Sample records for large radioactive particles

  1. Challenges associated with the behaviour of radioactive particles in the environment.

    PubMed

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position

  2. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  3. Modification of Poisson Distribution in Radioactive Particle Counting.

    ERIC Educational Resources Information Center

    Drotter, Michael T.

    This paper focuses on radioactive practicle counting statistics in laboratory and field applications, intended to aid the Health Physics technician's understanding of the effect of indeterminant errors on radioactive particle counting. It indicates that although the statistical analysis of radioactive disintegration is best described by a Poisson…

  4. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  5. Particle beam generator using a radioactive source

    DOEpatents

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  6. Particle beam generator using a radioactive source

    DOEpatents

    Underwood, David G.

    1993-01-01

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  7. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  8. Overview of insoluble radioactive cesium particles emitted from the Fukushima Dai-ichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko

    2017-04-01

    In the early stage of the Fukushima Dai-ichi Nuclear Power Station (F1NPS) accident, number of spot type contamination has been observed in computed autoradiography (Kashimura 2013, Shibata 2013, Satou 2014). It's means presence of radioactive particles, however, insoluble cesium particle was overlooked because cesium, which is dominant radioactive element in the accident, becomes ionized in the environment. Adachi et al. (2013) showed presence of cesium (Cs)-bearing particles within air dust sample collected at Tsukuba, 170 km south from the Fukushima site, in midnight of 14 to morning of 15 March 2011. These particles were micrometer order small particles and Cs was could be detectable as element using an energy dispersive X-ray spectroscopy (EDX). However, other radioactive elements such as Co-60, Ru-103 and uranium, which were dominant element of radioactive particles delivered from Chernobyl accident, could not detected. Abe et al. (2014) employed a synchrotron radiation (SR)-micro(μ)-X-ray analysis to the Cs-bearing particles, and they were concluded that (1) contained elements derived from nuclear fission processes and from nuclear reactor and fuel materials; (2) were amorphous; (3) were highly oxidized; and (4) consisted of glassy spherules formed from a molten mixture of nuclear fuel and reactor material. In addition, Satou et al. (2016) and Yamaguchi et al. (2016) disclosed that silicate is main component of Cs-bearing particles. Satou et al. (2015) discovered two types of radioactive particles from soil samples collected in the vicinity of the F1NPS. These particles were remained in the natural environment more than four years, silicate is main component in common of each group particles. Group A particles were very similar to Cs-bearing particles reported by Adachi et al. except particle shape. On the other hand, group B is big particles found in north area from the F1NPS, and the strongest particles contained 20 kBq of Cs-137 within a particle

  9. Preparation and quantification of radioactive particles for tracking hydrodynamic behavior in multiphase reactors.

    PubMed

    Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar

    2014-09-01

    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Radioactive particles released to the environment from the Fukushima reactors-Confirmation is still needed.

    PubMed

    Salbu, Brit; Lind, Ole Christian

    2016-10-01

    After severe nuclear events, a major fraction of refractory radionuclides such as U and Pu are released to the environment in the form of radioactive particles. After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, Pu isotope ratio signals different from that of global fallout have been reported, indicating that spent fuel particles have been released from the reactors or reactor vessels. Radioactive particles containing (37) Cs and other volatile radionuclides, as well as a series of stable refractory metals (Cs, Fe, Zn, U, etc.), have been identified by several authors claiming that these particles originated from the FDNPP fuel. If so, long-lived radioactive isotopes of the refractory metals should have been identified in these particles. It is therefore most probable that volatile radionuclides released as gases during the accidents have deposited on available surfaces such as fly ash, forming condensation particles during release or transport. If spent fuel particles have been deposited in the FDNPP surroundings, information on particle characteristics influencing ecosystem transport, uptake, and effects is essential for assessing environmental impact and risk. More emphasis should therefore be put on the identification of hot spots in the FDNPP environment followed by the characterization of radioactive particles using nanoanalytical-microanalytical techniques to support environmental monitoring, as recommended in the present study. Integr Environ Assess Manag 2016;12:687-689. © 2016 SETAC. © 2016 SETAC.

  11. Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model

    NASA Astrophysics Data System (ADS)

    Saito, Keisuke; Ogawa, Susumu

    2016-06-01

    On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The

  12. Effects of radioactive hot particles on pig skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurin, D.G.; Baum, J.W.; Schaefer, C.W.

    1997-06-01

    The purpose of these studies was to determine the incidence and severity of lesions resulting from very localized deposition of dose to skin from small (< 0.5 mm) discrete radioactive particles as produced in the work environments of nuclear reactors. Hanford mini-pigs were exposed, both on a slightly off the skin, to localized replicate doses from 0.31 to 64 Gy (averaged over 1 cm{sup 2} at 70 {mu}m depth unless noted otherwise) using Sc-46, Yb-175, Tm-170, and fissioned UC{sub 2} isotopes having maximum beta-particle energies from about 0.3 to 3 MeV. Erythema and scabs (indicating ulceration) were scored for upmore » to 71 days post-irradiation. The responses followed normal cumulative probability distributions, and therefore, no true threshold could be defined. Hence, 10 and 50% scab incidence rates were deduced using probit analyses. The lowest dose which produced 10% incidence was about 1 Gy for Yb-175 (0.5 MeV maximum energy) beta particle exposures, and about 3 to 9 Gy for other isotopes. The histopathology of lesions was determined at several doses. Single exposures to doses as large as 1,790 Gy were also given, and results were observed for up to 144 days post-exposure. Severity of detriment was estimated by analyzing the results in terms of lesion diameter, persistence, and infection. Over 1,100 sites were exposed. Only two exposed sites became infected after doses near 5000 Gy; the lesions healed quickly on treatment. 105 refs., 145 figs., 47 tabs.« less

  13. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  14. Pre-cooling of ton-scale particle detectors in low radioactivity environments

    NASA Astrophysics Data System (ADS)

    Cappelli, L.; Pagliarone, C. E.; Bucci, C.; D’Aguanno, D.; Erme, G.; Gorla, P.; Kartal, S.; Marignetti, F.

    2018-03-01

    Low radioactivity sites are mandatory to perform searches for rare processes that cannot be studied with particle accelerators and requires low environmental backgrounds. Neutrino-less double β decay or Dark Matter searches must be performed in underground low radioactivity observatories. Large detectors are needed to increase the acceptances and proper cryogenic systems to run dedicated detectors. To reach the working temperatures, refrigerators as Pulse Tubes, Dilution Units are used inside complex cryostats. CUORE, Cryogenic Underground Observatory for Rare Events, is an experiment located at LNGS under the Gran Sasso mountain. So far, it’s the coldest cubic meter and the largest cold mass ever realized. Its 998 TeO2 bolometers need to be kept at temperatures T< 10 mK. Using only Pulse Tubes, CUORE needs several weeks to reach the baseline T. Then a Fast Cooling System has been designed and constructed for a faster precooling of the whole CUORE cold volume. The Fast Cooling System (FCS) consists of a cryostat with heat exchangers that use 3 Gifford-McMahon refrigerators, a 4He compressor, a filtering module and several sensors that allow to monitor and control the system during CUORE cooldown. The present work describes the FCS and summarizes its performances during the first full CUORE cooldown.

  15. Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits

    NASA Astrophysics Data System (ADS)

    Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.

    2004-06-01

    A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.

  16. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    PubMed

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  17. FILTER PACK TECHNIQUE FOR CLASSIFYING RADIOACTIVE AEROSOLS BY PARTICLE SIZE. PART 1 PRELIMINARY EVALUATION.

    DTIC Science & Technology

    radon daughters is associated have greater ability to penetrate the variousfilter media than has the fission product debris in the atmosphere; therefore the former is associated with aerosols of smaller size. A preliminary evaluation of the techniques of employing packs of filters of different retentivity characteristics to determine the particle size and/or particle size distribution of radioactive aerosols has been made which indicates the feasibility of the method. It is recommended that a series of measurements be undertaken to determine the relative particle size

  18. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    PubMed

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  20. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  1. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Treesearch

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  2. Large-particle calcium hydroxylapatite injection for correction of facial wrinkles and depressions.

    PubMed

    Alam, Murad; Havey, Jillian; Pace, Natalie; Pongprutthipan, Marisa; Yoo, Simon

    2011-07-01

    Small-particle calcium hydroxylapatite (Radiesse, Merz, Frankfurt, Germany) is safe and effective for facial wrinkle reduction, and has medium-term persistence for this indication. There is patient demand for similar fillers that may be longer lasting. We sought to assess the safety and persistence of effect in vivo associated with use of large-particle calcium hydroxylapatite (Coaptite, Merz) for facial augmentation and wrinkle reduction. This was a case series of 3 patients injected with large-particle calcium hydroxylapatite. Large-particle calcium hydroxylapatite appears to be effective and well tolerated for correction of facial depressions, including upper mid-cheek atrophy, nasolabial creases, and HIV-associated lipoatrophy. Adverse events included erythema and edema, and transient visibility of the injection sites. Treated patients, all of whom had received small-particle calcium hydroxylapatite correction before, noted improved persistence at 6 and 15 months with the large-particle injections as compared with prior small-particle injections. This is a small case series, and there was no direct control to compare the persistence of small-particle versus large-particle correction. For facial wrinkle correction, large-particle calcium hydroxylapatite has a safety profile comparable with that of small-particle calcium hydroxylapatite. The large-particle variant may have longer persistence that may be useful in selected clinical circumstances. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Characteristics of large particles and their effects on the submarine light field

    NASA Astrophysics Data System (ADS)

    Hou, Weilin

    Large particles play important roles in the ocean by modifying the underwater light field and effecting material transfer. The particle size distribution of large particles has been measured in-situ with multiple- camera video microscopy and the automated particle sizing and recognition software developed. Results show that there are more large particles in coastal waters than previously thaught, based upon by a hyperbolic size- distribution curve with a (log-log) slope parameter of close to 3 instead of 4 for the particles larger than 100μm diameter. Larger slopes are more typical for particles in the open ocean. This slope permits estimation of the distribution into the small-particle size range for use in correcting the beam-attenuation measurements for near-forward scattering. The large- particle slope and c-meter were used to estimate the small-particle size distributions which nearly matched those measured with a Coulter Counteroler (3.05%). There is also a fair correlation (r2=0.729) between the slope of the distribution and its concentration parameters. Scattering by large particles is influenced by not only the concentrations of these particles, but also the scattering phase functions. This first in-situ measurement of large-particle scattering with multiple angles reveals that they scatter more in the backward direction than was previously believed, and the enhanced backscattering can be explained in part by multiple scattering of aggregated particles. Proper identification of these large particles can be of great help in understanding the status of the ecosystem. By extracting particle features using high-resolution video images via moment-invariant functions and applying this information to lower-resolution images, we increase the effective sample volume without severely degrading classification efficiency. Traditional pattern recognition algorithms of images classified zooplankton with results within 24% of zooplankton collected using bottle samples

  4. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    PubMed

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  6. Saltation movement of large spherical particles

    NASA Astrophysics Data System (ADS)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  7. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    NASA Astrophysics Data System (ADS)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  8. Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Khane, Vaibhav; Al-Dahhan, Muthanna H.

    2017-04-01

    The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.

  9. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  10. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  12. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  13. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  14. Radioactive cesium concentrations in coastal suspended matter after the Fukushima nuclear accident.

    PubMed

    Kubo, Atsushi; Tanabe, Kai; Suzuki, Genta; Ito, Yukari; Ishimaru, Takashi; Kasamatsu-Takasawa, Nobue; Tsumune, Daisuke; Mizuno, Takuji; Watanabe, Yutaka W; Arakawa, Hisayuki; Kanda, Jota

    2018-06-01

    Radioactive cesium concentrations in the suspended matter of the coastal waters around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were investigated between January 2014 and August 2015. The concentrations of radioactive cesium in the suspended matter were two orders higher in magnitude than those determined in the sediment. In addition, we discovered highly radioactive Cs particles in the suspended matter using autoradiography. The geometrical average radioactivity of particles was estimated to be 0.6 Bq at maximum and 0.2 Bq on average. The contribution ratio of highly radioactive Cs particles to each sample ranged from 13 to 54%, and was 36% on average. A major part of the radioactive Cs concentration in the suspended matter around the FDNPP was strongly influenced by the highly radioactive particles. The subsequent resuspension of highly radioactive Cs particles has been suggested as a possible reason for the delay in radioactive Cs depuration from benthic biota. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas.

    PubMed

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-12-01

    High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Large particle breakdown by cattle eating ryegrass and alfalfa.

    PubMed

    McLeod, M N; Minson, D J

    1988-04-01

    The proportion of large particles (LP) broken down to small, insoluble particles by primary mastication (eating), rumination, digestion and detrition (rubbing) was determined for separated leaf and stem fractions of perennial ryegrass (Lolium perenne) and alfalfa (Medicago sativa) fed to cattle cannulated at the esophagus. Large particles were defined as those particles retained during wet sieving on a screen with an aperture of 1.18 mm. Reduction in weight of particles caused by solubilizing or digestion was not considered to be particle breakdown per se, and particles were corrected for this loss in weight. The proportion of LP in the forage broken down by primary mastication was 25 +/- 1.9% (means +/- SE). Breakdown of LP by rumination was calculated from the weight of total particles regurgitated and the proportion of LP in the regurgitated and swallowed remasticated material. The weight of LP regurgitated was corrected for the dry matter lost by digestion using lignin ratio in the LP entering the rumen and of the regurgitated digesta. Rumination accounted for 50 +/- 1.5% of LP breakdown. Fecal loss accounted for 8 +/- .8% of the LP in forage. Breakdown of LP by digestion and detrition was calculated as 17 +/- 1.3% from the difference between the LP eaten and those broken down by primary mastication, rumination and passing out in the feces. The significance of these results for predicting voluntary intake from laboratory analysis is considered.

  17. Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking

    NASA Astrophysics Data System (ADS)

    Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.

    2008-12-01

    Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide

  18. Microphysical growth state of ice particles and large-scale electrical structure of clouds

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Zhang, Renyi; Boccippio, Dennis

    1994-01-01

    Cloud temperature, liquid water content, and vertical air velocity are all considered in evaluating the microphysical growth state of ice phase precipitation particles in the atmosphere. The large-scale observations taken together with in situ measurements indicated that the most prevalent growth condition for large ice particles in active convection is sublimation during riming, whereas the most prevalent growth condition in stratiform precipitation is vapor deposition. The large-scale electrical observations lend further support to the idea that particles warmed by riming into sublimation charge negatively and particles in vapor deposition charge positively in collisions with small ice particles.

  19. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  20. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  1. Turbulent transport of large particles in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  2. Particle-Image Velocimeter Having Large Depth of Field

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2009-01-01

    An instrument that functions mainly as a particle-image velocimeter provides data on the sizes and velocities of flying opaque particles. The instrument is being developed as a means of characterizing fluxes of wind-borne dust particles in the Martian atmosphere. The instrument could also adapted to terrestrial use in measuring sizes and velocities of opaque particles carried by natural winds and industrial gases. Examples of potential terrestrial applications include monitoring of airborne industrial pollutants and airborne particles in mine shafts. The design of this instrument reflects an observation, made in field research, that airborne dust particles derived from soil and rock are opaque enough to be observable by use of bright field illumination with high contrast for highly accurate measurements of sizes and shapes. The instrument includes a source of collimated light coupled to an afocal beam expander and an imaging array of photodetectors. When dust particles travel through the collimated beam, they cast shadows. The shadows are magnified by the beam expander and relayed to the array of photodetectors. Inasmuch as the images captured by the array are of dust-particle shadows rather of the particles themselves, the depth of field of the instrument can be large: the instrument has a depth of field of about 11 mm, which is larger than the depths of field of prior particle-image velocimeters. The instrument can resolve, and measure the sizes and velocities of, particles having sizes in the approximate range of 1 to 300 m. For slowly moving particles, data from two image frames are used to calculate velocities. For rapidly moving particles, image smear lengths from a single frame are used in conjunction with particle- size measurement data to determine velocities.

  3. Foaming in simulated radioactive waste.

    PubMed

    Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C

    2001-10-01

    Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella

  4. Large deviation function for a driven underdamped particle in a periodic potential

    NASA Astrophysics Data System (ADS)

    Fischer, Lukas P.; Pietzonka, Patrick; Seifert, Udo

    2018-02-01

    Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one-dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, which replaces the level 2.5 functional used for overdamped dynamics. Using this approach, we obtain several bounds on the large deviation function of the particle current. We compare these to bounds for overdamped dynamics that have recently been derived, motivated by the thermodynamic uncertainty relation. Second, we provide a method to calculate the large deviation function via the cumulant generating function. We use this method to assess the tightness of the bounds in a numerical case study for a cosine potential.

  5. Particle Scattering in the Resonance Regime: Full-Wave Solution for Axisymmetric Particles with Large Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Crisp, David

    1997-01-01

    Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward

  6. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  7. An experimental and theoretical investigation on torrefaction of a large wet wood particle.

    PubMed

    Basu, Prabir; Sadhukhan, Anup Kumar; Gupta, Parthapratim; Rao, Shailendra; Dhungana, Alok; Acharya, Bishnu

    2014-05-01

    A competitive kinetic scheme representing primary and secondary reactions is proposed for torrefaction of large wet wood particles. Drying and diffusive, convective and radiative mode of heat transfer is considered including particle shrinking during torrefaction. The model prediction compares well with the experimental results of both mass fraction residue and temperature profiles for biomass particles. The effect of temperature, residence time and particle size on torrefaction of cylindrical wood particles is investigated through model simulations. For large biomass particles heat transfer is identified as one of the controlling factor for torrefaction. The optimum torrefaction temperature, residence time and particle size are identified. The model may thus be integrated with CFD analysis to estimate the performance of an existing torrefier for a given feedstock. The performance analysis may also provide useful insight for design and development of an efficient torrefier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2011-11-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50km and about 50% beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  9. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lelieveld, J.; Lawrence, M. G.

    2012-04-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90 % of emitted 137Cs would be transported beyond 50 km and about 50 % beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  10. Autonomous sensor particle for parameter tracking in large vessels

    NASA Astrophysics Data System (ADS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-08-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes.

  11. Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Memarsadeghi, Nargess; Kizhner, Semion; Antonille, Scott

    2013-01-01

    A large depth-of-field particle image velocimeter (PIV) is designed to characterize dynamic dust environments on planetary surfaces. This instrument detects lofted dust particles, and senses the number of particles per unit volume, measuring their sizes, velocities (both speed and direction), and shape factors when the particles are large. To measure these particle characteristics in-flight, the instrument gathers two-dimensional image data at a high frame rate, typically >4,000 Hz, generating large amounts of data for every second of operation, approximately 6 GB/s. To characterize a planetary dust environment that is dynamic, the instrument would have to operate for at least several minutes during an observation period, easily producing more than a terabyte of data per observation. Given current technology, this amount of data would be very difficult to store onboard a spacecraft, and downlink to Earth. Since 2007, innovators have been developing an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that it has to store and downlink. The algorithm analyzes PIV images and automatically reduces the image information down to only the particle measurement data that is of interest, reducing the amount of data that is handled by more than 10(exp 3). The state of development for this innovation is now fairly mature, with a functional algorithm architecture, along with several key pieces of algorithm logic, that has been proven through field test data acquired with a proof-of-concept PIV instrument.

  12. EFFICIENCY OF THE FILTERS AGAINST RADIOACTIVE AEROSOL. ON THE RADIOACTIVE CONTAMINATION AND ITS REMOVAL (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, T.; Kimura, K.

    1959-12-01

    Dust filters were examined using a radioactive solidaerosol, decay product daughters of Rn/sup 220/. An examination with a thermal precipitator revealed that the major part of particles in the radioactive aerosol were smaller than 0.5 mu in diameter. Twenty-one kinds of filters were tested. The filtering efficiency was highest in asbestos fiber filters. A radioautographic examination revealed that the radioactive substance penetrated as deep as 1.4 to 1.5 mm into the filter layer. (auth)

  13. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Chen, Jincai; Jin, Guodong; Zhang, Jian

    2016-03-01

    The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.

  14. Blended particle filters for large-dimensional chaotic dynamical systems

    PubMed Central

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  15. Large scale Brownian dynamics of confined suspensions of rigid particles

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  16. CHARACTERIZATION OF LARGE PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES: MASS DISTRIBUTION AND INDIVIDUAL PARTICLE ANALYSIS

    EPA Science Inventory

    A unique combination of an effective sampler and analysis of individual particles has been used in studying large particles (> 5 micrometers) at a rural site in Eastern United States. The sampler is a modified 'high volume' rotary inertial impactor, which consists of four collect...

  17. Reactor for producing large particles of materials from gases

    NASA Technical Reports Server (NTRS)

    Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)

    1987-01-01

    A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.

  18. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    PubMed

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Large-scale numerical simulations of polydisperse particle flow in a silo

    NASA Astrophysics Data System (ADS)

    Rubio-Largo, S. M.; Maza, D.; Hidalgo, R. C.

    2017-10-01

    Very recently, we have examined experimentally and numerically the micro-mechanical details of monodisperse particle flows through an orifice placed at the bottom of a silo (Rubio-Largo et al. in Phys Rev Lett 114:238002, 2015). Our findings disentangled the paradoxical ideas associated to the free-fall arch concept, which has historically served to justify the dependence of the flow rate on the outlet size. In this work, we generalize those findings examining large-scale polydisperse particle flows in silos. In the range of studied apertures, both velocity and density profiles at the aperture are self-similar, and the obtained scaling functions confirm that the relevant scale of the problem is the size of the aperture. Moreover, we find that the contact stress monotonically decreases when the particles approach the exit and vanish at the outlet. The behavior of this magnitude is practically independent of the size of the orifice. However, the total and partial kinetic stress profiles suggest that the outlet size controls the propagation of the velocity fluctuations inside the silo. Examining this magnitude, we conclusively argue that indeed there is a well-defined transition region where the particle flow changes its nature. The general trend of the partial kinetic pressure profiles and the location of the transition region results the same for all particle types. We find that the partial kinetic stress is larger for bigger particles. However, the small particles carry a higher fraction of kinetic stress respect to their concentration, which suggest that the small particles have larger velocity fluctuations than the large ones and showing lower strength of correlation with the global flow. Our outcomes explain why the free-fall arch picture has served to describe the polydisperse flow rate in the discharge of silos.

  20. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishel, Jeremy P.; Keillor, Martin E.; Arrigo, Leah M.

    2016-01-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper utilizes standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing the both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scalemore » vent from an underground nuclear explosion. The deposition field will be used, in part, to investigate several techniques of gamma radiation survey and spectrometry that could be utilized by an On-Site Inspection team under the verification regime of the Comprehensive Nuclear-Test-Ban Treaty.« less

  1. Large scale particle image velocimetry with helium filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  2. Species removal from aqueous radioactive waste by deep-bed filtration.

    PubMed

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  4. Energy Spectra of Very Large Gradual Solar Particle Events

    DTIC Science & Technology

    2001-01-01

    Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 ICRC 2001 Energy Spectra of Very Large Gradual Solar Particle Events A.J. Tylka 1, C.M.S...Greenbelt, MD 20771, USA 6Department of Astronomy , University of Maryland, College Park, MD 20742 USA Abstract. Energy spectra provide a powerful tool in

  5. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    PubMed

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  7. Cigarette smoke radioactivity and lung cancer risk.

    PubMed

    Karagueuzian, Hrayr S; White, Celia; Sayre, James; Norman, Amos

    2012-01-01

    To determine the tobacco industry's policy and action with respect to radioactive polonium 210 ((210)Po) in cigarette smoke and to assess the long-term risk of lung cancer caused by alpha particle deposits in the lungs of regular smokers. Analysis of major tobacco industries' internal secret documents on cigarette radioactivity made available online by the Master Settlement Agreement in 1998. The documents show that the industry was well aware of the presence of a radioactive substance in tobacco as early as 1959. Furthermore, the industry was not only cognizant of the potential "cancerous growth" in the lungs of regular smokers but also did quantitative radiobiological calculations to estimate the long-term (25 years) lung radiation absorption dose (rad) of ionizing alpha particles emitted from the cigarette smoke. Our own calculations of lung rad of alpha particles match closely the rad estimated by the industry. According to the Environmental Protection Agency, the industry's and our estimate of long-term lung rad of alpha particles causes 120-138 lung cancer deaths per year per 1,000 regular smokers. Acid wash was discovered in 1980 to be highly effectively in removing (210)Po from the tobacco leaves; however, the industry avoided its use for concerns that acid media would ionize nicotine converting it into a poorly absorbable form into the brain of smokers thus depriving them of the much sought after instant "nicotine kick" sensation. The evidence of lung cancer risk caused by cigarette smoke radioactivity is compelling enough to warrant its removal.

  8. Large space system: Charged particle environment interaction technology

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  9. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  10. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    NASA Astrophysics Data System (ADS)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  11. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Yamasaki, Shinya; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi; Ohnuki, Toshihiko; Sueki, Keisuke; Nanba, Kenji; Ewing, Rodney C; Utsunomiya, Satoshi

    2016-05-01

    The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32μm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100μm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Inertial particle dynamics in large artery flows - Implications for modeling arterial embolisms.

    PubMed

    Mukherjee, Debanjan; Shadden, Shawn C

    2017-02-08

    The complexity of inertial particle dynamics through swirling chaotic flow structures characteristic of pulsatile large-artery hemodynamics renders significant challenges in predictive understanding of transport of such particles. This is specifically crucial for arterial embolisms, where knowledge of embolus transport to major vascular beds helps in disease diagnosis and surgical planning. Using a computational framework built upon image-based CFD and discrete particle dynamics modeling, a multi-parameter sampling-based study was conducted on embolic particle dynamics and transport. The results highlighted the strong influence of material properties, embolus size, release instance, and embolus source on embolus distribution to the cerebral, renal and mesenteric, and ilio-femoral vasculature beds. The study also isolated the importance of shear-gradient lift, and elastohydrodynamic contact, in affecting embolic particle transport. Near-wall particle re-suspension due to lift alters aortogenic embolic particle dynamics significantly as compared to cardiogenic. The observations collectively indicated the complex interplay of particle inertia, fluid-particle density ratio, and wall collisions, with chaotic flow structures, which render the overall motion of the particles to be non-trivially dispersive in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3particles and gases to environmental surfaces. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 μm).

  14. Global risk of radioactive fallout after major nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2012-05-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  15. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.

    PubMed

    Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2017-06-01

    Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nucleon transfer reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  17. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals. © 2011 Optical Society of America

  18. Influence of surface potential on the adhesive force of radioactive gold surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida

    2013-08-23

    Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less

  19. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  20. Superficially Porous Particles with 1000 Å Pores for Large Biomolecule High Performance Liquid Chromatography and Polymer Size Exclusion Chromatography

    PubMed Central

    Wagner, Brian M.; Schuster, Stephanie A.; Boyes, Barry E.; Shields, Taylor J.; Miles, William L.; Haynes, Mark J.; Moran, Robert E.; Kirkland, Joseph J.; Schure, Mark R.

    2017-01-01

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core®, core shell or porous shell) particles with very large (1000 Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. PMID:28213987

  1. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  2. Superficially porous particles with 1000Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.

    PubMed

    Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R

    2017-03-17

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured withmore » a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.« less

  4. Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.

  5. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    increase of the effective refractive index of the diffractive medium, resulting in the red-shift of the optical stop bands. The wavelength shift is linearly proportional to the vapor partial pressure for a spectrum of vapors. Optical simulation and theoretical prediction based on Kelvin equation suggest that a liquid film is formed on the walls of the macropores during vapor condensation. The third topic describes introducing doctor blade coating fabricated large area and low cost macroporous films for thermochromic smart windows, which are useful for energy control in glazed buildings. The fabricated macroporous polymer films exhibit brilliant colors and are capable of reflecting solar radiation when in-situ heated, and become transparent as cavities are filled with a solvent which has the same refractive index as that of the polymer when cooled to building temperature. The fourth topic reports the roll-to roll fabricated excellent water-repelling and self-cleaning macroporous polymer films. The size of the voids can be easily controlled by tuning the duration of an oxygen reactive-ion etching process prior to the removal of the templating silica spheres from silica colloidal-polymer composites. After surface functionalization with fluorosilane, superhydrophobic surface with large apparent water contact angle and small sliding angle can be obtained. The self-cleaning functionality can be achieved on superhydrophobic macroporous coatings by preventing bacterial contamination is further demonstrated. The fifth topic presented is that the template macroporous polymer films with interconnected voids and uniform interconnecting nanopores can be directly used as filtration membranes to achieve size-exclusive separation of particles. The results also demonstrate that more than 85% of small sized particles are recovered after filtration. The results also demonstrate that Escherichia coli can be filtrated by the from macroporous polymer films aqueous solution.

  6. Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates

    NASA Astrophysics Data System (ADS)

    Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi

    High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.

  7. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.

    PubMed

    Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis

    2016-08-02

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  8. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    PubMed Central

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-01-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946

  9. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-08-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  10. Computation of scattering matrix elements of large and complex shaped absorbing particles with multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang

    2015-05-01

    Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.

  11. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    PubMed

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  12. Teaching Elementary Particle Physics, Part II

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…

  13. Exploring one-particle orbitals in large many-body localized systems

    NASA Astrophysics Data System (ADS)

    Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.

    2018-03-01

    Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.

  14. Large-scale tomographic particle image velocimetry using helium-filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Kühn, Matthias; Ehrenfried, Klaus; Bosbach, Johannes; Wagner, Claus

    2011-04-01

    To measure large-scale flow structures in air, a tomographic particle image velocimetry (tomographic PIV) system for measurement volumes of the order of one cubic metre is developed, which employs helium-filled soap bubbles (HFSBs) as tracer particles. The technique has several specific characteristics compared to most conventional tomographic PIV systems, which are usually applied to small measurement volumes. One of them is spot lights on the HFSB tracers, which slightly change their position, when the direction of observation is altered. Further issues are the large particle to voxel ratio and the short focal length of the used camera lenses, which result in a noticeable variation of the magnification factor in volume depth direction. Taking the specific characteristics of the HFSBs into account, the feasibility of our large-scale tomographic PIV system is demonstrated by showing that the calibration errors can be reduced down to 0.1 pixels as required. Further, an accurate and fast implementation of the multiplicative algebraic reconstruction technique, which calculates the weighting coefficients when needed instead of storing them, is discussed. The tomographic PIV system is applied to measure forced convection in a convection cell at a Reynolds number of 530 based on the inlet channel height and the mean inlet velocity. The size of the measurement volume and the interrogation volumes amount to 750 mm × 450 mm × 165 mm and 48 mm × 48 mm × 24 mm, respectively. Validation of the tomographic PIV technique employing HFSBs is further provided by comparing profiles of the mean velocity and of the root mean square velocity fluctuations to respective planar PIV data.

  15. Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan

    2007-12-01

    Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.

  16. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  17. A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol

    PubMed Central

    Inoue, Takamasa; Tsai, Billy

    2011-01-01

    Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. PMID:21589906

  18. New image analysis of large food particles can discriminate experimentally suppressed mastication.

    PubMed

    Sugimoto, K; Iegami, C M; Iida, S; Naito, M; Tamaki, R; Minagi, S

    2012-06-01

    Objective parameters that could provide a basis for food texture selection for elderly or dysphagic patients have not been established. We, therefore, aimed to develop a precise method of measuring large particles (>2 mm in diameter) in a bolus and an analytical method to provide a scientific rationale for food selection under masticatory dysfunction conditions. We developed a new illumination system to evaluate the ability of twenty female participants (mean age, 23·4 ± 4·3 years) to masticate carrots, peanuts and beef with full, half and one quarter of the number of masticatory strokes. We also evaluated mastication under suppressed force, regulated by 20% electromyographic of the masseter muscle. The intercept and inclination of the regression line for the distribution of large particles were adopted as coefficients for the discrimination of masticatory efficiency. Single set of coefficient thresholds of 0·10 for the intercept and 1·62 for the inclination showed excellent discrimination of masticatory conditions for all three test foods with high specificity and sensitivity. These results suggested that our method of analysing the distribution of particles >2 mm in diameter might provide the basis for the appropriate selection of food texture for masticatory dysfunction patients from the standpoint of comminution. © 2012 Blackwell Publishing Ltd.

  19. Smoothed particle hydrodynamics method from a large eddy simulation perspective

    NASA Astrophysics Data System (ADS)

    Di Mascio, A.; Antuono, M.; Colagrossi, A.; Marrone, S.

    2017-03-01

    The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier-Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity. It is shown that the SPH smoothing procedure can be reinterpreted as a sort of LES Lagrangian filtering, and that, besides the terms coming from the LES convolution, additional contributions (never accounted for in the SPH literature) appear in the equations when formulated in a filtered fashion. Appropriate closure formulas are derived for the additional terms and a preliminary numerical test is provided to show the main features of the proposed LES-SPH model.

  20. The small dense LDL particle/large buoyant LDL particle ratio is associated with glucose metabolic status in pregnancy.

    PubMed

    Chen, Yanmin; Du, Mengkai; Xu, Jianyun; Chen, Danqing

    2017-12-14

    The lipoprotein subfraction particle profile can be used to improve clinical assessments of cardiovascular disease risk and contribute to early detection of atherogenic dyslipidemia. Lipid alterations in gestational diabetes have been extensively studied, but the results have been inconsistent. Here, we investigated serum lipoprotein subfraction particle levels and their association with glucose metabolic status in pregnancy. Twenty-eight pregnant women with gestational diabetes and 56 pregnant women with normal glucose tolerance matched for body mass index were enrolled in this study. We assessed fasting serum lipid concentrations and lipoprotein subfraction particle levels in participants between 24 and 28 weeks of gestation. The level of low-density lipoprotein (LDL) cholesterol was significantly lower in women with gestational diabetes than in those with normal glucose tolerance, but the triglyceride and high-density lipoprotein (HDL) cholesterol levels of the two groups were similar. Lipoprotein particle analysis showed that very-low-density lipoprotein (VLDL) particle number and the small dense LDL particle/large buoyant LDL particle (sdLDL-P/lbLDL-P) ratio were significantly higher in women with gestational diabetes than in those with normal glucose tolerance (P = 0.013 and P = 0.015, respectively). In multivariate analysis, fasting glucose was independently and positively associated with sdLDL-P/lbLDL-P ratio even after adjustment for maternal age, gestational weight gain, BMI and LDL cholesterol (standardized Beta = 0.214, P = 0.029). The sdLDL-P/lbLDL-P ratio is higher in GDM compared with non-diabetic pregnant women, and positively and independently associated with fasting glucose in pregnant women.

  1. Trajectory Studies of Large HNO3-Containing PSC Particles in the Arctic: Evidence for the Role of NAT

    NASA Technical Reports Server (NTRS)

    McKinney, K. A.; Wennberg, P. O.; Dhaniyala, S.; Fahey, D. W.; Northway, M. J.; Kuenzi, K. F.; Kleinboehl, A.; Sinnhuber, M.; Kuellmann, H.; Bremer, H.; hide

    2004-01-01

    Large (5 to >20 micron diameter) nitric-acid-containing polar stratospheric cloud (PSC) particles were observed in the Arctic stratosphere during the winter of 1999-2000. We use a particle growth and sedimentation model to investigate the environment in which these particles grew and the likely phase of the largest particles. Particle trajectory calculations show that, while simulated nitric acid dihydrate (NAD) particle sizes are significantly smaller than the observed maximum particle sizes, nitric acid trihydrate (NAT) particle trajectories are consistent with the largest observed particle sizes.

  2. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  3. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  4. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  5. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  6. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  7. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    NASA Astrophysics Data System (ADS)

    Colecchia, Federico

    2014-03-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments.

  8. Coulomb excitation of a radioactive beam of rubidium-78

    NASA Astrophysics Data System (ADS)

    Schwartz, Jazmin

    2000-11-01

    Much attention has been focused on the structure of nuclei far from stability and on the technologies necessary to study them. The increased interest in these nuclei is due to their importance in generalizing nuclear structure, and to the crucial roles many of them play in astrophysical processes. One approach being investigated to reach the driplines is the construction of radioactive beam facilities for nuclear physics research at the drip- lines. One of the more promising tools for research into the structure of these exotic nuclei is the use of Coulomb excitation reactions. This process has the advantage of having relatively large excitation cross sections (in the order of barns) which are directly calculable, as they involve only the matrix elements of the electro-magnetic interaction. Thus, experimental observables can be directly related to nuclear matrix elements. Coulomb excitation is normally inferred by measuring the gamma-rays emitted during the subsequent de-excitation of states. When radioactive beams are used, a background of gamma-rays arising from β+ decay of the beam is present, which can be intense. The presently available radioactive beams are usually not intense (<10 5) pps, so the gamma-rays of interest are never strong and it is difficult to suppress gamma-rays from background processes. Nevertheless, by exploiting the characteristics of prompt excitation, photons emitted through the Coulomb excitation mechanism can be separated from backgrounds by measuring gamma-rays emitted with appropriate time and intensity correlations with respect to the scattered ions. This thesis reports on a ``proof-of-principle'' experiment involving the Coulomb excitation of a low energy (E/A < 1.5 MeV/u), low intensity (~104 particles per second) beam of radioactive nuclei. We have produced a secondary radioactive beam of 78Rb and Coulomb re- excited it. The beam was produced in the fusion evaporation reaction 24Mg(58Ni,3pn)78Rb using beams delivered by the

  9. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Skliarov, S. V.

    2018-01-01

    The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  10. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Precision sizing of moving large particles using diffraction splitting of Doppler lines

    NASA Astrophysics Data System (ADS)

    Kononenko, Vadim L.

    1999-02-01

    It is shown, that the Doppler line from a single large particle moving with a constant velocity through a finite- width laser beam, undergoes a doublet-type splitting under specific observation conditions. A general requirement is that particle size 2a is not negligibly small, compared with beam diameter 2w$0. Three optical mechanisms of line splitting are considered. The first one is based on nonsymmetric diffraction of a bounded laser beam by a moving particle. The second arises from the transient geometry of diffraction. The third mechanism, of photometric nature, originates from specific time variation of total illuminance of moving particles when 2a>Lambda, the interference fringe spacing in the measuring volume. The diffraction splitting is observed when a detector is placed near one of diffraction minima corresponding to either of probing beams, and 2a equals (n0.5)Lambda for n equals 1,2. The photometric splitting is observed with an image-forming optics, when 2a equals n(Lambda) . That gives the possibility of distant particles sizing based on the Doppler line splitting phenomenon. A general theory of line splitting is developed, and used to explain the experimental observations quantitatively. The influence of the scattering angels and observation angle on the line splitting characteristics is studied analytically and numerically.

  12. Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave.

    PubMed

    Habibi, Ruhollah; Devendran, Citsabehsan; Neild, Adrian

    2017-09-26

    The use of ultrasound for trapping and patterning particles or cells in microfluidic systems is usually confined to particles which are considerably smaller than the acoustic wavelength. In this regime, the primary forces result in particle clustering at certain locations in the sound field, whilst secondary forces, those arising due to particle-particle interaction forces, assist this clustering process. Using a wavelength closer to the size of the particles allows one particle to be held at each primary force minimum. However, to achieve this, the influence of secondary forces needs to be carefully studied, as inter-particle attraction is highly undesirable. Here, we study the effect of particle size and material properties on both the primary and secondary acoustic forces as the particle diameter is increased towards the wavelength of the 1-dimensional axisymmetric ultrasonic field. We show that the resonance frequencies of the solid sphere have an important role in the resulting secondary forces which leads to a narrow band of frequencies that allow the patterning of large particles in a 1-D array. Knowledge regarding the naturally existent secondary forces would allow for system designs enabling single cell studies to be conducted in a biologically safe manner.

  13. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  14. Large Proton Anisotropies in the 18 August 2010 Solar Particle Event

    NASA Technical Reports Server (NTRS)

    Leske, R. A.; Cohen, C. M. S.; Mewaldt, R. A.; Christian, Eric R.; Cummings, A. C.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, Mark E.; Rosenvinge, Tycho T Von

    2012-01-01

    The solar particle event observed at STEREO Ahead on 18 August 2010 displayeda rich variety of behavior in the particle anisotropies. Sectored rates measured by theLow Energy Telescope (LET) on STEREO showed very large bidirectional anisotropies in4 6 MeV protons for the first 17 hours of the event while inside a magnetic cloud, withintensities along the field direction several hundred to nearly 1000 times greater than thoseperpendicular to the field. At the trailing end of the cloud, the protons became isotropic andtheir spectrum hardened slightly, while the HeH abundance ratio plunged by a factor of approximatelyfour for about four hours. Associated with the arrival of a shock on 20 Augustwas a series of brief (10 minute duration) intensity increases (commonly called shockspikes) with relatively narrow angular distributions (45 FWHM), followed by an abruptdecrease in particle intensities at the shock itself and a reversal of the proton flow to a directiontoward the Sun and away from the receding shock. We discuss the STEREOLETobservations of this interesting event in the context of other observations reported in theliterature

  15. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOEpatents

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  16. Amounts and activity concentrations of radioactive wastes from the cleanup of large areas contaminated in nuclear accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.

    The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less

  17. A new large-volume metal reference standard for radioactive waste management.

    PubMed

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. © The Author 2015. Published by Oxford University Press.

  18. Test-particle simulations of SEP propagation in IMF with large-scale fluctuations

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Dalla, S.; Laitinen, T.

    2012-11-01

    The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.

  19. Tri-track: free software for large-scale particle tracking.

    PubMed

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  20. Two-dimensional scanning high-energy particle diagnostic system in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Goncharov, P.; Sudo, S.; Shoji, M.; Kawahata, K.; Kaneko, O.; Murakami, S.

    2004-10-01

    A high-energy neutral particle measurement is one of the important diagnostics for ion temperature and high-energy particle confinement analysis. The neutral particle analyzer in the large helical device is capable of wide range scanning as a feature. We have obtained various data using the horizontal scan of the analyzer. Recently, in addition to the horizontal scan, a high-speed perpendicular scan became possible which enables acquisition of new information in the poloidal direction. Two stainless blocks are set on the opposite sides of the chain in order to balance the weight (700 kg) of the analyzer and reduce the load for the motor. Therefore a very high scan speed of 1°/s can be obtained. The scanning speed is 1°/s. By adding the vertical scan, the ion temperature profile and the radial variation of the signal loss associated with the resonant loss was obtained in preliminary experimental results.

  1. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  2. Utilization of wavelength-shifting fibers coupled to ZnS(Ag) and plastic scintillator for simultaneous detection of alpha/beta particles

    NASA Astrophysics Data System (ADS)

    Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2015-06-01

    Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).

  3. Study of water-oil emulsion combustion in large pilot power plants for fine particle matter emission reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; L'Insalata, A.

    2007-04-15

    The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants.more » The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)« less

  4. Detection of neutrinos, antineutrinos, and neutrino-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischbach, Ephraim

    An apparatus for detecting the presence of a nuclear reactor by the detection of antineutrinos from the reactor can include a radioactive sample having a measurable nuclear activity level and a decay rate capable of changing in response to the presence of antineutrinos, and a detector associated with the radioactive sample. The detector is responsive to at least one of a particle or radiation formed by decay of the radioactive sample. A processor associated with the detector can correlate rate of decay of the radioactive sample to a flux of the antineutrinos to detect the reactor.

  5. Method of concurrently filtering particles and collecting gases

    DOEpatents

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  6. Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles

    NASA Astrophysics Data System (ADS)

    Shaw, Leah B.; Sethna, James P.; Lee, Kelvin H.

    2004-08-01

    The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean-field approaches and compare the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean-field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.

  7. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.

    1986-06-03

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  8. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.

    1986-01-01

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  9. Characterization of Thylakoid-Derived Lipid-Protein Particles Bearing the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    PubMed Central

    Smith, M. D.; Ghosh, S.; Dumbroff, E. B.; Thompson, J. E.

    1997-01-01

    Lipid-protein particles bearing the 55-kD ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) large subunit (RLSU) and no detectable corresponding Rubisco small subunit (RSSU) were isolated from the stroma of intact chloroplasts by flotation centrifugation. Stromal RLSU-bearing particles appear to originate from thylakoids because they can also be generated in vitro by illumination of isolated thylakoids. Their formation in vitro is largely heat denaturable and is facilitated by light or ATP. RLSU-containing lipid-protein particles range from 0.05 to 0.10 [mu]m in radius, contain the same fatty acids as thylakoids, but have a 10- to 15-fold higher free-to-esterified fatty acid ratio than thylakoids. RLSU-bearing lipid-protein particles with no detectable RSSU were also immunopurified from the populations of both stromal lipid-protein particles and those generated in vitro from illuminated thylakoids. Protease shaving indicated that the RLSU is embedded in the lipid-protein particles and that there is also a protease-protected RLSU in thylakoids. These observations collectively indicate that the RLSU associated with thylakoids is released into the stroma by light-facilitated blebbing of lipid-protein particles. The release of RLSU-containing particles may in turn be coordinated with the assembly of Rubisco holoenzyme because chaperonin 60 is also associated with lipid-protein particles isolated from stroma. PMID:12223858

  10. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  11. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  12. Microscale simulations of shock interaction with large assembly of particles for developing point-particle models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.

    2017-01-01

    Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  13. A regularized vortex-particle mesh method for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  14. Characteristics of large three-dimensional heaps of particles produced by ballistic deposition from extended sources

    NASA Astrophysics Data System (ADS)

    Topic, Nikola; Gallas, Jason A. C.; Pöschel, Thorsten

    2013-11-01

    This paper reports a detailed numerical investigation of the geometrical and structural properties of three-dimensional heaps of particles. Our goal is the characterization of very large heaps produced by ballistic deposition from extended circular dropping areas. First, we provide an in-depth study of the formation of monodisperse heaps of particles. We find very large heaps to contain three new geometrical characteristics: they may display two external angles of repose, one internal angle of repose, and four distinct packing fraction (density) regions. Such features are found to be directly connected with the size of the dropping zone. We derive a differential equation describing the boundary of an unexpected triangular packing fraction zone formed under the dropping area. We investigate the impact that noise during the deposition has on the final heap structure. In addition, we perform two complementary experiments designed to test the robustness of the novel features found. The first experiment considers changes due to polydispersity. The second checks what happens when letting the extended dropping zone to become a point-like source of particles, the more common type of source.

  15. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  16. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOEpatents

    Douglas, David R [Newport News, VA; Benson, Stephen V [Yorktown, VA

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  17. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    NASA Astrophysics Data System (ADS)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  18. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  19. Simulation of the radiation exposure in space during a large solar energetic particle event with GEANT4

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Puchalska, Monika; Reitz, Guenther

    The radiation field in space is complex due to the various contributing sources and astronauts at the International Space Station (ISS) in low Earth orbit or beyond are exposed to significantly increased doses compared to on ground or in the lower atmosphere. The main sources of the increased radiation level are Galactic Cosmic Ray (GCR) particles, mainly fully charged ions from hydrogen to iron with energies up to hundreds of GeV per nucleon and more, trapped protons from the radiation belts with energies up to several hundreds of MeV, and solar energetic particles up to several GeV released in large eruptions on the sun related to solar x-ray flares and coronal mass ejections. While the intensities of Galactic Cosmic Rays and trapped protons are relatively stable and changing slowly over the solar cycle, solar energetic particle events last for several hours up to days and are characterized by strong increases in the particle intensity. The radiation exposure during a large particle event can be very harmful to astronauts especially during extra vehicular activities and outside the protective magnetic field of the Earth. The MATROSHKA human phantom was and is used on the International Space Station to measure the radiation exposure in and outside ISS in order to evaluate the radiation risk in low Earth orbit. A voxel-based description of the MATROSHKA phantom (NUNDO-Numerical RANDO Model) was used in the present work to numerically estimate the radiation exposure of the human body and the individual organs during a large solar particle event. The transport of primary protons following an exponential energy distribution was simulated in order to calculate the energy deposition and organ doses in the MATROSHKA phantom during such an event taking into account different amounts of shielding provided by a surrounding aluminum shell. The primary particle energy distribution used in this work follows the description of the spectrum of the solar energetic particle event

  20. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  1. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  2. Stratification of welding fumes and grinding particles in a large factory hall equipped with displacement ventilation.

    PubMed

    Niemelä, R; Koskela, H; Engström, K

    2001-08-01

    The purpose of the study was to investigate the performance of displacement ventilation in a large factory hall where large components of stainless steel for paper, pulp and chemical industries were manufactured. The performance of displacement ventilation was evaluated in terms of concentration distributions of welding fumes and grinding particles, flow field of the supply air and temperature distributions. Large differences in vertical stratification patterns between hexavalent chromium (Cr(VI)) and other particulate contaminants were observed. The concentration of Cr(VI) was notably lower in the zone of occupancy than in the upper part of the factory hall, whereas the concentrations of total airborne particles and trivalent chromium (Cr(III)) were higher in the occupied zone than in the upper zone. The stratification of Cr(VI) had the same tendency as the air temperature stratification caused by the displacement flow field.

  3. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueth, Joachim

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an

  4. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  5. A Grouping Particle Swarm Optimizer with Personal-Best-Position Guidance for Large Scale Optimization.

    PubMed

    Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi

    2017-05-04

    Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.

  6. Trojan particles: Large porous carriers of nanoparticles for drug delivery

    PubMed Central

    Tsapis, N.; Bennett, D.; Jackson, B.; Weitz, D. A.; Edwards, D. A.

    2002-01-01

    We have combined the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures. These hybrid LPPs exhibit much better flow and aerosolization properties than the NPs; yet, unlike the LPPs, which dissolve in physiological conditions to produce molecular constituents, the hybrid LPPs dissolve to produce NPs, with the drug release and delivery advantages associated with NP delivery systems. Formation of the large porous NP (LPNP) aggregates occurs via a spray-drying process that ensures the drying time of the sprayed droplet is sufficiently shorter than the characteristic time for redistribution of NPs by diffusion within the drying droplet, implying a local Peclet number much greater than unity. Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids, polymers, and proteins. The ability to produce LPNPs appears to be largely independent of molecular component type as well as the size or chemical nature of the NPs. PMID:12200546

  7. Landscape of supersymmetric particle mass hierarchies and their signature space at the CERN Large Hadron Collider.

    PubMed

    Feldman, Daniel; Liu, Zuowei; Nath, Pran

    2007-12-21

    The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.

  8. Estimation of Particle Flux and Remineralization Rate from Radioactive Disequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael P. Bacon; Roger Francois

    2004-05-24

    Reactive radionuclides, such as the thorium isotopes, show measurable deficiencies in the oceanic water column because of their removal by chemical scavenging due to the particle flux. Measurement of the deficiency, coupled with measurement of the radionuclide concentration in particles, allows a determination of the effective particle sinking velocity. Results to date suggest that the effective particle sinking velocity is remarkably invariant with depth. This leads to the tentative suggestion that POC concentration profiles may, to a good approximation, be used directly to determine length scales for the remineralization of sinking organic matter. Further measurements are in progress to testmore » this idea and to evaluate its limitations. Knowledge of the remineralization length scale is essential to an evaluation of the efficiency of the biological pump as a means for deep sequestering of carbon in the ocean.« less

  9. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  10. Particle tracking in the eastern Irish Sea

    NASA Astrophysics Data System (ADS)

    Wolf, Judith; Amoudry, Karen; Phillips, Hazel; Brown, Jenny

    2017-04-01

    The unstructured grid finite volume community ocean model (FVCOM) has been applied to the west coast of the UK, in order to examine the circulation and transport in the eastern Irish Sea. Tides, freshwater river discharge and meteorological forcing for the year 2008 were used to force the baroclinic hydrodynamic circulation. The hydrodynamics of the Irish Sea are largely governed by the semidiurnal tide, which has a tidal range reaching 10m at Liverpool is the eastern Irish Sea. Tidal currents reach 1 ms-1 over the majority of the area, which means that much of Irish Sea is vertically well-mixed throughout the year period, with a few areas affected by seasonal stratification, such as the cyclonic gyre in the deep channel off Ireland in the western Irish Sea which experiences thermal stratification in summer. In Liverpool Bay, horizontal density gradients, created through freshwater influence from estuaries along the coastline interact with the strong tidal current to produce a phenomenon known as strain-induced periodic stratification (SIPS). There are water quality concerns due to the tendency to eutrophication, as the area is often exposed to industrial pollution and excess nutrients from effluent waters and rivers. There is also concern about the fate of radioactive materials discharged from the Sellafield nuclear reprocessing plant since 1952. In addition to the present discharges from the site, it has been estimated that it is likely that all of the americium and plutonium and around 10% of the caesium entering the Irish Sea were originally assimilated into deposits of silt and mud sediments; this material may be regarded as a considerable potential source of radionuclides. Determining suspended sediment pathways in this region is important in order to identify potential areas vulnerable to deposition of radioactive material, particularly as radionuclide uptake onto sediments takes place in the offshore 'mud patch' before returning to the coast to be deposited

  11. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  12. An integrated micromechanical large particle in flow sorter (MILPIS)

    NASA Astrophysics Data System (ADS)

    Fuad, Nurul M.; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-06-01

    At present, the major hurdle to widespread deployment of zebrafish embryo and larvae in large-scale drug development projects is lack of enabling high-throughput analytical platforms. In order to spearhead drug discovery with the use of zebrafish as a model, platforms need to integrate automated pre-test sorting of organisms (to ensure quality control and standardization) and their in-test positioning (suitable for high-content imaging) with modules for flexible drug delivery. The major obstacle hampering sorting of millimetre sized particles such as zebrafish embryos on chip-based devices is their substantial diameter (above one millimetre), mass (above one milligram), which both lead to rapid gravitational-induced sedimentation and high inertial forces. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present an innovative design of a micromechanical large particle in-flow sorter (MILPIS) capable of analysing, sorting and dispensing living zebrafish embryos for drug discovery applications. The system consisted of a microfluidic network, revolving micromechanical receptacle actuated by robotic servomotor and opto-electronic sensing module. The prototypes were fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining. Elements of MILPIS were also fabricated in an optically transparent VisiJet resin using 3D stereolithography (SLA) processes (ProJet 7000HD, 3D Systems). The device operation was based on a rapidly revolving miniaturized mechanical receptacle. The latter function was to hold and position individual fish embryos for (i) interrogation, (ii) sorting decision-making and (iii) physical sorting..The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers embedded in the system

  13. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  14. Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects

    NASA Astrophysics Data System (ADS)

    Autiero, D.; Äystö, J.; Badertscher, A.; Bezrukov, L.; Bouchez, J.; Bueno, A.; Busto, J.; Campagne, J.-E.; Cavata, Ch; Chaussard, L.; de Bellefon, A.; Déclais, Y.; Dumarchez, J.; Ebert, J.; Enqvist, T.; Ereditato, A.; von Feilitzsch, F.; Fileviez Perez, P.; Göger-Neff, M.; Gninenko, S.; Gruber, W.; Hagner, C.; Hess, M.; Hochmuth, K. A.; Kisiel, J.; Knecht, L.; Kreslo, I.; Kudryavtsev, V. A.; Kuusiniemi, P.; Lachenmaier, T.; Laffranchi, M.; Lefievre, B.; Lightfoot, P. K.; Lindner, M.; Maalampi, J.; Maltoni, M.; Marchionni, A.; Marrodán Undagoitia, T.; Marteau, J.; Meregaglia, A.; Messina, M.; Mezzetto, M.; Mirizzi, A.; Mosca, L.; Moser, U.; Müller, A.; Natterer, G.; Oberauer, L.; Otiougova, P.; Patzak, T.; Peltoniemi, J.; Potzel, W.; Pistillo, C.; Raffelt, G. G.; Rondio, E.; Roos, M.; Rossi, B.; Rubbia, A.; Savvinov, N.; Schwetz, T.; Sobczyk, J.; Spooner, N. J. C.; Stefan, D.; Tonazzo, A.; Trzaska, W.; Ulbricht, J.; Volpe, C.; Winter, J.; Wurm, M.; Zalewska, A.; Zimmermann, R.

    2007-11-01

    This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatuses employ three different and, to some extent, complementary detection techniques: GLACIER (liquid argon TPC), LENA (liquid scintillator) and MEMPHYS (water Cherenkov), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to open and outstanding physics issues such as the search for matter instability, the detection of astrophysical neutrinos and geo-neutrinos and to the possible use of these detectors in future high intensity neutrino beams.

  15. Cancer risk in relation to radioactivity in tobacco.

    PubMed

    Kilthau, G F

    1996-01-01

    Leaf tobacco contains minute amounts of lead 210 (210Pb) and polonium 210 (210Po), both of which are radioactive carcinogens and both of which can be found in smoke from burning tobacco. Tobacco smoke also contains carcinogens that are nonradioactive. People who inhale tobacco smoke are exposed to higher concentrations of radioactivity than nonsmokers. Deposits of 210Pb and alpha particle-emitting 210Po form in the lungs of smokers, generating localized radiation doses far greater than the radiation exposures humans experience from natural sources. This radiation exposure, delivered to sensitive tissues for long periods of time, may induce cancer both alone and synergistically with nonradioactive carcinogens. This article explores the relationship between the radioactive and nonradioactive carcinogens in leaf tobacco and tobacco smoke and the risk of cancer in those who inhale tobacco smoke.

  16. Shape effects in the turbulent tumbling of large particles

    NASA Astrophysics Data System (ADS)

    Variano, Evan; Oehmke, Theresa; Pujara, Nimish

    2017-11-01

    We present laboratory results on rotation of finite-sized, neutrally buoyant, anisotropic particles in isotropic turbulence. The isotropic turbulent flow is generated using a randomly-actuated synthetic jet array that minimizes tank scale circulation and measurements are made with stereoscopic particle image velocimetry. By using particles of different shapes, we explore the effects that symmetries have on particle rotation. We add to previous data collected for spheres cylinders and ellipsoids by performing new measurements on cubes, cuboids and cones. The measurement technique and results on mean-square particle rotation will be presented. Preliminary results, at the time of writing this abstract, indicate that symmetry breaking increases the rate of particle rotation. More complete quantitative results will be presented. This work was partially supported by the NSF award ENG-1604026 and by the Army Research Office Biomathematics Program.

  17. DIRAC in Large Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  18. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  19. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  20. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  1. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses.

    PubMed

    Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi

    2014-09-02

    Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.

  2. The radioactivity of seasonal dust storms in the Middle East: the May 2012 case study in Jordan.

    PubMed

    Hamadneh, Hamed S; Ababneh, Zaid Q; Hamasha, Khadeejeh M; Ababneh, Anas M

    2015-02-01

    Dust storms in the Middle East are common during spring. Some of these storms are massive and carry a large amount of dust from faraway regions, which pose health and pollution risks. The huge dust storm event occurred in early May, 2012 was investigated for its radioactive content using gamma ray spectroscopy. Dust samples were collected from Northern Jordan and it was found that the storm carried a large amount of both artificial and natural radioactivity. The average activity concentration of fallout (137)Cs was 17.0 Bq/kg which is larger than that found in soil (2.3 Bq/kg), and this enrichment is attributed to particle size effects. (7)Be which is of atmospheric origin and has a relatively short half-life, was detected in dust with relatively large activity concentrations, as it would be expected, with an average of 2860 Bq/kg, but it was not detected in soil. Despite the large activity concentration of (7)Be, dose assessment showed that it does not contribute significantly to the effective dose through inhalation. The concentrations of the primodial nuclides (40)K, (232)Th and (238)U were 547, 30.0 and 49.3 Bq/kg, respectively. With the exception of (40)K, these were comparable to what was found in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Combined MIPAS (airborne/satellite), CALIPSO and in situ study on large potential NAT particles observed in early Arctic winter stratosphere in December 2011

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes

    2015-04-01

    The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject

  4. The development of radioactive sample surrogates for training and exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Bevin Brush; Dick Jansen

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less

  5. Particle astronomy and particle physics from the moon - The particle observatory

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  6. Collision of large dust particles with Suisei spacecraft

    NASA Astrophysics Data System (ADS)

    Uesugi, K.

    1986-12-01

    The spacecraft Suisei encountered Halley's comet at 13:05:49 UT on March 8, 1986. The closest approach distance to the comet was 151,000 km and during the time of closest approach, Suisei was hit twice by dust particles which were believed to come from the comet nucleus. Although Suisei has no dust counter or detector, the mass of these particles can be estimated by the analysis of attitude change of the spin-stabilized spacecraft perturbed by the collisions. The result shows that the minimum weight of the first particle should be several milligram and second one was several ten micrograms.

  7. The Auburn Engineering Technical Assistance Program investigation of polyvinyl alcohol film developments pertaining to radioactive particle decontamination and industrial waste minimization

    NASA Astrophysics Data System (ADS)

    Mole, Tracey Lawrence

    In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also

  8. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  9. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less

  10. Dissolution and clearance of titanium tritide particles in the lungs of F344/Crl rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Snipes, M.B.; Wang, Yansheng

    1995-12-01

    Metal tritides are compounds in which the radioactive isotope tritium, following adsorption onto the metal, forms a stable chemical compound with the metal. When particles of tritiated metals become airborne, they can be inhaled by workers. Because the particles may be retained in the lung for extended periods, the resulting dose will be greater than doses following exposure to tritium gas or tritium oxide (HTO). Particles of triated metals may be dispersed into the air during routine handling, disruption of contaminated metals, or as a result of spontaneous radioactive decay processes. Unlike metal hydrides and deuterides, tritides are radioactive, andmore » the decay of the tritium atoms affects the metal. Because helium is a product of the decay, helium bubbles form within the metal tritide matrix. The pressure from these bubbles leads to respirable particles breaking off from the tritide surface. Our results show that a substantial amount of titanium tritide remains in the rat lung 10 d after intratracheal instillation, confirming results previously obtain in an in vitro dissolution study.« less

  11. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  12. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  13. Uncertainty quantification applied to the radiological characterization of radioactive waste.

    PubMed

    Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P

    2017-09-01

    This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reconnaissance of radioactive rocks of Maine

    USGS Publications Warehouse

    Nelson, John M.; Narten, Perry F.

    1951-01-01

    The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.

  15. Charged Particle Monitor on the Astrosat Mission

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Patil, M. H.; Bhargava, Yash; Khanna, Rakesh; Hingar, M. K.; Kutty, A. P. K.; Malkar, J. P.; Basak, Rupal; Sreekumar, S.; Samuel, Essy; Priya, P.; Vinod, P.; Bhattacharya, D.; Bhalerao, V.; Vadawale, S. V.; Mithun, N. P. S.; Pandiyan, R.; Subbarao, K.; Seetha, S.; Sarma, K. Suryanarayana

    2017-06-01

    Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.

  16. Particle Physics Primer: Explaining the Standard Model of Matter.

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2002-01-01

    Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)

  17. Composition variations of low energy heavy ions during large solar energetic particle events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorermore » (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.« less

  18. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    PubMed Central

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-01-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash. PMID:25192495

  19. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    NASA Astrophysics Data System (ADS)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  20. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry.

    PubMed

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-05

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  1. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  2. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  3. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-01

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  4. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment.

    PubMed

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-27

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  5. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Simulation of large particle transport near the surface under stable conditions: comparison with the Hanford tracer experiments

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Larson, Timothy

    A plume model is presented describing the downwind transport of large particles (1-100 μm) under stable conditions. The model includes both vertical variations in wind speed and turbulence intensity as well as an algorithm for particle deposition at the surface. Model predictions compare favorably with the Hanford single and dual tracer experiments of crosswind integrated concentration (for particles: relative bias=-0.02 and 0.16, normalized mean square error=0.61 and 0.14, for the single and dual tracer experiments, respectively), whereas the US EPA's fugitive dust model consistently overestimates the observed concentrations at downwind distances beyond several hundred meters (for particles: relative bias=0.31 and 2.26, mean square error=0.42 and 1.71, respectively). For either plume model, the measured ratio of particle to gas concentration is consistently overestimated when using the deposition velocity algorithm of Sehmel and Hodgson (1978. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA). In contrast, these same ratios are predicted with relatively little bias when using the algorithm of Kim et al. (2000. Atmospheric Environment 34 (15), 2387-2397).

  7. Proton-proton correlations observed in two-proton radioactivity of 94Ag.

    PubMed

    Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet

    2006-01-19

    The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.

  8. IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Jansik, Danielle P.; Owen, Antionette T.

    2013-08-05

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with X-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185±155 µm, and produced >3 mm thick layer after 120 h at 850 °C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  9. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  10. Large density expansion of a hydrodynamic theory for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ihle, T.

    2015-07-01

    Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to small density. Previously, the hydrodynamic equations were derived from this theory and its transport coefficients were given in terms of infinite series. Here, I show that the transport coefficients take a simple form in the large density limit. This allows me to analytically evaluate the well-known density instability of the polarly ordered phase near the flocking threshold at moderate and large densities. The growth rate of a longitudinal perturbation is calculated and several scaling regimes, including three different power laws, are identified. It is shown that at large densities, the restabilization of the ordered phase at smaller noise is analytically accessible within the range of validity of the hydrodynamic theory. Analytical predictions for the width of the unstable band, the maximum growth rate, and for the wave number below which the instability occurs are given. In particular, the system size below which spatial perturbations of the homogeneous ordered state are stable is predicted to scale with where √ M is the average number of collision partners. The typical time scale until the instability becomes visible is calculated and is proportional to M.

  11. Radioactive waste management and practice in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.; Rahman, M.M.

    1993-12-31

    A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less

  12. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE PAGES

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  13. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  15. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  16. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu

    2005-06-04

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemicalmore » industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles

  17. Motions of charged particles in the Magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format.

  18. The application of the large particles method of numerical modeling of the process of carbonic nanostructures synthesis in plasma

    NASA Astrophysics Data System (ADS)

    Abramov, G. V.; Gavrilov, A. N.

    2018-03-01

    The article deals with the numerical solution of the mathematical model of the particles motion and interaction in multicomponent plasma by the example of electric arc synthesis of carbon nanostructures. The high order of the particles and the number of their interactions requires a significant input of machine resources and time for calculations. Application of the large particles method makes it possible to reduce the amount of computation and the requirements for hardware resources without affecting the accuracy of numerical calculations. The use of technology of GPGPU parallel computing using the Nvidia CUDA technology allows organizing all General purpose computation on the basis of the graphical processor graphics card. The comparative analysis of different approaches to parallelization of computations to speed up calculations with the choice of the algorithm in which to calculate the accuracy of the solution shared memory is used. Numerical study of the influence of particles density in the macro particle on the motion parameters and the total number of particle collisions in the plasma for different modes of synthesis has been carried out. The rational range of the coherence coefficient of particle in the macro particle is computed.

  19. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  20. Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.D.; Wolff, R.K.; Kanapilly, G.M.

    The effect of ultrafine, insoluble, carrier particles on the lung retention and metabolic fate of inhaled PAHs was investigated with a radiolabeled model PAH, (/sup 3/H)benzo(a)pyrene (/sup 3/H-BaP). Fischer-344 rats were exposed (30 min) by nose-only inhalation to /sup 3/H-BaP adsorbed (approximately 0.1% by mass) onto diesel engine exhaust particles. The total mass concentration of these aerosols was 4-6 micrograms/liter of air with a mass median diameter of 0.14 micron. Lung clearance of the inhaled particle-associated /sup 3/H radioactivity occurred in two phases. The initially rapid clearance of this inhaled radiolabel had a half-time of less than 1 hr. Themore » second, long-term component of lung clearance had a half-time of 18 +/- 2 days and represented 50 +/- 2% of the /sup 3/H radioactivity that had initially deposited in lungs. In contrast, previous inhalation studies with a pure /sup 3/H-BaP aerosol showed that greater than 99% of the /sup 3/H radioactivity deposited in lungs was cleared within 2 hr after exposure. By HPLC analysis, the majority of diesel soot-associated /sup 3/H radioactivity retained in lungs was BaP (65-76%) with smaller amounts of BaP-phenol (13-17%) and BaP-quinone (5-18%) metabolites also being detected. No other metabolites of BaP were detected in lungs of exposed rats. Tissue distribution and excretion patterns of /sup 3/H radioactivity were qualitatively similar to previous inhalation studies with /sup 3/H-BaP coated Ga2O3 aerosols. These findings suggest that inhaled PAHs may be retained in lungs for a greater period of time when these compounds are associated with diesel engine exhaust particles. These results may have significant implications for the health risks that may be involved with human exposure to particle-associated organic pollutants.« less

  1. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  2. Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Ikehara, Ryohei; Suetake, Mizuki; Komiya, Tatsuki; Furuki, Genki; Ochiai, Asumi; Yamasaki, Shinya; Bower, William R; Law, Gareth T W; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi

    2018-06-05

    Highly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call "quantification of CsMPs" (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.0523 becquerel/PSL/h (Bq/PSL/h). In soil collected from Nagadoro, Fukushima, Japan, CsMPs were detected in soil sieved with a 114 μm mesh. There was no overlap between the radioactivities of CsMPs and clay particles adsorbing Cs. Based on the distribution of radioactivity of CsMPs, the threshold radioactivity of CsMPs in the size fraction of <114 μm was determined to be 0.06 Bq. Based on this method, the number and radioactivity fraction of CsMPs in four surface soils collected from the vicinity of the FDNPP were determined to be 48-318 particles per gram and 8.53-31.8%, respectively. The QCP method is applicable to soils with a total radioactivity as high as ∼10 6 Bq/kg. This novel method is critically important and can be used to quantitatively understand the distribution and migration of the highly radioactive CsMPs in near-surface environments surrounding Fukushima.

  3. Physical-geometric optics method for large size faceted particles.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong

    2017-10-02

    A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.

  4. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  5. Gamma-ray Transition Matrix Elements in ^21Na: First TIGRESS Radioactive Beam Experiment

    NASA Astrophysics Data System (ADS)

    Hackman, Greg

    2007-04-01

    Modern shell model calculations should be expected to reliably reproduce the properties of the deformed five-particle nucleus ^21Na. However the lowest-lying B(E2) value deduced from lifetime and mixing ratio measurements disagrees with models by an unacceptably large factor of two. To measure the B(E2) values directly, a beam of ^21Na at 1.7 MeV/u from the TRIUMF ISAC facility was directed upon a 0.5 mg/cm^2 ^natTi target. Gamma-ray yield in coincidence with inelastically scattered heavy ions was measured with two TIGRESS high energy- and position-resolution germanium detector units and the BAMBINO highly segmented silicon detector system. The result resolves the discrepancy between the shell model and prior measurements. This represents the first radioactive in-beam experiment with TIGRESS.

  6. System for measuring radioactivity of labelled biopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to saidmore » containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.« less

  7. Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-01-01

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  8. Explicit solutions for exit-only radioactive decay chains

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Kernan, Warnick

    2007-05-01

    In this study, we extended Bateman's [Proc. Cambridge Philos. Soc. 15, 423 (1910)] original work for solving radioactive decay chains and explicitly derived analytic solutions for generic exit-only radioactive decay problems under given initial conditions. Instead of using the conventional Laplace transform for solving Bateman's equations, we used a much simpler algebraic approach. Finally, we discuss methods of breaking down certain classes of large decay chains into collections of simpler chains for easy handling.

  9. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  10. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera.

    PubMed

    Miller, Brian W; Frost, Sofia H L; Frayo, Shani L; Kenoyer, Aimee L; Santos, Erlinda; Jones, Jon C; Green, Damian J; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Orozco, Johnnie J; Press, Oliver W; Pagel, John M; Sandmaier, Brenda M

    2015-07-01

    Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was

  11. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  12. Time Variations in Forecasts and Occurrences of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2015-12-01

    The onsets and development of large solar energetic (E > 10 MeV) particle (SEP) events have been characterized in many studies. The statistics of SEP event onset delay times from associated solar flares and coronal mass ejections (CMEs), which depend on solar source longitudes, can be used to provide better predictions of whether a SEP event will occur following a large flare or fast CME. In addition, size distributions of peak SEP event intensities provide a means for a probabilistic forecast of peak intensities attained in observed SEP increases. SEP event peak intensities have been compared with their rise and decay times for insight into the acceleration and transport processes. These two time scales are generally treated as independent parameters describing the development of a SEP event, but we can invoke an alternative two-parameter description based on the assumption that decay times exceed rise times for all events. These two parameters, from the well known Weibull distribution, provide an event description in terms of its basic shape and duration. We apply this distribution to several large SEP events and ask what the characteristic parameters and their dependence on source longitudes can tell us about the origins of these important events.

  13. Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.

  14. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  15. Teaching Elementary Particle Physics, Part II

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2011-03-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because they respond to neither the EM force nor the strong force. For example, the mean free path (average penetration distance before it interacts) of a typical beta-decay neutrino moving through solid lead is about 1.5 light years! Enrico Fermi argued that neutrinos indicated a new force was at work. During the 1930s, he quickly adapted ideas from the developing new theory of QED to this new force, dubbed the weak force. Fermi's theory was able to predict the half-lives of beta-emitting nuclei and the range of energies of the emitted beta particles.

  16. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  17. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  18. Radiological Threat Reduction (RTR) program : implementing physical security to protect large radioactive sources worldwide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Daniel L.

    2004-11-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory andmore » knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing

  19. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  20. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  1. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  2. Double differential light charged particle emission cross sections for some structural fusion materials

    NASA Astrophysics Data System (ADS)

    Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup

    2017-09-01

    In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  3. Free-Living and Particle-Associated Bacterioplankton in Large Rivers of the Mississippi River Basin Demonstrate Biogeographic Patterns

    PubMed Central

    Millar, Justin J.; Payne, Jason T.; Ochs, Clifford A.

    2014-01-01

    The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages. PMID:25217018

  4. Human exposure to large solar particle events in space

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Curtis, S. B.

    1992-01-01

    Whenever energetic solar protons produced by solar particle events traverse bulk matter, they undergo various nuclear and atomic collision processes which significantly alter the physical characteristics and biologically important properties of their transported radiation fields. These physical interactions and their effect on the resulting radiation field within matter are described within the context of a recently developed deterministic, coupled neutron-proton space radiation transport computer code (BRYNTRN). Using this computer code, estimates of human exposure in interplanetary space, behind nominal (2 g/sq cm) and storm shelter (20 g/sq cm) thicknesses of aluminum shielding, are made for the large solar proton event of August 1972. Included in these calculations are estimates of cumulative exposures to the skin, ocular lens, and bone marrow as a function of time during the event. Risk assessment in terms of absorbed dose and dose equivalent is discussed for these organs. Also presented are estimates of organ exposures for hypothetical, worst-case flare scenarios. The rate of dose equivalent accumulation places this situation in an interesting region of dose rate between the very low values of usual concern in terrestrial radiation environments and the high-dose-rate values prevalent in radiation therapy.

  5. Analysis of radiation risk from alpha particle component of solar particle events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  6. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  7. Efficient Implementation of the Invariant Imbedding T-Matrix Method and the Separation of Variables Method Applied to Large Nonspherical Inhomogeneous Particles

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2012-01-01

    Three terms, ''Waterman's T-matrix method'', ''extended boundary condition method (EBCM)'', and ''null field method'', have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIMþSOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIMþSOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIMþSOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIMþSOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging.

  8. Robust technique using an imaging plate to detect environmental radioactivity.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Sakurai, Hideyuki; Sakae, Takeji

    2013-04-01

    The Fukushima Daiichi Nuclear Power Plant was severely damaged by the Great East Japan Earthquake on 11 March 2011. Consequently, a large amount of radioactive material was accidentally released. Recently, the focus has been on quantification of environmental radioactive material. However, conventional techniques require complicated and expensive measurement equipment. In this research, the authors developed a simple method to detect environmental radioactive material with an imaging plate (IP). Two specific measurement subjects were targeted: measurements for the depth distribution of radioactive material in soil and surface contamination of a building roof. For the measurement of depth distribution of radioactive material in soil, the authors ascertained that the concentration of environmental radioactivity was highest at 5 cm below the surface, and it decreased with depth. For the measurement of surface contamination of the building roof, the authors created a contamination map of the building roof. The detector developed could contact the ground directly, and unlike other survey meters, it was not influenced by peripheral radioactivity. In this study, the authors verified the feasibility of measurement of environmental radioactivity with an IP. Although the measured values of the IP were relative, further work is planned to perform evaluations of absolute quantities of radioactive material.

  9. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric typemore » II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.« less

  10. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    PubMed

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  11. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    NASA Astrophysics Data System (ADS)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  12. A low-cost miniaturised detector for environmental radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Briggs, Aaron; Hastings, Peter; Harrison, R. Giles; Marlton, Graeme; Baird, Adam

    2017-04-01

    We have developed a low-cost (£ few hundred), low-power (40mA), low-mass (30g) detector for environmental radioactivity measurements, using scintillator and solid state technology. The detector can measure energy and therefore has the capability to distinguish between different types of energetic particle. Results from recent tests, when our detector was integrated with a meteorological radiosonde system, and flew on a balloon up to 25km, identified the transition region between energetic particles near the surface, dominated by terrestrial gamma emissions, and higher-energy particles in the free troposphere from cosmic rays. The detector can be used with Bluetooth technology for remote monitoring, which is particularly useful for hazardous areas. It is also small and cheap enough to be used in sensor networks for a wide range of applications, from atmospheric science to disaster monitoring.

  13. Old age and underlying interstitial abnormalities are risk factors for development of ARDS after pleurodesis using limited amount of large particle size talc.

    PubMed

    Shinno, Yuki; Kage, Hidenori; Chino, Haruka; Inaba, Atsushi; Arakawa, Sayaka; Noguchi, Satoshi; Amano, Yosuke; Yamauchi, Yasuhiro; Tanaka, Goh; Nagase, Takahide

    2018-01-01

    Talc pleurodesis is commonly performed to manage refractory pleural effusion or pneumothorax. It is considered as a safe procedure as long as a limited amount of large particle size talc is used. However, acute respiratory distress syndrome (ARDS) is a rare but serious complication after talc pleurodesis. We sought to determine the risk factors for the development of ARDS after pleurodesis using a limited amount of large particle size talc. We retrospectively reviewed patients who underwent pleurodesis with talc or OK-432 at the University of Tokyo Hospital. Twenty-seven and 35 patients underwent chemical pleurodesis using large particle size talc (4 g or less) or OK-432, respectively. Four of 27 (15%) patients developed ARDS after talc pleurodesis. Patients who developed ARDS were significantly older than those who did not (median 80 vs 66 years, P = 0.02) and had a higher prevalence of underlying interstitial abnormalities on chest computed tomography (CT; 2/4 vs 1/23, P < 0.05). No patient developed ARDS after pleurodesis with OK-432. This is the first case series of ARDS after pleurodesis using a limited amount of large particle size talc. Older age and underlying interstitial abnormalities on chest CT seem to be risk factors for developing ARDS after talc pleurodesis. © 2017 Asian Pacific Society of Respirology.

  14. Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Yu-Tao; Zhang, Tian-Yu; Wang, Dan-Yang; Tian, Ye; Yan, Jun-Chao; Tian, He; Yang, Yi; Yang, Fan; Ren, Tian-Ling

    2018-03-01

    In this paper, low-voltage, large-strain flexible electrothermal actuators (ETAs) based on laser-reduced graphene oxide (LRGO)/Ag particle composites were fabricated in a simple and cost-efficient process. By adding Ag particles to the LRGO, the sheet resistance decreased effectively. Under a driving voltage of 28 V, the actuator obtained a bending angle of 192° within 6 s. Besides, the bending deformation could be precisely controlled by the driving voltage ranging from 10° to 192°. Finally, a gripper composed of two actuators was demonstrated to manipulate a piece of polydimethylsiloxane block. With the advantages of low-voltage, fast-response, and easy-to-manufacture, the graphene based ETAs have a promising application in soft robotics and soft machines.

  15. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  16. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  17. Advances in associated-particle neutron probe diagnostics for substance detection

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred

    1995-09-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  18. Radioactivity in returned lunar materials

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The H-3, Ar-37, and Ar-39 radioactivities were measured at several depths in the large documented lunar rocks 14321 and 15555. The comparison of the Ar-37 activities from similar locations in rocks 12002, 14321, and 15555 gives direct measures of the amount of Ar-37 produced by the 2 November 1969 and 24 January 1971 solar flares. The tritium contents in the documented rocks decreased with increasing depths. The solar flare intensity averaged over 30 years obtained from the tritium depth dependence was approximately the same as the flare intensity averaged over 1000 years obtained from the Ar-37 measurements. Radioactivities in two Apollo 15 soil samples, H-3 in several Surveyor 3 samples, and tritium and radon weepage were also measured.

  19. Assessing the environmental risk from hot particles in the vicinity of Dounreay--a case for inaction?

    PubMed

    Jackson, D; Stone, D M; Smith, K; Morgan, G; Shimmield, T

    2007-09-01

    This study assesses the impact on species other than humans associated with radioactive particles present in the marine environment close to the UKAEA Dounreay site, through a review of marine survey data, to establish the distribution of species and the likelihood of encountering a particle, and considering retention, dissolution or absorption of the particle. Assumptions are made regarding particle density, distribution, size and bio-availability of the radioactive materials. From this, impacts are assessed against the likelihood of mortality or other significant harm to individuals and interpreted in terms of local populations. Results obtained indicate that no significant impact, at the population level, is likely to be observed. This does not preclude that some individuals will be affected. It does, however, suggest that any decision to remediate, if based predominantly on environmental considerations, should be cognisant of the damage caused by remediation itself and subsequent exploitation of the environment by humans.

  20. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  1. Factors Affecting the Occurrence of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Xie, H.; Makela, P. A.; Thakur, N.

    2014-12-01

    In order to understand the paucity of high-energy solar energetic particle (SEP) events in solar cycle 24, we examined all major eruptions (soft X-ray flare size ≥M5.0) on the front side of the Sun during the period from December 1, 2008 to January 31, 2014. There were 59 such eruptions that were associated with CMEs. When a flux rope was fitted to the white-light CMEs observed by SOHO and STEREO it was found that the CME sources were on the disk only for 55 eruptions. There were 16 large SEP events (proton intensity ≥10 pfu in the >10 MeV channel) detected by GOES and 4 by STEREO-B in association with these eruptions. When the CMEs were grouped according to their speeds (<1500 km/s and ≥ 1500 km/s) it was found that only three of the <1500 km/s CMEs (or 11%) were associated with large SEP events compared to 17 or (61%) of the ≥ 1500 km/s CMEs. This result confirms the importance of CME speed for SEP association. In fact there were ten other large SEP events with flare size

  2. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  3. Epithelial stem cells are formed by small-particles released from particle-producing cells

    PubMed Central

    Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong

    2017-01-01

    Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358

  4. Principles of gross alpha and beta radioactivity detection in water.

    PubMed

    Semkow, T M; Parekh, P P

    2001-11-01

    A simultaneous detection of gross alpha and beta radioactivity was studied using gas proportional counting. This measurement is a part of a method mandated by US Environmental Protection Agency to screen for alpha and beta radioactivity in drinking water. Responses of a gas proportional detector to alpha and beta particles from several radionuclides were determined in drop and electroplated geometries. It is shown that, while the alpha radioactivity can be measured accurately in the presence of beta radioactivity, the opposite is not typically true due to alpha-to-beta crosstalk. The crosstalk, originating from the emission of conversion and Auger electrons as well as x rays, is shown to be dependent primarily on the particular alpha-decay scheme while the dependence on alpha energy is small but negligible. It was measured at 28-35% for 241Am, 22-24% for 230Th, and 4.9-6.5% for 239Pu. For 210Po, the crosstalk of 1.2-1.6% was observed mostly due to energy retardation. A method of reducing the crosstalk to a <3% level is proposed by absorbing the atomic electrons in a 6.2 mg cm(-2) Al absorber, at the same time decreasing the beta efficiency by 16-31%.

  5. Storage in alluvial deposits controls the timing of particle delivery from large watersheds, filtering upland erosional signals and delaying benefits from watershed best management practices

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.; Skalak, K.; Karwan, D. L.

    2017-12-01

    Transport of suspended sediment and sediment-borne constituents (here termed fluvial particles) through large river systems can be significantly influenced by episodic storage in floodplains and other alluvial deposits. Geomorphologists quantify the importance of storage using sediment budgets, but these data alone are insufficient to determine how storage influences the routing of fluvial particles through river corridors across large spatial scales. For steady state systems, models that combine sediment budget data with "waiting time distributions" (to define how long deposited particles remain stored until being remobilized) and velocities during transport events can provide useful predictions. Limited field data suggest that waiting time distributions are well represented by power laws, extending from <1 to >104 years, while the probability of storage defined by sediment budgets varies from 0.1 km-1 for small drainage basins to 0.001 km-1 for the world's largest watersheds. Timescales of particle delivery from large watersheds are determined by storage rather than by transport processes, with most particles requiring 102 -104 years to reach the basin outlet. These predictions suggest that erosional "signals" induced by climate change, tectonics, or anthropogenic activity will be transformed by storage before delivery to the outlets of large watersheds. In particular, best management practices (BMPs) implemented in upland source areas, designed to reduce the loading of fluvial particles to estuarine receiving waters, will not achieve their intended benefits for centuries (or longer). For transient systems, waiting time distributions cannot be constant, but will vary as portions of transient sediment "pulses" enter and are later released from storage. The delivery of sediment pulses under transient conditions can be predicted by adopting the hypothesis that the probability of erosion of stored particles will decrease with increasing "age" (where age is defined as

  6. Method for fabricating thin californium-containing radioactive source wires

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-08-22

    A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.

  7. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    PubMed

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  8. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  9. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  10. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov; Frost, Sofia H. L.; Frayo, Shani L.

    2015-07-15

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclidemore » distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area

  11. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  12. Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.; hide

    2001-01-01

    A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.

  13. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $${\\sqrt{s} = 8}$$ s = 8 TeV using the ATLAS experiment

    DOE PAGES

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data samplemore » corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.« less

  14. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  15. Positron emission particle tracking and its application to granular media

    NASA Astrophysics Data System (ADS)

    Parker, D. J.

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  16. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  17. Children's Ideas about Radioactivity and Radiation: sources, modes of travel, uses and dangers.

    ERIC Educational Resources Information Center

    Boyes, Edward; Stanisstreet, Martin

    1994-01-01

    The understanding concerning radioactivity and radiation of pupils ages 11-16 was studied using a closed-form questionnaire with a large cohort of children and interviews with subsets of this group. A majority of children demonstrated confusion about the environmental impacts of radioactivity and radiation. (LZ)

  18. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  19. Nucleon-Alpha Particle Disequilibrium and Short-Lived r-Process Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; Clayton, D. D.; Chellapilla, S.; The, L.-S.

    2002-01-01

    r-Process yields can be extremely sensitive to expansion parameters when a persistent disequilibrium between free nucleons and alpha particles is present. This may provide a natural scenario for understanding the variation of heavy and light r-process isotopes in different r-process events. Additional information is contained in the original extended abstract.

  20. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  1. The Effect of Particle Properties on Hot Particle Spot Fire Ignition

    NASA Astrophysics Data System (ADS)

    Zak, Casey David

    The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental

  2. Annual Radioactive Waste Tank Inspection Program 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  3. Characterization study of cesium concentrated particles in the soils near the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Adachi, Kouji; Igarashi, Yasuhito

    2015-04-01

    Radionuclides from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated a vast area. Two types of contamination, spread and spot types, were observed in soils with autoradiography using an imaging plate. Other samples such as dust filters, vegetation, X-ray films, and so on, also indicate the spot type contamination in the early stage of the FDNPP accident. The source of spot type contamination is well known as hot particles at the Chernobyl Nuclear Power Plant (ChNPP) accident in 1986. Hot particles were divided into two groups, fuel hot particles and fission product particles, and they were emitted directly from reactor core with phreatic explosion and fire. In contrast, the official reports of the FDNPP accident did not conforme core explosion. In addition, the emitted total amount of Uranium was very few (Yamamoto et al., 2014). Thus, the spot type contaminations were not identified as the same of hot particles yet. Therefore, the present study aimed to pick up and identify the spot contaminations in soils. Surface soil samples were collected at 20 km northwest from the FDNPP in June 2013. Soils were spread in plastic bags for autoradiography with imaging plate analysis. Then, the soil particles were collected on a sticky carbon tape and analyzed by SEM-EDS to detect radioactive particles. Finally, particles were confirmed to contain photo peaks in the γ-spectrum by a germanium semiconductor detector. Four radioactive particles were isolated from the soil samples in the present study. Detected γ-ray emission radionuclides were only Cs-134 and Cs-137. The X-ray spectra on the SEM-EDS of all particles showed a Cs peak as well as O, Fe, Zn, and Rb peaks, and these elements were distributed uniformly within the particles. In addition, uniform distribution of Si was also shown. Moreover, U was detected from one of the particles, but U concentration was very low and existed locally in the particle. These characters are very similar to previous

  4. Radioactively-hot particles detected in dusts and soils from Northern Japan by combination of gamma spectrometry, autoradiography, and SEM/EDS analysis and implications in radiation risk assessment.

    PubMed

    Kaltofen, Marco; Gundersen, Arnie

    2017-12-31

    After the March 11, 2011, nuclear reactor meltdowns at Fukushima Dai-ichi, 180 samples of Japanese particulate matter (dusts and surface soils) and 235 similar U.S. and Canadian samples were collected and analyzed sequentially by gamma spectrometry, autoradiography, and scanning electron microscopy with energy dispersive X-ray analysis. Samples were collected and analyzed over a five-year period, from 2011 to 2016. Detectable levels of 134 Cs and 137 Cs were found in 142 of 180 (80%) Japanese particulate matter samples. The median radio-cesium specific activity of Japanese particulate samples was 3.2kBqkg -1 ±1.8kBqkg -1 , and the mean was 25.7kBqkg -1 (σ=72kBqkg -1 ). The U.S. and Canadian mean and median radio‑cesium activity levels were <0.03kBqkg -1 . U.S. and Canadian samples had detectable 134 Cs and 137 Cs in one dust sample out of 32 collected, and four soils out of 74. The maximum US/Canada radio-cesium particulate matter activity was 0.30±0.10kBqkg -1 . The mean in Japan was skewed upward due to nine of the 180 (5%) samples with activities >250kBqkg -1 . This skewness was present in both the 2011 and 2016 sample sets. >300 individual radioactively-hot particles were identified in samples from Japan; composed of 1% or more of the elements cesium, americium, radium, polonium, thorium, tellurium, or strontium. Some particles reached specific activities in the MBqμg -1 level and higher. No cesium-containing hot particles were found in the U.S. sample set. Only naturally-occurring radionuclides were found in particles from the U.S. background samples. Some of the hot particles detected in this study could cause significant radiation exposures to individuals if inhaled. Exposure models ignoring these isolated hot particles would potentially understate human radiation dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  6. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  7. Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill.

    PubMed

    Artíñano, B; Gómez-Moreno, F J; Díaz, E; Amato, F; Pandolfi, M; Alonso-Blanco, E; Coz, E; García-Alonso, S; Becerril-Valle, M; Querol, X; Alastuey, A; van Drooge, B L

    2017-09-01

    A large and uncontrolled fire of a tire landfill started in Seseña (Toledo, Spain) on May 13, 2016. An experimental deployment was immediately launched in the area for measuring regulated and non-standard air quality parameters to assess the potential impact of the plume at local and regional levels. Outdoor and indoor measurements of different parameters were carried out at a near school, approximately 700m downwind the burning tires. Real time measurements of ambient black carbon (BC) and total number particle concentrations were identified as good tracers of the smoke plume. Simultaneous peaks allowed us to characterize situations of the plume impact on the site. Outdoor total particle number concentrations reached in these occasions 3.8×10 5 particlescm -3 (on a 10min resolution) whereas the indoor concentration was one order of magnitude lower. BC mass concentrations in ambient air were in the range of 2 to 7μgm -3 , whereas concentrations<2μgm -3 were measured indoor. Indoor and outdoor deposited inhalable dust was sampled and chemically characterized. Both indoor and outdoor dust was enriched in tire components (Zn, sulfate) and PAHs associated to the tire combustion process. Infiltration processes have been documented for BC and particle number concentrations causing increases in indoor concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Towards a Self-Consistent Simulation Capability of Catastrophic Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; Gombosi, T. I.; Bindi, V.; Borovikov, D.; Kota, J.; Giacalone, J.

    2016-12-01

    Space weather refers to variations in the space environment that can affect technologies or endanger human life and health. Solar energetic particle (SEP) events can affect communications and airline safety. Satellites are affected by radiation damage to electronics and to components that produce power and provide images. Sun and star sensors are blinded during large SEP events. Protons of ≳30 MeV penetrate spacesuits and spacecraft walls. Events, like that of August 4, 1972, would have been fatal to moon-walking astronauts. Catastrophic events typically are characterized by hard particle energy spectra potentially containing large fluxes of hundreds of MeV-GeV type particles. These super-energetic particles can penetrate even into the "safest" areas of spacecraft and produce induced radioactivity. We describe several technologies which are to be combined into a physics-based, self consistent model to understand and forecast the origin and evolution of SEP events: The Alfvén Wave Solar-wind Model (AWSoM) simulates the chromosphere-to-Earth system using separate electron and ion temperatures and separate parallel and perpendicular temperatures. It solves the energy equations including thermal conduction and coronal heating by Alfvén wave turbulence. It uses adaptive mesh refinement (AMR), which allows us to cover a broad range of spacial scales. The Eruptive Event Generator using the Gibson-Low flux-rope model (EEGGL) allows the user to select an active region on the sun, select the polarity inversion line where the eruption is observed, and insert a Gibson-Low flux-rope to produce eruption. The Multiple-Field-Lines-Advection Model for Particle Acceleration (M-FLAMPA) solves the particle transport equation along a multitude of interplanetary magnetic field lines originating from the Sun, using time-dependent parameters for the shock and magnetic field obtained from the MHD simulation. It includes a self-consistent coupling of Alfvén wave turbulence to the SEPs

  9. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.

    PubMed

    Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K

    2015-07-01

    The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.

  10. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  11. Systems for detecting charged particles in object inspection

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  12. Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation.

    PubMed

    Kaur, Maninder; Zhang, Huijin; Martin, Leigh; Todd, Terry; Qiang, You

    2013-01-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.

  13. Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.

  14. Formation of disintegration particles in spacecraft recorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-11-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors.

  15. Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.

    2006-08-01

    Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.

  16. Asymptotic Solutions for Optical Properties of Large Particles with Strong Absorption

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Mishchenko, Michael I.; Winker, Dave M.; Nasiri, Shaima L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    For scattering calculations involving nonspherical particles such as ice crystals, we show that the transverse wave condition is not applicable to the refracted electromagnetic wave in the context of geometric optics when absorption is involved. Either the TM wave condition (i.e., where the magnetic field of the refracted wave is transverse with respect to the wave direction) or the TE wave condition (i.e., where the electric field is transverse with respect to the propagating direction of the wave) may be assumed for the refracted wave in an absorbing medium to locally satisfy the electromagnetic boundary condition in the ray tracing calculation. The wave mode assumed for the refracted wave affects both the reflection and refraction coefficients. As a result, a nonunique solution for these coefficients is derived from the electromagnetic boundary condition. In this study we have identified the appropriate solution for the Fresnel reflection/refraction coefficients in light scattering calculation based on the ray tracing technique. We present the 3 x 2 refraction or transmission matrix that completely accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an analytical format for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations. The asymptotic theory can produce reasonable accuracy in the phase function calculations in the infrared window region (wavelengths near 10 micron) if the particle size (in diameter) is on the order of 40 micron or larger. However, since strong absorption is assumed in the computation of the single-scattering albedo in the asymptotic theory, the single scattering albedo does not change with variation of the particle size. As a result, the asymptotic theory can lead to substantial errors in the computation of

  17. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    DOE PAGES

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-16

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for anmore » axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10 -2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×10 7 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.« less

  18. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenji, B.; Gaskins, J.; Meyer, M.

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for anmore » axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10 -2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×10 7 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.« less

  19. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  20. Soil particle tracing using RFID tags for elucidating the behavior of radiocesium on bare soil surfaces in Fukushima

    NASA Astrophysics Data System (ADS)

    Manome, Ryo; Onda, Yuichi; Patin, Jeremy; Stefani, Chiara; Yoshimura, Kazuya; Parsons, Tony; Cooper, James

    2014-05-01

    Radioactive materials are generally associated with soil particles in terrestrial environment and therefore the better understanding soil erosion processes is expected to improve the mitigation of radioactive risks. Spatial variability in soil erosion has been one of critical issues for soil erosion management. This study attempts to track soil particle movement on soil surfaces by employing Radio Frequency Identification (RFID) tags for the better understanding radiocesium behavior. A RFID tag contains a specific electronically identifier and it permits tracing its movement by reading the identifier. In this study, we made artificial soil particles by coating the RFID tags with cement material. The particle diameters of the artificial soil particles approximately ranged from 3 to 5 mm. The artificial soil particles were distributed in a reticular pattern on a soil erosion plot (bare soil surface, 22.13 m length × 5 m width, 4.4° slope) in Kawamata town where radiocesium deposited because of the Fukushima Dai-ichi power plant accident. After their distribution on October 2012, we had read the identifiers of RFID tags and recorded their locations on the plot for 14 times by September 2013. Moving distance (MD) was calculated based on the difference of the location for each sampling date. The topographical changes on the plot were also monitored with a laser scanner to describe interrill erosion and rill erosion area on 11occasions. Median MD is 10.8cm for all the observations. Median MD on interrill and rill erosion areas were 9.8 cm and 20.7 cm, respectively. Seasonal variation in MD was observed; an extremely large MD was found in May 2013, at the first reading after the winter season. This large MD after winter suggests that snowmelt runoff was the dominant process which transported the soil particles. Comparing the MD with the observed amounts of rainfall, sediment and runoff on the plot, significant positive correlation were found if the data of May, 2013

  1. LABELING WITH 14C AMINO ACIDS OF ALBUMIN-LIKE PROTEIN BY RAT LIVER RIBONUCLEOPROTEIN PARTICLES

    PubMed Central

    von der Decken, Alexandra

    1963-01-01

    Ribonucleoprotein particles were prepared by treatment of rat liver microsomes with detergents and high concentrations of KCl. They were active in incorporating 14C amino acids into protein when incubated with cell sap together with ATP, GTP, and a system to regenerate the triphosphates. The albumin of the incubation mixture, soluble at 105,000 g, and that of the fraction released by ultrasonication of the particles were studied by immunoelectrophoresis in agar gel. When the ribonucleoprotein particles were incubated with cell sap the immunological precipitation lines formed with antiserum to rat serum albumin were highly radioactive as tested by autoradiography. After zone electrophoresis on cellulose acetate, two immunologically reactive albumins were obtained which differed in their electrophoretic mobility from rat serum albumin. Labeled albumin, when purified on DEAE-cellulose columns, retained its radioactivity as tested by autoradiography following immunoelectrophoresis. On cellulose acetate this purified albumin showed an electrophoretic mobility higher than that of rat serum albumin. PMID:14026307

  2. Assessment of Airborne Particles. Fundamentals, Applications, and Implications to Inhalation Toxicity.

    ERIC Educational Resources Information Center

    Mercer, Thomas T., Ed.; And Others

    Concern over chemical and radioactive particulate matter in industry and over rapidly increasing air pollution has stimulated research both on the properties of airborne particles and methods for assessing them and on their biological effects following inhalation. The Third Rochester International Conference on Environmental Toxicity was,…

  3. The Discovery of Artificial Radioactivity

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2012-03-01

    We reconstruct Frédéric Joliot and Irène Curie's discovery of artificial radioactivity in January 1934 based in part on documents preserved in the Joliot-Curie Archives in Paris, France. We argue that their discovery followed from the convergence of two parallel lines of research, on the neutron and on the positron, that were focused on a well-defined experimental problem, the nuclear transmutation of aluminum and other light elements. We suggest that a key role was played by a suggestion that Francis Perrin made at the seventh Solvay Conference at the end of October 1933, that the alpha-particle bombardment of aluminum produces an intermediate unstable isotope of phosphorus, which then decays by positron emission. We also suggest that a further idea that Perrin published in December 1933, and the pioneering theory of beta decay that Enrico Fermi also first published in December 1933, established a new theoretical framework that stimulated Joliot to resume the researches that he and Curie had interrupted after the Solvay Conference, now for the first time using a Geiger-Müller counter to detect the positrons emitted when he bombarded aluminum with polonium alpha particles.

  4. CFD Modelling of Particle Mixtures in a 2D CFB

    NASA Astrophysics Data System (ADS)

    Seppälä, M.; Kallio, S.

    The capability of Fluent 6.2.16 to simulate particle mixtures in a laboratory scale 2D circulating fluidized bed (CFB) unit has been tested. In the simulations, the solids were described as one or two particle phases. The loading ratio of small to large particles, particle diameters and the gas inflow velocity were varied. The 40 cm wide and 3 m high 2D CFB was modeled using a grid with 31080 cells. The outflow of particles at the top of the CFB was monitored and emanated particles were fed back to the riser through a return duct. The paper presents the segregation patterns of the particle phases obtained from the simulations. When the fraction of large particles was 50% or larger, large particles segregated, as expected, to the wall regions and to the bottom part of the riser. However, when the fraction of large particles was 10%, an excess of large particles was found in the upper half of the riser. The explanation for this unexpected phenomenon was found in the distribution of the large particles between the slow clusters and the faster moving lean suspension.

  5. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  6. [Radioactivity and food].

    PubMed

    Olszyna-Marzys, A E

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.

  7. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    PubMed

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015

  9. Further Discussion: Parametric Study of Wind Generated Supermicron Particle Effects in Large Fires

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Ackerman, T. P.

    1987-01-01

    In their reply (Porch et al., 1987) to our comments (Turco et al., 1987) on their smoke-scavenging-by-dust paper, Porch et al. attempt to justify a number of parameter assumptions in their original article, again revealing the extreme nature of those assumptions, particularly in the situation where all are taken simultaneously. In critiquing Porch et al.'s calculations, have not applied "opinion", but rather physical reality and common sense expressed through basic experimental results and logical physical bounds. A few examples of the unrealistic conditions required by the Porch et al. scavenging scheme, as described in their paper and comments, should suffice here. ) Porch et al. have fabricated a "fetch" region for dust particles in large fire plumes that logically must extend over an area up to 50 times greater than the fire area itself. Alternatively, they have invoked significant "necking down' of the fire plume, so that its cross-sectional area is at most a few percent of the fire area. Such severe constriction is seen only in very small fires with strong, organized vorticity, and then only over a limited plume rise region. No "fetch" has ever been noted in any large-scale fires we have observed, or for which accounts are available. Indeed, as we deduced in our original comments, complete dust scavenging even within the fire zone would probably occur less than 10% of the time for large urban fires.

  10. Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification.

    PubMed

    Horton, Alice A; Svendsen, Claus; Williams, Richard J; Spurgeon, David J; Lahive, Elma

    2017-01-15

    Sewage effluent input and population were chosen as predictors of microplastic presence in sediments at four sites in the River Thames basin (UK). Large microplastic particles (1mm-4mm) were extracted using a stepwise approach to include visual extraction, flotation and identification using Raman spectroscopy. Microplastics were found at all four sites. One site had significantly higher numbers of microplastics than other sites, average 66 particles 100g -1 , 91% of which were fragments. This site was downstream of a storm drain outfall receiving urban runoff; many of the fragments at this site were determined to be derived of thermoplastic road-surface marking paints. At the remaining three sites, fibres were the dominant particle type. The most common polymers identified included polypropylene, polyester and polyarylsulphone. This study describes two major new findings: presence of microplastic particles in a UK freshwater system and identification of road marking paints as a source of microplastics. This study is the first to quantify microplastics of any size in river sediments in the UK and links their presence to terrestrial sources including sewage and road marking paints. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. [Investigation of radioactivity measurement of medical radioactive waste].

    PubMed

    Koizumi, Kiyoshi; Masuda, Kazutaka; Kusakabe, Kiyoko; Kinoshita, Fujimi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Kanaya, Shinichi; Kida, Tetsuo; Yanagisawa, Masamichi; Iwanaga, Tetsuo; Ikebuchi, Hideharu; Kusama, Keiji; Namiki, Nobuo; Okuma, Hiroshi; Fujimura, Yoko; Horikoshi, Akiko; Tanaka, Mamoru

    2004-11-01

    To explore the possibility of which medical radioactive wastes could be disposed as general wastes after keeping them a certain period of time and confirming that their radioactivity reach a background level (BGL), we made a survey of these wastes in several nuclear medicine facilities. The radioactive wastes were collected for one week, packed in a box according to its half-life, and measured its radioactivity by scintillation survey meter with time. Some wastes could reach a BGL within 10 times of half-life, but 19% of the short half-life group (group 1) including 99mTc and 123I, and 8% of the middle half-life group (group 2) including 67Ga, (111)In, and 201Tl did not reach a BGL within 20 times of half-life. A reason for delaying the time of reaching a BGL might be partially attributed to high initial radiation dose rate or heavy package weight. However, mixing with the nuclides of longer half-life was estimated to be the biggest factor affecting this result. When disposing medical radioactive wastes as general wastes, it is necessary to avoid mixing with radionuclide of longer half-life and confirm that it reaches a BGL by actual measurement.

  12. Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol

    NASA Astrophysics Data System (ADS)

    Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol

    2014-08-01

    Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.

  13. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27.

    PubMed

    Bartnicki, Jerzy; Amundsen, Ingar; Brown, Justin; Hosseini, Ali; Hov, Øystein; Haakenstad, Hilde; Klein, Heiko; Lind, Ole Christian; Salbu, Brit; Szacinski Wendel, Cato C; Ytre-Eide, Martin Album

    2016-01-01

    The Russian nuclear submarine K-27 suffered a loss of coolant accident in 1968 and with nuclear fuel in both reactors it was scuttled in 1981 in the outer part of Stepovogo Bay located on the eastern coast of Novaya Zemlya. The inventory of spent nuclear fuel on board the submarine is of concern because it represents a potential source of radioactive contamination of the Kara Sea and a criticality accident with potential for long-range atmospheric transport of radioactive particles cannot be ruled out. To address these concerns and to provide a better basis for evaluating possible radiological impacts of potential releases in case a salvage operation is initiated, we assessed the atmospheric transport of radionuclides and deposition in Norway from a hypothetical criticality accident on board the K-27. To achieve this, a long term (33 years) meteorological database has been prepared and used for selection of the worst case meteorological scenarios for each of three selected locations of the potential accident. Next, the dispersion model SNAP was run with the source term for the worst-case accident scenario and selected meteorological scenarios. The results showed predictions to be very sensitive to the estimation of the source term for the worst-case accident and especially to the sizes and densities of released radioactive particles. The results indicated that a large area of Norway could be affected, but that the deposition in Northern Norway would be considerably higher than in other areas of the country. The simulations showed that deposition from the worst-case scenario of a hypothetical K-27 accident would be at least two orders of magnitude lower than the deposition observed in Norway following the Chernobyl accident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    NASA Technical Reports Server (NTRS)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  15. Operation JANGLE. Airborne Particle Studies. Project 2.5a-1

    DTIC Science & Technology

    1979-10-01

    dosimeter film, type 552. After an exposure of approxi- mately one month, the cones were removed and the film processed. This radioautograph (Fig...giving -•..eght to the idea that the base surge was Co,• osled of small particlej. 5.3 RADIOACTIVITY AS A FINCTION OF PARTICLE SIZE It was hoped that the

  16. Uncertainty quantification of seabed parameters for large data volumes along survey tracks with a tempered particle filter

    NASA Astrophysics Data System (ADS)

    Dettmer, J.; Quijano, J. E.; Dosso, S. E.; Holland, C. W.; Mandolesi, E.

    2016-12-01

    Geophysical seabed properties are important for the detection and classification of unexploded ordnance. However, current surveying methods such as vertical seismic profiling, coring, or inversion are of limited use when surveying large areas with high spatial sampling density. We consider surveys based on a source and receiver array towed by an autonomous vehicle which produce large volumes of seabed reflectivity data that contain unprecedented and detailed seabed information. The data are analyzed with a particle filter, which requires efficient reflection-coefficient computation, efficient inversion algorithms and efficient use of computer resources. The filter quantifies information content of multiple sequential data sets by considering results from previous data along the survey track to inform the importance sampling at the current point. Challenges arise from environmental changes along the track where the number of sediment layers and their properties change. This is addressed by a trans-dimensional model in the filter which allows layering complexity to change along a track. Efficiency is improved by likelihood tempering of various particle subsets and including exchange moves (parallel tempering). The filter is implemented on a hybrid computer that combines central processing units (CPUs) and graphics processing units (GPUs) to exploit three levels of parallelism: (1) fine-grained parallel computation of spherical reflection coefficients with a GPU implementation of Levin integration; (2) updating particles by concurrent CPU processes which exchange information using automatic load balancing (coarse grained parallelism); (3) overlapping CPU-GPU communication (a major bottleneck) with GPU computation by staggering CPU access to the multiple GPUs. The algorithm is applied to spherical reflection coefficients for data sets along a 14-km track on the Malta Plateau, Mediterranean Sea. We demonstrate substantial efficiency gains over previous methods. [This

  17. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive

  18. Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Clarkson, Rory; Durant, Adam; Cassiani, Massimo; Stohl, Andreas

    2016-04-01

    Airborne particles from explosive volcanic eruptions are a major safety threat for aviation operations. The fine fraction of the emitted particles (<63 microns diameter) may remain in the atmosphere for days, or even weeks, and can affect commercial air traffic routes. Over the past century, there have been a considerable number of aircraft encounters with drifting volcanic ash clouds. Particles ingested into the engine cause erosion of upstream surfaces of compressor fan blades and rotor-path components, and can also cause contamination or blockage of electrical systems and the fuel system such as fuel nozzles and air bleed filters. Ash particles that enter the hot-section of the engine (combustor and turbine stages; temperature between 1400-1800°C) are rapidly heated above the glass transition temperature (about 650-1000°C) and become soft (or form a melt) and can stick as re-solidified deposits on nozzle guide vanes. The glass deposits change the internal aerodynamic airflow in the engine and can affect the cooling capability of the different components by clogging the cooling inlets/outlets, which can lead to a loss of power or flame-out. The nature of volcanic ash ingestion is primarily influenced by the fan at the front of the engine which produces the thrust that drives the aircraft. The ingested air is split between the core (compressor/combustor/turbine) and bypass (thrust) at a ratio of typically between, 1:5-10 on modern engines. Consequently, the ash particles are fractionated between the core and bypass by the geometry and dynamics of the fan blades. This study uses computational fluid dynamics (CFD) simulations of particle-laden airflows into a turbofan engine under different atmospheric and engine operation conditions. The main aim was to investigate the possible centrifugal effect of the fan blades as a function of particle size, and to relate this to the core intake concentration. We generated a generic 3D axial high-bypass turbofan engine using

  19. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  20. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  1. Particle aggregation during receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Kosmrlj, Andrej

    Receptor-mediated endocytosis of particles is driven by large binding energy between ligands on particles and receptors on a membrane, which compensates for the membrane bending energy and for the cost due to the mixing entropy of receptors. While the receptor-mediated endocytosis of individual particle is well understood, much less is known about the joint entry of multiple particles. Here, we demonstrate that the endocytosis of multiple particles leads to a kinetically driven entropic attraction, which may cause the aggregation of particles observed in experiments. During the endocytosis particles absorb nearby receptors and thus produce regions, which are depleted of receptors. When such depleted regions start overlapping, the corresponding particles experience osmotic-like attractive entropic force. If the attractive force between particles is large enough to overcome the repulsive interaction due to membrane bending, then particles tend to aggregate provided that they are sufficiently close, such that they are not completely engulfed before they come in contact. We discuss the necessary conditions for the aggregation of cylindrical particles during receptor-mediated endocytosis and comment on the generalization to spherical particles.

  2. Particle separator

    DOEpatents

    Hendricks, Charles D.

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  3. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.

    PubMed

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2016-10-01

    In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  5. Analysis of Alfvén eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model

    DOE PAGES

    Varela, Jacobo Rodriguez; Spong, D. A.; Garcia, L.

    2017-03-06

    Here, energetic particle populations in nuclear fusion experiments can destabilize the Alfvén Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfvén continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfvén mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle β (more » $${{\\beta}_{f}}$$ ) in a range of realistic values, the ratios of the energetic particle thermal/Alfvén velocities ($${{V}_{\\text{th}}}/{{V}_{A0}}$$ ), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n = 1 and n = 2 TAEs are destabilized, although the n = 3 and n = 4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfvén velocity. The frequency range of MHD bursts measured in the LHD are 50–70 kHz for the n = 1 and 60–80 kHz for the n = 2 TAE, which is consistent with the model predictions.« less

  6. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  7. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2017-09-29

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  8. Energetic-particle-induced geodesic acoustic mode.

    PubMed

    Fu, G Y

    2008-10-31

    A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D.

  9. Primary cosmic ray particles with z 35 (VVH particles). [very heavy particle detection by high altitude balloons

    NASA Technical Reports Server (NTRS)

    Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.

    1972-01-01

    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived.

  10. Viscous Particle Breakup within a Cooling Nuclear Fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J. T.; Knight, K. B.; Dai, Z.

    2016-10-04

    Following the surface detonation of a nuclear weapon, the Earth’s crust and immediate surroundings are drawn into the fireball and form melts. Fallout is formed as these melts incorporate radioactive material from the bomb vapor and cool rapidly. The resultant fallout plume and dispersion of radioactive contamination is a function of several factors including weather patterns and fallout particle shapes and size distributions. Accurate modeling of the size distributions of fallout forms an important data point for dispersion codes that calculate the aerial distribution of fallout. While morphological evidence for aggregation of molten droplets is well documented in fallout glassmore » populations, the breakup of these molten droplets has not been similarly studied. This study documents evidence that quenched fallout populations preserve evidence of molten breakup mechanisms.« less

  11. Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study.

    PubMed

    Gu, Chuan; Botto, Lorenzo

    2018-01-31

    Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.

  12. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  13. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  14. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  15. Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect

    NASA Astrophysics Data System (ADS)

    Lerner, Paul; Marchal, Olivier; Lam, Phoebe J.; Buesseler, Ken; Charette, Matthew

    2017-07-01

    The high particle reactivity of thorium has resulted in its widespread use in tracing processes impacting marine particles and their chemical constituents. The use of thorium isotopes as tracers of particle dynamics, however, largely relies on our understanding of how the element scavenges onto particles. Here, we estimate apparent rate constants of Th adsorption (k1), Th desorption (k-1), bulk particle degradation (β-1), and bulk particle sinking speed (w) along the water column at 11 open-ocean stations occupied during the GEOTRACES North Atlantic Section (GA03). First, we provide evidence that the budgets of Th isotopes and particles at these stations appear to be generally dominated by radioactive production and decay sorption reactions, particle degradation, and particle sinking. Rate parameters are then estimated by fitting a Th and particle cycling model to data of dissolved and particulate 228,230,234Th, 228Ra, particle concentrations, and 234,238U estimates based on salinity, using a nonlinear programming technique. We find that the adsorption rate constant (k1) generally decreases with depth across the section: broadly, the time scale 1 /k1 averages 1.0 yr in the upper 1000 m and (1.4-1.5) yr below. A positive relationship between k1 and particle concentration (P) is found, i.e., k1 ∝Pb , where b ≥ 1 , consistent with the notion that k1 increases with the number of surface sites available for adsorption. The rate constant ratio, K =k1 / (k-1 +β-1) , which measures the collective influence of rate parameters on Th scavenging, averages 0.2 for most stations and most depths. We clarify the conditions under which K / P is equivalent to the distribution coefficient, KD, test that the conditions are met at the stations, and find that K / P decreases with P, in line with a particle concentration effect (dKD / dP < 0). In contrast to the influence of colloids as envisioned by the Brownian pumping hypothesis, we provide evidence that the particle

  16. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  17. Cesium distribution and phases in proxy experiments on the incineration of radioactively contaminated waste from the Fukushima area.

    PubMed

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi

    2014-10-01

    After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Primary cosmic ray particles with Z greater than 35 /VVH particles/. [Very Very Heavy particle track measurement by balloons

    NASA Technical Reports Server (NTRS)

    Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.

    1974-01-01

    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high-altitude balloon flights. From an analysis of 141 particle tracks recorded during a total exposure of 13,000,000 sq m-ster-sec, a charge spectrum of the VVH particles has been derived.

  19. Analysis of Alfvén eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model

    NASA Astrophysics Data System (ADS)

    Varela, J.; Spong, D. A.; Garcia, L.

    2017-04-01

    Energetic particle populations in nuclear fusion experiments can destabilize the Alfvén Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfvén continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfvén mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle β ({βf} ) in a range of realistic values, the ratios of the energetic particle thermal/Alfvén velocities ({{V}\\text{th}}/{{V}A0} ), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n  =  1 and n  =  2 TAEs are destabilized, although the n  =  3 and n  =  4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfvén velocity. The frequency range of MHD bursts measured in the LHD are 50-70 kHz for the n  =  1 and 60-80 kHz for the n  =  2 TAE, which is consistent with the model predictions. ).

  20. Successes and Techniques Associated with Teaching the Chemistry of Radioactive Wastes.

    ERIC Educational Resources Information Center

    Williams, Donald H.

    1995-01-01

    Describes a chemistry course that is built around the topic of radioactive waste and encompasses a large number of chemistry concepts including redox, equilibrium, kinetics, nuclear energy, and the periodic chart. (JRH)

  1. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  2. A hybrid binary particle swarm optimization for large capacitated multi item multi level lot sizing (CMIMLLS) problem

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.

    2016-09-01

    The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.

  3. What's Next for Particle Physics?

    NASA Astrophysics Data System (ADS)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  4. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Liu-Guan; Xu, Fei; Gu, Bin

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. Aftermore » about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.« less

  5. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  6. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  7. The thermal aggregation of ovalbumin as large particles decreases its allergenicity for egg allergic patients and in a murine model.

    PubMed

    Claude, M; Lupi, R; Bouchaud, G; Bodinier, M; Brossard, C; Denery-Papini, S

    2016-07-15

    Most egg-allergic children can tolerate extensively cooked eggs. Ovalbumin, a major allergen in egg whites, is prone to aggregate upon heating. This study compares ovalbumin's allergenicity when it is aggregated as large particles to ovalbumin in its native form. Immunoglobulins (Ig)-binding and the degranulation capacities of native and aggregated ovalbumin were measured with sera from egg-allergic children and from mice sensitized to native or aggregated ovalbumin. The influence of ovalbumin structure on Ig production upon sensitization and elicitation potency by challenge was also studied. We showed that heat aggregation of ovalbumin as large particles enhances IgG production and promotes IgG2a production (a shift toward the T helper 1 profile). Aggregated ovalbumin displayed lower Ig-binding and basophil-activation capacities for sera from both allergic patients and mice. This work illustrates the links between ovalbumin structure after heating and allergenicity potential using parameters from both the sensitization and elicitation phases of the allergic reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Seeds in Chernobyl: the database on proteome response on radioactive environment

    PubMed Central

    Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database “Seeds in Chernobyl” (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format. PMID:23087698

  9. Localized internal radiotherapy with 90Y particles embedded in a new thermosetting alginate gel: a feasibility study in pigs.

    PubMed

    Holte, Oyvind; Skretting, Arne; Bach-Gansmo, Tore; Hol, Per Kristian; Johnsrud, Kjersti; Tønnesen, Hanne Hjorth; Karlsen, Jan

    2006-02-01

    Internal radiotherapy requires the localization of the radionuclide to the site of action. A new injectable alginate gel formulation intended to undergo immediate gelation in tissues and capable of encapsulating radioactive particles containing 90Y was investigated. The formulation was injected intramuscularly, into the bone marrow compartment of the femur and intravenously, respectively, in pigs. The distribution of radioactivity in various tissues was determined. Following intramuscular injection, more than 90% of the radioactivity was found at the site of injection. Following injection into bone marrow, 30-40% of the radioactivity was retained at the site of injection, but a considerable amount of radioactivity was also detected in the lungs (35-45%) and the liver (5-18%). Following intravenous injection, 80-90% of the radioactivity was found in the lungs. The present formulation appears suitable for localized radiotherapy in organs and tissues having low perfusion.

  10. Sources of Radioactive Isotopes for Dirty Bombs

    NASA Astrophysics Data System (ADS)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  11. The electric potential of particles in interstellar space released from a nuclear waste payload

    NASA Technical Reports Server (NTRS)

    Williams, A. C.

    1980-01-01

    Mechanisms for charging a grain in the interplanetary medium include: (1) capture of solar wind electrons; (2) capture of solar wind protons; (3) ejection of electrons through the photoelectric effect due to the solar radiation; (4) escape of beta particles from beta emitters in the grain; and (5) escape of alpha particles from alpha emitters in the grain. The potentials on both nonradioactive and radioactive grains are considered with relation to particle size and time, and the distance from the Sun. Numerical results are presented where the waste mix is assumed to be PW-4b.

  12. Global views of energetic particle precipitation and their sources: Combining large-scale models with observations during the 21-22 January 2005 magnetic storm (Invited)

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Brandt, P. C.; Cattell, C. A.; Clilverd, M.; de Zeeuw, D.; Evans, D. S.; Fang, X.; Frey, H. U.; Kavanagh, A. J.; Liemohn, M. W.; Lu, G.; Mende, S. B.; Paxton, L. J.; Ridley, A. J.; Rodger, C. J.; Soraas, F.

    2010-12-01

    Energetic ions and electrons that precipitate into the upper atmosphere from sources throughout geospace carry the influences of space weather disturbances deeper into the atmosphere, possibly contributing to climate variability. The three-dimensional atmospheric effects of these precipitating particles are a function of the energy and species of the particles, lifetimes of reactive species generated during collisions in the atmosphere, the nature of the driving space weather disturbance, and the large-scale transport properties (meteorology) of the atmosphere in the region of impact. Unraveling the features of system-level coupling between solar magnetic variability, space weather and stratospheric dynamics requires a global view of the precipitation, along with its temporal and spatial variation. However, observations of particle precipitation at the system level are sparse and incomplete requiring they be combined with other observations and with large-scale models to provide the global context that is needed to accelerate progress. We compare satellite and ground-based observations of geospace conditions and energetic precipitation (at ring current, radiation belt and auroral energies) to a simulation of the geospace environment during 21-22 January 2005 by the BATS-R-US MHD model coupled with a self-consistent ring current solution. The aim is to explore the extent to which regions of particle precipitation track global magnetic field distortions and ways in which global models enhance our understanding of linkages between solar wind drivers and evolution of energetic particle precipitation.

  13. Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant.

    PubMed

    Kogure, Toshihiro; Yamaguchi, Noriko; Segawa, Hiroyo; Mukai, Hiroki; Motai, Satoko; Akiyama-Hasegawa, Kotone; Mitome, Masanori; Hara, Toru; Yaita, Tsuyoshi

    2016-10-01

    Microparticles of radioactive cesium (Cs)-bearing silicate glass emitted from the Fukushima Daiichi nuclear power plant were investigated mainly using state-of-the-art energy-dispersive X-ray spectroscopy in scanning transmission electron microscopes. Precise elemental maps of the particles were obtained using double silicon drift detectors with a large collection angle of X-rays, and qualitative elemental analysis was performed using high-resolution X-ray spectroscopy with a microcalorimetry detector. Beside the substantial elements (O, Si, Cl, K, Fe, Zn, Rb, Sn and Cs) as previously reported, Mn and Ba were also common, though their amounts were small. The atomic ratios of the substantial elements were not the same but varied among individual particles. Fe and Zn were relatively homogeneously distributed, whereas the concentration of alkali ions varied radially. Generally, Cs was rich and K and Rb were poor outward of the particles but the degree of such radial dependence was considerably different among the particles. A concentration of Sn on the particle surface was observed. High-resolution imaging indicated the formation of SnO 2 (cassiterite) nanocrystals on the surface. Synthesis of the bulk glass with a similar composition to the microparticles was attempted by quenching the silicate melt from ∼1600°C. However, homogeneous silicate glass like that of the microparticles could not be obtained due to the segregation of nano-spherules rich in Fe and Zn, suggesting that the microparticles were formed in a very specific condition in the nuclear reactor. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  14. Uptake of the natural radioactive gas radon by an epiphytic plant.

    PubMed

    Li, Peng; Zhang, Ruiwen; Gu, Mintian; Zheng, Guiling

    2018-01-15

    Radon ( 222 Rn) is a natural radioactive gas and the major radioactive contributor to human exposure. The present effective ways to control Rn contamination are ventilation and adsorption with activated carbon. Plants are believed to be negligible in reducing airborne Rn. Here, we found epiphytic Tillandsia brachycaulos (Bromeliaceae) was effective in reducing airborne Rn via the leaves. Rn concentrations in the Rn chamber after Tillandsia plant treatments decreased more than those in the natural situation. The specialized foliar trichomes densely covering Tillandsia leaves play a major role in the uptake of Rn because the amplified rough leaf surface area facilitates deposition of Rn progeny particles and the powdery epicuticular wax layer of foliar trichomes uptakes liposoluble Rn. The results provide us a new ecological strategy for Rn contamination control, and movable epiphytic Tillandsia plants can be applied widely in Rn removal systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    DOE PAGES

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U ( 232Th) decay rate of 5 (15) kg -1 d -1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Simore » – 32P or 210Pb – 210Bi sequences of b decays. The decay rate of 32Si was found to be 80 +110 -65 (95% CI). An upper limit of ~35 kg -1 d -1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less

  16. Alpha particle spectrometry using superconducting microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael

    2009-03-01

    Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.

  17. Solar energetic particle anisotropies and insights into particle transport

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  18. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    PubMed

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  19. Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta

    2017-12-01

    Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.

  20. Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive ¹²⁵Iodine labeling.

    PubMed

    Ignjatović, Nenad; Vranješ Djurić, Sanja; Mitić, Zarko; Janković, Drina; Uskoković, Dragan

    2014-10-01

    In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  2. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.

    PubMed

    Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E

    2012-11-07

    For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion.

  3. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 m diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 m diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands from the thermal black body radiation. Recorded flame images were digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparison were employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishment as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  4. Simulation of radioactive tracer transport using IsoRSM and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    SAYA, A.; Chang, E.; Yoshimura, K.; Oki, T.

    2013-12-01

    Due to the massive earthquakes and tsunami on March 11 2011 in Eastern Japan, Fukushima Daiichi nuclear power plant was severely damaged and some reactors were exploded. To know how the radioactive materials were spread and how much they were deposited into the land, it is important to enhance the accuracy of radioactive transport simulation model. However, there are uncertainties in the models including dry and wet deposition process in the models, meteorological field and release amount of radioactive materials. In this study we analyzed these uncertainties aiming for higher accuracy in the simulation. We modified the stable isotope mode of Regional Spectral Model (IsoRSM, Yoshimura et al., 2009) to enable to simulate the transport of the radioactive tracers, namely iodine 131 and cesium 137, by including the dry and wet deposition processes. With this model, we conducted a set of sensitivity experiments using different parameters in the deposition processes, different diffusivity in advection processes, and different domain sizes. The control experiment with 10km resolution covering most of Japan and surrounding oceans (132.7oE-151.5oE &28.3oN-46.7oN) and the emission estimated by Chino et al. (2011) showed reasonable temporal results for Toukatsu area (eastern part of Tokyo metropolis and western part of Chiba prefecture where low-level contamination was occurred), i.e., on 22 March, the tracers from Fukushima were reached and precipitated in a significant amount as wet deposition. Thus we conducted 4 experimental simulations to analyze the simulation uncertainty due to 1) different meteorological pattern, different parameters for 2) wet and 3) dry deposition and 4) diffusion. Though the temporal patterns of deposition of radioactive particles were somewhat similar each other in all experiments, we revealed that the impacts to the area mean deposition were large. Results of the simulations with different diffusivity and different domain size showed that the

  5. New research discovery may mean less radioactive contamination, safer nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S.

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  6. Enhancement of particle-induced viscous fingering in bidisperse suspensions

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Lee, Sungyon

    2017-11-01

    The novel particle-induced fingering instability is observed when bidisperse particle suspensions displace air in a Hele-Shaw cell. Leading to the instability, we observe that larger particles consistently enrich the fluid-fluid interface at a faster rate than the small particles. This size-dependent enrichment of the interface leads to an earlier onset of the fingering instability for bidisperse suspensions, compared to their monodisperse counterpart. Careful experiments are carried out by either systematically varying the ratio of large to small particles at fixed total concentrations, or by changing the total concentrations while the large particle concentrations are held constant. Experimental results show that the presence of large particle causes the instability to occur at concentrations as much as 5% lower than the pure small particle case. We also discuss the physical mechanism that drives the enrichment and the subsequent instability based on the modified suspension balance model.

  7. Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2016-12-01

    Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos

  8. Particle-wall tribology of slippery hydrogel particle suspensions.

    PubMed

    Shewan, Heather M; Stokes, Jason R; Cloitre, Michel

    2017-03-08

    Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.

  9. Performance of a large size triple GEM detector at high particle rate for the CBM Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Adak, Rama Prasad; Kumar, Ajit; Dubey, Anand Kumar; Chattopadhyay, Subhasis; Das, Supriya; Raha, Sibaji; Samanta, Subhasis; Saini, Jogender

    2017-02-01

    In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operating at highest interaction rate of 10 MHz for Au+Au collision, the inner region of the 1st detector will face a particle rate of 1 MHz/cm2. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM prototype tested with proton beam of momentum 2.36 GeV/c at COSY-Jülich Germany. The detector was read out using nXYTER operated in self-triggering mode. An efficiency higher than 96% at ΔVGEM = 375.2 V was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within 2% when tested up to a maximum rate of 2.8 MHz/cm2. The gain was found to be stable at high particle rate with a maximum variation of ∼9%.

  10. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source

    DOE PAGES

    Ghosh, Vinita J.; Schaefer, Charles; Kahnhauser, Henry

    2017-06-30

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. Thismore » entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project’s resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed in this paper. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Finally, post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.« less

  11. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    PubMed

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  12. Viscosity of particle laden films

    NASA Astrophysics Data System (ADS)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  13. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  14. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  15. Direct fluorescent labeling for efficient biological assessment of inhalable particles.

    PubMed

    Poudel, Bijay Kumar; Park, Jae Hong; Lim, Jiseok; Byeon, Jeong Hoon

    2017-10-01

    Labeling of aerosol particles with a radioactive, magnetic, or optical tracer has been employed to confirm particle localization in cell compartments, which has provided useful evidence for correlating toxic effects of inhaled particles. However, labeling requires several physicochemical steps to identify functionalities of the inner or outer surfaces of particles, and moreover, these steps can cause changes in size, surface charge, and bioactivity of the particles, resulting in misinterpretations regarding their toxic effects. This study addresses this challenging issue with a goal of introducing an efficient strategy for constantly supplying labeled aerosol particles in a single-pass configuration without any pre- or post-physicochemical batch treatments of aerosol particles. Carbon black (CB, simulating combustion-generated soot) or calcium carbonate (CC, simulating brake-wear fragments) particles were constantly produced via spark ablation or bubble bursting, respectively. These minute particles were incorporated with fluorescein isothiocyanate-poly(ethylene glycol) 2-aminoethyl ether acetic acid solution at the orifice of a collison atomizer to fabricate hybrid droplets. The droplets successively entered a diffusion dryer containing 254-nm UV irradiation; therefore, the droplets were dynamically stiffened by UV to form fluorescent probes on particles during solvent extraction in the dryer. Particle size distributions, morphologies, and surface charges before and after labeling were measured to confirm fluorescence labeling without significant changes in the properties. In vitro assays, including confocal imaging, were conducted to confirm the feasibility of the labeling approach without inducing significant differences in bioactivity compared with untreated CB or CC particles.

  16. Sediment fingerprinting by using the Ag-110m: Cs-137 ratio along the main rivers draining the Fukushima radioactive pollution plume

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Patin, Jeremy; Lefèvre, Irène; Ayrault, Sophie; Lepage, Hugo; Bonté, Philippe

    2013-04-01

    During the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, large quantities of radionuclides were released into the environment between 12 and 19 March 2011. Even though about 80% of these emissions were transported offshore and out over the Pacific Ocean, 20% were deposited as wet and dry deposits on soils of Fukushima Prefecture on 15-16 March. In particular, 6.4 PBq of Cs-137 were modeled to have deposited on Japanese soils over a distance of 70 km to the northwest of the Fukushima Dai-ichi nuclear power plant. As most radionuclides are strongly sorbed by fine particles, and their mineralogical clay and organic matter fractions, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by erosion processes and runoff. Based on a spatial analysis of the gamma-emitting radionuclides present in the environment respectively eight and thirteen months after the accident, we aim to provide a radioactive tracer to investigate the temporal evolution of the contaminant dispersion across Fukushima Prefecture. For this purpose, sediments were collected along rivers draining the main contamination plume in Fukushima Prefecture (i.e, Rivers Kutchibuto, Mano, Nitta and Ota) in November 2011 and April 2012.These campaigns directly followed the main hydro-sedimentary events that occurred in this region, i.e., the typhoon season (July and September-October) and the snowmelt (March 2012). The river sediment activities in gamma-emitting radionuclides were then compared to the initial activities measured in soils provided by the Japanese Ministry of Education, Culture, Sport, Science and Technology (MEXT). The initial fallout patterns in 110mAg appeared to differ from those of the main contamination plume defined mainly by radiocaesium fallout (i.e., Cs-134+137). The Ag-110m:Cs-137 ratio was then used to trace the spatial origin of contaminated sediment collected in rivers. Sediments collected within the coastal

  17. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope.

    PubMed

    Ajello, M; Albert, A; Anderson, B; Baldini, L; Barbiellini, G; Bastieri, D; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Chekhtman, A; Ciprini, S; Cohen-Tanugi, J; Conrad, J; Costanza, F; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Di Mauro, M; Di Venere, L; Domínguez, A; Drell, P S; Favuzzi, C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Glanzman, T; Godfrey, G; Guiriec, S; Horan, D; Jóhannesson, G; Katsuragawa, M; Kensei, S; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Maldera, S; Manfreda, A; Mayer, M; Mazziotta, M N; Meyer, M; Michelson, P F; Mirabal, N; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nuss, E; Okada, C; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Sánchez-Conde, M; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Takahashi, H; Thayer, J B; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2016-04-22

    We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12}  GeV^{-1} for ALP masses 0.5≲m_{a}≲5  neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe.

  18. Behavior of radioactive materials and safety stock of contaminated sludge.

    PubMed

    Tsushima, Ikuo

    2017-01-28

    The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.

  19. Ultrafine particle transport and deposition in a large scale 17-generation lung model.

    PubMed

    Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T

    2017-11-07

    To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  1. Brush in the bath of active particles: Anomalous stretching of chains and distribution of particles

    NASA Astrophysics Data System (ADS)

    Li, Hui-shu; Zhang, Bo-kai; Li, Jian; Tian, Wen-de; Chen, Kang

    2015-12-01

    The interaction between polymer brush and colloidal particles has been intensively studied in the last two decades. Here, we consider a flat chain-grafted substrate immersed in a bath of active particles. Simulations show that an increase in the self-propelling force causes an increase in the number of particles that penetrate into the brush. Anomalously, the particle density inside the main body of the brush eventually becomes higher than that outside the brush at very large self-propelling force. The grafted chains are further stretched due to the steric repulsion from the intruded particles. Upon the increase of the self-propelling force, distinct stretching behaviors of the chains were observed for low and high grafting densities. Surprisingly, we find a weak descent of the average end-to-end distance of chains at high grafting density and very large force which is reminiscent of the compression effect of a chain in the active bath.

  2. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  3. Age determination of single plutonium particles after chemical separation

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Donohue, D.; Ciurapinski, A.; Klose, D.

    2009-01-01

    Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu ( 240Pu/ 239Pu, 241Pu/ 239Pu and 242Pu/ 239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.

  4. General classification of ``hot`` particles from the nearest Chernobyl contaminated areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.

    1997-12-31

    The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less

  5. Deterministic particle transport in a ratchet flow.

    PubMed

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  6. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  7. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  8. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  9. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  10. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  11. Associated-particle sealed-tube neutron probe for characterization of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, E.; Dickerman, C.E.; Peters, C.W.

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less

  12. The accurate particle tracer code

    NASA Astrophysics Data System (ADS)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  13. The accurate particle tracer code

    DOE PAGES

    Wang, Yulei; Liu, Jian; Qin, Hong; ...

    2017-07-20

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  14. The accurate particle tracer code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian; Qin, Hong

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  15. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  16. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators.

    PubMed

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-04-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called "radionuclide inventory", and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    PubMed

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-02

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  18. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    PubMed

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope

    DOE PAGES

    Ajello, M.; Albert, A.; Anderson, B.; ...

    2016-04-20

    In this paper, we report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 x 10 -12 GeV -1 for ALP masses 0.5 ≲ m a ≲ 5 neV at 95% confidence. Finally, the limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity ofmore » the Universe.« less

  20. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Mirabal, N.; hide

    2016-01-01

    We report on the search for spectral irregularities induced by oscillations between photons and axion-like particles (ALPs) in the gamma-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 times 10 (sup -12) per gigaelectronvolt for ALP masses less than or approximately equal to 0.5 apparent magnitude (m (sub a)) less than or approximately equal to 5 nanoelectronvolts at 95 percent confidence. The limits are competitive withthe sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain thepossibility that ALPs can reduce the gamma-ray opacity of the Universe.

  1. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  2. Thermophoretic aggregation of particles in a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  3. Study of iodine migration in zirconia using stable and radioactive ion implantation

    NASA Astrophysics Data System (ADS)

    Chevarier, N.; Brossard, F.; Chevarier, A.; Crusset, D.; Moncoffre, N.

    1998-03-01

    The large uranium fission cross section leading to iodine and the behaviour of this element in the cladding tube during energy production and afterwards during waste storage is a crucial problem, especially for 129I which is a very long half-life isotope ( T = 1.59 × 10 7yr). Since a combined external and internal oxidation of the zircaloy cladding tube occurs during the reactor processing, iodine diffusion parameters in zirconia are needed. In order to obtain these data, stable iodine atoms were first introduced by ion implantation into zirconia with an energy of 200 keV and a dose equal to 8 × 10 15at cm -2. Diffusion profiles were measured using 3 MeV alpha-particle Rutherford Backscattering Spectrometry at each step of the annealing procedure between 700°C and 900°C. In such experiments a reduced iodine concentration was observed, which correlated to a diffusion-like process. Similar analysis has been performed using radioactive 131I implanted at a very low dose of 10 9 at cm -2. In this case the iodine release is deduced from gamma-ray spectroscopy measurements. The results are discussed in this paper.

  4. Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Han; Zhu, Long; Li, Fan; Yu, Xiao-Bin; Su, Jun; Guo, Chen-Chen

    2018-06-01

    The production of neutron-rich superheavy nuclei with Z =105 -118 in neutron evaporation channels is investigated within the dinuclear system model. The different stable and radioactive beam-induced hot fusion reactions are studied systematically. The prospect for synthesizing neutron-rich superheavy nuclei using radioactive beams is evaluated quantitatively based on the beam intensities proposed by Argonne Tandem Linac Accelerator System [B. B. Back and C. L. Jiang, Argonne National Laboratory Report No. ANL-06/55, 2006 (unpublished)]. All possible combinations (with projectiles of Z =16 -22 and half-lives longer than 1 ms; with targets of half-lives longer than 30 days), which can be performed in available experimental equipment, for producing several unknown neutron-rich superheavy nuclei in neutron evaporation channels are investigated and the most promising reactions are predicted. It is found that the stable beams still show great advantages for producing most of superheavy nuclei. The calculated results are also compared with production cross sections in the p x n and α x n evaporation channels [Hong et al., Phys. Lett. B 764, 42 (2017), 10.1016/j.physletb.2016.11.002]. We find that the radioactive beam-induced reactions are comparable to the stable beam-induced reactions in charged particle evaporation channels. To obtain more experimental achievements, the beam intensities of modern radioactive beam facilities need to be further improved in the future.

  5. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    PubMed

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  6. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    PubMed Central

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  7. Rice Starch Particle Interactions at Air/Aqueous Interfaces-Effect of Particle Hydrophobicity and Solution Ionic Strength.

    PubMed

    McNamee, Cathy E; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  8. Rice starch particle interactions at air/aqueous interfaces– effect of particle hydrophobicity and solution ionic strength

    NASA Astrophysics Data System (ADS)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-05-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e. the natural particle found inside the plant, at air/aqueous interfaces and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  9. Atmospheric radioactivity of Cs-134/137 observed at Namie, Fukushima: seasonal variation and contribution of biological re-suspension.

    NASA Astrophysics Data System (ADS)

    Kita, K.

    2015-12-01

    Radionuclides emitted by the accident in Fukushima dai-ichi nuclear power plant (FNDPP) have been deposited on the soil, ocean and vegetation. Even after about 4 years since the FNDPP accident significant activities of the radionuclides have been observed over severely contaminated areas. Re-suspension of radioactive cesium from the soil and vegetation to the atmosphere has been one of significant paths for its diffusion after the accident. Although the quantitative understanding of the re-suspensions is important for the prediction of future transition of radionuclides, its mechanism, identification of aerosol species which bring radioactive cesium, and the resuspension flux have not been understood in Fukushima.  We are continuously measuring atmospheric concentration of Cs-134/137 radioactivity at Tsushima, Namie-town, located about 30km northwest from FNDPP with high-volume air samplers. It showed clear seasonal variation: it increase from April to June, and decreased from September to December. In winter and spring, it was weakly but positively correlated with the surface wind speed. On the contrary, it did not depend on the wind speed in summer and autumn. It also has different diurnal variation: higher activities were observed in daytime in winter/spring, while the activities were obviously higher in nighttime in summer/autumn. The size distribution of aerosols contributing to the Cs-134/137 re-suspension has been measured using cascade impactors attached with high-volume air samplers, and it also shows different features in winter/spring and summer/autumn. These results indicate that the mechanism of the Cs-134/137 re-suspension is different with the season in Fukushima. Scanning electron microscope observation showed that most of suspended coarse particles were soil particles in spring and biogenic particles in autumn. Details on the Cs-134/137 re-suspension mechanisms revealed by our observations and contribution of biogenic emission will be presented

  10. Developments in suspended particle devices (SPD)

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Seok; Kim, Eung-Soo; Lee, Young-Woo

    1997-10-01

    Light valve using suspended particles was invented first by Edwin H. Land. But it could not be made to large area because it was a liquid cell containing a suspension of the particles between both transparent conductive layers. For several years, so many trials have been to make a large size of light valve. Recently we could make the light valve of large size which is film type by phase separation and/or emulsification methods. In this paper, we are introducing the light valve film made by HGI.

  11. The large-scale microwave background anisotropy in decaying particle cosmology

    NASA Technical Reports Server (NTRS)

    Panek, Miroslaw

    1988-01-01

    The quadrupole anisotropy of the microwave background radiation in cosmological models with decaying particles is investigated. A conservative upper limit on value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z(d) of less than 3-6.

  12. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    PubMed

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

  13. Radioactivity in consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghissi, A.A.; Paras, P.; Carter, M.W.

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  14. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  15. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  16. High-Performance Reactive Particle Tracking with Adaptive Representation

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Benson, D. A.; Pankavich, S.

    2017-12-01

    Lagrangian particle tracking algorithms have been shown to be effective tools for modeling chemical reactions in imperfectly-mixed media. One disadvantage of these algorithms is the possible need to employ large numbers of particles in simulations, depending on the concentration covariance structure, and these large particle numbers can lead to long computation times. Two distinct approaches have recently arisen to overcome this. One method employs spatial kernels that are related to a specified, reduced particle number; however, over-wide kernels, dictated by a very low particle number, lead to an excess of reaction calculations and cause a reduction in performance. Another formulation involves hybrid particles that carry multiple species of reactant, wherein each particle is treated as its own well-mixed volume, obviating the need for large numbers of particles for each species but still requiring a fixed number of hybrid particles. Here, we combine these two approaches and demonstrate an improved method for simulating a given system in a computationally efficient manner. Additionally, the independent nature of transport and reaction calculations in this approach allows for significant gains via parallelization in an MPI or OpenMP context. For benchmarking, we choose a CO2 injection simulation with dissolution and precipitation of calcite and dolomite, allowing us to derive the proper treatment of interaction between solid and aqueous phases.

  17. Radioactivity and food (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszyna-Marzys, A.E.

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear powermore » station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.« less

  18. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  19. Attempts to Manipulate the Decay Time of Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Fallin, B.; Grabow, B.; Tornow, W.

    2008-04-01

    It has been known for 20 years that electron screening strongly changes nuclear reaction cross sections at sub-Coulomb charged-particle projectile energies. The screening energy can be increased considerably if the target atoms are implanted in a metallic host and cooled to low temperature (T˜10 K). The large screening in metals derives from the Debye plasma model applied to the quasi-free metallic electrons. If ``time reversed,'' this model implies that the lifetime of radioactive nuclei placed in a metallic host can be manipulated by orders of magnitude. For α and β^+ decay one expects a shorter half-life, while for β^- decay and EC, a longer half-life is expected. The results of prior experiments testing this theory are controversial; about half of the published data confirm an effect, while the other half observe no effect. We will report on our experimental studies using ^64Cu and ^65Zn nuclei produced at TUNL via the ^63Cu(d,p) and ^65Cu(p,n) reactions, respectively. For ^64Cu, we detected the 511 keV annihilation γ rays and for ^65Zn the 1115.5 keV γ rays using HPGe detectors. In both cases we did not observe a half-life change outside experimental uncertainties between measurements at room temperature and those with the samples cooled to T=12 K.

  20. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  1. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.

    PubMed

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  2. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  3. Capturing the Large Scale Behavior of Many Particle Systems Through Coarse-Graining

    NASA Astrophysics Data System (ADS)

    Punshon-Smith, Samuel

    This dissertation is concerned with two areas of investigation: the first is understanding the mathematical structures behind the emergence of macroscopic laws and the effects of small scales fluctuations, the second involves the rigorous mathematical study of such laws and related questions of well-posedness. To address these areas of investigation the dissertation involves two parts: Part I concerns the theory of coarse-graining of many particle systems. We first investigate the mathematical structure behind the Mori-Zwanzig (projection operator) formalism by introducing two perturbative approaches to coarse-graining of systems that have an explicit scale separation. One concerns systems with little dissipation, while the other concerns systems with strong dissipation. In both settings we obtain an asymptotic series of `corrections' to the limiting description which are small with respect to the scaling parameter, these corrections represent the effects of small scales. We determine that only certain approximations give rise to dissipative effects in the resulting evolution. Next we apply this framework to the problem of coarse-graining the locally conserved quantities of a classical Hamiltonian system. By lumping conserved quantities into a collection of mesoscopic cells, we obtain, through a series of approximations, a stochastic particle system that resembles a discretization of the non-linear equations of fluctuating hydrodynamics. We study this system in the case that the transport coefficients are constant and prove well-posedness of the stochastic dynamics. Part II concerns the mathematical description of models where the underlying characteristics are stochastic. Such equations can model, for instance, the dynamics of a passive scalar in a random (turbulent) velocity field or the statistical behavior of a collection of particles subject to random environmental forces. First, we study general well-posedness properties of stochastic transport equation with

  4. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  5. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  6. Transport of active ellipsoidal particles in ratchet potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, whilemore » for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)« less

  7. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  8. The abundances of hydrogen, helium, oxygen, and iron accelerated in large solar particle events

    NASA Technical Reports Server (NTRS)

    Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.

    1993-01-01

    Energy spectra measured in 10 large flares with the University of Maryland/Max-Planck-Institut sensors on ISEE I and Goddard Space Flight Center sensors on IMP 8 allowed us to determine the average H, He, O, and Fe abundances as functions of energy in the range of about 0.3-80 MeV/nucleon. Model fits to the spectra of individual events using the predictions of a steady state stochastic acceleration model with rigidity-dependent diffusion provided a means of interpolating small portions of the energy spectra not measured with the instrumentation. Particles with larger mass-to-charge ratios were relatively less abundant at higher energies in the flare-averaged composition. The Fe/O enhancement at low SEP energies was less than the Fe/O ratios observed in He-3-rich flares. Unlike the SEP composition averaged above 5 MeV/nucleon, the average SEP abundances above 0.3 MeV/nucleon were similar to the average solar wind.

  9. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  10. A small-angle large-acceptance detection system for hadrons

    NASA Astrophysics Data System (ADS)

    Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.

    2000-04-01

    The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.

  11. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  12. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  13. Arduino based radioactive tracking system

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Rashid, Mohd Fazlie Bin Abdul; Rahman, Anwar Bin Abdul; Ramlan, Atikah

    2017-01-01

    There is a clear need to strengthen security measures to prevent any malevolent use or accidental misuse of radioactive sources. Some of these radioactive sources are regularly transported outside of office or laboratory premises for work and consultation purposes. This paper present the initial development of radioactive source tracking system, which combined Arduino microcontroller, Global Positioning System (GPS) and Global System for Mobile communication (GSM) technologies. The tracking system will help the owner to monitor the movement of the radioactive sources. Currently, the system is capable of tracking the movement of radioactive source through the GPS satellite signals. The GPS co-ordinate could either be transmitted to headquarters at fixed interval via Short Messaging Service (SMS) to enable real time monitoring, or stored in a memory card for offline monitoring and data logging.

  14. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  15. Large Energetic Particle Pressures in Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A. F.; Wimmer-Schweingruber, R. F.; Berger, L.

    2017-09-01

    We study periods of elevated energetic particle intensities observed at the L1 Sun-Earth Lagrangian point when the partial energy density associated with energetic (≥80 keV) particles (PEP) dominates that of the local magnetic field (PB) and thermal plasma populations (PPLS). These periods are not uncommon and are frequently observed prior to the passage of interplanetary (IP) shocks. Because of the significant decreases in key solar wind parameters observed during solar cycle 24 [e.g., 1], we were motivated to perform a comparative statistical analysis to determine if the occurrence rate of periods when PEP exceeded PB or PPLS, or both, differed between solar cycles 23 and 24. We find that the general decrease of PB and PPLS in solar cycle 24 was also accompanied by a general decrease of periods with elevated PEP. The result is that solar cycle 24 showed a lower number of time intervals dominated by PEP. We analyze whether these differences can be related to the properties of the IP shocks observed at L1. Incomplete datasets of shock parameters do not show significant differences between solar cycles 23 and 24 that would allow us to explain the difference in the number of periods with PEP>PB and PEP>PPLS. We analyze then the averaged plasma parameters measured in the upstream region of the shocks and find significantly lower solar wind proton temperatures and magnetic field magnitude upstream of IP shocks in solar cycle 24 compared with those in solar cycle 23. These factors, together with the lower level of solar activity, may explain the lower particle intensities in solar cycle 24 and hence the fewer events with PEP>PB and PEP>PPLS.

  16. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  17. Enhancement of low-energy electron emission in 2D radioactive films

    NASA Astrophysics Data System (ADS)

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  18. Influence of particle composition on thorium cycling along the U.S. GEOTRACES North Atlantic Section

    NASA Astrophysics Data System (ADS)

    Lerner, Paul; Marchal, Olivier; Lam, Phoebe

    2017-04-01

    Our current knowledge about the behaviour of particle-reactive substances in the ocean stems largely from measurements of thorium radio-isotopes (Th-228, Th-230, Th-234) on seawater samples. The oceanic Th database has increased dramatically over the recent years, thanks in particular to the GEOTRACES program, an international study of the marine biogeochemical cycles of trace elements and their isotopes. Here we present an analysis of data collected at several stations of the U.S. GEOTRACES North Atlantic section (section GA03). Data originating from eleven stations situated west and east of the Middle-Atlantic Ridge are analyzed. First, at each station, the rate parameters of a single-particle class model of Th and particle cycling in the ocean water column are estimated from a least-squares fit to an eclectic data set, including (i) measurements of Th-228, Th-230, Th-234 activities in different size fractions, (ii) measurements of particle concentration, and (iii) measurements, or observational estimates, of the activities of the radio-active parents Ra-228, U-234, and U-238. Among our most salient results is a significant decrease in the apparent rate constant of Th adsorption (k1) with depth, with maxima in the meso-pelagic zone (ca. 100 - 1000 m) and minima below, at most stations. Second, we explore whether our k1 estimates can be related to changes in particle composition, both along the water column and laterally along GA03. We apply (i) multiple linear regression to quantify the amount of variance in k1 that can be explained by linear regression against particle composition data, and (ii) relative importance analysis to determine the relative contribution of different particulate phases to the explained variance in k1. Finally, the implications of our results for the interpretation of field Th isotope data and for the description of particle scavenging in ocean-biogeochemistry models are clarified.

  19. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer

    NASA Astrophysics Data System (ADS)

    Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun

    2018-01-01

    Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer

  20. Proton enhancement at large pT at the CERN large hadron collider without structure in associated-particle distribution.

    PubMed

    Hwa, Rudolph C; Yang, C B

    2006-07-28

    The production of pions and protons in the pT range between 10 and 20 GeV/c for Pb+Pb collisions at CERN LHC is studied in the recombination model. It is shown that the dominant mechanism for hadronization is the recombination of shower partons from neighboring jets when the jet density is high. Protons are more copiously produced than pions in that pT range because the coalescing partons can have lower momentum fractions, but no thermal partons are involved. The proton-to-pion ratio can be as high as 20. When such high pT hadrons are used as trigger particles, there will not be any associated particles that are not in the background.

  1. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion

  2. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  3. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  4. Temporary Personal Radioactivity

    ERIC Educational Resources Information Center

    Myers, Fred

    2012-01-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances. (Contains 1 table and 2…

  5. Large-size monodisperse latexes as a commercial space product

    NASA Technical Reports Server (NTRS)

    Kornfeld, D. M.

    1977-01-01

    Proposed spacelab production of large-size (2-40 micron diameter) monodispersed latexes is discussed. Explanations are given for the present lack of monodisperse particles in this size range. The four main topics discussed are: (1) the potential uses of these large particle size latexes, (2) why it is necessary for the particles to have a very narrow size distribution, (3) why large amounts of these monodisperse latexes are needed, and (4) why it is necessary to go to microgravity to prepare these latexes.

  6. The discovery of radioactivity

    NASA Astrophysics Data System (ADS)

    Radvanyi, Pierre; Villain, Jacques

    2017-11-01

    The radioactivity of uranium was discovered in 1896 by Henri Becquerel who, starting from a wrong idea, progressively realized what he was observing, regularly informing the French Academy of Sciences of the progress he was doing. In the next years, it was found that thorium was radioactive too, and two new radioactive elements, polonium and radium, were discovered by Pierre and Marie Curie, while a third one, actinium, was identified by André Debierne. The study of the penetrating power and of the effect of electric and magnetic fields allowed scientists to demonstrate the complexity of nuclear radiation with its three components α, β, γ. The Comptes rendus de l'Académie des sciences allow the reader to see how difficult it was to understand the nature of radioactivity, which was essentially elucidated by Ernest Rutherford and Frederick Soddy.

  7. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. Y.; Yu, J.; Cao, J. B.

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  8. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE PAGES

    Li, L. Y.; Yu, J.; Cao, J. B.; ...

    2016-11-05

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  9. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Althoughmore » this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.« less

  10. Direct Observation of Two Proton Radioactivity Using Digital Photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rykaczewski, Krzysztof Piotr; Pfutzner, M.; Dominik, Wojciech

    2007-01-01

    Recently the observation of a new type of spontaneous radioactive decay has been claimed in which two protons are simultaneously ejected by an atomic nucleus from the ground state1,2,3. Experimental data obtained for the extremely neutron-deficient nuclei 45Fe and 54Zn, were interpreted as the first evidence of such a decay mode which has been sought since 1960.4 However, the technique applied in those studies allowed only measurements of the decay time and the total energy released. Particles emitted in the decay were not identified and the conclusions had to be supported by theoretical arguments. Here we show for the firstmore » time, directly and unambiguously, that 45Fe indeed disintegrates by two-proton decay. Furthermore, we demonstrate that the decay branch of this isotope leads to various particle emission channels including two-proton and three-proton emission. To achieve this result we have developed a new type of detector V the Optical Time Projection Chamber (OTPC) in which digital photography is applied to nuclear physics for the first time. The detector records images of tracks from charged particles, allowing for their unambiguous identification and the reconstruction of decay events in three dimensions. This new and simple technique provides a powerful method to identify exotic decay channels involving emission of charged particles. It is expected that further studies with the OTPC device will yield important information on nuclei located at and beyond the proton drip-line, thus providing new material for testing and improving models of very unstable atomic nuclei.« less

  11. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  12. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  13. Shock Interaction with Random Spherical Particle Beds

    NASA Astrophysics Data System (ADS)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  15. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Keller, O.; Schmeling, S.; Müller, A.; Benoit, M.

    2016-11-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300μm pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  16. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5-40 nm

    NASA Astrophysics Data System (ADS)

    Kallinger, Peter; Szymanski, Wladyslaw W.

    2015-04-01

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5-40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6-5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  17. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi

  18. Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsuo; Bronson, Frazier

    As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive atmore » the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in a

  19. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  20. Current situation and future plans in radioactive waste management in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, H.; Jimenez, M.

    1992-01-01

    A brief introduction is offered in this document in order to explain the importance which is given in Mexico to the safe management of radioactive wastes. The Secretaria de Energia, Minas e Industria Paraestatal is the organization responsible for this issue. Also, a brief historical background is offered so as to understand the evolution of these activities since they were originated. This background allows us to describe the present situation, which consists in a substantial change in the volume of produced radioactive wastes; in other words, before the present situation only the, nuclear wastes from the application of radioisotopes weremore » generated whereas currently, with the starting of commercial operation of the first unit of Laguna Verde Nuclear Power Plant (LVNPP), large volumes of industrial radioactive wastes are being generated. A mention is given as well of the acquired experience during more than 20 years of waste management and of the technologies which have been applied or practiced in the use and disposal of such wastes. Finally, some general trends in relation to the future planning are indicated, which essentially consist in the siting and characterization of a site so as to, design and construct a permanent disposal facility in order to dispose the operational radioactive wastes from LVNPP.« less

  1. Natural radioactivity in groundwater--a review.

    PubMed

    Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw

    2011-12-01

    The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.

  2. The Distribution of Heat-Producing Radioactive Elements in the Deep Earth

    NASA Astrophysics Data System (ADS)

    Chidester, Bethany A.

    The Earth is a heat engine, where large differences in temperature between the interior and the surface drive large-scale movement that manifests as plate tectonics and the geomagnetic field that protects us from the Sun's harmful charged particles. Decay of the long-lived radioactive elements U, Th, and K is expected to contribute as much as 45% of the current heat production in the Earth, and that heat production was five times higher early in Earth's history. It is unclear how this heat source affects the thermal and dynamic evolution of the Earth's core and mantle and how that contribution has changed over geologic time. This dissertation addresses this problem in several different ways. This work represents the first high-pressure, high-temperature metal-silicate partitioning experiments for U, Th, and K in the laser-heated diamond anvil cell at conditions relevant to core formation. A chemical model is developed using parameterization of these partitioning data to constrain the concentrations of each of these elements in the core. Using a numerical calculation, it is then determined how that radioactive heat would contribute to the core's energy and entropy budget through time. One finds that, despite its strong lithophile nature at the surface, U partitions significantly into the metallic phase at increasing temperatures. This may be due to a decrease in U valence from 4+ to 2+ in high-pressure silicate melts, which our data supports. However, K and Th do not exhibit a similar change in behavior at these conditions, and this may drive fractionation between U and Th in the deep mantle. At the most extreme conditions of core formation, enough U could exist in the core to produce up to 4.4 TW of heat 4.5 billion years ago. Potassium could produce much less heat than U early on (< 1 TW), and due to its short half-life, would have decayed away much faster. While this energy source is significantly greater than was previously thought to be possible, it is likely

  3. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  4. New bounds on axionlike particles from the Fermi Large Area Telescope observation of PKS 2155 -304

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Liang, Yun-Feng; Li, Shang; Liao, Neng-Hui; Feng, Lei; Yuan, Qiang; Fan, Yi-Zhong; Ren, Zhong-Zhou

    2018-03-01

    The axionlike particle (ALP)-photon mixing in the magnetic field around γ -ray sources or along the line of sight could induce oscillation between photons and ALPs, which then causes irregularities in the γ -ray spectra. In this work we search for such spectral irregularities in the spectrum of PKS 2155 -304 using 8.6 years of data from the Fermi Large Area Telescope (Fermi-LAT). No significant evidence for the presence of ALP-photon oscillation is obtained, and the parameter space of ALPs is constrained. The exclusion region sensitively depends on the poorly known magnetic field of the host galaxy cluster of PKS 2155 -304 . If the magnetic field is as high as ˜10 μ G , the "holelike" parameter region allowed in Ref. [1] can be ruled out.

  5. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    PubMed

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  6. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  7. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, Joseph D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  8. Laboratory Study of Air Turbulence-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Petersen, A.; Baker, L.; Coletti, F.

    2017-12-01

    Inertial particles suspended in a turbulent flow are unable to follow the fluid's rapid velocity fluctuations, leading to high concentrations in regions where fluid strain dominates vorticity. This phenomenon is known as preferential concentration or clustering and is thought to affect natural processes ranging from the collisional growth of raindrops to the formation of planetesimals in proto-planetary nebulas. In the present study, we use a large jet-stirred chamber to generate homogeneous air turbulence into which we drop particles with an aerodynamic response time comparable to the flow time scales. Using laser imaging we find that turbulence can lead to a multi-fold increase of settling velocity compared to still-air conditions. We then employ Voronoi tessellation to examine the particle spatial distribution, finding strong evidence of turbulence-driven particle clustering over a wide range of experimental conditions. We observe individual clusters of a larger size range than seen previously, sometimes beyond the integral length scale of the turbulence. We also investigate cluster topology and find that they (i) exhibit a fractal structure, (ii) have a nearly constant particle concentration over their entire size range, and (iii) are most often vertically oriented. Furthermore, clustered particles tend to fall faster than those outside clusters, and larger clusters fall faster on average than smaller ones. Finally, by simultaneous measurement of particle and air velocity fields, we provide the first experimental evidence of preferential sweeping, a mechanism previously proposed to explain the increase in particle settling velocity found in numerical simulations, and find it especially effective for clustered particles. These results are significant for the micro-scale physics of atmospheric clouds. The large cluster size range has implications for how droplets will influence the local environment through condensation, evaporation, drag and latent heat effects

  9. Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon

    NASA Astrophysics Data System (ADS)

    Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.

  10. Implicit Particle Filter for Power System State Estimation with Large Scale Renewable Power Integration.

    NASA Astrophysics Data System (ADS)

    Uzunoglu, B.; Hussaini, Y.

    2017-12-01

    Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.

  11. Understanding of Particle Acceleration by Foreshock Transients

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  12. Conflicting Expertise and Uncertainty: Quality Assurance in High-Level Radioactive Waste Management.

    ERIC Educational Resources Information Center

    Fitzgerald, Michael R.; McCabe, Amy Snyder

    1991-01-01

    Dynamics of a large, expensive, and controversial surface and underground evaluation of a radioactive waste management program at the Yucca Mountain power plant are reviewed. The use of private contractors in the quality assurance study complicates the evaluation. This case study illustrates high stakes evaluation problems. (SLD)

  13. Large-displacement statistics of the rightmost particle of the one-dimensional branching Brownian motion.

    PubMed

    Derrida, Bernard; Meerson, Baruch; Sasorov, Pavel V

    2016-04-01

    Consider a one-dimensional branching Brownian motion and rescale the coordinate and time so that the rates of branching and diffusion are both equal to 1. If X_{1}(t) is the position of the rightmost particle of the branching Brownian motion at time t, the empirical velocity c of this rightmost particle is defined as c=X_{1}(t)/t. Using the Fisher-Kolmogorov-Petrovsky-Piscounov equation, we evaluate the probability distribution P(c,t) of this empirical velocity c in the long-time t limit for c>2. It is already known that, for a single seed particle, P(c,t)∼exp[-(c^{2}/4-1)t] up to a prefactor that can depend on c and t. Here we show how to determine this prefactor. The result can be easily generalized to the case of multiple seed particles and to branching random walks associated with other traveling-wave equations.

  14. Soils: man-caused radioactivity and radiation forecast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gablin, Vassily

    2007-07-01

    Available in abstract form only. Full text of publication follows: One of the main tasks of the radiation safety guarantee is non-admission of the excess over critical radiation levels. In Russia they are man-caused radiation levels. Meanwhile any radiation measurement represents total radioactivity. That is why it is hard to assess natural and man-caused contributions to total radioactivity. It is shown that soil radioactivity depends on natural factors including radioactivity of rocks and cosmic radiation as well as man-caused factors including nuclear and non-nuclear technologies. Whole totality of these factors includes unpredictable (non-deterministic) factors - nuclear explosions and radiation accidents,more » and predictable ones (deterministic) - all the rest. Deterministic factors represent background radioactivity whose trends is the base of the radiation forecast. Non-deterministic factors represent man-caused radiation treatment contribution which is to be controlled. This contribution is equal to the difference in measured radioactivity and radiation background. The way of calculation of background radioactivity is proposed. Contemporary soils are complicated technologically influenced systems with multi-leveled spatial and temporary inhomogeneity of radionuclides distribution. Generally analysis area can be characterized by any set of factors of soil radioactivity including natural and man-caused factors. Natural factors are cosmic radiation and radioactivity of rocks. Man-caused factors are shown on Fig. 1. It is obvious that man-caused radioactivity is due to both artificial and natural emitters. Any result of radiation measurement represents total radioactivity i.e. the sum of activities resulting from natural and man-caused emitters. There is no gauge which could separately measure natural and man-caused radioactivity. That is why it is so hard to assess natural and man-caused contributions to soil radioactivity. It would have been possible if

  15. Portal Vein Embolization with Radiolabeled Polyvinyl Alcohol Particles in a Swine Model: Hepatic Distribution and Implications for Pancreatic Islet Cell Transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Richard J., E-mail: drrichardowen@tbwifi.c; Mercer, John R.; Al-Saif, Faisal

    2009-05-15

    The distribution of radiolabeled polyvinyl alcohol microspheres (PVAMs) when infused into the portal vein of domestic swine was investigated, with the purpose of assessing implications for pancreatic islet cell transplantation. PVAMs measuring 100-300 {mu}m (Contour SE) and labeled with {sup 99m}Tc were infused into the main portal vein of 12 swine, with intermittent portal venous pressure measurements. The infusion catheter was introduced antegradely via direct or indirect cannulation of the portal vein. The liver was subsequently divided into anatomical segments. Radioactivity (decay corrected) was measured for {sup 99m}Tc microsphere synthesis, dose preparation, gross organ activities, tissue samples, and blood. Particulatemore » labeling, catheter positioning, and infusion were successful in all cases. The number of particles used was (185,000 {+-} 24,000) with a volume of 1 ml. Mean portal pressure at 5 min was significantly higher than baseline, but without a significant difference at 15 min. Extrahepatic tissue and serum radioactivity was negligible. A significant difference in number of radioactive particles per gram was detected between segments 6/7 and segments 5/8. Intrasegmental activity was analyzed, and for segments 2/3 a significant difference in the percentage dose per gram across samples was demonstrated (P = 0.001). Effective and stable radiolabeling of PVAMs with {sup 99m}Tc-sulfur colloid was demonstrated. Portal venous infusion of 100- to 300-{mu}m particles showed entrapment in the sinusoidal hepatic system with transient portal pressure elevation. Preferential embolization into the right lateral and posterior segments occurs, suggesting that flow dynamics/catheter tip position plays a role in particle distribution.« less

  16. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  17. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  18. Decoding Environmental Processes Using Radioactive Isotopes for the Post-Radioactive Contamination Recovery Assessment

    NASA Astrophysics Data System (ADS)

    Yasumiishi, Misa; Nishimura, Taku; Osawa, Kazutoshi; Renschler, Chris

    2017-04-01

    The continual monitoring of environmental radioactive levels in Fukushima, Japan following the nuclear plant accident in March 2011 provides our society with valuable information in two ways. First, the collected data can be used as an indicator to assess the progress of decontamination efforts. Secondly, the collected data also can be used to understand the behavior of radioactive isotopes in the environment which leads to further understanding of the landform processes. These two aspects are inseparable for us to understand the effects of radioactive contamination in a dynamic environmental system. During the summer of 2016, 27 soil core samples were collected on a farmer's land (rice paddies and forest) in Fukushima, about 20 km northwest of the nuclear plant. Each core was divided into 2.0 - 3.0 cm slices for the Cs-134, Cs-137, and I-131 level measurement. The collected data is being analyzed from multiple perspectives: temporal, spatial, and geophysical. In the forest area, even on the same hillslope, multiple soil types and horizon depths were observed which indicates the challenges in assessing the subsurface radioactive isotope movements. It appears that although highly humic soils show higher or about the same level of radioactivity in the surface layers, as the depth increased, the radioactivity decreased more in those samples compared with more sandy soils. With regard to the direction a slope faces and the sampling altitudes, the correlation between those attributes and radioactivity levels is inconclusive at this moment. The altitude might have affected the fallout level on a single hillslope-basis. However, to determine the correlation, further sampling and the detailed analysis of vegetation and topography might be necessary. Where the surface soil was scraped and new soil was brought in, former rice paddy surface layers did show three-magnitude levels lower of radioactivity in the top layer when compared with forest soils. At the foot of forest

  19. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Measurement of neutron and charged particle fluxes toward earthquake prediction

    NASA Astrophysics Data System (ADS)

    Maksudov, Asatulla U.; Zufarov, Mars A.

    2017-12-01

    In this paper, we describe a possible method for predicting the earthquakes, which is based on simultaneous recording of the intensity of fluxes of neutrons and charged particles by detectors, commonly used in nuclear physics. These low-energy particles originate from radioactive nuclear processes in the Earth's crust. The variations in the particle flux intensity can be the precursor of the earthquake. A description is given of an electronic installation that records the fluxes of charged particles in the radial direction, which are a possible response to the accumulated tectonic stresses in the Earth's crust. The obtained results showed an increase in the intensity of the fluxes for 10 or more hours before the occurrence of the earthquake. The previous version of the installation was able to indicate for the possibility of an earthquake (Maksudov et al. in Instrum Exp Tech 58:130-131, 2015), but did not give information about the direction of the epicenter location. In this regard, the installation was modified by adding eight directional detectors. With the upgraded setup, we have received both the predictive signals, and signals determining the directions of the location of the forthcoming earthquake, starting 2-3 days before its origin.

  1. Storage depot for radioactive material

    DOEpatents

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  2. Radioactive Seed Localization Versus Wire Localization for Nonpalpable Breast Lesions: A Two-Year Initial Experience at a Large Community Hospital.

    PubMed

    Stelle, Lacey; Schoenheit, Taylor; Brubaker, Allison; Tang, Xiwei; Qu, Peiyong; Cradock, Kimberly; Higham, Anna

    2018-01-01

    Radioactive seed localization (RSL) is a safe and effective alternative to wire localization (WL) for nonpalpable breast lesions. While several large academic institutions currently utilize RSL, few community hospitals have adopted this technique. The aim of this study was to examine the experience of RSL versus WL at a large community hospital. A retrospective chart review of patients who underwent RSL or WL for breast-conserving surgery from 1 November 2013 to 31 November 2015. The total number of lesions examined was 382. RSL was utilized in 205 (54%) lesions, with 187 undergoing single RSL, while WL was used in 155 (40%) lesions, with 109 undergoing single WL; both techniques were used in 22 (6%) lesions. Pathology was benign in 142 (48%) lesions, with 93 RSLs and 49 WLs. For malignant lesions, mean specimen size was 36.3 g for single RSL and 35.9 g for single WL (p = 0.904). Re-excision for margin clearance was required for 16 (17%) malignant lesions in the RSL group and 10 (17%) in the WL group (p = 0.954). For malignant lesions, mean operating room time was 86 min for single RSL versus 70 min for single WL (p = 0.014). The use of RSL is a viable option in the community setting, with several benefits over WL. While operative times were slightly longer with RSL, there was no difference in specimen size or re-excision rate for malignant lesions.

  3. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  4. Note: Establishing α-particle radiation damage experiments using the Dalton Cumbrian Facility's 5 MV tandem pelletron.

    PubMed

    Bower, W R; Smith, A D; Pattrick, R A D; Pimblott, S M

    2015-04-01

    Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle ((4)He(2+)) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.

  5. Note: Establishing α-particle radiation damage experiments using the Dalton Cumbrian Facility's 5 MV tandem pelletron

    NASA Astrophysics Data System (ADS)

    Bower, W. R.; Smith, A. D.; Pattrick, R. A. D.; Pimblott, S. M.

    2015-04-01

    Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle (4He2+) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.

  6. Consumer Products Containing Radioactive Materials

    MedlinePlus

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  7. Levels of radioactivity in Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Thani, A.A.; Abdul-Majid, S.; Mohammed, K.

    The levels of natural and man-made radioactivity in soil and seabed were measured in Qatar to assess radiation exposure levels and to evaluate any radioactive contamination that may have reached the country from fallout or due to the Chernobyl accident radioactivity release. Qatar peninsula is located on the Arabian Gulf, 4500 km from Chernobyl, and has an area of {approximately}11,600 km{sup 2} and a population of {approximately}600,000.

  8. Particle Engulfment and Pushing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a liquefied metal solidifies, particles dispersed in the liquid are either pushed ahead of or engulfed by the moving solidification front. Similar effects can be seen when the ground freezes and pushes large particles out of the soil. The Particle Engulfment and Pushing (PEP) experiment, conducted aboard the fourth U.S. Microgravity Payload (USMP-4) mission in 1997, used a glass and plastic beads suspended in a transparent liquid. The liquid was then frozen, trapping or pushing the particles as the solidifying front moved. This simulated the formation of advanced alloys and composite materials. Such studies help scientists to understand how to improve the processes for making advanced materials on Earth. The principal investigator is Dr. Doru Stefanescu of the University of Alabama. This image is from a video downlink.

  9. The Role of Fluid Compression in Particle Energization during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, S.

    2017-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.

  10. Fast inertial particle manipulation in oscillating flows

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  11. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  12. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive materials. (a) Radioactive materials that may be stowed or transported in bulk are limited to those...

  13. The first products made in space: Monodisperse latex particles

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C.-M.; Sheu, H.-R.; Kornfeld, D. M.

    1988-01-01

    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles.

  14. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  15. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  16. The Interplanetary Transport Effects on the Fe/O Ratio of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Qin, G.; Wang, Y.

    2016-12-01

    Mason and coauthors in 2006 invested the intensities of O and Fe in large western solar energetic particle (SEP) events observed by ACE spacecraft. It was found that the Fe/O ratio decreases with time at the same kinetic energy per nucleon during the rising phase of time-intensity profile, and the Fe/O ratio gradually becomes a constant during the decay phase of intensity. However, if the O intensity is compared at a higher kinetic energy with the Fe intensity, the behaviors of intensity profiles of O and Fe are similar. So they concluded that for such kind of events the injection profiles of Fe and O are similar near the Sun, and that scattering effects dominates. With numerical simulations, we find that in order to get such kind of SEPs behavior, Fe and O have to have similar injection profiles near the Sun, and similar diffusion and adiabatic cooling processes in the interplanetary space.

  17. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  18. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  19. Gender, politics, and radioactivity research in interwar Vienna: the case of the Institute for Radium Research.

    PubMed

    Rentetzi, Maria

    2004-09-01

    This essay explores the significance of political and ideological context as well as experimental culture for the participation of women in radioactivity research. It argues that the politics of Red Vienna and the culture of radioactivity research specific to the Viennese setting encouraged exceptional gender politics within the Institute for Radium Research in the interwar years. The essay further attempts to provide an alternative approach to narratives that concentrate on personal dispositions and stereotypical images of women in science to explain the disproportionately large number of women in radioactivity research. Instead, the emphasis here is on the institutional context in which women involved themselves in radioactivity in interwar Vienna. This approach places greater importance on contingencies of time and place and highlights the significance of the cultural and political context in a historical study while at the same time shedding light on the interrelation between scientific practices and gender.

  20. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  1. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  2. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  3. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    NASA Astrophysics Data System (ADS)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  4. FACTORS AFFECTING THE DEPOSITION OF INHALED POROUS DRUG PARTICLES

    EPA Science Inventory

    Abstract
    Recent findings indicate that the inhalation of large manufactured porous particles may be particularly effective for drug delivery. In this study, a mathematical model was employed to systematically investigate the effects of particle size, particle density, aerosol ...

  5. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  6. An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach

    NASA Astrophysics Data System (ADS)

    Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo

    2017-07-01

    In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.

  7. Visualization of Air Particle Dynamics in an Engine Inertial Particle Separator

    NASA Astrophysics Data System (ADS)

    Wolf, Jason; Zhang, Wei

    2015-11-01

    Unmanned Aerial Vehicles (UAVs) are regularly deployed around the world in support of military, civilian and humanitarian efforts. Due to their unique mission profiles, these advanced UAVs utilize various internal combustion engines, which consume large quantities of air. Operating these UAVs in areas with high concentrations of sand and dust can be hazardous to the engines, especially during takeoff and landing. In such events, engine intake filters quickly become saturated and clogged with dust particles, causing a substantial decrease in the UAVs' engine performance and service life. Development of an Engine Air Particle Separator (EAPS) with high particle separation efficiency is necessary for maintaining satisfactory performance of the UAVs. Inertial Particle Separators (IPS) have been one common effective method but they experience complex internal particle-laden flows that are challenging to understand and model. This research employs an IPS test rig to simulate dust particle separation under different flow conditions. Soda lime glass spheres with a mean diameter of 35-45 microns are used in experiments as a surrogate for airborne particulates encountered during flight. We will present measurements of turbulent flow and particle dynamics using flow visualization techniques to understand the multiphase fluid dynamics in the IPS device. This knowledge can contribute to design better performing IPS systems for UAVs. Cleveland State University, Cleveland, Ohio, 44115.

  8. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  9. Rapid identification of high particle number emitting on-road vehicles and its application to a large fleet of diesel buses.

    PubMed

    Jayaratne, E R; Morawska, L; Ristovski, Z D; He, C

    2007-07-15

    Pollutant concentrations measured in the exhaust plume of a vehicle may be related to the pollutant emission factor using the CO2 concentration as a measure of the dilution factor. We have used this method for the rapid identification of high particle number (PN) emitting on-road vehicles. The method was validated for PN using a medium-duty vehicle and successfully applied to measurements of PN emissions from a large fleet of on-road diesel buses. The ratio of PN concentration to CO2 concentration, Z, in the exhaust plume was estimated for individual buses. On the average, a bus emitted about 1.5 x 10(9) particles per mg of CO2 emitted. A histogram of the number of buses as a function of Z showed, for the first time, that the PN emissions from diesel buses followed a gamma distribution, with most of the values within a narrow range and a few buses exhibiting relatively large values. It was estimated that roughly 10% and 50% of the PN emissions came from just 2% and 25% of the buses, respectively. A regression analysis showed that there was a positive correlation between Z and age of buses, with the slope of the best line being significantly different from zero. The mean Z value for the pre-Euro buses was significantly greater than each of the values for the Euro I and II buses.

  10. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  11. Residual radioactivity of treated green diamonds.

    PubMed

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  12. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  13. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; ...

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  14. State estimation and prediction using clustered particle filters.

    PubMed

    Lee, Yoonsang; Majda, Andrew J

    2016-12-20

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.

  15. State estimation and prediction using clustered particle filters

    PubMed Central

    Lee, Yoonsang; Majda, Andrew J.

    2016-01-01

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332

  16. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  17. Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea

    NASA Astrophysics Data System (ADS)

    Kusakabe, M.; Ku, T.-L.; Harada, K.; Taguchi, K.; Tsunogai, S.

    1988-01-01

    Fission-product nuclides 134Cs, 137Cs and 103Ru originated from the Chernobyl accident have been detected in sediment traps deployed at mid-water depths ranging from 110 to 780 m in the N. Pacific and the Bering Sea. The detected radioactivities, originally associated with fine airborne particles, have apparently been incorporated into much larger aggregates of predominantly biogenic material formed in the surface ocean, and transferred downward through the water column with velocities of the order of 100 m/day.

  18. A Remote Radioactivity Experiment

    ERIC Educational Resources Information Center

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  19. Association of 3He-rich solar energetic particles with large-scale coronal waves

    NASA Astrophysics Data System (ADS)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  20. Rapidity and species dependence of particle production at large transverse momentum for d+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Guo, Y.; Gupta, N.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-11-01

    We determine rapidity asymmetry in the production of charged pions, protons, and antiprotons for large transverse momentum (pT) for d+Au collisions at sNN=200 GeV. The rapidity asymmetry is defined as the ratio of particle yields at backward rapidity (Au beam direction) to those at forward rapidity (d beam direction). The identified hadrons are measured in the rapidity regions |y|<0.5 and 0.5<|y|<1.0 for the pT range 2.5particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model preference. The rapidity dependence of π-/π+ and p¯/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT.