3 hours incubating with PLL, the devices are washed with dH2O water a minimum of 3 times with at least 15 minutes between each wash. Next, the water is removed and fresh media is added to the device. At this point the device is ready for use. It is important to remember at this point to never remove all the media from the device. Always leave media in the main channel.
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Ramadhanty, Savira; Puspohadiningrum, Dini Fithriaty; Ratnasari, Anita; Poespawati, Nji Raden; Purnamaningsih, Retno Wigajatri
2018-02-01
Plasma activated water (PAW) is a new approach to bacterial inactivation while ensuring safety and maintaining the properties of the material sterilized. Reported research imply that PAW has been effective for inactivation of bacteria. In this paper, plasma treatment using atmospheric pressure plasma was demonstrated. Physicochemical properties such as pH, temperature, ORP, and nitrite concentration were assessed. The results suggest that plasma treatment causes acidification on water and generate reactive species, creating an environment suitable for killing bacteria. Therefore, plasma activated water is an assuring method for medical devices sterilization.
Parametric Interactions between Alfven waves in LaPD
NASA Astrophysics Data System (ADS)
Brugman, B.; Carter, T. A.; Cowley, S. C.; Pribyl, P.; Lybarger, W.
2004-11-01
The physics governing interactions between large amplitude Alfvén waves, which are relevant to plasmas in space as well as the laboratory, is at present not well understood. A major class of such interactions which are believed to occur in compressible plasmas is referred to as parametric decay. We will present the results of a series of experiments involving the interactions of large amplitude LHP Alfvén wave conducted on the Large Plasma Device (LaPD); where β ≪ 1, n ˜ 10^12 frac1cm^3 and B0 in (200,2500) G. These experiments show strong signs of one form of parametric decay, known as the Modulational Instability, which represents the interaction of two Alfvén waves and a low frequency density perturbation. This interaction is believed to occur in plasmas with β < 1 as well as β > 1, over a broad range of wavevector space, and for RHP as well as LHP Alfvén waves - distinguishing it from the Beat and Decay instabilities. Details of this interaction, in particular the structure of the incident waves as well as that of their byproducts, will be shown in physical as well as wavevector space. The generation of large amplitude waves using both an Alfvén wave MASER and high current loop antennas will also be illustrated. Lastly theoretical descriptions of parametric decay will be presented and compared to observations. Future work will also include comparisons of experimental results with applicable simulations, such as GS2. Work supported by DOE grant number DE-FG03-02ER54688
Coultas, Thomas A.
1977-01-01
Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.
Nanostructure iron-silicon thin film deposition using plasma focus device
NASA Astrophysics Data System (ADS)
Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.
2013-03-01
The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample
NASA Astrophysics Data System (ADS)
Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.
2017-08-01
The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler-shifted spectrum constructed from the simulated test ion velocities excellently reproduces the experimental measurements, verifying that the observed ambient ion motion corresponds to collisionless coupling through the laminar electric field.
NASA Astrophysics Data System (ADS)
Evans, T. E.
2013-07-01
Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.
Simulation of Shear Alfvén Waves in LAPD using the BOUT++ code
NASA Astrophysics Data System (ADS)
Wei, Di; Friedman, B.; Carter, T. A.; Umansky, M. V.
2011-10-01
The linear and nonlinear physics of shear Alfvén waves is investigated using the 3D Braginskii fluid code BOUT++. The code has been verified against analytical calculations for the dispersion of kinetic and inertial Alfvén waves. Various mechanisms for forcing Alfvén waves in the code are explored, including introducing localized current sources similar to physical antennas used in experiments. Using this foundation, the code is used to model nonlinear interactions among shear Alfvén waves in a cylindrical magnetized plasma, such as that found in the Large Plasma Device (LAPD) at UCLA. In the future this investigation will allow for examination of the nonlinear interactions between shear Alfvén waves in both laboratory and space plasmas in order to compare to predictions of MHD turbulence.
The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.
Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis
2010-07-01
The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.
Jung, Heesoo; Park, Jaeyoung; Yoo, Eun Sang; Han, Gill-Sang; Jung, Hyun Suk; Ko, Min Jae; Park, Sanghoo; Choe, Wonho
2013-09-07
A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti(3+) ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.
Dissociation phenomena in electron-beam sustained carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Harris, Michael R.; Willetts, David V.
1990-01-01
A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.
Confinement of nonneutral plasmas in the Prototype Ring Trap device
NASA Astrophysics Data System (ADS)
Himura, Haruhiko; Yoshida, Zensho; Nakashima, Chihiro; Morikawa, Junji; Kakuno, Hidekazu; Tahara, Shigeru; Shibayama, Norihisa
1999-12-01
Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been intensively conducted. The main goal of Proto-RT is to explore an innovative method to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasmas (ne˜1013m-3) have been successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasmas is of order 0.1 ms for an X point configuration. The non-neutrality of Δne˜1013m-3 is already beyond the critical value which is required to produce an enough self-electric field E in non-neutral plasmas with n0˜1019m-3, causing a strong E×B flow thoroughly over the plasmas where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasmas.
Waveguiding and bending modes in a plasma photonic crystal bandgap device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B., E-mail: bwang17@stanford.edu; Cappelli, M. A.
2016-06-15
Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.
Plasma Jet Simulations Using a Generalized Ohm's Law
NASA Technical Reports Server (NTRS)
Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.
2012-01-01
Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.
Neutron spectra from beam-target reactions in dense Z-pinches
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2015-10-01
The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.
Diagnostics of Plasma Propulsion Devices
NASA Astrophysics Data System (ADS)
Cappelli, Mark A.
1998-11-01
Plasma rockets are rapidly emerging as critical technologies in future space flight. These devices take on various forms, ranging from electro-thermal to electromagnetic accelerators, generally categorized by the method in which electrical energy is converted to thrust. As is the case in many plasma devices, non-intrusive optical (emission, or laser-based) diagnostics is an essential element in the characterization of these plasma sources, as access to the discharges in these plasma engines is often limited. Furthermore, laser-based diagnostics offer additional benefits, including improved spatial resolution, and can provide state-specific measurements of species densities, velocities and energy distributions. In recent years, we have developed and applied a variety of emission and laser-based diagnostics strategies to the characterization of arcjet plasma and closed-drift xenon Hall plasma accelerators. Both of these types of plasma propulsion devices are of immediate interest to the space propulsion community, and are under varying stages of development. Arcjet thrusters have unique properties, with strong plasma density, temperature and velocity gradients, which enhance the coupling between the gasdynamic and plasma physics. Closed-drift Hall plasma thrusters are low density electrostatic devices that are inherently turbulent, and exhibit varying degrees of anomalous cross-field electron transport. Our most extensive, collective effort has been to apply laser-induced fluorescence, Doppler-free laser absorption, and Raman scattering to the characterization of hydrogen and helium arcjet flows. Detailed measurements of velocity, temperatures, and electron densities are compared to the results of magneto-hydrodynamic flowfield simulations. The results show that while the simulations capture many aspects of the flow, there are still some unresolved discrepancies. The database established for Hall thrusters is less extensive, as the laser absorption spectroscopy of xenon is somewhat more complicated due to the hyperfine and isotopic structure of electronic transitions. With an understanding of the spectroscopic absorption lineshape for two select transitions in neutral and ionized xenon, we have successfully mapped out the neutral and singly ionized xenon velocities in the acceleration zone of Hall thrusters. These results indicate that the acceleration zone in a short-channel thruster is outside of the device, consistent with the measurements of plasma potential using more conventional Langmuir electrostatic probes. The spectroscopic data has also been used to identify limitations in ground-test facilities.
21 CFR 862.1685 - Thyroxine-binding globulin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...
21 CFR 862.1685 - Thyroxine-binding globulin test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...
21 CFR 862.1685 - Thyroxine-binding globulin test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...
21 CFR 862.1685 - Thyroxine-binding globulin test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...
21 CFR 862.1685 - Thyroxine-binding globulin test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... globulin test system is a device intended to measure thyroxine (thyroid)-binding globulin (TBG), a plasma protein which binds thyroxine, in serum and plasma. Measurements obtained by this device are used in the...
First Plasma Results from the Levitated Dipole Experiment
NASA Astrophysics Data System (ADS)
Garnier, Darren T.
2005-04-01
On August 13, 2004, the first plasma physics experiments were conducted using the Levitated Dipole Experiment(LDX)http://www.psfc.mit.edu/ldx/. LDX was built at MIT's Plasma Science and Fusion Center as a joint research project of Columbia University and MIT. LDX is a first-of-its-kind experiment incorporating three superconducting magnets and exploring the physics of high-temperature plasma confined by dipole magnetic fields, similar to planetary magnetospheres. It will test recent theories that suggest that stable, high-β plasma can be confined without good curvature or magnetic shear, instead using plasma compressibility to provide stability. (Plasma β is the ratio of plasma pressure to magnetic pressure.) In initial experiments, 750 kA of current was induced in the dipole coil which was physically supported in the center of the 5 m diameter vacuum chamber. Deuterium plasma discharges, lasting from 4 to 10 seconds, were formed with multi-frequency ECRH microwave heating of up to 6.2 kW. Each plasma contained a large fraction of energetic and relativistic electrons that created a significant pressure that caused outward expansion of the magnetic field. Reconstruction of the magnetic equilibrium from external magnetic diagnostics indicate local peak plasma β 7 %. Along with an overview of the LDX device, results from numerous diagnostics operating during this initial supported campaign measuring the basic plasma parameters will be presented. In addition, observations of instabilities leading to rapid plasma loss and the effects of changing plasma compressibility will be explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.
2017-01-01
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.
Development of a laboratory demonstration model active cleaning device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1975-01-01
A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.
Non-thermal plasma for exhaust gases treatment
NASA Astrophysics Data System (ADS)
Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda
2015-09-01
This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.
High-power broadband plasma maser with magnetic self-insulation
NASA Astrophysics Data System (ADS)
Litvin, Vitaliy O.; Loza, Oleg T.
2018-01-01
Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.
2D model of plasma current sheath propagation in a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil
2018-06-01
Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.
Liquid crystal film development for plasma mirrors and waveplates
NASA Astrophysics Data System (ADS)
Cochran, G. E.; Poole, P. L.; Willis, C.; Hanna, R. J.; Pytel, K.; Sullivan, K. S.; Andereck, C. D.; Schumacher, D. W.
2015-11-01
Many laser-plasma phenomena currently under study depend critically on the quality of the pulse contrast. Costly sacrificial plasma mirrors are now commonly used to improve the temporal laser contrast before target interaction, especially for ion acceleration where high contrast is necessary to achieve interesting new mechanisms. Liquid crystal films were originally developed as variable thickness thin-film targets, and were demonstrated for this purpose in. Varying film formation parameters such as volume, temperature, and draw speed allows thickness control between 10 nm and several 10s of microns, in-situ and under vacuum. Development since that initial work has allowed large area films to be formed, several cm2 in extent, with the same thickness range. The molecular flatness of a freely suspended film renders these films excellent low-cost plasma mirrors, given appropriate formation control. Additionally, the birefringence of the liquid crystal used here permits these films to be used as large area zero-order waveplates at the appropriate thickness. Details on the current state of liquid crystal film application development, including a >1 Hz small area film formation device, will be presented. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.
Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components
NASA Astrophysics Data System (ADS)
Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.
2017-04-01
Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.
NASA Technical Reports Server (NTRS)
Bollinger, D.
1983-01-01
The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.
Plasma flow in peripheral region of detached plasma in linear plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.
2016-01-15
A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, Laxminarayan L.; PanneerChelvam, PremKumar; Levko, Dimtry
2016-02-26
The proposed study will investigate the effect of active electron injection of from electrode surfaces To the best of our knowledge, no such a study has ever been attempted even though it could lead to the formation of whole new classes of plasma based devices and systems. We are motivated by recent articles and simple theory which gives strong reason to believe that embedded electronic devices can be used to exert control over the SEE coefficient of semiconductor surfaces (and maybe other surface types as well). Furthermore, the research will explore how such sub-surface electronic devices can best be usedmore » to exert control over an associated plasma.« less
ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization
NASA Astrophysics Data System (ADS)
Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.
2015-11-01
The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
A tandem mirror plasma source for hybrid plume plasma studies
NASA Technical Reports Server (NTRS)
Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.
1985-01-01
A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.
Plasma channel optical pumping device and method
Judd, O.P.
1983-06-28
A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.
Light Weight Portable Plasma Medical Device - Plasma Engineering Research Laboratory
2011-10-01
Millennial Student. 15. Thiyagarajan, M. (2011). Portable Plasma Biomedical Device for Cancer Treatment. Irvine, California: ASME Emerging...American Society of Mechanical Engineers Sigma Xi Toastmasters International Club MIT Entrepreneur Club Eta Kappa Nu Tau Beta Pi Institute of...Learning Environment. Corpus Christi, TX: TAMUCC 1st Faculty Symposium: Course Design for the Millennial Student. Thiyagarajan, M. (2011). Portable
McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.
1985-01-15
An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.
Nanowelding and patterning of silver nanowires via mask-free atmospheric cold plasma-jet scanning
NASA Astrophysics Data System (ADS)
Liu, Lang; Li, Han-Yu; Ye, Dong; Yu, Yao; Liu, Lin; Wu, Yue
2017-06-01
Silver nanowire (AgNW) thin film is a promising candidate to replace traditional indium tin oxide in optoelectronics applications. To date however, the widespread application of AgNW thin film is limited by the weak point contacts between individual AgNWs and the lack of facile patterning techniques. Here, we demonstrate a novel and facile method to not only nanoweld AgNW junctions but also pattern AgNW thin films via mask-free cold plasma-jet scanning in ambient conditions. After the plasma-jet nanowelding treatment, the morphology of AgNWs change substantially and the junctions are welded together. The nanowelded AgNWs-based thin film shows enhanced electrical and mechanical properties. On the other hand, after the plasma-jet patterning treatment, the AgNWs are etched and transformed into separated large particles. Different kinds of patterns are produced via this patterning technique. At last, a simple light emitting diode circuit is fabricated to demonstrate the suitability of the nanowelded and patterned AgNW electrodes for flexible electronic devices.
Use of Plasma Actuators as a Moving-Wake Generator
NASA Technical Reports Server (NTRS)
Corke, Thomas C.; Thomas, Flint O.; Klapetzky Michael J.
2007-01-01
The work documented in this report tests the concept of using plasma actuators as a simple and easy way to generate a simulated moving-wake and the disturbances associated with it in turbines. This wake is caused by the blades of the upstream stages of the turbine. Two types of devices, one constructed of arrays of NACA 0018 airfoils, and the one constructed of flat plates were studied. The airfoils or plates were equipped with surface mounted dielectric barrier discharge (DBD) plasma actuators, which were used to generate flow disturbances resembling moving-wakes. CTA hot-wire anemometry and flow visualization using a smoke-wire were used to investigate the wake independence at various spacings and downstream locations. The flat plates were found to produce better results than the airfoils in creating large velocity fluctuations in the free-stream flow. Different dielectric materials, plasma actuator locations, leading edge contours, angles of attack and plate spacings were investigated, some with positive results. The magnitudes of the velocity fluctuations were found to be comparable to existing mechanical moving-wake generators, thus proving the feasibility of using plasma actuators as a moving-wake generator.
A basic plasma test for gyrokinetics: GDC turbulence in LAPD
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2017-02-01
Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.
METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION
Bell, P.R.; Mackin, R.J. Jr.; Simon, A.
1961-08-22
A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)
The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions
Rapp, J.
2017-07-12
Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less
The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, J.
Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less
Results of ultra compact plasma focus operating in repetitive burst-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R.; Shyam, A.; Verma, R.
2014-07-01
The results of a miniature plasma focus are being presented in this paper which is operated with energy less than or equal to 150 Joules. The miniature plasma focus is driven by a small capacitor bank and the peak current delivered in the focus is 75kA. The deuterium gas is filled with a pressure range of 5-7 mbar inside the plasma focus chamber. The quartz glass is used for generating initial surface breakdown at 4-5 kV discharge which is a typical value for low-voltage plasma focus discharges. The repetitive operation of the device is achieved by a combination of amore » simple and high power (5 kW) power supply with the synchronized triggering of the capacitor bank at the time of isolation between supply and the capacitor bank. As the plasma focus chamber volume is very low, in order to achieve reduced after-shot contamination effects, the gas pressure inside the plasma focus is maintained by continuous pumping which is disallowed at the time of shorts rather having a sealed type plasma focus assembly. The results of such scheme are also discussed in the paper. The diameter of cathode is 25mm and anode diameter is 8-12 mm and both of them are made of stainless steel. The length of anode and gas pressure is adjusted in such a way that the pinching occurs at the time of occurrence of the peak of current. It enhances the neutron emission from the device. The time-of-flight diagnostic is used to distinguish neutron and X-ray emission from the plasma focus. The device can serve the purpose of being a portable and compact repetitive neutron source for various applications as the flux of the radiation is comparable with the bigger devices of same type. The modeling results of plasma focus are also compared with experimental results to give a broader picture of the device. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.
2014-01-20
A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying amore » voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.« less
Lithium wall conditioning by high frequency pellet injection in RFX-mod
NASA Astrophysics Data System (ADS)
Innocente, P.; Mansfield, D. K.; Roquemore, A. L.; Agostini, M.; Barison, S.; Canton, A.; Carraro, L.; Cavazzana, R.; De Masi, G.; Fassina, A.; Fiameni, S.; Grando, L.; Rais, B.; Rossetto, F.; Scarin, P.
2015-08-01
In the RFX-mod reversed field pinch experiment, lithium wall conditioning has been tested with multiple scopes: to improve density control, to reduce impurities and to increase energy and particle confinement time. Large single lithium pellet injection, lithium capillary-pore system and lithium evaporation has been used for lithiumization. The last two methods, which presently provide the best results in tokamak devices, have limited applicability in the RFX-mod device due to the magnetic field characteristics and geometrical constraints. On the other side, the first mentioned technique did not allow injecting large amount of lithium. To improve the deposition, recently in RFX-mod small lithium multi-pellets injection has been tested. In this paper we compare lithium multi-pellets injection to the other techniques. Multi-pellets gave more uniform Li deposition than evaporator, but provided similar effects on plasma parameters, showing that further optimizations are required.
NASA Astrophysics Data System (ADS)
Boekema, B. K. H. L.; Vlig, M.; Guijt, D.; Hijnen, K.; Hofmann, S.; Smits, P.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P.; Middelkoop, E.
2016-02-01
Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating larger wound areas.
Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma
Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata
2013-01-01
Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023
Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.
Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata
2013-01-01
Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.
Dual-function magnetic structure for toroidal plasma devices
Brown, Robert L.
1978-01-01
This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.
Development of a microfluidic device for cell concentration and blood cell-plasma separation.
Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K
2015-12-01
This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rognlien, T. D.; Cohen, B. I.
This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.
Microwave Plasma Based Single-Step Method for Generation of Carbon Nanostructures
2013-07-01
Técnico, Technical University of Lisbon, Portugal 2 Mechanical and Aerospace Engeneering , Naval Postgraduate School, Monterey, CA 93943, U.S.A...Plasma environments constitute powerful tools in materials science due to their operation as thermal and chemical reactors. A microwave, atmospheric...applications include electronic devices, transparent conductive films, mechanical devices, chemical sensors, spintronic devices. Moreover, it shows enormous
Plasma X-Ray Sources for Lithography
1980-05-12
in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.
NASA Astrophysics Data System (ADS)
Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.
2010-02-01
A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.
Plasma-based polarizer and waveplate at large laser intensity
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2018-06-01
A plasma photonic crystal consists of a plasma density grating which is created in underdense plasma by counterpropagating laser beams. When a high-power laser pulse impinges the crystal, it might be reflected or transmitted. So far only one type of pulse polarization, namely the so-called s wave (or TE mode) was investigated (when the electric field vector is perpendicular to the plane of incidence). Here, when investigating also so-called p waves (or TM modes, where the magnetic field vector is perpendicular to the plane of incidence), it is detected that the transmission and reflection properties of the plasma photonic crystal depend on polarization. A simple analytic model of the crystal allows one to make precise predictions. The first conclusion is that in some operational regime the crystal can act as a plasma polarizer for high-intensity laser pulses. Also, differences in phase velocities for grazing incidence between s and p polarization are found. Thus, secondly, the crystal can be utilized as a waveplate, e.g., transforming linearly polarized laser light into circular polarization. All these processes extend to laser intensities beyond the damage intensities of so far used solid state devices.
3D Global Braginskii Simulations of Plasma Dynamics and Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett
2013-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the plasma dynamics in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. Modeling is done using a modified version of the Global Braginskii Solver (GBS) that models the plasma from source to edge region on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping. Progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and biasing the front and side walls. Along with trying to understand the effect sheath's and neutrals have in setting the plasma potential, work is being done to model the biasable limiter recently used by colleagues at UCLA to better understand flow shear and particle transport in the LAPD. Comparisons of the zero bias case are presented along with analysis of the growth and dynamics of turbulent structures (such as drift waves) seen in the simulations. Supported through CICART under the auspices of the DOE's EPSCoR Grant No. DE-FG02-10ER46372.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, P.; Carter, T. A.; Friedman, B.
Numerical simulation of plasma turbulence in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] is presented. The model, implemented in the BOUndary Turbulence code [M. Umansky, X. Xu, B. Dudson et al., Contrib. Plasma Phys. 180, 887 (2009)], includes three-dimensional (3D) collisional fluid equations for plasma density, electron parallel momentum, and current continuity, and also includes the effects of ion-neutral collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly generated zonal flows results in a saturatedmore » turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in particular in frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. For comparison with LAPD measurements, the plasma density profile in simulations is maintained either by direct azimuthal averaging on each time step, or by adding particle source/sink function. The inferred source/sink values are consistent with the estimated ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a comprehensive effort to test fluid turbulence simulation against LAPD data.« less
Hollow-Cathode Source Generates Plasma
NASA Technical Reports Server (NTRS)
Deininger, W. D.; Aston, G.; Pless, L. C.
1989-01-01
Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.
Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas
NASA Astrophysics Data System (ADS)
Takamura, S.; Uesugi, Y.
2015-03-01
Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.
Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.
2007-11-01
In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.
A tandem mirror plasma source for a hybrid plume plasma propulsion concept
NASA Technical Reports Server (NTRS)
Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.
1985-01-01
This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.
Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo
2005-05-01
To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.
Enhancement of helium exhaust by resonant magnetic perturbation fields at LHD and TEXTOR
NASA Astrophysics Data System (ADS)
Schmitz, O.; Ida, K.; Kobayashi, M.; Bader, A.; Brezinsek, S.; Evans, T. E.; Funaba, H.; Goto, M.; Mitarai, O.; Morisaki, T.; Motojima, G.; Nakamura, Y.; Narushima, Y.; Nicolai, D.; Samm, U.; Tanaka, H.; Yamada, H.; Yoshinuma, M.; Xu, Y.; TEXTOR, the; LHD Experiment Groups
2016-10-01
The ability to exhaust helium as the fusion born plasma impurity is a critical requirement for burning plasmas. We demonstrate in this paper that resonant magnetic perturbation (RMP) fields can be used to actively manipulate helium exhaust characteristics. We present results from puff/pump studies at TEXTOR as example for a tokamak with a pumped limiter and from the Large Helical Device (LHD) with the closed helical divertor as example for a heliotron/stellarator device. For LHD, the effective helium confinement time τ p,\\text{He}\\ast is a factor of 7-8 higher in the low and high density regimes explored when compared to TEXTOR discharges. This is attributed to ion root impurity transport which is one particular impurity transport regime assessed experimentally at LHD and which facilitates helium penetration to the plasma core. However, when an edge magnetic island is induced by externally applied RMP fields, τ p,\\text{He}\\ast is decreased by up to 30% and hence τ p,\\text{He}\\ast values closer to those of TEXTOR can be established. The combination of TEXTOR and LHD results suggest that a magnetic island induced by the RMP field in the plasma source region is an important ingredient for improving helium exhaust. The reduction in τ p,\\text{He}\\ast seen is caused by a combination of improved helium exhaust due to an enhanced coupling to the pumping systems, increased outward transport and a reduced fueling efficiency for the helium injected and recycling from the wall elements.
Portable rotating discharge plasma device
NASA Astrophysics Data System (ADS)
Dwyer, B. L.; Brooks, N. H.; Lee, R. L.
2011-10-01
We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.
Beam heated linear theta-pinch device for producing hot plasmas
Bohachevsky, Ihor O.
1981-01-01
A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.
MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES
Post, R.F.
1963-08-20
More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
Analysis of the interaction of deuterium plasmas with tungsten in the Fuego-Nuevo II device
NASA Astrophysics Data System (ADS)
Ramos, Gonzalo; Castillo, Fermín; Nieto, Martín; Martínez, Marco; Rangel, José; Herrera-Velázquez, Julio
2012-10-01
Tungsten is one of the main candidate materials for plasma-facing components in future fusion power plants. The Fuego-Nuevo II, a plasma focus device, which can produce dense magnetized helium and deuterium plasmas, has been adapted to address plasma-facing materials questions. In this paper we present results of tungsten targets exposed to deuterium plasmas in the Fuego Nuevo II device, using different experimental conditions. The plasma generated and accelerated in the coaxial gun is expected to have, before the pinch, energies of the order of hundreds eV and velocities of the order of 40,000 m s-1. At the pinch, the ions are reported to have energies of the order of 1.5 keV at most. The samples, analysed with a scanning electron microscope (SEM) in cross section show a damage profile to depths of the order of 580 nm, which are larger than those expected for ions with 1.5 keV, and may be evidence of ion acceleration. An analysis with the SRIM (Stopping Range of Ions in Matter) package calculations is shown.
Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices.
Ko, Euna; Tran, Van-Khue; Geng, Yanfang; Kim, Min Ki; Jin, Ga Hyun; Son, Seong Eun; Hur, Won; Seong, Gi Hun
2018-01-01
Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10 μ g/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1 μ g/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.
NASA Astrophysics Data System (ADS)
Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.
2014-05-01
We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.
Effects of fast ions on interchange modes in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Pinon, Jonhathan; Todo, Yasushi; Wang, Hao
2018-07-01
Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.
Thermo-optically tunable thin film devices
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
2003-10-01
We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.
Highly directional thermal emitter
Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W
2015-03-24
A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.
A reference protocol for comparing the biocidal properties of gas plasma generating devices
NASA Astrophysics Data System (ADS)
Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.
2015-12-01
Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.
Elmo bumpy square plasma confinement device
Owen, L.W.
1985-01-01
The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.
Dusty (complex) plasmas: recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, Sergey
The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, S.; Goto, M.; Murakami, I.
2013-07-11
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have beenmore » measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.« less
The design of a low-cost Thomson Scattering system for use on the ORNL PhIX device
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Lore, J.; Goulding, R. H.; Hillis, D. L.; Owen, L.; Rapp, J.
2012-10-01
Study of the plasma-material interface (PMI) under high power and particle flux on linear plasma devices is an active area of research that is relevant to fusion-grade toroidal devices such as ITER and DEMO. ORNL is assembling a 15 cm diameter, ˜3 m long linear machine, called the Physics Integration eXperiment (PhIX), which incorporates a helicon plasma source, electron heating, and a material target. The helicon source has demonstrated coupling of up to 100 kW of rf power, and produced ne >= 4 x 10^19 m-3 in D, and He fueled plasmas, measured with interferometry and Langmuir probes (LP). Optical emission spectroscopy was used to confirm LP measurements that Te is about 10 eV in helicon heated plasmas, which will presumably increase when electron heating is applied. Plasma parameters (ne, Te, n0) of the PhIX device will be measured with a novel, low-cost Thomson Scattering (TS) system. The data will be used to characterize the PMI regime with multiple profile measurements in front of the target. Profiles near the source and target will be used to determine the parallel transport regime via comparison to 2D fluid plasma simulations. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions
NASA Astrophysics Data System (ADS)
McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.
2015-11-01
We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
Innovative potential of plasma technology
NASA Astrophysics Data System (ADS)
Budaev, V. P.
2017-11-01
The review summarizes recent experimental observations of materials exposed to extreme hot plasma loads in fusion devices and plasma facilities with high-temperature plasma. Plasma load on the material in such devices lead to the stochastic clustering and fractal growth of the surface on scales from tens of nanometers to hundreds of micrometers forming statistical self-similarity of the surface roughness with extremely high specific area. Statistical characteristics of hierarchical granularity and scale invariance of such materials surface qualitatively differ from the properties of the roughness of the ordinary Brownian surface which provides a potential of innovative plasma technologies for synthesis of new nanostructured materials with programmed roughness properties, for hypersonic technologies, for biotechnology and biomedical applications.
2000-01-01
second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve
NASA Astrophysics Data System (ADS)
Ongena, J.; Messiaen, A.; Kazakov, Ye O.; Koch, R.; Ragona, R.; Bobkov, V.; Crombé, K.; Durodié, F.; Goniche, M.; Krivska, A.; Lerche, E.; Louche, F.; Lyssoivan, A.; Vervier, M.; Van Eester, D.; Van Schoor, M.; Wauters, T.; Wright, J.; Wukitch, S.
2017-05-01
Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.
Plasma channel undulator excited by high-order laser modes
Wang, J. W.; Schroeder, C. B.; Li, R.; ...
2017-12-04
The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less
Plasma channel undulator excited by high-order laser modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. W.; Schroeder, C. B.; Li, R.
The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here in this paper, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of amore » mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-Top FEL.« less
RF Plasma Heating in the PFRC-2 Device: Motivation, Goals and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, S.; Brunkhorst, C.; Glasser, A.
2011-12-23
The motivation for using radio frequency, odd-parity rotating magnetic fields for heating field-reversed-configuration (FRC) plasmas is explained. Calculations are presented of the expected electron and ion temperatures in the PFRC-2 device, currently under construction.
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.; Sydora, R.
2013-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behavior of these waves has been extensively studied, non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in coronal heating and/or in establishing the spectrum of solar wind turbulence. Recent counter-propagating Alfvén wave experiments have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability. The resonance in the observed beat process has several features consistent with ponderomotive coupling to an ion acoustic mode, including the measured dispersion relation and spatial profile. Strong damping observed after the pump Alfvén waves are turned off is under investigation. New experiments and simulations also aim to identify decay instabilities from a single large-amplitude Alfvén wave. Supported by DOE and NSF.
Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma
NASA Astrophysics Data System (ADS)
Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2015-11-01
The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.
Relativistic electron beam device
Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.
1975-07-01
A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)
Compact atmospheric pressure plasma self-resonant drive circuits
NASA Astrophysics Data System (ADS)
Law, V. J.; Anghel, S. D.
2012-02-01
This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.
NASA Astrophysics Data System (ADS)
Bennett, Haydon E.; Taylor, Scott D.; Fugett, James H.; Shrout, Joshua L.; Davison, Paul O.; Ryan, S. Eric; Coad, James E.
2017-02-01
Penetrating thermal tissue damage/spread is an important aspect of many electrosurgical devices and correlates with effective tissue cutting, hemostasis, preservation of adjacent critical structures and tissue healing. This study compared the thermal damage/spread associated with the PhotonBlade, Valleylab Pencil, Valleylab EDGE Coated Pencil, PlasmaBlade 3.0S and PlasmaBlade 4.0, when performing a single pass dynamic tissue cut in fresh extirpated porcine longissimus muscle. These devices were used in a fashion that emulated their use in the clinical setting. Each device's thermal damage/spread, at Minimum, Median and Maximum power input settings, was assessed with nitroblue tetrazolium viability staining in the WVU Pathology Laboratory for Translational Medicine. The thermal damage/spread associated with the PhotonBlade was compared with the other devices tested based on the individual treatment results (n=179 cuts combined). In summary, the PhotonBlade overall demonstrated the least penetrating thermal tissue damage/spread, followed by the PlasmaBlade 4.0, then Valleylab Pencil and PlasmaBlade 3.0S and then Valleylab EDGE Coated Pencil in order of increasing thermal damage/spread depths.
Leal Yepes, F A; Nydam, D V; Heuwieser, W; Mann, S
2018-04-25
The use of point-of-care (POC) devices to measure blood metabolites, such as β-hydroxybutyrate (BHB), on farm have become an important diagnostic and screening tool in the modern dairy industry. The POC devices allow for immediate decision making and are often more economical than the use of laboratory-based methods; however, precision and accuracy may be lower when measurements are performed in an uncontrolled environment. Ideally, the advantages of the POC devices and the standardized laboratory environment could be combined when measuring samples that do not require an immediate result-for example, in research applications or when immediate intervention is not the goal. The objective of this study was to compare the capability of 2 POC devices (TaiDoc, Pharmadoc, Lübeck, Germany; Precision Xtra, Abbott Diabetes Care, Abingdon, UK) to measure BHB concentrations either at room temperature (RT; 20-22°C) or at 37°C compared with the gold standard test in stored plasma samples. Whole blood from multiparous Holstein dairy cows (n = 113) was sampled from the coccygeal vessels between 28 d before expected calving and 42 DIM. Whole-blood BHB concentrations were determined cow-side using the TaiDoc POC device. Plasma was separated within 1 h of collection and stored until analysis. A subset of stored plasma samples (n = 100) consisting of 1 sample per animal was chosen retrospectively based on the BHB concentrations in whole blood within the range of 0.2 to 4.0 mmol/L. The samples were analyzed for BHB plasma concentration using an automated chemistry analyzer (Hitachi 917, Hitachi, Tokyo, Japan), which was considered the gold standard. On the same day, the samples were also measured with the 2 POC devices, with samples either at RT or heated up to 37°C. Our study showed high Spearman correlation coefficients (>0.99) using either device and with samples at both temperatures compared with the gold standard. Passing-Bablok regression revealed a very strong correlation (>0.99), indicating good agreement between both POC devices and the gold standard method. For hyperketonemia detection, defined as BHB concentration ≥1.2 mmol/L, the sensitivity for both POC devices at RT and 37°C was equally high at 100%. Specificity was lowest (67.4%) for the TaiDoc used with plasma at RT and was highest (86.5%) when plasma was measured at 37°C with the Precision Xtra meter. Bland-Altman plots revealed a mean bias of 0.25 and 0.4 mmol/L for the Precision Xtra meter and TaiDoc, respectively, when tested on plasma at 37°C. Our data showed that both POC devices are suitable for measuring BHB concentration in stored bovine plasma, and accuracy was highest when samples were heated to 37°C compared with RT. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Catastrophic global-avalanche of a hollow pressure filament
NASA Astrophysics Data System (ADS)
van Compernolle, B.; Poulos, M. J.; Morales, G. J.
2017-10-01
New results are presented of a basic heat transport experiment performed in the Large Plasma Device at UCLA. A ring-shaped electron beam source injects low energy electrons along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated plasma pressure. The off-axis source is active for a period long compared to the density decay time, i.e., as time progresses the power per particle increases. Two distinct regimes are observed to take place, an early regime dominated by multiple avalanches, identified as a sudden intermittent rearrangement of the pressure profile that repeats under sustained heating, and a second regime dominated by broadband drift-Alfvén fluctuations. The transition between the two regimes is sudden and global, both radially and axially. The initial regime is characterized by peaked density and temperature profiles, while only the peaked temperature profile survives in the second regime. Recent measurements at multiple axial locations provide new insight into the axial dynamics of the global avalanche. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-11-01
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM410 mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the field pattern of the resonant TM410 mode, we found that the plasma density increased about 40%˜50% from 1.0˜1.1 × 1011 cm-3 to ˜1.5 × 1011 cm-3 at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.
Development of flow separation control system to reduce the vibration of wind turbine blades
NASA Astrophysics Data System (ADS)
Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung
2017-04-01
The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.
Antimatter Driven P-B11 Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Kammash, Terry; Martin, James; Godfroy, Thomas
2002-01-01
One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
Post, R.F.
1963-06-11
The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)
NASA Astrophysics Data System (ADS)
Khan, M. Z.; Yap, S. L.; Wong, C. S.
2014-01-01
Radiation emission in a 2.2 kJ Mather-type plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. At optimum condition, radiation emission from the system is found to be strongly influenced in hollow anode and filling gas pressure. Maximum X-ray yield in 4π sr has been obtained in case of hollow anode in argon gas medium due to interaction of electron beam. Results indicate that an appropriate design of anode can enhance radiation emission by more intense interaction of expected electron beam with hollow anode. The outcome is helpful to design a plasma focus with enhanced X-ray generation with improved shot-to-shot reproducibility in plasma focus device.
Smart material-based radiation sources
NASA Astrophysics Data System (ADS)
Kovaleski, Scott
2014-10-01
From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.
Development of TPF-1 plasma focus for education
NASA Astrophysics Data System (ADS)
Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.
2017-09-01
The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.