Science.gov

Sample records for large rift valley

  1. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  2. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  3. Rift Valley fever.

    PubMed

    Paweska, J T

    2015-08-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.

  4. Rift Valley Fever Review

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  5. [Rift valley fever].

    PubMed

    Markin, V A; Pantiukhov, V B; Markov, V I; Bondarev, V P

    2012-01-01

    In the last quarter of century virus of Rift valley fever (RVF) sharply extended its distribution by moving from Africa to Asia and evolving from low- to high pathogenic for humans causing severe hemorrhagic disease, practically equaling in this respect with some members ofa group of extremely dangerous pathogens. Morbidity and epidemics of RVF are analyzed. Evolution of epidemic development of the infection is examined. Necessity of development of means and methods for diagnostics, prophylaxis and therapy of RVF is underlined.

  6. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  7. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  8. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Disasters Caused by Large Scale Rift Valley Fever Outbreaks

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.

    2012-01-01

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.

  9. [Rift Valley fever].

    PubMed

    Pépin, M

    2011-06-01

    Rift Valley Fever (RVF) is a zoonotic arbovirosis. Among animals, it mainly affects ruminants, causing abortions in gravid females and mortality among young animals. In humans, RVF virus infection is usually asymptomatic or characterized by a moderate fever. However, in 1 to 3% of cases, more severe forms of the disease (hepatitis, encephalitis, retinitis, hemorrhagic fever) can lead to the death of infected individuals or to major sequels. The RVF virus (Bunyaviridae, genus Phlebovirus) was identified for the first time in the 1930s in Kenya. It then spread over almost all African countries, sometimes causing major epizootics/epidemics. In 2000, the virus was carried out of Africa, in the Middle East Arabian Peninsula. In 2007-2008, Eastern-African countries, including Madagascar, reported significant episodes of RVF virus, this was also the case for the Comoros archipelago and the French island of Mayotte. This ability to spread associated with many vectors, including in Europe, and high viral loads in infected animals led the health authorities worldwide to warn about the potential emergence of RVF virus in areas with a temperate climate. The awareness has increased in recent years with climate changes, which may possibly modify the vector distribution and competence, and prompted many RVF virus-free countries to better prepare for a potential implantation of RVF. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Large mammals from the Upper Neopleistocene reference sections in the Tunka rift valley, southwestern Baikal Region

    NASA Astrophysics Data System (ADS)

    Shchetnikov, A. A.; Klementiev, A. M.; Filinov, I. A.; Semeney, E. Yu.

    2015-03-01

    This work presents the data on new finds of fossil macrotheriofauna in the reference sections of the Upper Neopleistocene sediments in the Tunka rift valley (southwestern Baikal Region). The osteological material of a number of Late Neopleistocene mammals including extinct species rare for the Baikal region such as Crocuta spelaea, Panthera spelaea, and Spirocerus kiakhtensis (?) was directly dated with a radiocarbon (AMS) method. The obtained 14C data (18000-35000 years) allow one to rejuvenate significantly the upper limit of the common age interval of habitat of these animals in southern part of Eastern Siberia. Cave hyena and spiral-horned antelope lived in the Tunka rift valley in the Baikal region in Late Kargino time (37-24 ka), and cave lion survived the maximum in the Sartan cryochron in the region (21-20 ka). The study of collected paleontological collections provides a basis for selection of independent Kargino (MIS 3) faunal assemblages to use them for regional biostratigraphic analysis of Pleistocene deposits. Radiocarbon age dating of samples allows one to attribute confidently all paleofaunal remains available to the second half of the Late Pleistocene.

  11. Molecular epidemiology of Rift Valley fever virus.

    PubMed

    Grobbelaar, Antoinette A; Weyer, Jacqueline; Leman, Patricia A; Kemp, Alan; Paweska, Janusz T; Swanepoel, Robert

    2011-12-01

    Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944-2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed.

  12. Molecular Epidemiology of Rift Valley Fever Virus

    PubMed Central

    Grobbelaar, Antoinette A.; Weyer, Jacqueline; Leman, Patricia A.; Kemp, Alan; Paweska, Janusz T.

    2011-01-01

    Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944–2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed. PMID:22172568

  13. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  14. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Diasters Caused by Large Scale Rift Valley fever Outbreaks

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of vector-borne diseases. We show that episodic outbreaks of Rift Valley fever are influen...

  15. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  16. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  17. Rift Valley Fever Outbreak, Southern Mauritania, 2012

    PubMed Central

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth

    2014-01-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September–November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas. PMID:24447334

  18. Rift Valley Fever in Namibia, 2010

    PubMed Central

    Monaco, Federica; Pinoni, Chiara; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-01-01

    During May–July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009–2010. PMID:24274469

  19. Detection and Response for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  20. Biogeochemistry of Kenyan Rift Valley Lake Sediments

    NASA Astrophysics Data System (ADS)

    Grewe, Sina; Kallmeyer, Jens

    2013-04-01

    The numerous lakes in the Kenyan Rift Valley show strong hydrochemical differences due to their varying geologic settings. There are freshwater lakes with a low alkalinity like Lake Naivasha on the one hand and very salt-rich lakes with high pH values like Lake Logipi on the other. It is known that the underlying lake sediments are influenced by the lake chemistry and by the microorganisms in the sediment. The aim of this work is to provide a biogeochemical characterization of the lake sediments and to use these data to identify the mechanisms that control lake chemistry and to reconstruct the biogeochemical evolution of each lake. The examined rift lakes were Lakes Logipi and Eight in the Suguta Valley, Lakes Baringo and Bogoria south of the valley, as well as Lakes Naivasha, Oloiden, and Sonachi on the Kenyan Dome. The porewater was analysed for different ions and hydrogen sulphide. Additionally, alkalinity and salinity of the lake water were determined as well as the cell numbers in the sediment, using fluorescent microscopy. The results of the porewater analysis show that the overall chemistry differs considerably between the lakes. In some lakes, concentrations of fluoride, chloride, sulphate, and/or hydrogen sulphide show strong concentration gradients with depth, whereas in other lakes the concentrations show only minor variations. Fluoride is present in all lakes; the lowest concentration is found in Lake Oloiden (60 - 90 mg/l), the highest one in Lake Bogoria (1,025 - 1,930 mg/l). The lakes show also large differences in sulphate concentrations. The values vary between 2 mg/l in Lake Baringo and 15,250 mg/l in Lake Eight. In all cores, sulphate concentration does not change significantly with depth; however, there is a distinct peak in each core, raising the question of synchronicity. As expected, chloride concentrations correlate with total salinity. There is no hydrogen sulphide present in the porewater of Lakes Naivasha, Baringo, and Oloiden, whereas in

  1. Rift Valley fever, Sudan, 2007 and 2010.

    PubMed

    Aradaib, Imadeldin E; Erickson, Bobbie R; Elageb, Rehab M; Khristova, Marina L; Carroll, Serena A; Elkhidir, Isam M; Karsany, Mubarak E; Karrar, Abdelrahim E; Elbashir, Mustafa I; Nichol, Stuart T

    2013-02-01

    To elucidate whether Rift Valley fever virus (RVFV) diversity in Sudan resulted from multiple introductions or from acquired changes over time from 1 introduction event, we generated complete genome sequences from RVFV strains detected during the 2007 and 2010 outbreaks. Phylogenetic analyses of small, medium, and large RNA segment sequences indicated several genetic RVFV variants were circulating in Sudan, which all grouped into Kenya-1 or Kenya-2 sublineages from the 2006-2008 eastern Africa epizootic. Bayesian analysis of sequence differences estimated that diversity among the 2007 and 2010 Sudan RVFV variants shared a most recent common ancestor circa 1996. The data suggest multiple introductions of RVFV into Sudan as part of sweeping epizootics from eastern Africa. The sequences indicate recent movement of RVFV and support the need for surveillance to recognize when and where RVFV circulates between epidemics, which can make data from prediction tools easier to interpret and preventive measures easier to direct toward high-risk areas.

  2. Prediction of a Rift Valley fever Outbreak

    USDA-ARS?s Scientific Manuscript database

    Using satellite measurements to detect elevated sea surface temperatures (SSTs) and subsequent elevated normalized difference vegetation index (NDVI) data in Africa, we predicted an outbreak of Rift Valley fever (RVF) in humans and animals in the Horn of Africa during September 2006-May 2007. We det...

  3. Diagnostic approaches for Rift Valley Fever

    USDA-ARS?s Scientific Manuscript database

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  4. Reemergence of Rift Valley fever, Mauritania, 2010.

    PubMed

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A

    2014-02-01

    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  5. Rift Valley fever: A neglected zoonotic disease?

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  6. Reemergence of Rift Valley Fever, Mauritania, 2010

    PubMed Central

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C.M.; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O.; Zanotto, Paolo M.A.; Diallo, Mawlouth

    2014-01-01

    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa. PMID:24447381

  7. Forecast and Outbreak of Rift valley fever in Sudan, 2007

    USDA-ARS?s Scientific Manuscript database

    Background Rift Valley fever (RVF) outbreaks occur during heavy rainfall in various sub-Saharan countries including Kenya, Somalia, and Tanzania and more recently in Saudi Arabia and Yemen. Given the wide geographic and ecological range of RVF virus, it is necessary to monitor large areas for condit...

  8. The Pathogenesis of Rift Valley Fever

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2011-01-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis. PMID:21666766

  9. The pathogenesis of Rift Valley fever.

    PubMed

    Ikegami, Tetsuro; Makino, Shinji

    2011-05-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis.

  10. Rift Valley fever in small ruminants, Senegal, 2003.

    PubMed

    Chevalier, Véronique; Lancelot, Renaud; Thiongane, Yaya; Sall, Baba; Diaité, Amadou; Mondet, Bernard

    2005-11-01

    During the 2003 rainy season, the clinical and serologic incidence of Rift Valley fever was assessed in small ruminant herds living around temporary ponds located in the semi-arid region of the Ferlo, Senegal. No outbreak was detected by the surveillance system. Serologic incidence was estimated at 2.9% (95% confidence interval 1.0-8.7) and occurred in 5 of 7 ponds with large variations in the observed incidence rate (0%-20.3%). The location of ponds in the Ferlo Valley and small ponds were correlated with higher serologic incidence (p = 0.0005 and p = 0.005, respectively). Rift Valley fever surveillance should be improved to allow early detection of virus activity. Ruminant vaccination programs should be prepared to confront the foreseeable higher risks for future epidemics of this disease.

  11. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014.

    PubMed

    Fafetine, José M; Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J A W; Venter, Estelle H

    2016-12-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa.

  12. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014

    PubMed Central

    Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J.A.W.; Venter, Estelle H.

    2016-01-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa. PMID:27869589

  13. Current Status of Rift Valley Fever Vaccine Development

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease that presents substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Pheuniviridae within the order Bunyavirales. The wide distribution of ...

  14. TDRS satellite over African Rift Valley, Kenya, Africa

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  15. Prediction of a Rift Valley fever outbreak

    PubMed Central

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre B.; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Niño/Southern Oscillation related climate anomalies were analyzed by using a combination of satellite measurements of elevated sea-surface temperatures and subsequent elevated rainfall and satellite-derived normalized difference vegetation index data. A Rift Valley fever (RVF) risk mapping model using these climate data predicted areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. To our knowledge, this is the first prospective prediction of a RVF outbreak. PMID:19144928

  16. Rift Valley fever: the Nigerian story.

    PubMed

    Adeyeye, Adewale A; Ekong, Pius S; Pilau, Nicholas N

    2011-01-01

    Rift Valley fever (RVF) is an arthropod-borne zoonotic disease of livestock. It is characterised by fever, salivation, abdominal pain, diarrhoea, mucopurulent to bloody nasal discharge, abortion, rapid decrease in milk production and death in animals. Infected humans experience an influenza-like illness that is characterised by fever, malaise, headaches, nausea and epigastric pain followed by recovery, although mortality can occur. RVF was thought to be a disease of sub-Saharan Africa but with the outbreaks in Egypt and the Arabian Peninsula, it may be extending its range further afield. Virological and serological evidence indicates that the virus exists in Nigeria and, with the warning signal sent by international organisations to countries in Africa about an impending outbreak, co-ordinated research between veterinarians and physicians in Nigeria is advocated.

  17. Sociocultural and economic dimensions of Rift Valley fever.

    PubMed

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-04-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures.

  18. Experimental Rift Valley fever in West African Dwarf sheep.

    PubMed

    Fagbami, A H; Tomori, O; Fabiyi, A; Isoun, T T

    1975-05-01

    West African Dwarf sheep were challenged with a low mouse brain-passaged Rift Valley fever virus (Ib-AR 55172) isolated from Nigeria. Viraemia, mild febrile reaction and neutralising antibodies were demonstrated in inoculated animals.

  19. Sociocultural and Economic Dimensions of Rift Valley Fever

    PubMed Central

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-01-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. PMID:25688166

  20. Relief Inversion in the Avrona Playa as Evidence of Large-Magnitude Historical Earthquakes, Southern Arava Valley, Dead Sea Rift

    NASA Astrophysics Data System (ADS)

    Amit, Rivka; Zilberman, Ezra; Porat, Naomi; Enzel, Yehouda

    1999-07-01

    The Arava Valley section of the Dead Sea Transform (DST) in southern Israel is characterized by the absence of seismic activity in recent times. However, paleoseismic analysis of sediments in the Avrona Playa, a pull-apart basin along the DST, reveals that at least six M > 6 tectonic events have affected the Avrona playa in the last 14,000 yr. The recurrence interval of the events is approximately 2000 yr. Trenched normal faults and push-up ridges in the playa show that the upper 2 m of the deformed sedimentary sequence consists of playa deposits with uniform soil development. The deformed sediments and the soil are typical of basins with an endoreic fluvial system. Based on the limiting age of the sequence and the extent of soil development, faulting in the playa, followed by compression and uplift, occurred in the last 1000 yr. This most recent tectonic event displaced the surface by at least 1 m, consistent with a M > 6.5 earthquake. This earthquake changed the morphology of the Avrona Playa from a closed system with internal drainage to an open basin, resulting in relief inversion. The seismic quiescence in the Arava may indicate a seismic gap in this segment of the DST.

  1. The First Prediction of a Rift Valley Fever Outbreak

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  2. New vectors of Rift Valley fever in West Africa.

    PubMed Central

    Fontenille, D.; Traore-Lamizana, M.; Diallo, M.; Thonnon, J.; Digoutte, J. P.; Zeller, H. G.

    1998-01-01

    After an outbreak of Rift Valley fever in Southern Mauritania in 1987, entomologic studies were conducted in a bordering region in Sénégal from 1991 to 1996 to identify the sylvatic vectors of Rift Valley fever virus. The virus was isolated from the floodwater mosquitoes Aedes vexans and Ae. ochraceus. In 1974 and 1983, the virus had been isolated from Ae. dalzieli. Although these vectors differ from the main vectors in East and South Africa, they use the same type of breeding sites and also feed on cattle and sheep. Although enzootic vectors have now been identified in West Africa, the factors causing outbreaks remain unclear. PMID:9621201

  3. New vectors of Rift Valley fever in West Africa.

    PubMed

    Fontenille, D; Traore-Lamizana, M; Diallo, M; Thonnon, J; Digoutte, J P; Zeller, H G

    1998-01-01

    After an outbreak of Rift Valley fever in Southern Mauritania in 1987, entomologic studies were conducted in a bordering region in Sénégal from 1991 to 1996 to identify the sylvatic vectors of Rift Valley fever virus. The virus was isolated from the floodwater mosquitoes Aedes vexans and Ae. ochraceus. In 1974 and 1983, the virus had been isolated from Ae. dalzieli. Although these vectors differ from the main vectors in East and South Africa, they use the same type of breeding sites and also feed on cattle and sheep. Although enzootic vectors have now been identified in West Africa, the factors causing outbreaks remain unclear.

  4. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    PubMed Central

    Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.

    2014-01-01

    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703

  5. Rift Valley Fever: An Emerging Mosquito-Borne Disease.

    PubMed

    Linthicum, Kenneth J; Britch, Seth C; Anyamba, Assaf

    2016-01-01

    Rift Valley fever (RVF), an emerging mosquito-borne zoonotic infectious viral disease caused by the RVF virus (RVFV) (Bunyaviridae: Phlebovirus), presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant potential for international spread and use in bioterrorism. RVFV has caused large, devastating periodic epizootics and epidemics in Africa over the past ∼60 years, with severe economic and nutritional impacts on humans from illness and livestock loss. In the past 15 years alone, RVFV caused tens of thousands of human cases, hundreds of human deaths, and more than 100,000 domestic animal deaths. Cattle, sheep, goats, and camels are particularly susceptible to RVF and serve as amplifying hosts for the virus. This review highlights recent research on RVF, focusing on vectors and their ecology, transmission dynamics, and use of environmental and climate data to predict disease outbreaks. Important directions for future research are also discussed.

  6. Molecular biology and genetic diversity of Rift Valley fever virus

    PubMed Central

    Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series

  7. Molecular biology and genetic diversity of Rift Valley fever virus.

    PubMed

    Ikegami, Tetsuro

    2012-09-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series

  8. Epidemiological study of Rift Valley fever virus in Kigoma, Tanzania.

    PubMed

    Kifaro, Emmanuel G; Nkangaga, Japhet; Joshua, Gradson; Sallu, Raphael; Yongolo, Mmeta; Dautu, George; Kasanga, Christopher J

    2014-04-23

    Rift Valley fever virus (RVFV) is an acute, zoonotic viral disease caused by a Phlebovirus, which belongs to the Bunyaviridae family. Among livestock, outbreaks of the disease are economically devastating. They are often characterised by large, sweeping abortion storms and have significant mortality in adult livestock. The aim of the current study was to investigate RVFV infection in the Kigoma region, which is nestled under the hills of the western arm of the Great Rift Valley on the edge of Lake Tanganyika, Tanzania. A region-wide serosurvey was conducted on non-vaccinated small ruminants (sheep and goats, n = 411). Sera samples were tested for the presence of anti-RVFV antibodies and viral antigen, using commercial enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction, respectively. The overall past infections were detected in 22 of the 411 animals, 5.4% (Confidence Interval (CI) 95% = 3.5% - 8.1%). The Kigoma rural area recorded the higher seroprevalence of 12.0% (CI 95% = 7.3% - 18.3%; p < 0.0001), followed by Kibondo at 2.3% (CI 95% = 0.5% - 6.5%; p > 0.05) and the Kasulu district at 0.8% (CI 95% = 0.0% - 4.2%; p > 0.05). The prevalence was 12.5% and 4.7% for sheep and goats, respectively. Reverse transcriptase polymerase chain reaction results indicated that only eight samples were found to be positive (n = 63). This study has confirmed, for the first time, the presence of the RVFV in the Kigoma region four years after the 2007 epizootic in Tanzania. The study further suggests that the virus activity exists during the inter-epizootic period, even in regions with no history of RVFV.

  9. Rift Valley fever: a mosquito-borne emerging disease

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) (Bunyaviridae: Phlebovirus) is mosquito-borne zoonotic emerging infectious viral disease caused by RVF virus (RVFV) that presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant conce...

  10. Observations on the epidemiology of Rift Valley fever in Kenya.

    PubMed Central

    Davies, F. G.

    1975-01-01

    The epizootic range of Rift Valley fever in Kenya is defined from the results of virus isolations during epizootics, and form an extensive serological survey of cattle which were exposed during an epizootic. A study of the sera from a wide range of wild bovidae sampled immediately after the epizootic, showed that they did not act as reservoir or amplifying hosts for RVF. Virus isolation attempts from a variety of rodents proved negative. Rift Valley fever did not persist between epizootics by producing symptomless abortions in cattle in areas within its epizootic range. A sentinel herd sampled annually after an epizootic in 1968 revealed not one single seroconversion from 1969 to 1974. Certain forest and forest edge situations were postulated as enzootic for Rift Valley fever, and a small percentage of seroconversions were detected in cattle in these areas, born four years after the last epizootic. This has been the only evidence for the persistence of the virus in Kenya since 1968, and may be a part of the interepizootic maintenance cycle for Rift Valley fever in Kenya, which otherwise remains unknown. PMID:1058243

  11. Potential Effects of Rift Valley Fever in the United States

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) has been the cause of disease outbreaks throughout Africa and the Arabian Peninsula, and the infection often results in heavy economic costs through loss of livestock. If RVFV, which is common to select agent lists of the US Department of Health and Human Services and ...

  12. Comparing Two Profiles: The Amazing Size of the Rift Valleys.

    ERIC Educational Resources Information Center

    Housepian, Jean

    1983-01-01

    Describes an activity for grade 7-9 students previously introduced to topographic maps and profile lines. Two profiles of equal scale are used to help students appreciate the tremendous size of mid-ocean rift valleys. Procedures and examples of completed profiles are provided. (JN)

  13. Development of a sheep challenge model for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a zoonotic disease responsible for severe outbreaks in ruminant livestock characterized by mass abortion and high mortality rates in younger animals. The lack of a fully licensed vaccine in the US has spurred increased demand for a protective vaccine. Thus, development of a reli...

  14. Development of a sheep challenge model for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonotic disease that causes severe epizootic disease in ruminants, characterized by mass abortion and high mortality rates in younger animals. The development of a reliable challenge model is an important prerequisite for evaluation of existing and novel vaccines. A stu...

  15. Rift Valley fever Entomology, Ecology, and Outbreak Risk Factors

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease of domestic ruminants and humans in Africa. The disease is most severe in cattle, sheep, and goats, and it causes high mortality in young animals and abortion in adults. Exotic aanimal breeds from areas where RVF is not endemic tend to be ...

  16. Seismicity near Lake Bogoria in the Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Cooke, Philippa; Maguire, Peter; Evans, Russ; Laffoley, Nicholas

    An analysis of a local earthquake data set from within the Kenya Rift Valley has provided constraints on the crustal structure and rheology of the Rift as a whole. A 15 station seismic network operated for three months near Lake Bogoria in the central trough of the Kenya Rift (Fig.1). The project was part of the Kenya Rift International Seismic Project of 1985 (KRISP 85). The principal aim of the network was to record local seismicity. The network covered a 20 × 20 km2 area including the southern part of Lake Bogoria and had a station spacing of approximately 5 km. This extended abstract of a forthcoming paper [P.A.V. Cooke et al.,unpublished ms.] describes activity which occurred within an area of about 70 km diameter centred on the network.

  17. Rift Valley Fever: International Coordinated Efforts from Early Warning to Rapid Responses

    USDA-ARS?s Scientific Manuscript database

    Scientists at the USDA, ARS, Arthropod-Borne Animal Diseases Research Laboratory (ABADRL) initiated research to develop operator-safe, rapid diagnostic tests and develop large animal models for both virulent and vaccine strains of Rift Valley Fever (RVF). The ABADRL currently does not have biologica...

  18. A recombinant Rift Valley fever virus glycoprotein subunit vaccine confers full protection against Rift Valley fever challenge in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suita...

  19. Novel approaches to develop Rift Valley fever vaccines

    PubMed Central

    Indran, Sabarish V.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed. PMID:23112960

  20. Novel approaches to develop Rift Valley fever vaccines.

    PubMed

    Indran, Sabarish V; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed.

  1. Potential for Autoimmune Pathogenesis of Rift Valley Fever Virus Retinitis

    PubMed Central

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J.; Morrill, John; Lucas, Alexander H.; King, Charles H.; Kazura, James; LaBeaud, Angelle Desiree

    2013-01-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication. PMID:23918215

  2. Interepidemic Rift Valley Fever Virus Seropositivity, Northeastern Kenya

    PubMed Central

    Muchiri, Eric M.; Ndzovu, Malik; Mwanje, Mariam T.; Muiruri, Samuel; Peters, Clarence J.; King, Charles H.

    2008-01-01

    Most outbreaks of Rift Valley fever (RVF) occur in remote locations after floods. To determine environmental risk factors and long-term sequelae of human RVF, we examined rates of previous Rift Valley fever virus (RVFV) exposure by age and location during an interepidemic period in 2006. In a randomized household cluster survey in 2 areas of Ijara District, Kenya, we examined 248 residents of 2 sublocations, Gumarey (village) and Sogan-Godud (town). Overall, the RVFV seropositivity rate was 13% according to immunoglobulin G ELISA; evidence of interepidemic RVFV transmission was detected. Increased seropositivity was found among older persons, those who were male, those who lived in the rural village (Gumarey), and those who had disposed of animal abortus. Rural Gumarey reported more mosquito and animal exposure than Sogan-Godud. Seropositive persons were more likely to have visual impairment and retinal lesions; other physical findings did not differ. PMID:18680647

  3. Potential for autoimmune pathogenesis of Rift Valley Fever virus retinitis.

    PubMed

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J; Morrill, John; Lucas, Alexander H; King, Charles H; Kazura, James; LaBeaud, Angelle Desiree

    2013-09-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication.

  4. [Neurologic and neurosensory forms of Rift Valley fever in Mauritania].

    PubMed

    Riou, O; Philippe, B; Jouan, A; Coulibaly, I; Mondo, M; Digoutte, J P

    1989-01-01

    During and after a Rift Valley fever epidemic in Southern Mauritania, we observed 348 patients infected by RVF virus. 17 of them had encephalitis. These belonged to 2 groups, acute febrile forms with short duration and possibility of death, and sub-acute forms, with a longer duration and with sequelae. They were pure encephalitis, without clinical or biological meningeal signs. We also noticed 5 brutal ocular attacks, running very slowly, with sequelae.

  5. Rift Valley Fever Virus Infection in Golden Syrian Hamsters

    PubMed Central

    Scharton, Dionna; Van Wettere, Arnaud J.; Bailey, Kevin W.; Vest, Zachary; Westover, Jonna B.; Siddharthan, Venkatraman; Gowen, Brian B.

    2015-01-01

    Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies. PMID:25607955

  6. Observations on rift valley fever virus and vaccines in Egypt

    PubMed Central

    2011-01-01

    Rift Valley Fever virus (RVFV, genus: Phlebovirus, family: Bunyaviridae), is an arbovirus which causes significant morbidity and mortality in animals and humans. RVFV was introduced for the first time in Egypt in 1977. In endemic areas, the insect vector control and vaccination is considering appropriate measures if applied properly and the used vaccine is completely safe and the vaccination programs cover all the susceptible animals. Egypt is importing livestock and camels from the African Horn & the Sudan for human consumption. The imported livestock and camels were usually not vaccinated against RVFV. But in rare occasions, the imported livestock were vaccinated but with unknown date of vaccination and the unvaccinated control contacts were unavailable for laboratory investigations. Also, large number of the imported livestock and camels are often escaped slaughtering for breeding which led to the spread of new strains of FMD and the introduction of RVFV from the enzootic African countries. This article provide general picture about the present situation of RVFV in Egypt to help in controlling this important disease. PMID:22152149

  7. Rift Valley fever virus infection in golden Syrian hamsters.

    PubMed

    Scharton, Dionna; Van Wettere, Arnaud J; Bailey, Kevin W; Vest, Zachary; Westover, Jonna B; Siddharthan, Venkatraman; Gowen, Brian B

    2015-01-01

    Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies.

  8. A dynamic, climate-driven model of Rift Valley fever.

    PubMed

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  9. Genetic Reassortment of Rift Valley Fever Virus in Nature

    PubMed Central

    Sall, A. A.; Zanotto, P. M. de A.; Sene, O. K.; Zeller, H. G.; Digoutte, J. P.; Thiongane, Y.; Bouloy, M.

    1999-01-01

    Rift Valley fever virus (RVFV), a phlebovirus of the Bunyaviridae family, is an arthropod-borne virus which emerges periodically throughout Africa, emphasizing that it poses a major threat for animal and human populations. To assess the genetic variability of RVFV, several isolates from diverse localities of Africa were investigated by means of reverse transcription-PCR followed by direct sequencing of a region of the small (S), medium (M), and large (L) genomic segments. Phylogenetic analysis showed the existence of three major lineages corresponding to geographic variants from West Africa, Egypt, and Central-East Africa. However, incongruences detected between the L, M, and S phylogenies suggested that genetic exchange via reassortment occurred between strains from different lineages. This hypothesis, depicted by parallel phylogenies, was further confirmed by statistical tests. Our findings, which strongly suggest exchanges between strains from areas of endemicity in West and East Africa, strengthen the potential existence of a sylvatic cycle in the tropical rain forest. This also emphasizes the risk of generating uncontrolled chimeric viruses by using live attenuated vaccines in areas of endemicity. PMID:10482570

  10. Comparative Phylogeography of Ethiopian anurans: impact of the Great Rift Valley and Pleistocene climate change.

    PubMed

    Freilich, Xenia; Anadón, José D; Bukala, Jolanta; Calderon, Ordaliza; Chakraborty, Ronveer; Boissinot, Stéphane

    2016-10-10

    The Ethiopian highlands are a biodiversity hotspot, split by the Great Rift Valley into two distinct systems of plateaus and mountains. The Rift Valley is currently hot and dry and acts as a barrier to gene flow for highland-adapted species. It is however unlikely that the conditions in the Rift were inhospitable to highland species during the entire Pleistocene. To assess the significance of the Ethiopian Rift as a biogeographic barrier as well as the impact Pleistocene climatic changes have had on the evolution of Ethiopian organisms, we performed phylogeographic analyses and developed present and past niche models on seven anuran species with different elevational and ecological preferences. We found that highland species on the east and the west sides of the Rift are genetically differentiated and have not experienced any detectable gene flow for at least 0.4 my. In contrast, species found at elevations lower than 2500 m do not show any population structure. We also determined that highland species have lower effective population sizes than lowland species, which have experienced a large, yet gradual, demographic expansion, starting approximately half a million year ago. The pattern we report here is consistent with the increasingly warmer and drier conditions of the Pleistocene in East Africa, which resulted in the expansion of savanna, the fragmentation of forests and the shrinking of highland habitats. Climatic niche models indicated that the Rift is currently non suitable for most of the studied species, but it could have been a more permeable barrier during the Last Glacial Maximum. However, considering the strong genetic structure of highland species, we hypothesize that the barrier mechanisms at the Rift are not only climatic but also topographical.

  11. Seismicity of the northern part of the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Pointing, A. J.; Maguire, P. K. H.; Khan, M. A.; Francis, D. J.; Swain, C. J.; Shah, E. R.; Griffiths, D. H.

    1985-07-01

    During the first eight months of 1981 earthquake data were recorded during a passive seismic experiment (KRISP 81) in northern Kenya. An eight station, small aperture, short period seismic array was located on the eastern margin of the Rift at 1.7°N, 37.3°E. Two single-point, three component stations were also located north and west of the array, forming a triangular network with approximately 150 km length sides. 2329 events were recorded during the 231 days of recording. A preliminary micro-earthquake seismicity map of the central and northern parts of the country has been produced, using a uniform half space velocity model derived from the analysis of apparent velocities, azimuths and P-S times of event arrivals at the small aperture array. Events located within the Rift show a marked north-south linearity extending from Lakes Bogoria and Baringo in the south, into the Sugata Valley to the north. Around the southern part of Lake Turkana the seismicity becomes more diffuse. However, there is little seismic activity associated with the broad zone of splay faulting that exists in northern Kenya. The seismicity observed along the axis of the Rift suggests a continuation to about 2.5°N of the tectonic style observed over the apex of the Kenya dome. A relatively quiet zone separates the activity within the Rift from a second, diffuse, north-south zone of seismicity approximately 150 km further to the east.

  12. Listric growth faults in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Jones, W. B.

    Many of the major faults in the Kenya Rift Valley are curved in section, were active over considerable periods and form sets which are related in space and time. They can, therefore, be regarded as systems of listric growth faults. The Elgeyo Fault marks the western limit of rift structures at this latitude and displaces the basement surface by up to about 6 km. The Kamasia Hills are a block rotated above this fault plane. Movement on the Elgeyo Fault has been grossly continuous since at least 16 Ma ago but deposition of volcanics and sediments has generally kept pace with the growth of the escarpment. The Kaparaina Arch is a rollover anticline on the downthrown side of the Saimo Fault on the eastern side of the Kamasia Hills. On the eastern side of the rift, the block between the Bogoria and Wasages-Marmanet Faults has shown continued rotation since about 15 Ma. The Pleistocene lavas on the rift floor here show rollover into the Bogoria Fault and have formed a facing near the top of the escarpment. Area balancing calculations suggest depths to décollement of 25 km for the Elgeyo Fault, 6 km for the Saimo Fault and 12 km for the Bogoria Fault. The most direct evidence for the listric nature of the faults is provided by microearthquakes near Lake Manyara which appear to lie on fault planes connected to surface escarpments.

  13. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    PubMed

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.

  14. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    PubMed Central

    Melesse, Assefa M.; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux. PMID:22303142

  15. The 2007 Rift Valley fever outbreak in Sudan.

    PubMed

    Hassan, Osama Ahmed; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2011-09-01

    Rift Valley fever (RVF) is a neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health and economy. RVF is caused by RVF virus (RVFV) affecting humans and a wide range of animals. The virus is transmitted through bites from mosquitoes and exposure to viremic blood, body fluids, or tissues of infected animals. During 2007 a large RVF outbreak occurred in Sudan with a total of 747 confirmed human cases including 230 deaths (case fatality 30.8%); although it has been estimated 75,000 were infected. It was most severe in White Nile, El Gezira, and Sennar states near to the White Nile and the Blue Nile Rivers. Notably, RVF was not demonstrated in livestock until after the human cases appeared and unfortunately, there are no records or reports of the number of affected animals or deaths. Ideally, animals should serve as sentinels to prevent loss of human life, but the situation here was reversed. Animal contact seemed to be the most dominant risk factor followed by animal products and mosquito bites. The Sudan outbreak followed an unusually heavy rainfall in the country with severe flooding and previous studies on RVF in Sudan suggest that RVFV is endemic in parts of Sudan. An RVF outbreak results in human disease, but also large economic loss with an impact beyond the immediate influence on the directly affected agricultural producers. The outbreak emphasizes the need for collaboration between veterinary and health authorities, entomologists, environmental specialists, and biologists, as the best strategy towards the prevention and control of RVF.

  16. Rift Valley Fever and a New Paradigm of Research and Development for Zoonotic Disease Control

    PubMed Central

    McIntyre, Sabrina; Hogarth, Sue; Heymann, David

    2013-01-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccines. We also discuss the mixed global response, which has largely been fueled by the classification of the virus as a potential bioterrorism agent and its potential to migrate beyond its traditional eastern African boundaries. We argue for a refocus of strategy with increased global collaboration and a greater sense of urgency and investment that focuses on an equity-based approach in which funding and research are prioritized by need, inspired by principles of equity and social justice. PMID:23347653

  17. A zoonotic focus of cutaneous leishmaniasis due to Leishmania tropica at Utut, Rift Valley Province, Kenya.

    PubMed

    Sang, D K; Njeru, W K; Ashford, R W

    1994-01-01

    Several foci of cutaneous leishmaniasis have been identified in central Kenya and the Rift Valley. One of these was the Utut focus of Leishmania tropica on the floor of the Rift Valley between Gilgil and Elementaita, where intense transmission was detected. High infection and scar rates were detected among illegal charcoal burners in a previously uninhabited forest reserve on a lava flow containing numerous caves and rock crevices inhabited by sandflies and mammals which included hyraxes. Multiple lesions, predominantly in the head region, were common. 33% of cases occurred in people who had been less than one year in the area. Although most lesions healed within one or 2 years, some large, recrudescing lesions lasted several years.

  18. An epidemic of Rift Valley fever in Egypt

    PubMed Central

    Imam, Imam Z. E.; Karamany, R. El; Darwish, Medhat A.

    1979-01-01

    During the epidemic of Rift Valley fever (RVF) that occurred in Egypt and other areas of North Africa in 1977, the virus was isolated from various species of domestic animal and rats (Rattus rattus frugivorus) as well as man. The highest number of RVF virus isolates were obtained from sheep; only one isolate was recovered from each of the other species tested, viz. cow, camel, goat, horse, and rat. RVF virus was reisolated from both camel and horse sera, apparently for the first time. PMID:314355

  19. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    PubMed Central

    Vaughn, Valerie M.; Streeter, Cale C.; Miller, David J.; Gerrard, Sonja R.

    2010-01-01

    Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF) virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells. PMID:21994651

  20. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    PubMed

    Xue, Ling; Cohnstaedt, Lee W; Scott, H Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  1. A Hierarchical Network Approach for Modeling Rift Valley Fever Epidemics with Applications in North America

    PubMed Central

    Xue, Ling; Cohnstaedt, Lee W.; Scott, H. Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread. PMID:23667453

  2. Magmatic under-plating beneath the Luangwa Rift Valley, Zambia?

    NASA Astrophysics Data System (ADS)

    Matende, Kitso Nkooko

    We used aeromagnetic data, and satellite and terrestrial gravity data to examine the thermal and crustal structure beneath the Karoo-aged Luangwa Rift Valley (LRV) in Zambia in order to determine the geodynamic controls of its formation. We computed Curie Point Depth (CPD) values using two-dimensional (2D) power spectrum analysis of the aeromagnetic data, and these results were used to calculate heat flow under the LRV. We also inverted the aeromagnetic data for three-dimensional (3D) magnetic susceptibility distribution. We further determined the crustal thickness beneath the LRV by calculating depths to the Moho using 2D power spectrum analysis of the satellite gravity data. We found that: (1) there is no elevated CPD beneath the LRV, and as such no elevated heat flow anomaly. (2) there are numerous 5-15 km wide magnetic bodies at shallow depth (5-20 km) under the LRV. (3) the Moho beneath the LRV is 50 km deep, compared to 35-45 km depths outside the rift. The gravity-derived Moho depths beneath the LRV differ from Moho depths determined from preliminary results of passive seismic studies but are comparable with those outside the rift. (4) there is a broad long-wavelength positive anomaly in the terrestrial gravity data, possibly related to the presence of dense material at the Moho level. This anomaly is modified by shorter-wavelength positive anomalies at the rift shoulders and floor that might be related to shallow depth magnetic bodies. Also, there are negative short-wavelength anomalies that correlate with rift sediment infill. We subsequently used the ground gravity data to develop 2D forward models to reconcile the observed thermal and crustal characteristics of the LRV. Our models suggest that the deeper Moho beneath the rift is due to the presence of a magmatic under-plated mafic body. The difference between the gravity and passive seismic Moho depths estimates may be because the passive seismic data imaged the top of the under-plated mafic body whereas

  3. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease...

  4. Rift valley fever in the US: Commerce networks, climate, and susceptible vector and host populations

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in humans, domes...

  5. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for Disease..., filed 12/21/2007, entitled ``Development of Rift Valley Fever Virus Utilizing Reverse Genetics,'' US... (RVF) Viruses and Method of Use,'' PCT Application PCT/US2008/ 087023, filed 12/16/2008, entitled...

  6. Mouse model for the Rift Valley fever virus MP12 strain infection

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licen...

  7. Indirect detection of subsurface outflow from a rift valley lake

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Allen, D. J.; Armannsson, H.

    1990-02-01

    Naivasha, highest of the Kenya (Gregory) Rift Valley lakes, has no surface outlet. However, unlike other Rift lakes it has not become saline despite high potential evaporation rates, which indicates that there must be some subsurface drainage. The fate of this outflow has been the subject of speculation for many years, especially during the general decline in lake water level during the 1980's. Particularly to the south of the lake, there are few opportunities to obtain information from direct groundwater sampling. However, the stable isotopic composition of fumarole steam from late Quaternary volcanic centres in the area has been used to infer groundwater composition. Using a simple mixing model between Rift-flank groundwater and highly-evaporated lakewater, this has enabled subsurface water flow to be contoured by its lakewater content. By this method, outflow can still be detected some 30 km to the south of the lake. Stable isotope data also confirm that much of the steam used by the local Olkaria geothermal power station is derived from lakewater, though simple balance considerations show that steam use cannot alone be responsible for the fall in lake level observed during the 1980's.

  8. Drivers of Rift Valley fever epidemics in Madagascar

    PubMed Central

    Lancelot, Renaud; Béral, Marina; Rakotoharinome, Vincent Michel; Andriamandimby, Soa-Fy; Héraud, Jean-Michel; Coste, Caroline; Apolloni, Andrea; Squarzoni-Diaw, Cécile; de La Rocque, Stéphane; Wint, G. R. William; Cardinale, Eric

    2017-01-01

    Rift Valley fever (RVF) is a vector-borne viral disease widespread in Africa. The primary cycle involves mosquitoes and wild and domestic ruminant hosts. Humans are usually contaminated after contact with infected ruminants. As many environmental, agricultural, epidemiological, and anthropogenic factors are implicated in RVF spread, the multidisciplinary One Health approach was needed to identify the drivers of RVF epidemics in Madagascar. We examined the environmental patterns associated with these epidemics, comparing human and ruminant serological data with environmental and cattle-trade data. In contrast to East Africa, environmental drivers did not trigger the epidemics: They only modulated local Rift Valley fever virus (RVFV) transmission in ruminants. Instead, RVFV was introduced through ruminant trade and subsequent movement of cattle between trade hubs caused its long-distance spread within the country. Contact with cattle brought in from infected districts was associated with higher infection risk in slaughterhouse workers. The finding that anthropogenic rather than environmental factors are the main drivers of RVF infection in humans can be used to design better prevention and early detection in the case of RVF resurgence in the region. PMID:28096420

  9. Rift valley fever: recent insights into pathogenesis and prevention.

    PubMed

    Boshra, Hani; Lorenzo, Gema; Busquets, Núria; Brun, Alejandro

    2011-07-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease.

  10. Rift Valley Fever: Recent Insights into Pathogenesis and Prevention▿

    PubMed Central

    Boshra, Hani; Lorenzo, Gema; Busquets, Núria; Brun, Alejandro

    2011-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease. PMID:21450816

  11. Towards a safe, effective vaccine for Rift Valley fever virus

    PubMed Central

    LaBeaud, Desiree

    2011-01-01

    Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime–boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination. PMID:21423850

  12. An Epidemiological Model of Rift Valley Fever with Spatial Dynamics

    PubMed Central

    Niu, Tianchan; Gaff, Holly D.; Papelis, Yiannis E.; Hartley, David M.

    2012-01-01

    As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF) is considered a major threat to the United States (USA). Should the pathogen be intentionally or unintentionally introduced to the continental USA, there is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal transmission of Rift Valley fever virus (RVFV) between two mosquito and one livestock species, and mother-to-offspring transmission of virus in one of the mosquito species. Space effects are introduced by dividing geographic space into smaller patches and considering the patch-to-patch movement of species. For each patch, a system of ordinary differential equations models fractions of populations susceptible to, incubating, infectious with, or immune to RVFV. The main contribution of this work is a methodology for analyzing the likelihood of pathogen establishment should an introduction occur into an area devoid of RVF. Examples are provided for general and specific cases to illustrate the methodology. PMID:22924058

  13. Drivers of Rift Valley fever epidemics in Madagascar.

    PubMed

    Lancelot, Renaud; Béral, Marina; Rakotoharinome, Vincent Michel; Andriamandimby, Soa-Fy; Héraud, Jean-Michel; Coste, Caroline; Apolloni, Andrea; Squarzoni-Diaw, Cécile; de La Rocque, Stéphane; Formenty, Pierre B H; Bouyer, Jérémy; Wint, G R William; Cardinale, Eric

    2017-01-31

    Rift Valley fever (RVF) is a vector-borne viral disease widespread in Africa. The primary cycle involves mosquitoes and wild and domestic ruminant hosts. Humans are usually contaminated after contact with infected ruminants. As many environmental, agricultural, epidemiological, and anthropogenic factors are implicated in RVF spread, the multidisciplinary One Health approach was needed to identify the drivers of RVF epidemics in Madagascar. We examined the environmental patterns associated with these epidemics, comparing human and ruminant serological data with environmental and cattle-trade data. In contrast to East Africa, environmental drivers did not trigger the epidemics: They only modulated local Rift Valley fever virus (RVFV) transmission in ruminants. Instead, RVFV was introduced through ruminant trade and subsequent movement of cattle between trade hubs caused its long-distance spread within the country. Contact with cattle brought in from infected districts was associated with higher infection risk in slaughterhouse workers. The finding that anthropogenic rather than environmental factors are the main drivers of RVF infection in humans can be used to design better prevention and early detection in the case of RVF resurgence in the region.

  14. [Severe hemorrhagic forms of Rift Valley fever: about 5 cases].

    PubMed

    Salem, Mohamed Lemine Ould; Baba, Sidi El Wafi Ould; Fall-Malick, Fatimetou Zahra; Boushab, Boushab Mohamed; Ghaber, Sidi Mohamed; Mokhtar, Abdelwedoud

    2016-01-01

    Rift Valley fever (RVF) is an arbovirus caused by an RNA virus belonging to family Bunyaviridae (genus phlebovirus). It is a zoonosis that primarily affects animals but it also has the capacity to infect humans, either by handling meat, runts of sick animals or, indirectly, by the bite of infected mosquitoes (Aedes sp, Anopheles sp, Culex sp). In most cases, RVF infection in humans is asymptomatic, but it can also manifest as moderate febrile syndrome with a favorable outcome. However, some patients may develop hemorrhagic syndrome and/or neurological damages with a fatal evolution. We present a case study of the development of 5 patients with RVF associated with hemorrhagic fever syndrome admitted to the internal medicine department at National Hospital Center in Nouakchott (Mauritania), in October 2015. The outcome was favorable for two of the five patients. The other 3 died, two of hemorrhagic shock and one of septic shock.

  15. Potential effects of Rift Valley fever in the United States.

    PubMed

    Hartley, David M; Rinderknecht, Jennifer L; Nipp, Terry L; Clarke, Neville P; Snowder, Gary D

    2011-08-01

    Rift Valley fever virus (RVFV) has been the cause of disease outbreaks throughout Africa and the Arabian Peninsula, and the infection often results in heavy economic costs through loss of livestock. If RVFV, which is common to select agent lists of the US Department of Health and Human Services and the US Department of Agriculture, entered the United States, either by accidental or purposeful means, the effects could be substantial. A group of subject matter experts met in December 2009 to discuss potential implications of an introduction of RVF to the United States and review current modeling capabilities. This workshop followed a similar meeting held in April 2007. This report summarizes the 2 workshop proceedings. Discussions primarily highlighted gaps in current economic and epidemiologic RVF models as well as gaps in the overall epidemiology of the virus.

  16. Concentration of Rift Valley Fever and Chikungunya Viruses by Precipitation

    PubMed Central

    Klein, Frederick; Mahlandt, Bill G.; Cockey, Ralph R.; Lincoln, Ralph E.

    1970-01-01

    Simple and efficient methods for concentrating Rift Valley fever (RVF) virus and chikungunya (CHIK) virus are described. Ammonium sulfate, potassium sulfate, or alcohol was used as a precipitating agent and the precipitate was resuspended to volumes suitable for further processing and purification. The methods permitted concentration of live RVF virus and CHIK virus about 100-fold with negligible losses of virus. RVF virus retained a high level of infectivity with potassium aluminum sulfate and alcohol, but CHIK virus retained a higher infectivity level with ammonium sulfate than with potassium aluminum sulfate. The data indicate that serum plays an important role in the concentration of both viruses, at least when the sulfate methods are used. PMID:5494763

  17. [Fatal haemorrhagic rift valley fever: a case at Madagascar].

    PubMed

    Raveloson, N E; Ramorasata, J C; Rasolofohanitrininosy, R; Rakotoarivony, S T; Andrianjatovo, J J; Sztark, F

    2010-04-01

    Rift valley fever (RVF) is a viral zoonosis that can also infect humans. Haemorrhagic RVF is a severe potentially fatal form of the disease. Although haemorrhagic RVF accounts for only 1% of all infections, death occurs in up to 5% of cases. The purpose of this report is describe a severe case of haemorrhagic RVF observed in a 22-year-old cattle breeder admitted to the intensive care units of the Joseph Raseta Befelatanana University Hospitals in Antananarivo. The disease presented as an infectious syndrome but hemorrhagic manifestations developed early (day 2). They consisted of diffuse haemorrhage events (haemorrhagic vomit, gingival haemorrhage, skin haemorrhage, urinary haemorrhage, and haemorrhage on the venous puncture site). In spite of intensive care, haemorrhagic complications lead to death on day 4 of clinical evolution. Laboratory findings demonstrated alteration in liver function and coagulation disturbances. Multiple organ failure was also observed.

  18. Rift Valley fever during rainy seasons, Madagascar, 2008 and 2009.

    PubMed

    Andriamandimby, Soa Fy; Randrianarivo-Solofoniaina, Armand Eugène; Jeanmaire, Elisabeth M; Ravololomanana, Lisette; Razafimanantsoa, Lanto Tiana; Rakotojoelinandrasana, Tsanta; Razainirina, Josette; Hoffmann, Jonathan; Ravalohery, Jean-Pierre; Rafisandratantsoa, Jean-Théophile; Rollin, Pierre E; Reynes, Jean-Marc

    2010-06-01

    During 2 successive rainy seasons, January 2008 through May 2008 and November 2008 through March 2009, Rift Valley fever virus (RVFV) caused outbreaks in Madagascar. Human and animal infections were confirmed on the northern and southern coasts and in the central highlands. Analysis of partial sequences from RVFV strains showed that all were similar to the strains circulating in Kenya during 2006-2007. A national cross-sectional serologic survey among slaughterhouse workers at high risk showed that RVFV circulation during the 2008 outbreaks included all of the Malagasy regions and that the virus has circulated in at least 92 of Madagascar's 111 districts. To better predict and respond to RVF outbreaks in Madagascar, further epidemiologic studies are needed, such as RVFV complete genome analysis, ruminant movement mapping, and surveillance implementation.

  19. Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    To determine which biting insects should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America, we evaluated Culex erraticus, Culex erythrothorax, Culex pipiens, Culex quinquefasciatus, Culex tarsalis, Aedes dorsalis, Aedes vexans, Anopheles quadrimaculatus, and ...

  20. Studies on Rift Valley fever in some African murids (Rodentia: Muridae).

    PubMed Central

    Swanepoel, R.; Blackburn, N. K.; Efstratiou, S.; Condy, J. B.

    1978-01-01

    Brains, spleens and livers of 2214 murids, 27 shrews and 7 dormice, trapped at 7 sites in Rhodesia, were tested in 277 pools for the presence of Rift Valley Fever virus. There were no isolations of Rift Valley Fever, but 69 isolations of an unidentified virus were obtained. Sixteen out of 867 sera had low-titre haemagglutination-inhibition activity against Rift Valley Fever antigen, but only one out of 1260 sera had neutralizing antibody. The evidence suggests that murids fail to encounter infection in nature and are unlikely to play a role in circulation and dissemination of Rift Valley Fever virus. Four out of seven widely distributed species of muried, Rhabdomys pumilio, Saccostomys campestris, Aethomys chrysophilus and Lemniscomys griselda, were shown to be capable of circulating amounts of virus likely to be infective for mosquitoes. PMID:632561

  1. Studies on Rift Valley fever in some African murids (Rodentia: Muridae).

    PubMed

    Swanepoel, R; Blackburn, N K; Efstratiou, S; Condy, J B

    1978-04-01

    Brains, spleens and livers of 2214 murids, 27 shrews and 7 dormice, trapped at 7 sites in Rhodesia, were tested in 277 pools for the presence of Rift Valley Fever virus. There were no isolations of Rift Valley Fever, but 69 isolations of an unidentified virus were obtained. Sixteen out of 867 sera had low-titre haemagglutination-inhibition activity against Rift Valley Fever antigen, but only one out of 1260 sera had neutralizing antibody. The evidence suggests that murids fail to encounter infection in nature and are unlikely to play a role in circulation and dissemination of Rift Valley Fever virus. Four out of seven widely distributed species of muried, Rhabdomys pumilio, Saccostomys campestris, Aethomys chrysophilus and Lemniscomys griselda, were shown to be capable of circulating amounts of virus likely to be infective for mosquitoes.

  2. The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley.

    PubMed

    Tekle-Haimanot, Redda; Melaku, Zenebe; Kloos, Helmut; Reimann, Clemens; Fantaye, Wondwossen; Zerihun, Legesse; Bjorvatn, Kjell

    2006-08-15

    This paper analyzes the most extensive database on fluoride distribution in Ethiopia. Of the total 1438 water samples tested, 24.2% had fluoride concentrations above the 1.5 mg/l recommended optimum concentration recommended by WHO. Regionally, by far the highest fluoride levels were recorded in the Rift Valley, where 41.2% of all samples exceeded the 1.5 mg/l level. Only 1.0% of the samples from the central and northwestern highlands and 10.0% in the southeastern highlands exceeded 1.5 mg/l. Larger proportions of deep wells (50.0%) and hot springs (90.0%) than shallow wells (27.2%) and cold springs (12.6%) exceeded the 1.5 mg/l level. The highest fluoride concentrations were recorded for Rift Valley lakes Shala (264.0 mg/l) and Abijata (202.4 mg/l) and the lowest in Lake Tana, and rivers, wells and springs in the highlands. The fluoride concentrations of the Awash River, which originates in the highlands and flows through the Rift Valley, increase downstream, giving concern over the current diversion of high-fluoride water from Lake Beseka. Of the various flourosis prevention methods tried in Ethiopia, the treatment of surface water has been shown to be the most feasible and effective for towns and large commercial farms in the Rift Valley, although defluoridation methods should be considered for smaller rural communities.

  3. Vector Competence of Selected African Mosquito (Diptera: Culicidae) Species for Rift Valley Fever Virus

    DTIC Science & Technology

    2008-01-01

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Outbreaks of Rift Valley fever ( RVF ) in Egypt, Yemen, and Saudi Arabia have indicated the potential...species to transmit RVF virus (RVFV), we conducted studies to determine the vector competence of selected African species of mosquitoes for this virus. All...once enzootic in Africa, to spread to other parts of the world. 15. SUBJECT TERMS Rift Valley fever virus RVF entomology mosquito vector African

  4. Immunogenicity and Safety of an Inactivated Rift Valley Fever Vaccine in a 19-Year Study

    DTIC Science & Technology

    2011-02-26

    culture replicates used in assays, and/or the broad spaces in dilution series chosen for tests [18]. The female gender-associated increase in immune...WhitmoreA, Thompson J, ParsonsM,GrobbelaarAA,KempA, et al. An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol...Holbrook MR, et al. A replication -incompetent Rift Valley fever vaccine: chimeric virus-like particles protect mice and rats against lethal challenge

  5. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-02

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines.

  6. 77 FR 68783 - Prospective Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for... Valley Fever Virus Utilizing Reverse Genetics,'' US Provisional Application 61/042,987, filed 4/7/2008, entitled ``Recombinant Rift Valley Fever (RVF) Viruses and Method of Use,'' PCT Application PCT/US2008...

  7. Spatial and Temporal Pattern of Rift Valley Fever Outbreaks in Tanzania; 1930 to 2007

    PubMed Central

    Sindato, Calvin; Karimuribo, Esron D.; Pfeiffer, Dirk U.; Mboera, Leonard E. G.; Kivaria, Fredrick; Dautu, George; Bernard, Bett; Paweska, Janusz T.

    2014-01-01

    Background Rift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 2006–07. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies. Materials and Methods A retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district. Principal Findings RVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 1977–79, 1989, 1997–98 and 2006–07 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR = 6.14, CI: 1.96, 19.28), total amount of rainfall of >405.4 mm (OR = 12.36, CI: 3.06, 49.88), soil texture (clay [OR = 8.76, CI: 2.52, 30.50], and loam [OR = 8.79, CI: 2.04, 37.82]). Conclusion/Significance RVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture. PMID:24586433

  8. A statistical model of Rift Valley fever activity in Egypt

    PubMed Central

    Hassan, Ali N.; Beier, John C.

    2014-01-01

    Rift Valley fever (RVF) is a viral disease of animals and humans and a global public health concern due to its ecological plasticity, adaptivity, and potential for spread to countries with a temperate climate. In many places, outbreaks are episodic and linked to climatic, hydrologic, and socioeconomic factors. Although outbreaks of RVF have occurred in Egypt since 1977, attempts to identify risk factors have been limited. Using a statistical learning approach (lasso-regularized generalized linear model), we tested the hypotheses that outbreaks in Egypt are linked to (1) River Nile conditions that create a mosquito vector habitat, (2) entomologic conditions favorable to transmission, (3) socio-economic factors (Islamic festival of Greater Bairam), and (4) recent history of transmission activity. Evidence was found for effects of rainfall and river discharge and recent history of transmission activity. There was no evidence for an effect of Greater Bairam. The model predicted RVF activity correctly in 351 of 358 months (98.0%). This is the first study to statistically identify risk factors for RVF outbreaks in a region of unstable transmission. PMID:24581353

  9. Protein Phosphatase-1 Regulates Rift Valley Fever Virus Replication

    PubMed Central

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M.; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  10. Development of a sheep challenge model for Rift Valley fever.

    PubMed

    Faburay, Bonto; Gaudreault, Natasha N; Liu, Qinfang; Davis, A Sally; Shivanna, Vinay; Sunwoo, Sun Young; Lang, Yuekun; Morozov, Igor; Ruder, Mark; Drolet, Barbara; Scott McVey, D; Ma, Wenjun; Wilson, William; Richt, Juergen A

    2016-02-01

    Rift Valley fever (RVF) is a zoonotic disease that causes severe epizootics in ruminants, characterized by mass abortion and high mortality rates in younger animals. The development of a reliable challenge model is an important prerequisite for evaluation of existing and novel vaccines. A study aimed at comparing the pathogenesis of RVF virus infection in US sheep using two genetically different wild type strains of the virus (SA01-1322 and Kenya-128B-15) was performed. A group of sheep was inoculated with both strains and all infected sheep manifested early-onset viremia accompanied by a transient increase in temperatures. The Kenya-128B-15 strain manifested higher virulence compared to SA01-1322 by inducing more severe liver damage, and longer and higher viremia. Genome sequence analysis revealed sequence variations between the two isolates, which potentially could account for the observed phenotypic differences. We conclude that Kenya-128B-15 sheep infection represents a good and virulent challenge model for RVF.

  11. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.

  12. Efficacy of three candidate Rift Valley fever vaccines in sheep.

    PubMed

    Kortekaas, J; Antonis, A F G; Kant, J; Vloet, R P M; Vogel, A; Oreshkova, N; de Boer, S M; Bosch, B J; Moormann, R J M

    2012-05-14

    Rift Valley fever virus (RVFV) is a mosquito-transmitted Bunyavirus that causes high morbidity and mortality among ruminants and humans. The virus is endemic to the African continent and the Arabian Peninsula and continues to spread into new areas. The explosive nature of RVF outbreaks requires that vaccines provide swift protection after a single vaccination. We recently developed several candidate vaccines and here report their efficacy in lambs within three weeks after a single vaccination. The first vaccine comprises the purified ectodomain of the Gn structural glycoprotein formulated in a water-in-oil adjuvant. The second vaccine is based on a Newcastle disease virus-based vector that produces both RVFV structural glycoproteins Gn and Gc. The third vaccine comprises a recently developed nonspreading RVFV. The latter two vaccines were administered without adjuvant. The inactivated whole virus-based vaccine produced by Onderstepoort Biological Products was used as a positive control. Five out of six mock-vaccinated lambs developed high viremia and fever and one lamb succumbed to the challenge infection. A single vaccination with each vaccine resulted in a neutralizing antibody response within three weeks after vaccination and protected lambs from viremia, pyrexia and mortality.

  13. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  14. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  15. Climate-disease connections: Rift Valley Fever in Kenya.

    PubMed

    Anyamba, A; Linthicum, K J; Tucker, C J

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  16. Climate-disease connections: Rift Valley Fever in Kenya

    NASA Technical Reports Server (NTRS)

    Anyamba, A.; Linthicum, K. J.; Tucker, C. J.

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  17. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever

    PubMed Central

    Warimwe, George M.; Gesharisha, Joseph; Carr, B. Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K.; Al-dubaib, Musaad A.; Brun, Alejandro; Gilbert, Sarah C.; Nene, Vishvanath; Hill, Adrian V. S.

    2016-01-01

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A ‘One Health’ vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs. PMID:26847478

  18. A mathematical model of Rift Valley Fever with human host.

    PubMed

    Mpeshe, Saul C; Haario, Heikki; Tchuenche, Jean M

    2011-12-01

    Rift Valley Fever is a vector-borne disease mainly transmitted by mosquito. To gain some quantitative insights into its dynamics, a deterministic model with mosquito, livestock, and human host is formulated as a system of nonlinear ordinary differential equations and analyzed. The disease threshold [Formula: see text] is computed and used to investigate the local stability of the equilibria. A sensitivity analysis is performed and the most sensitive model parameters to the measure of initial disease transmission [Formula: see text] and the endemic equilibrium are determined. Both [Formula: see text] and the disease prevalence in mosquitoes are more sensitive to the natural mosquito death rate, d(m). The disease prevalence in livestock and humans are more sensitive to livestock and human recruitment rates, [Formula: see text] and [Formula: see text], respectively, suggesting isolation of livestock from humans is a viable preventive strategy during an outbreak. Numerical simulations support the analytical results in further exploring theoretically the long-term dynamics of the disease at the population level.

  19. Climate-disease connections: Rift Valley Fever in Kenya

    NASA Technical Reports Server (NTRS)

    Anyamba, A.; Linthicum, K. J.; Tucker, C. J.

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  20. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep.

    PubMed

    Faburay, Bonto; Wilson, William C; Gaudreault, Natasha N; Davis, A Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-06-14

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.

  1. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William C.; Gaudreault, Natasha N.; Davis, A. Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  2. Hot Spot Induced Cenozoic Volcanism in the Upper Rajang Valley, Sarawak - Is Borneo Rifting?

    NASA Astrophysics Data System (ADS)

    Taib, N.

    2010-12-01

    The Upper Rajang Valley covers a large area in the northern interior of the island of Borneo, in the Malaysian state of Sarawak . It is underlain by the Cretaceous to Late Eocene deep to shallow marine sediments of the Rajang Group. Within this area are several Cenozoic volcanic edifices, which to date have been sparsely studied. Two distinct episodes of volcanism are recognized - the first, dated early Eocene, consists of K-rich basalts, and is represented by the Bukit Mersing volcanics, which were erupted conformably onto deep water turbidites of the Rajang Group. The second, far more extensive, is dated Pliocene to Quaternary, and is bimodal, consisting mainly of early dacite and rhyodacite tuffs, with a smaller amount of later basalt, forming several volcanic plateaus and massifs (Hose Mountains, Usun Apau, Linau-Balui, Nieuwenhuis Mountains and others). They lie unconformably over pre-Miocene sediments, the Linau-Balui basalts having been erupted onto Quaternary river terraces. Mantle-normalized REE and incompatible trace element spider plots reveal that the Bukit Mersing basalts have geochemical affinity with Oceanic Island Basalts (OIB) and rift basalts, being enriched in LREEs and Most Incompatible Elements, and no Eu anomaly. Preliminary trace element data for several basalt samples from Usun Apau also show Oceanic Island/Rift affinity. Bimodal volcanism is most often associated with rift environments. Efforts are being made to radiometrically date the volcanics, in part to determine the possibility of future eruptions. The Upper Rajang Valley is remote, covered in tropical rainforest and is very sparsely populated. At this time, there is no information concerning signs of imminent volcanism, such as hot springs and microseismicity.

  3. Curcumin inhibits Rift Valley fever virus replication in human cells.

    PubMed

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-09-28

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.

  4. Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells*

    PubMed Central

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-01-01

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets. PMID:22847000

  5. Response to Rift Valley Fever in Tanzania: Challenges and Opportunities.

    PubMed

    Fyumagwa, Robert D; Ezekiel, Mangi J; Nyaki, Athanas; Mdaki, Maulid L; Katale, Zablon B; Moshiro, Candida; Keyyu, Julius D

    2011-12-01

    Rift Valley Fever (RVF) is an arthropod borne viral disease affecting livestock (cattle, sheep, goats and camels), wildlife and humans caused by Phlebovirus. The disease occurs in periodic cycles of 4-15 years associated with flooding from unusually high precipitations in many flood-prone habitats. Aedes and Culex spp and other mosquito species are important epidemic vectors. Because of poor living conditions and lack of knowledge on the pathogenesis of RVF, nomadic pastoralists and agro-pastoralists are at high risk of contracting the disease during epidemics. RVF is a professional hazard for health and livestock workers because of poor biosafety measures in routine activities including lack of proper Personal Protective Equipment (PPE). Direct exposure to infected animals can occur during handling and slaughter or through veterinary and obstetric procedures or handling of specimens in laboratory. The episodic nature of the disease creates special challenges for its mitigation and control and many of the epidemics happen when the governments are not prepared and have limited resource to contain the disease at source. Since its first description in 1930s Tanzania has recorded six epidemics, three of which were after independence in 1961. However, the 2007 epidemic was the most notable and wide spread with fatal human cases among pastoralists and agro-pastoralists concurrent with high livestock mortality. Given all the knowledge that exist on the epidemiology of the disease, still the 2006/2007 epidemic occurred when the government of Tanzania was not prepared to contain the disease at source. This paper reviews the epidemiology, reporting and outbreak-investigation, public awareness, preparedness plans and policy as well as challenges for its control in Tanzania.

  6. Seismic monitoring of the Olkaria Geothermal area, Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Simiyu, Silas M.; Keller, G. Randy

    2000-01-01

    Seismic monitoring of the Olkaria Geothermal area in the southern Rift Valley region of Kenya has been carried out since 1985. The initial purpose of this effort was to determine the background level of seismicity before full exploitation of the geothermal resource was started. This monitoring began with one seismic station. However, since May 1996, a seismic network comprising six stations was operated and focused mainly on the East Production Field. During the 5 months of network recording up to mid-September 1996, more than 460 local events originating within the Olkaria Geothermal area ( Ts- Tp<5 s) were recorded, out of which 123 were well-located. Also, 62 events were recorded at regional distances (5 s< Ts- Tp<40 s), and 44 events at teleseismic distance ( Ts- Tp>40 s). During this period, the local microseismicity was found to be continuous with swarms occurring every 4-5 days. Duration magnitudes based on the coda length did not exceed 3.0. Preliminary spectral analysis shows three kinds of seismic signals, with only the first type displaying well-defined P- and S-phases. The seismicity is mainly concentrated in the central area of the recording network, and the linear alignments in the epicenters are striking. A prominent alignment occurs along the Ololbutot fault zone extending from the northern end of the greater Olkaria volcanic complex to the south near the southern terminus of Hell's gorge. Two other prominent alignments occur along NW-SE trends that coincide with fault zones which have been detected by geological and gravity studies. Consequently, they are interpreted to be associated with fluid movement in the geothermal field. These preliminary results suggest that seismic monitoring will be useful to both monitor the field during production and to help site additional wells.

  7. Innate Immune Response to Rift Valley Fever Virus in Goats

    PubMed Central

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  8. [Serological survey of Rift Valley fever in sheep on the Ivory Coast].

    PubMed

    Formenty, P; Domenech, J; Zeller, H G

    1992-01-01

    A serological survey of Rift Valley fever was carried out in sheep in Côte-d'Ivoire. Thousand and fifty one seras collected between 1988 and 1990 in the South of the country were tested for IgG and IgM by ELISA with two objectives: determining the incidence of the Rift Valley fever and analysing the role of this virus in reproductive failure and abortion. The incidence rate was 6.85%. No difference was found between the three different geographic areas nor between the three years of the survey. Antibody prevalence increased significantly with age. The Rift Valley fever must be considered as enzootic in Côte-d'Ivoire. A significant relationship was found between positivity and abortion in ewes. Thus, the economic impact of Rift Valley fever has to be studied. The presence of antibodies in young animals aged from 6 months to 1 year, showed a recent activity of the virus; a permanent epidemio-surveillance of the Rift Valley fever in Côte-d'Ivoire is needed, because of the potential risk for human population in contact with the animals.

  9. The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages.

    PubMed

    Liu, Jingyuan; Sun, Yulan; Shi, Weifeng; Tan, Shuguang; Pan, Yang; Cui, Shujuan; Zhang, Qingchao; Dou, Xiangfeng; Lv, Yanning; Li, Xinyu; Li, Xitai; Chen, Lijuan; Quan, Chuansong; Wang, Qianli; Zhao, Yingze; Lv, Qiang; Hua, Wenhao; Zeng, Hui; Chen, Zhihai; Xiong, Haofeng; Jiang, Chengyu; Pang, Xinghuo; Zhang, Fujie; Liang, Mifang; Wu, Guizhen; Gao, George F; Liu, William J; Li, Ang; Wang, Quanyi

    2017-01-18

    We report the first imported case of Rift Valley fever (RVF) in China. The patient returned from Angola, a non-epidemic country, with an infection of a new reassortant from different lineages of Rift Valley fever viruses (RVFVs). The patient developed multiorgan dysfunction and gradually recovered with continuous renal replacement therapy and a short regimen of methylprednisolone treatment. The disordered cytokines and chemokines in the plasma of the patient revealed hypercytokinemia, but the levels of protective cytokines were low upon admission and fluctuated as the disease improved. Whole-genome sequencing and phylogenetic analysis revealed that the imported strain was a reassortant comprising the L and M genes from lineage E and the S gene from lineage A. This case highlights that RVFV had undergone genetic reassortment, which could potentially alter its biological properties, cause large outbreaks and pose a serious threat to global public health as well as the livestock breeding industry.

  10. The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages

    PubMed Central

    Liu, Jingyuan; Sun, Yulan; Shi, Weifeng; Tan, Shuguang; Pan, Yang; Cui, Shujuan; Zhang, Qingchao; Dou, Xiangfeng; Lv, Yanning; Li, Xinyu; Li, Xitai; Chen, Lijuan; Quan, Chuansong; Wang, Qianli; Zhao, Yingze; lv, Qiang; Hua, Wenhao; Zeng, Hui; Chen, Zhihai; Xiong, Haofeng; Jiang, Chengyu; Pang, Xinghuo; Zhang, Fujie; Liang, Mifang; Wu, Guizhen; Gao, George F; Liu, William J; Li, Ang; Wang, Quanyi

    2017-01-01

    We report the first imported case of Rift Valley fever (RVF) in China. The patient returned from Angola, a non-epidemic country, with an infection of a new reassortant from different lineages of Rift Valley fever viruses (RVFVs). The patient developed multiorgan dysfunction and gradually recovered with continuous renal replacement therapy and a short regimen of methylprednisolone treatment. The disordered cytokines and chemokines in the plasma of the patient revealed hypercytokinemia, but the levels of protective cytokines were low upon admission and fluctuated as the disease improved. Whole-genome sequencing and phylogenetic analysis revealed that the imported strain was a reassortant comprising the L and M genes from lineage E and the S gene from lineage A. This case highlights that RVFV had undergone genetic reassortment, which could potentially alter its biological properties, cause large outbreaks and pose a serious threat to global public health as well as the livestock breeding industry. PMID:28096531

  11. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species.

  12. Biologically Informed Individual-based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonotic disease endemic in Sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is ...

  13. Mapping the Risk of Rift Valley fever re-emergence in Southern Africa using remote sensing data

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease of animals and humans that occurs throughout sub-Saharan Africa, Egypt and the Arabian Peninsula. Outbreaks of the disease are episodic and closely linked to climate variability, especially widespread elevated rainfall that facilitates Rift Valley fever virus tra...

  14. Widespread Rift Valley Fever Emergence in Senegal in 2013–2014

    PubMed Central

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Diallo, Diawo; Fall, Gamou; Faye, Oumar; Bob, Ndeye Sakha; Loucoubar, Cheikh; Richard, Vincent; Dia, Anta Tal; Diallo, Mawlouth; Malvy, Denis; Sall, Amadou Alpha

    2016-01-01

    Rift Valley fever (RVF), which caused epizootics and epidemics among human and livestock populations, occurred in Senegal in 2013–2014. A multidisciplinary field investigation was carried out in 3 regions of Senegal. We found 11 confirmed human cases of Rift Valley fever, including severe cases with encephalitis and retinitis, 1 pool of mosquito (Aedes ochraceus), and 52 animals tested positive for the disease. Symptoms such as encephalitis and macular retinitis were the most severe cases reported so far in Senegal. The outbreak was widespread due to animals' movements, leading to the largest RVF outbreak in Senegal in terms of geographic spreading and reaching areas that never reported RVF activity previously. PMID:27704007

  15. Recent seismic activity of the Kivu Province, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Zana, N.; Kamba, M.; Katsongo, S.; Janssen, Th.

    1989-11-01

    The Kivu Province is located at the junction between the well-defined Ruzizi Valley to the south and the Lake Amin Trough to the north. In this zone, the Rift Valley is characterized by the highest uplift and by complex dislocations of the crust, accompanied by the most intensive volcanism of the East African Rift System. In this paper, we show the recent state of the seismic activity of this zone in connection with the seismic activity generated by the volcanoes Nyiragongo and Nyamuragira. The pattern of cumulative energy release by these volcanoes shows a steplike increase that is believed to be a precursor of volcanic eruptions.

  16. FAMOUS and AMAR segments on the Mid-Atlantic Ridge: ubiquitous hydrothermal Mn, CH 4, δ3He signals along the rift valley walls and rift offsets

    NASA Astrophysics Data System (ADS)

    Bougault, H.; Aballéa, M.; Radford-Knoery, J.; Charlou, J. L.; Baptiste, P. Jean; Appriou, P.; Needham, H. D.; German, C.; Miranda, M.

    1998-09-01

    Dynamic hydrocast experiments enabled Mn (TDM), CH 4 concentrations and δ3He ratio to be recorded through vertical cross-sections of hydrothermal plumes along the FAMOUS segment and the southern part of the AMAR segment on the Mid-Atlantic Ridge between 36°N and 37°N. Mn, CH 4 and δ3He figures all along both segments are well above the seawater background in the open ocean: they are interpreted to be the result of time-integrated hydrothermal discharges dispersed and mixed in a closed basin delineated by the rift valley and the segment ends. Hydrothermal activity along the FAMOUS and AMAR segments appears to be similar. A comparison of the residence times of the three tracers from the dispersed, time-integrated signals is proposed. Although the background values in these closed basin are high, some proximal and (or) large hydrothermal inputs, overprinted on the general time-integrated plume, can be detected (i.e. the Rainbow site south of AMAR). Based on the depth and the location of plumes, hydrothermal activity is not, by far, limited to the neo-volcanic inner floor of the valley and should involve the walls and complex offsets of the rift valley. Considering the Mn and CH 4 concentrations in these plumes, two types of ocean-mantle interaction may be represented: hot, focused discharges on ultramafic exposures (Rainbow site) and low-temperature diffuse serpentinisation.

  17. Epidemiological Assessment of the Rift Valley Fever Outbreak in Kenya and Tanzania in 2006 and 2007

    PubMed Central

    Jost, Christine C.; Nzietchueng, Serge; Kihu, Simon; Bett, Bernard; Njogu, George; Swai, Emmanuel S.; Mariner, Jeffrey C.

    2010-01-01

    To capture lessons from the 2007 Rift Valley fever (RVF) outbreak, epidemiological studies were carried out in Kenya and Tanzania. Somali pastoralists proved to be adept at recognizing symptoms of RVF and risk factors such as heavy rainfall and mosquito swarms. Sandik, which means “bloody nose,” was used by Somalis to denote disease consistent with RVF. Somalis reported that sandik was previously seen in 1997/98, the period of the last RVF epidemic. Pastoralists communicated valuable epidemiological information for surveillance and early warning systems that was observed before international warnings. The results indicate that an all or none approach to decision making contributed to the delay in response. In the future, a phased approach balancing actions against increasing risk of an outbreak would be more effective. Given the time required to mobilize large vaccine stocks, emergency vaccination did not contribute to the mitigation of explosive outbreaks of RVF. PMID:20682908

  18. Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever

    PubMed Central

    Chitnis, Nakul; Hyman, James M.; Manore, Carrie A.

    2014-01-01

    We present two ordinary differential equation models for Rift Valley fever (RVF) transmission in cattle and mosquitoes. We extend existing models for vector-borne diseases to include an asymptomatic host class and vertical transmission in vectors. We define the basic reproductive number, , and analyse the existence and stability of equilibrium points. We compute sensitivity indices of and a reactivity index (that measures epidemicity) to parameters for baseline wet and dry season values. is most sensitive to the mosquito biting and death rates. The reactivity index is most sensitive to the mosquito biting rate and the infectivity of hosts to vectors. Numerical simulations show that even with low equilibrium prevalence, increases in mosquito densities through higher rainfall, in the presence of vertical transmission, can result in large epidemics. This suggests that vertical transmission is an important factor in the size and persistence of RVF epidemics. PMID:23098257

  19. Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever.

    PubMed

    Chitnis, Nakul; Hyman, James M; Manore, Carrie A

    2013-01-01

    We present two ordinary differential equation models for Rift Valley fever (RVF) transmission in cattle and mosquitoes. We extend existing models for vector-borne diseases to include an asymptomatic host class and vertical transmission in vectors. We define the basic reproductive number, ℛ(0), and analyse the existence and stability of equilibrium points. We compute sensitivity indices of ℛ(0) and a reactivity index (that measures epidemicity) to parameters for baseline wet and dry season values. ℛ(0) is most sensitive to the mosquito biting and death rates. The reactivity index is most sensitive to the mosquito biting rate and the infectivity of hosts to vectors. Numerical simulations show that even with low equilibrium prevalence, increases in mosquito densities through higher rainfall, in the presence of vertical transmission, can result in large epidemics. This suggests that vertical transmission is an important factor in the size and persistence of RVF epidemics.

  20. Rift Valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus).

    PubMed

    Brustolin, M; Talavera, S; Nuñez, A; Santamaría, C; Rivas, R; Pujol, N; Valle, M; Verdún, M; Brun, A; Pagès, N; Busquets, N

    2017-08-07

    Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  1. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the...

  2. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVF MP-12 strain has been the most safety tested attenuated vaccine ...

  3. Development of Enzyme-Linked Immunosorbent Assays Using Expressed Proteins of Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus, family Bunyaviridae that can cause severe disease in both humans and animals. The disease is enzootic in sub-Saharan Africa and RVFV epidemics/epizootics occur periodically, primarily in eastern and southern Africa. Since the virus...

  4. Effect of environmental temperature on the vector competence of mosquitoes for Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Environmental temperature has been shown to affect the ability of mosquitoes to transmit numerous arboviruses and for Rift Valley fever virus (RVFV) in particular. We evaluated the effect of incubation temperatures ranging from 14-26ºC on infection, dissemination, and transmission rates for Culex ta...

  5. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya

    USDA-ARS?s Scientific Manuscript database

    Animal hosts may vary in their attraction and acceptability as components of the host location process for assessing biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease...

  6. Pupils' Environmental Awareness and Knowledge: A Springboard for Action in Primary Schools in Kenya's Rift Valley

    ERIC Educational Resources Information Center

    Mutisya, Sammy M.; Barker, Miles

    2011-01-01

    This study was carried out with 276 standard eight pupils in eleven primary schools in the rural town of Narok in Kenya's Rift Valley. It evaluated their awareness of key environmental issues in their local area and their knowledge about the causes, effects and solutions pertaining to these environmental issues. A descriptive research design was…

  7. Rift Valley fever risk map model and seroprevalence in selected wild ungulates and camels from Kenya

    USDA-ARS?s Scientific Manuscript database

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based...

  8. Utility of Antibody Avidity for Rift Valley Fever Virus Vaccine Potency and Immunogenicity Studies

    USDA-ARS?s Scientific Manuscript database

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in sub-Saharan Afr...

  9. Blood Meal Analysis of Mosquitoes Involved in a Rift Valley fever Outbreak

    USDA-ARS?s Scientific Manuscript database

    Background: Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Bloodfed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the bloodmeals. Bloodmeals from individual mosquito abdomens were sc...

  10. Rift Valley Fever Virus Growth Curve Kinetics in Cattle and Sheep Peripheral Blood Monocyte Derived Macrophages

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), is a mosquito-borne, zoonotic pathogen within genus Phlebovirus, family Bunyaviridae that typically causes outbreaks in sub-Saharan Africa and recently spread to the Arabian Peninsula. In ruminants, RVFV infections cause mass abortion and high mortality rates in neona...

  11. Pathology Review of Two New Rift Valley Fever Virus Ruminant Models

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), is a mosquito-borne, zoonotic pathogen within genus Phlebovirus, family Bunyaviridae that typically causes outbreaks in sub-Saharan Africa and recently spread to the Arabian Peninsula. In ruminants, RVFV infections cause mass abortion and high mortality rates in neona...

  12. Epidemiologic and environmental risk factors of rift valley fever in southern Africa from 2008 to 2011

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Rift Valley fever outbreaks have been associated with periods of widespread and above average rainfall over several months which allows for the virus infected mosquito vector populations to emerge and propagate. This has provided basis to develop complex models based on environmental fa...

  13. Rift Valley Fever Virus among Wild Ruminants, Etosha National Park, Namibia, 2011.

    PubMed

    Capobianco Dondona, Andrea; Aschenborn, Ortwin; Pinoni, Chiara; Di Gialleonardo, Luigina; Maseke, Adrianatus; Bortone, Grazia; Polci, Andrea; Scacchia, Massimo; Molini, Umberto; Monaco, Federica

    2016-01-01

    After a May 2011 outbreak of Rift Valley fever among livestock northeast of Etosha National Park, Namibia, wild ruminants in the park were tested for the virus. Antibodies were detected in springbok, wildebeest, and black-faced impala, and viral RNA was detected in springbok. Seroprevalence was high, and immune response was long lasting.

  14. Potential for mosquitoes (Diptera: Culicidae) from Florida to transmit rift valley fever virus

    USDA-ARS?s Scientific Manuscript database

    We evaluated 8 species of mosquitoes collected in Florida to determine which of these should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America. Female mosquitoes that had fed on adult hamsters inoculated with RVFV were incubated for 7-21 d at 26°C, allowed to...

  15. Mosquitoes and the environment in Nile Delta villages with previous rift valley fever activity

    USDA-ARS?s Scientific Manuscript database

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from t...

  16. Current Status on the Development of Operator Safe Diagnostic Tools for Rift Valley Fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. It is caused by a Phlebovirus in the family Bunyaviridae. Mosquito-borne epidemics occur during years of unusually heavy rainfall. Domestic cattle, sheep and goats are highly susceptible to...

  17. One Health –One World Approaches to Detection and Control of Rift Valley Fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develop...

  18. Rift Valley Fever Virus Control: Integration of Virus, Host and Vector Studies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. It is caused by a Phlebovirus in the family Bunyaviridae. Mosquito-borne epizootics occur during years of unusually heavy rainfall. Domestic cattle, sheep and goats are highly susceptible to i...

  19. Rift Valley Fever Virus among Wild Ruminants, Etosha National Park, Namibia, 2011

    PubMed Central

    Aschenborn, Ortwin; Pinoni, Chiara; Di Gialleonardo, Luigina; Maseke, Adrianatus; Bortone, Grazia; Polci, Andrea; Scacchia, Massimo; Molini, Umberto; Monaco, Federica

    2016-01-01

    After a May 2011 outbreak of Rift Valley fever among livestock northeast of Etosha National Park, Namibia, wild ruminants in the park were tested for the virus. Antibodies were detected in springbok, wildebeest, and black-faced impala, and viral RNA was detected in springbok. Seroprevalence was high, and immune response was long lasting. PMID:26692385

  20. Pathogenicity and Immunogenicity of a Mutagen-Attenuated Rift Valley Fever Virus Immunogen in Pregnant Ewes

    DTIC Science & Technology

    1987-07-01

    RVFV antibody titers of < 1:10 at birth, increasing to > animals to produce attenuated virus vaccines."’ Prop- 1:80 after ingestion of colostrum ...lamb had a serum sient viremias. Rift Valley fever virus was not detected PRNT80 titer of - 1:80 to uvV. The colostrum of all in serum samples, but low

  1. Vector Competence of Selected African Mosquito (Diptera: Culicidae) Species for Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of Rift Valley fever (RVF) in Egypt, Yemen, and Saudi Arabia have indicated the potential for this disease to spread from its enzootic areas in sub-Saharan Africa. Because little is known about the potential for most African mosquito species to transmit RVF virus (RVFV), we conducted stud...

  2. [Epidemiology of Rift Valley fever in west Africa. 1. Serological investigation of small ruminants in Niger].

    PubMed

    Akakpo, A J; Saluzzo, J F; Bada, R; Bornarel, P; Sarradin, P

    1991-01-01

    A serosurvey of Rift Valley Fever virus infection conducted among 557 sheep and 643 goats from Niger in 1986 points out that 2.8% of the 1,200 animals tested had RVF virus reacting antibodies. The circulation of the virus is demonstrated, as well for another phlebovirus related to RVF virus, the strain Arumowot.

  3. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) causes outbreaks of endemic disease across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spr...

  4. Experimental infection of calves by two genetically-distinct strains of rift valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously we developed a reliable challenge model for sheep that improves the evaluation of ...

  5. Development of a Rift Valley fever virus viremia challenge model in sheep and goats

    USDA-ARS?s Scientific Manuscript database

    Rift valley fever virus (RVFV), a member of the family Bunyaviridae, causes severe to fatal disease in newborn ruminants, as well as abortions in pregnant animals; both preventable by vaccination. Availability of a challenge model is a pre-requisite for vaccine efficacy trials. Several modes of ino...

  6. Potential for Psorophora columbiae and Psorophora ciliata mosquitoes (Diptera: Culicidae) to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) continues to pose a threat to much of the world. Unlike many arboviruses, numerous mosquito species have been associated with RVFV in nature, and many species have been demonstrated as competent vectors in the laboratory. In this study, we evaluated two field-collect...

  7. Factors Affecting the Ability of American Mosquitoes to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, including North Ameri...

  8. Potential for North American Mosquitoes to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, including North Ameri...

  9. Potential for North American mosquitoes to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, possibly even North A...

  10. USDA, ARS, ABDRL Research on Countermeasures for Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The United State Department of Agriculture, Agriculture Research Service has recently established research program to address countermeasures for of Rift Valley fever (RVF) virus (RVFV). The recent outbreak in Kenya, Tanzania and Somalia demonstrates the impact this virus can have on human and live...

  11. Water resource management and biodiversity conservation in the Eastern Rift Valley Lakes, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Yanda, P. Z.; Madulu, N. F.

    The Eastern Rift Valley Lakes of East Africa and their watersheds have gone through significant anthropogenic changes over years. Several land use pressures and overexploitations of natural resources have eroded the biological and physical systems that support those resources. The principal objective of this study was to undertake a comprehensive water resource management problem analysis in the Eastern Rift Valley Lakes so as to highlight the current state of knowledge on key environmental and biodiversity problems, institutional capacities and needs to conserve biodiversity and water resources in the respective lakes. Two stages were be involved in data collection. The first stage involved literature search in libraries and documentation centres held in various institutions. Second stage involved the main fieldwork, which aimed at collecting secondary information from regional and districts offices situated within the basins in question. Findings from this study show that trends in the growth of human population, expansion of cropland and increase in livestock population in the Eastern Rift Valley Lakes zone indicate rapid increase over the next few decades. The pressure of this rapidly increasing population on the available resources will be too great to sustain desirable livelihood in the area. Even at the current rate of population increase, water resource utilisation in and around most Rift Valley Lakes is not sustainable. The intensification of agriculture through the application of fertilisers and pesticides will lead to the soil and water pollution, as is already happening in Mang’ola and Mto wa Mbu where irrigated farming is practised. Although a number of studies have been conducted in the Eastern Rift Valley Lakes and Wetlands in the Northern Tanzania, there are still a lot of issues which have not studied adequately.

  12. New foci of cutaneous leishmaniasis in central Kenya and the Rift Valley.

    PubMed

    Sang, D K; Okelo, G B; Ndegwa, C W; Ashford, R W

    1993-01-01

    Active case detection and investigations of sandfly resting places in suspected transmission sites of cutaneous leishmaniasis in central Kenya and the Rift Valley resulted in the identification of several foci of the disease in Samburu, Isiolo, Laikipia, Nakuru and Nyandarua districts. The foci occurred in areas ranging from semi-arid lowlands at 400 m altitude to highland plateaux at 2500 m, including the floor of the Rift Valley, and were mostly inhabited by recently settled communities, nomads and migrant charcoal burners. Four species of Phlebotomus, 3 of the subgenus Larroussius (P. pedifer, P. aculeatus and P. guggisbergi) and one Paraphlebotomus (P. saevus) were collected from caves, rock crevices and tree hollows found in river valleys and in lava flows.

  13. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    NASA Astrophysics Data System (ADS)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  14. Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew

    2015-02-01

    Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.

  15. A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania

    PubMed Central

    Sindato, Calvin; Pfeiffer, Dirk U.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Rweyemamu, Mark M.; Paweska, Janusz T.

    2015-01-01

    Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and speciesspecific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1–2 years, those aged 3 and 4–5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem. PMID:26162089

  16. A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania.

    PubMed

    Sindato, Calvin; Pfeiffer, Dirk U; Karimuribo, Esron D; Mboera, Leonard E G; Rweyemamu, Mark M; Paweska, Janusz T

    2015-01-01

    Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem.

  17. Protection of Sheep against Rift Valley Fever Virus and Sheep Poxvirus with a Recombinant Capripoxvirus Vaccine▿

    PubMed Central

    Soi, Reuben K.; Rurangirwa, Fred R.; McGuire, Travis C.; Rwambo, Paul M.; DeMartini, James C.; Crawford, Timothy B.

    2010-01-01

    Rift Valley fever (RVF) is an epizootic viral disease of sheep that can be transmitted from sheep to humans, particularly by contact with aborted fetuses. A capripoxvirus (CPV) recombinant virus (rKS1/RVFV) was developed, which expressed the Rift Valley fever virus (RVFV) Gn and Gc glycoproteins. These expressed glycoproteins had the correct size and reacted with monoclonal antibodies (MAb) to native glycoproteins. Mice vaccinated with rKS1/RVFV were protected against RVFV challenge. Sheep vaccinated with rKS1/RVFV twice developed neutralizing antibodies and were significantly protected against RVFV and sheep poxvirus challenge. These findings further document the value of CPV recombinants as ruminant vaccine vectors and support the inclusion of RVFV genes encoding glycoproteins in multivalent recombinant vaccines to be used where RVF occurs. PMID:20876822

  18. Serological surveillance studies confirm the Rift Valley fever virus free status in South Korea.

    PubMed

    Kim, Hyun Joo; Park, Jee-Yong; Jeoung, Hye-Young; Yeh, Jung-Yong; Cho, Yun-Sang; Choi, Jeong-Soo; Lee, Ji-Youn; Cho, In-Soo; Yoo, Han-Sang

    2015-10-01

    Rift Valley fever is a mosquito-borne zoonotic disease of domestic ruminants. This disease causes abortions in pregnant animals, and it has a high mortality rate in newborn animals. Recently, a Rift Valley fever virus (RVFV) outbreak in the Arabian Peninsula increased its potential spread to new regions worldwide. In non-endemic or disease-free countries, early detection and surveillance are important for preventing the introduction of RVFV. In this study, a serological surveillance was conducted to detect antibodies against RVFV. A total of 2382 serum samples from goats and cattle were randomly collected from nine areas in South Korea from 2011 to 2013. These samples were tested for antibodies against RVFV, using commercial ELISA kits. None of the goats and cattle were positive for antibodies against RVFV. This finding suggests that this disease is not present in South Korea, and furthermore presents the evidence of the RVFV-free status of this country.

  19. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe.

    PubMed

    Mansfield, Karen L; Banyard, Ashley C; McElhinney, Lorraine; Johnson, Nicholas; Horton, Daniel L; Hernández-Triana, Luis M; Fooks, Anthony R

    2015-10-13

    Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.

  20. The impact of climate change on the epidemiology and control of Rift Valley fever.

    PubMed

    Martin, V; Chevalier, V; Ceccato, P; Anyamba, A; De Simone, L; Lubroth, J; de La Rocque, S; Domenech, J

    2008-08-01

    Climate change is likely to change the frequency of extreme weather events, such as tropical cyclones, floods, droughts and hurricanes, and may destabilise and weaken the ecosystem services upon which human society depends. Climate change is also expected to affect animal, human and plant health via indirect pathways: it is likely that the geography of infectious diseases and pests will be altered, including the distribution of vector-borne diseases, such as Rift Valley fever, yellow fever, malaria and dengue, which are highly sensitive to climatic conditions. Extreme weather events might then create the necessary conditions for Rift Valley fever to expand its geographical range northwards and cross the Mediterranean and Arabian seas, with an unexpected impact on the animal and human health of newly affected countries. Strengthening global, regional and national early warning systems is crucial, as are co-ordinated research programmes and subsequent prevention and intervention measures.

  1. Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean.

    PubMed

    Balenghien, Thomas; Cardinale, Eric; Chevalier, Véronique; Elissa, Nohal; Failloux, Anna-Bella; Jean Jose Nipomichene, Thiery Nirina; Nicolas, Gaelle; Rakotoharinome, Vincent Michel; Roger, Matthieu; Zumbo, Betty

    2013-09-09

    Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007-2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean.

  2. Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean

    PubMed Central

    2013-01-01

    Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007–2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean. PMID:24016237

  3. Role of mass wasting processes in the modification of oceanic rift valley morphology

    SciTech Connect

    Keith, D.J.; Fox, P.J.; Karson, J. A.

    1985-01-01

    During the last eight years field investigations using the high resolution capabilities of submersibles and deep-towed cameras have been conducted along the rift valley of the Mid-Cayman Rise, the western and eastern intersections of the Kane Transform Fault and the Mid-Atlantic Ridge and the eastern intersection of the Oceanographer Transform Fault. These 3 sites are representative of the range of tectonic environments which are characteristic of slowly accreting plate boundaries. Photographic and observational data collected from within these natural laboratories reveal important geomorphic information concerning the temporal and spatial evolution of volcanic constructional and fault-bounded terrain in response to mass wasting processes. The results of this investigation indicate that sedimentary processes significantly influence the development of oceanic lithosphere soon after its creation and continues to do so with increasing geologic age out to approximately 2 m.y. The data indicate that the rift valley floor distal from transform faults is dominated by a hummocky, volcanic morphology that is rapidly degraded by hyaloclastic mass wasting activity. With the evolution of the rift walls into the rift mountains, photographic data indicates that the processes associated with dislodgement and gravitational transport do not cease to operate but work much more infrequently relative to the tectonically active lower slopes.

  4. Potential for Stable Flies and House Flies (Diptera: Muscidae) to Transmit Rift Valley Fever Virus

    DTIC Science & Technology

    2010-01-01

    disease and economic disruption. Of particular concern is Rift Valley fever virus (RVFV) ( genus Phlebovirus, family Bunyaviridae), which has been...countries in Africa (Anyamba et al. 2009). Although most other members of the genus Phlebovirus are associated with sand flies in nature, RVFV has...al. 1998). Laboratory studies indicate that numerous species of mos- quitoes are susceptible to oral infection and are able to transmit RVFV by bite

  5. Potential for North American Mosquitoes to Transmit Rift Valley Fever Virus

    DTIC Science & Technology

    2008-01-01

    isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am J Trop Med Hyg 29:1405-1410. Shoemaker T, Boulianne C...vexans, Culex erraticus, Cx. nigripalpus, Cx. quinquefasciatus, and Cx. salinarius) were efficient vectors after they fed on hamsters with viremias...after they fed on hamsters with viremias between 10*’ and 10’°^ PFU/ml, and both Ae. vexans and Cx. erraticus transmitted RVFV by bite. These studies

  6. Lymphoplasmacytic endotheliitis and anterior uveitis in sheep infected experimentally with rift valley fever virus.

    PubMed

    Galindo-Cardiel, I; Busquets, N; Velarde, R; Abad, F X; Solanes, D; Rivas, R; Valle, R; Brun, A; Domingo, M

    2012-01-01

    Lymphoplasmacytic endotheliitis and anterior uveitis was diagnosed in four lambs infected experimentally with field isolates of Rift Valley fever virus (RVFV). Formalin-fixed and paraffin wax-embedded tissue from these animals was investigated by histopathology and quantitative real time reverse transcriptase polymerase chain reaction. To our knowledge, this is the first pathological description of this ocular manifestation of RVFV infection in ruminants, although these lesions have been described in man.

  7. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle

    PubMed Central

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V.S.; Charleston, Bryan; Warimwe, George M.

    2016-01-01

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 °C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the ‘cold chain’ vaccine (stored at −80 °C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. PMID:27020712

  8. Rift Valley Fever Outbreak in Livestock in Kenya, 2006–2007

    PubMed Central

    Munyua, Peninah; Murithi, Rees M.; Wainwright, Sherrilyn; Githinji, Jane; Hightower, Allen; Mutonga, David; Macharia, Joseph; Ithondeka, Peter M.; Musaa, Joseph; Breiman, Robert F.; Bloland, Peter; Njenga, M. Kariuki

    2010-01-01

    We analyzed the extent of livestock involvement in the latest Rift Valley fever (RVF) outbreak in Kenya that started in December 2006 and continued until June 2007. When compared with previous RVF outbreaks in the country, the 2006–07 outbreak was the most extensive in cattle, sheep, goats, and camels affecting thousands of animals in 29 of 69 administrative districts across six of the eight provinces. This contrasted with the distribution of approximately 700 human RVF cases in the country, where over 85% of these cases were located in four districts; Garissa and Ijara districts in Northeastern Province, Baringo district in Rift Valley Province, and Kilifi district in Coast Province. Analysis of livestock and human data suggests that livestock infections occur before virus detection in humans, as supported by clustering of human RVF cases around livestock cases in Baringo district. The highest livestock morbidity and mortality rates were recorded in Garissa and Baringo districts, the same districts that recorded a high number of human cases. The districts that reported RVF in livestock for the first time in 2006/07 included Kitui, Tharaka, Meru South, Meru central, Mwingi, Embu, and Mbeere in Eastern Province, Malindi and Taita taveta in Coast Province, Kirinyaga and Murang'a in Central Province, and Baringo and Samburu in Rift Valley Province, indicating that the disease was occurring in new regions in the country. PMID:20682907

  9. The first australopithecine 2,500 kilometres west of the Rift Valley (Chad)

    PubMed

    Brunet, M; Beauvilain, A; Coppens, Y; Heintz, E; Moutaye, A H; Pilbeam, D

    1995-11-16

    The first sites with Pliocene and Pleistocene mammals west of the Rift Valley in Central Africa in northern Chad were reported in 1959 (ref. 1), and documented the presence of mixed savannah and woodland habitats. Further sites and a probable Homo erectus cranio-facial fragment were subsequently discovered. In 1993 a survey of Pliocene and Pleistocene formations in the Borkou-Ennedi-Tibesti Province of Chad (B.E.T.) led to the discovery of 17 new sites in the region of Bahr el Ghazal (classical Arabic for River of the Gazelles) near Koro Toro. One site, KT 12 (15 degrees 58'10"N, 18 degrees 52'46"E) yielded an australopithecine mandible associated with a fauna biochronologically estimated to be 3.0-3.5 Myr old. Australopithecine species described since 1925 are known from southern Africa and from sites spread along the eastern Rift Valley from Tanzania to Ethiopia (Fig. 1). This new find from Chad, which is most similar in morphology to Australopithecus afarensis, documents the presence of an early hominid a considerable distance, 2,500 km, west of the Rift Valley.

  10. Rift Valley Fever Virus Seroprevalence in Human Rural Populations of Gabon

    PubMed Central

    Souris, Marc; Paupy, Christophe; Paweska, Janusz; Padilla, Cindy; Moussavou, Ghislain; Leroy, Eric M.

    2010-01-01

    Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols) or tissues (placenta, stillborn) of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV) in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan), east (Kenya, Tanzania, Somalia), west (Senegal, Mauritania) and south (South Africa), but also in the Indian Ocean (Madagascar, Mayotte) and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. Methodology/Principal Findings We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages). RVFV-specific IgG was found in a total of 145 individuals (3.3%) suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8%) and the seroprevalence increased gradually with age in males but not in females. Conclusions/Significance Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and hunting

  11. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems

    PubMed Central

    Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Elliott, Richard M.; Diallo, Mawlouth; Sall, Amadou A.; Failloux, Anna-Bella; Schnettler, Esther

    2017-01-01

    ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect

  12. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.

    PubMed

    Dietrich, Isabelle; Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Brennan, Benjamin; Elliott, Richard M; Diallo, Mawlouth; Sall, Amadou A; Failloux, Anna-Bella; Schnettler, Esther; Kohl, Alain; Becker, Stefanie C

    2017-01-01

    The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila

  13. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya.

    PubMed

    Tchouassi, David P; Okiro, Robinson O K; Sang, Rosemary; Cohnstaedt, Lee W; McVey, David Scott; Torto, Baldwyn

    2016-03-31

    Animal hosts may vary in their attraction and acceptability as components of the host location process for assessing preference, and biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease, and for a community of mosquitoes. Using three known livestock amplifiers of RVF virus including sheep, goat and cattle as bait in enclosure traps, we investigated the host-feeding patterns for a community of mosquitoes in Naivasha, an endemic area of Rift Valley fever (RVF), in a longitudinal study for six months (June-November 2015). We estimated the incidence rate ratios (IRR) where mosquitoes chose cow over the other livestock hosts by comparing their attraction (total number collected) and engorgement rate (proportion freshly blood-fed) on these hosts. Overall, significant differences were observed in host preference parameters for attraction (F2,15 = 4.1314, P = 0.037) and engorgement (F2,15 = 6.24, P = 0.01) with cow consistently attracting about 3-fold as many mosquitoes as those engorged on sheep (attraction: IRR = 2.9, 95 % CI 1.24-7.96; engorgement: IRR = 3.2, 95 % CI = 1.38-7.38) or goat (attraction: IRR = 2.7, 95 % CI 1.18-7.16; engorgement: IRR = 3.28, 95 % CI 1.47-7.53). However, there was no difference between the attraction elicited by sheep and goat (IRR = 1.08; 95 % CI 0.35-3.33 or engorgement rate (IRR = 0.96, 95 % CI 0.36-2.57). Despite the overall attractive pattern to feed preferentially on cows, the engorgement rate was clearly independent of the number attracted for certain mosquito species, notably among the flood water Aedes spp., largely incriminated previously as primary vectors of RVF. Our findings suggest that insecticide treated cattle (ITC) can be exploited in enclosure traps as contact bait in the monitoring and control of disease-causing mosquitoes in RVF endemic areas.

  14. Rift Valley fever virus seroprevalence in human rural populations of Gabon.

    PubMed

    Pourrut, Xavier; Nkoghé, Dieudonné; Souris, Marc; Paupy, Christophe; Paweska, Janusz; Padilla, Cindy; Moussavou, Ghislain; Leroy, Eric M

    2010-07-27

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols) or tissues (placenta, stillborn) of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV) in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan), east (Kenya, Tanzania, Somalia), west (Senegal, Mauritania) and south (South Africa), but also in the Indian Ocean (Madagascar, Mayotte) and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages). RVFV-specific IgG was found in a total of 145 individuals (3.3%) suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8%) and the seroprevalence increased gradually with age in males but not in females. Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and hunting outside the villages, where they may be more exposed to mosquito bites

  15. Interplay between the virus and host in Rift Valley fever pathogenesis

    PubMed Central

    Terasaki, Kaori; Makino, Shinji

    2015-01-01

    Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus, family Bunyaviridae, and carries single-stranded tripartite RNA segments. The virus is transmitted by mosquitoes and has caused large outbreaks among ruminants and humans in sub-Saharan African and Middle East countries. The disease is characterized by a sudden onset of fever, headache, muscle pain, joint pain, photophobia, and weakness. In most cases, patients recover from the disease after a period of weeks, but some also develop retinal or macular changes, which result in vision impairment that lasts for an undefined period of time, and severe disease, characterized by hemorrhagic fever or encephalitis. The virus also causes febrile illness resulting in a high rate of spontaneous abortions in ruminants. The handling of wild-type RVFV requires high-containment facilities, including biosafety level 4 or enhanced biosafety level 3 laboratories. Nonetheless, studies clarifying the mechanisms of the RVFV-induced diseases and preventing them are areas of active research throughout the world. By primarily referring to recent studies using several animal model systems, protein expression systems, and specific mutant viruses, this review describes current knowledge about the mechanisms of pathogenesis of RVF and biological functions of various viral proteins that affect RVFV pathogenicity. PMID:25766761

  16. Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus.

    PubMed

    Turell, Michael J; Linthicum, Kenneth J; Patrican, Lisa A; Davies, F Glyn; Kairo, Alladin; Bailey, Charles L

    2008-01-01

    Outbreaks of Rift Valley fever (RVF) in Egypt, Yemen, and Saudi Arabia have indicated the potential for this disease to spread from its enzootic areas in sub-Saharan Africa. Because little is known about the potential for most African mosquito species to transmit RVF virus (family Bunyaviridae, genus Phlebovirus, RVFV), we conducted studies to determine the vector competence of selected African species of mosquitoes for this virus. All eight species tested [Aedes palpalis (Newstead), Aedes mcintoshi Huang, Aedes circumluteolus (Theobald), Aedes calceatus Edwards, Aedes aegypti (L.), Culex antennatus (Becker), Culex pipiens (L.), and Culex quinquefasciatus Say], were susceptible to infection, and all except Ae. calceatus, Ae. aegypti and Cx. quinquefasciatus transmitted RVFV by bite after oral exposure. Estimated transmission rates for mosquitoes that successfully transmitted RVFV by bite ranged from 5% for Ae. mcintoshi to 39% for Ae. palpalis for mosquitoes that fed on a hamster with a viremia > or = 10(8) plaque-forming units of virus/ml. We did not recover RVFV from any of 3,138 progeny of infected female mosquitoes. RVFV is unusual among arboviruses in that it has been isolated in nature from a large number of species and that numerous mosquitoes and other arthropods are able to transmit this virus in the laboratory. The recent introduction and spread of West Nile virus into the Americas and the spread of RVFV to the Arabian Peninsula illustrates the potential for viruses, once enzootic in Africa, to spread to other parts of the world.

  17. Comparative efficacy of two next-generation Rift Valley fever vaccines.

    PubMed

    Kortekaas, J; Oreshkova, N; van Keulen, L; Kant, J; Bosch, B J; Bouloy, M; Moulin, V; Goovaerts, D; Moormann, R J M

    2014-09-03

    Rift Valley fever virus (RVFV) is a re-emerging zoonotic bunyavirus of the genus Phlebovirus. A natural isolate containing a large attenuating deletion in the small (S) genome segment previously yielded a highly effective vaccine virus, named Clone 13. The deletion in the S segment abrogates expression of the NSs protein, which is the major virulence factor of the virus. To develop a vaccine of even higher safety, a virus named R566 was created by natural laboratory reassortment. The R566 virus combines the S segment of the Clone 13 virus with additional attenuating mutations on the other two genome segments M and L, derived from the previously created MP-12 vaccine virus. To achieve the same objective, a nonspreading RVFV (NSR-Gn) was created by reverse-genetics, which not only lacks the NSs gene but also the complete M genome segment. We have now compared the vaccine efficacies of these two next-generation vaccines and included the Clone 13 vaccine as a control for optimal efficacy. Groups of eight lambs were vaccinated once and challenged three weeks later. All mock-vaccinated lambs developed high fever and viremia and three lambs did not survive the infection. As expected, lambs vaccinated with Clone 13 were protected from viremia and clinical signs. Two lambs vaccinated with R566 developed mild fever after challenge infection, which was associated with low levels of viral RNA in the blood, whereas vaccination with the NSR-Gn vaccine completely prevented viremia and clinical signs.

  18. IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus

    PubMed Central

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary; Radoshitzky, Sheli R.; Kota, Krishna P.; Altamura, Louis A.; Smith, Jeffrey M.; Packard, Beverly Z.; Kuhn, Jens H.; Costantino, Julie; Garrison, Aura R.; Schmaljohn, Connie S.; Huang, I-Chueh; Farzan, Michael

    2013-01-01

    We show that interferon-induced transmembrane protein 1 (IFITM-1), IFITM-2, and IFITM-3 exhibit a broad spectrum of antiviral activity against several members of the Bunyaviridae family, including Rift Valley fever virus (RVFV), La Crosse virus, Andes virus, and Hantaan virus, all of which can cause severe disease in humans and animals. We found that RVFV was restricted by IFITM-2 and -3 but not by IFITM-1, whereas the remaining viruses were equally restricted by all IFITMs. Indeed, at low doses of alpha interferon (IFN-α), IFITM-2 and -3 mediated more than half of the antiviral activity of IFN-α against RVFV. IFITM-2 and -3 restricted RVFV infection mostly by preventing virus membrane fusion with endosomes, while they had no effect on virion attachment to cells, endocytosis, or viral replication kinetics. We found that large fractions of IFITM-2 and IFITM-3 occupy vesicular compartments that are distinct from the vesicles coated by IFITM-1. In addition, although overexpression of all IFITMs expanded vesicular and acidified compartments within cells, there were marked phenotypic differences among the vesicular compartments occupied by IFITMs. Collectively, our data provide new insights into the possible mechanisms by which the IFITM family members restrict distinct viruses. PMID:23720721

  19. Risk Factors for Severe Rift Valley Fever Infection in Kenya, 2007

    PubMed Central

    Anyangu, Amwayi S.; Hannah Gould, L.; Sharif, Shahnaaz K.; Nguku, Patrick M.; Omolo, Jared O.; Mutonga, David; Rao, Carol Y.; Lederman, Edith R.; Schnabel, David; Paweska, Janusz T.; Katz, Mark; Hightower, Allen; Kariuki Njenga, M.; Feikin, Daniel R.; Breiman, Robert F.

    2010-01-01

    A large Rift Valley fever (RVF) outbreak occurred in Kenya from December 2006 to March 2007. We conducted a study to define risk factors associated with infection and severe disease. A total of 861 individuals from 424 households were enrolled. Two hundred and two participants (23%) had serologic evidence of acute RVF infection. Of these, 52 (26%) had severe RVF disease characterized by hemorrhagic manifestations or death. Independent risk factors for acute RVF infection were consuming or handling products from sick animals (odds ratio [OR] = 2.53, 95% confidence interval [CI] = 1.78–3.61, population attributable risk percentage [PAR%] = 19%) and being a herdsperson (OR 1.77, 95% CI = 1.20–2.63, PAR% = 11%). Touching an aborted animal fetus was associated with severe RVF disease (OR = 3.83, 95% CI = 1.68–9.07, PAR% = 14%). Consuming or handling products from sick animals was associated with death (OR = 3.67, 95% CI = 1.07–12.64, PAR% = 47%). Exposures related to animal contact were associated with acute RVF infection, whereas exposures to mosquitoes were not independent risk factors. PMID:20682901

  20. Development of a Novel Nonhuman Primate Model for Rift Valley Fever

    PubMed Central

    Bird, Brian H.; Lewis, Bridget; Johnston, Sara C.; McCarthy, Sarah; Keeney, Ashley; Botto, Miriam; Donnelly, Ginger; Shamblin, Joshua; Albariño, César G.; Nichol, Stuart T.; Hensley, Lisa E.

    2012-01-01

    Rift Valley fever (RVF) virus (RVFV) can cause severe human disease characterized by either acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. The existing nonhuman primate (NHP) model for RVF utilizes an intravenous (i.v.) exposure route in rhesus macaques (Macaca mulatta). Severe disease in these animals is infrequent, and large cohorts are needed to observe significant morbidity and mortality. To overcome these drawbacks, we evaluated the infectivity and pathogenicity of RVFV in the common marmoset (Callithrix jacchus) by i.v., subcutaneous (s.c.), and intranasal exposure routes to more closely mimic natural exposure. Marmosets were more susceptible to RVFV than rhesus macaques and experienced higher rates of morbidity, mortality, and viremia and marked aberrations in hematological and chemistry values. An overwhelming infection of hepatocytes was a major consequence of infection of marmosets by the i.v. and s.c. exposure routes. Additionally, these animals displayed signs of hemorrhagic manifestations and neurological impairment. Based on our results, the common marmoset model more closely resembles severe human RVF disease and is therefore an ideal model for the evaluation of potential vaccines and therapeutics. PMID:22156530

  1. Risk factors associated with Rift Valley fever epidemics in South Africa in 2008-11.

    PubMed

    Métras, Raphaëlle; Jewell, Chris; Porphyre, Thibaud; Thompson, Peter N; Pfeiffer, Dirk U; Collins, Lisa M; White, Richard G

    2015-03-25

    Rift Valley fever (RVF) is a zoonotic and vector-borne disease, mainly present in Africa, which represents a threat to human health, animal health and production. South Africa has experienced three major RVF epidemics (1950-51, 1973-75 and 2008-11). Due to data scarcity, no previous study has quantified risk factors associated with RVF epidemics in animals in South Africa. Using the 2008-11 epidemic datasets, a retrospective longitudinal study was conducted to identify and quantify spatial and temporal environmental factors associated with RVF incidence. Cox regressions with a Besag model to account for the spatial effects were fitted to the data. Coefficients were estimated by Bayesian inference using integrated nested Laplace approximation. An increase in vegetation density was the most important risk factor until 2010. In 2010, increased temperature was the major risk factor. In 2011, after the large 2010 epidemic wave, these associations were reversed, potentially confounded by immunity in animals, probably resulting from earlier infection and vaccination. Both vegetation density and temperature should be considered together in the development of risk management strategies. However, the crucial need for improved access to data on population at risk, animal movements and vaccine use is highlighted to improve model predictions.

  2. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice.

    PubMed

    Tokuda, S; Do Valle, T Z; Batista, L; Simon-Chazottes, D; Guillemot, L; Bouloy, M; Flamand, M; Montagutelli, X; Panthier, J-J

    2015-01-01

    The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.

  3. Risk factors for severe Rift Valley fever infection in Kenya, 2007.

    PubMed

    Anyangu, Amwayi S; Gould, L Hannah; Sharif, Shahnaaz K; Nguku, Patrick M; Omolo, Jared O; Mutonga, David; Rao, Carol Y; Lederman, Edith R; Schnabel, David; Paweska, Janusz T; Katz, Mark; Hightower, Allen; Njenga, M Kariuki; Feikin, Daniel R; Breiman, Robert F

    2010-08-01

    A large Rift Valley fever (RVF) outbreak occurred in Kenya from December 2006 to March 2007. We conducted a study to define risk factors associated with infection and severe disease. A total of 861 individuals from 424 households were enrolled. Two hundred and two participants (23%) had serologic evidence of acute RVF infection. Of these, 52 (26%) had severe RVF disease characterized by hemorrhagic manifestations or death. Independent risk factors for acute RVF infection were consuming or handling products from sick animals (odds ratio [OR] = 2.53, 95% confidence interval [CI] = 1.78-3.61, population attributable risk percentage [PAR%] = 19%) and being a herds person (OR 1.77, 95% CI = 1.20-2.63, PAR% = 11%). Touching an aborted animal fetus was associated with severe RVF disease (OR = 3.83, 95% CI = 1.68-9.07, PAR% = 14%). Consuming or handling products from sick animals was associated with death (OR = 3.67, 95% CI = 1.07-12.64, PAR% = 47%). Exposures related to animal contact were associated with acute RVF infection, whereas exposures to mosquitoes were not independent risk factors.

  4. Relevance of Rift Valley fever to public health in the European Union.

    PubMed

    Chevalier, V

    2013-08-01

    Rift Valley fever (RVF), a vector-borne zoonotic disease caused by a phlebovirus (family Bunyaviridae), is considered to be one of the most important viral zoonoses in Africa. It is also a potential bioterrorism agent. Transmitted by mosquitoes or by direct contact with viraemic products, RVF affects both livestock and humans, causing abortion storms in pregnant ruminants and sudden death in newborns. The disease provokes flu syndrome in most human cases, but also severe encephalitic or haemorrhagic forms and death. There is neither a treatment nor a vaccine for humans. The disease, historically confined to the African continent, recently spread to the Arabian Peninsula and Indian Ocean. Animal movements, legal or illegal, strongly contribute to viral spread, threatening the Mediterranean basin and Europe, where competent vectors are present. Given the unpredictability of virus introduction and uncertainties about RVF epidemiology, there is an urgent need to fill the scientific gaps by developing large regional research programmes, to build predictive models, and to implement early warning systems and surveillance designs adapted to northern African and European countries.

  5. Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES.

    PubMed

    Taylor, David; Hagenlocher, Michael; Jones, Anne E; Kienberger, Stefan; Leedale, Joseph; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF), a relatively recently emerged zoonosis endemic to large parts of sub-Saharan Africa that has the potential to spread beyond the continent, have profound health and socio-economic impacts, particularly in communities where resilience is already low. Here output from a new, dynamic disease model [the Liverpool RVF (LRVF) model], driven by downscaled, bias-corrected climate change data from an ensemble of global circulation models from the Inter-Sectoral Impact Model Intercomparison Project run according to two radiative forcing scenarios [representative concentration pathway (RCP)4.5 and RCP8.5], is combined with results of a spatial assessment of social vulnerability to the disease in eastern Africa. The combined approach allowed for analyses of spatial and temporal variations in the risk of RVF to the end of the current century. Results for both scenarios highlight the high-risk of future RVF outbreaks, including in parts of eastern Africa to date unaffected by the disease. The results also highlight the risk of spread from/to countries adjacent to the study area, and possibly farther afield, and the value of considering the geography of future projections of disease risk. Based on the results, there is a clear need to remain vigilant and to invest not only in surveillance and early warning systems, but also in addressing the socio-economic factors that underpin social vulnerability in order to mitigate, effectively, future impacts.

  6. Severe Rift Valley Fever May Present with a Characteristic Clinical Syndrome

    PubMed Central

    Kahlon, Summerpal S.; Peters, Clarence J.; LeDuc, James; Muchiri, Eric M.; Muiruri, Samuel; Njenga, M. Kariuki; Breiman, Robert F.; Clinton White, A.; King, Charles H.

    2010-01-01

    Rift Valley fever (RVF) virus is an emerging pathogen that is transmitted in many regions of sub-Saharan Africa, parts of Egypt, and the Arabian peninsula. Outbreaks of RVF, like other diseases caused by hemorrhagic fever viruses, typically present in locations with very limited health resources, where initial diagnosis must be based only on history and physical examination. Although general signs and symptoms of human RVF have been documented, a specific clinical syndrome has not been described. In 2007, a Kenyan outbreak of RVF provided opportunity to assess acutely ill RVF patients and better delineate its presentation and clinical course. Our data reveal an identifiable clinical syndrome suggestive of severe RVF, characterized by fever, large-joint arthralgia, and gastrointestinal complaints and later followed by jaundice, right upper-quadrant pain, and delirium, often coinciding with hemorrhagic manifestations. Further characterization of a distinct RVF clinical syndrome will aid earlier detection of RVF outbreaks and should allow more rapid implementation of control. PMID:20207858

  7. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

    USGS Publications Warehouse

    Macdonald, R.; Baginski, B.; Belkin, H.E.; Dzierzanowski, P.; Jezak, L.

    2009-01-01

    Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ??? Ca2+ + P5+. The substitution REE3+ + Na+ ??? 2Ca2+ has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fo2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123). ?? 2008 The Mineralogical Society.

  8. Development of an Upper Cambrian rimmed shelf along the Mississippi Valley Graben, Reelfoot Rift, and the southeastern Ozarks, southern Missouri

    SciTech Connect

    Palmer, J.R. . Dept. of Natural Resources)

    1993-03-01

    The paleogeographic distribution of intrashelf basin shales and limestones in the Bonneterre (Dresbachian) and Davis (Franconian) Formations, and associated data, suggests that rimmed shelf conditions separated the central Missouri part of the shelf from the Mississippi Valley Graben (MVG) of the Reelfoot Rift to the southeast. Middle Dresbachian rocks of the intrashelf basin area, predominantly limestones, indicate a discontinuous carbonate shelf rim. The succeeding widespread shales of the Franconian intrashelf basin indicate that a continuous rim had developed. The margin of the shelf rim is preserved in part of the 4,700-ft-thick Upper Cambrian succession along the northwest margin of the Mississippi Valley Graben (MVG) of the Reelfoot Rift. Equivalent rocks within the MVG are dominantly dark shales (1,600+ ft thick). The Amoco Spence test well penetrated the rim succession on the northwest margin of the MVG. At least 11 large-scale transgressive-regressive (T-R) carbonate cycles (120--600 ft thick) have been defined in this well; 7 cycles are equivalent to the Bonneterre and Davis Formations. These latter cycles have shaly limestone, or limestone at the base, and grade upward to dolostone or coarsely crystalline dolostone, which are interpreted to be shallowing-upward, bank margin-peritidal carbonates. Northwest of the rim margin and on the southeast side of the St. Francois Mountains, rocks equivalent to the rim succession consist of a series of ramp to platform cycles made up of dolostones and local limestones. Many carbonate shelves on passive margins are rimmed. The development of this Upper Cambrian rimmed shelf along the northwest margin of the MVG suggests that failed rifts can also localized such rims.

  9. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect

    Jones, B.; Renault, R.W.

    1998-09-01

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  10. Identifying Areas Suitable for the Occurrence of Rift Valley Fever in North Africa: Implications for Surveillance.

    PubMed

    Arsevska, E; Hellal, J; Mejri, S; Hammami, S; Marianneau, P; Calavas, D; Hénaux, V

    2016-12-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease that has caused widespread outbreaks throughout Africa and the Arabian Peninsula, with serious consequences for livestock-based economies and public health. Although there have never been any reports of RVF in Morocco, Algeria, Tunisia and Libya, it is a priority disease in the Maghreb, due to the threat of introduction of the virus through transboundary livestock movements or infected mosquito vectors. However, the implementation of surveillance activities and early warning contingency plans requires better knowledge of the epidemiological situation. We conducted a multicriteria decision analysis, integrating host distribution with a combination of important ecological factors that drive mosquito abundance, to identify hotspots and suitable time periods for RVF enzootic circulation (i.e. stable transmission at a low to moderate level for an extended period of time) and an RVF epizootic event (i.e. a sudden occurrence of a large number of infected animals over a large geographic area) in the Maghreb. We also modelled vector species distribution using available information on vector presence and habitat preference. We found that the northern regions of the Maghreb were moderately suitable for RVF enzootics, but highly suitable for RVF epizootics. The vector species distribution model identified these regions as the most favourable mosquito habitats. Due to the low density of animal hosts and arid conditions, the desert region showed low RVF suitability, except in oases. However, the presence of competent vectors in putative unsuitable areas underlines the need for further assessments of mosquito habitat preference. This study produced monthly RVF suitability maps useful for animal health managers and veterinary services involved in designing risk-based surveillance programmes. The suitability maps can be further enhanced using existing country-specific sources of information and by incorporating knowledge

  11. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    NASA Astrophysics Data System (ADS)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  12. NURSES INFECTION PREVENTION PRACTICES IN HANDLING INJECTIONS: A CASE OF RIFT VALLEY PROVINCIAL HOSPITAL IN KENYA.

    PubMed

    Chemoiwa, R K; Mukthar, V K; Maranga, A K; Kulei, S J

    2014-10-01

    To analyse the infection prevention practices in handling of injections by nurses in Rift Valley Provincial Hospital in Kenya. A cross-sectional observational study. Rift Valley Provincial hospital which is a level five health facility situated in Nakuru County, Kenya. A sample of 386 injection procedures attributed to the nurses in Rift Valley Provincial Hospital was considered for this study. The study established that among all the injections administered in this study, 43.7% (386) adhered to aseptic techniques. Over seventy five percent (76.9%, n = 386) of the observed injections procedures did not involve the hand-washing, 53.4% (n = 206) did not involve swabbing of a vial rubber cap with alcohol swabs and 95.1%(n = 263) involved using of multidose drug in more than one designated patient. Over ninety five percent (95.6%, n = 364) of the observed procedures involved use of sterile the syringe bit of the devices only while the rest used either clean or contaminated syringes. Around forty percent (42.2%, n = 316) of the injections preparation was done elsewhere (not at the patient bedside) before administration. Slightly over thirty five percent (36.6%, n = 386) of the injections were administered immediately upon reconstitution(at the right time). The study also established the use of aseptic techniques to reconstitute and administer was significantly related to the number of nurses to patients ratio per shift (X2(1) = 3.5: p = 0.04). The findings of this study indicate that patient safety in public hospital is still relatively low. The adherence to basic infection prevention procedures/aseptic techniques in handling of injections by health workers is still a concern. The adherence to aseptic techniques in handling injections is significantly associated with the nurses to patients ratios. Therefore, it is imperative to improve nurse to patient ratio in public health facilities in Kenya.

  13. Potential for mosquito transmission of attenuated strains of Rift Valley fever virus.

    PubMed

    Turell, M J; Rossi, C A

    1991-03-01

    Studies were conducted to determine if two attenuated strains of Rift Valley fever (RVF) virus could be transmitted by Culex pipiens mosquitoes. Both strains (RVF MP 12 and T1) replicated in and were transmitted by female Cx. pipiens after intrathoracic inoculation. Mosquitoes also became infected with and transmitted the RVF MP12 strain after ingesting virus from a blood-soaked cotton pledget. However, because of the low viremias produced in infected animals, it is unlikely that mosquitoes would become infected by feeding on an animal inoculated with either of these viruses. Although both strains were transmitted by mosquitoes after intrathoracic inoculation, there was no evidence of reversion to a virulent virus.

  14. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor NSs.

    PubMed

    Lihoradova, Olga; Ikegami, Tetsuro

    2014-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae. RVFV encodes a major virulence factor, NSs, which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications.

  15. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Bailey, Charles L.; Davies, F. Glyn; Tucker, Compton J.

    1987-01-01

    Data from the advanced very high resolution radiometer on board the National Oceanic and Atmospheric Administration's polar-orbiting meteorological satellites have been used to infer ecological parameters associated with Rift Valley fever (RVF) viral activity in Kenya. An indicator of potential viral activity was produced from satellite data for two different ecological regions in Kenya, where RVF is enzootic. The correlation between the satellite-derived green vegetation index and the ecological parameters associated with RVF virus suggested that satellite data may become a forecasting tool for RVF in Kenya and, perhaps, in other areas of sub-Saharan Africa.

  16. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.

    PubMed

    Ermler, Megan E; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A; Vanaja, Sivapriya K; Fitzgerald, Katherine A; Hise, Amy G

    2014-01-20

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells.

  17. ASTER First Views of Rift Valley, Ethiopia - Thermal-Infrared TIR Image color

    NASA Image and Video Library

    2000-03-11

    This image is a color composite covering the Rift Valley inland area of Ethiopia (south of the region shown in PIA02452). The color difference of this image reflects the distribution of different rocks with different amounts of silicon dioxide. It is inferred that the area with whitish color is covered with basalt and the pinkish area in the center contain sandesite. This is the first spaceborne, multi-band TIR image in history that enables geologists to distinguish between rocks with similar compositions. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02453

  18. Transstadial and Horizontal Transmission of Rift Valley Fever Virus in Hyalomma truncatum

    DTIC Science & Technology

    1989-01-01

    pendiculatus were established from the progeny Central African Republic. Attempts to isolate of females collected from cattle in Rift Valley RVF virus from...in this study.18 on a guinea pig. On day 15 post-inoculation, 20 For virus assays, ticks were triturated in 1 ml female and 15 male ticks were allowed...ticks (5 female , 5 male for Exp. 1 and 2) were of RVF virus 24 hr prior to estimated tick drop- sampled at predetermined intervals post-inocu- off. After

  19. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor NSs

    PubMed Central

    Lihoradova, Olga; Ikegami, Tetsuro

    2014-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae. RVFV encodes a major virulence factor, NSs, which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications. PMID:24910709

  20. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Bailey, Charles L.; Davies, F. Glyn; Tucker, Compton J.

    1987-01-01

    Data from the advanced very high resolution radiometer on board the National Oceanic and Atmospheric Administration's polar-orbiting meteorological satellites have been used to infer ecological parameters associated with Rift Valley fever (RVF) viral activity in Kenya. An indicator of potential viral activity was produced from satellite data for two different ecological regions in Kenya, where RVF is enzootic. The correlation between the satellite-derived green vegetation index and the ecological parameters associated with RVF virus suggested that satellite data may become a forecasting tool for RVF in Kenya and, perhaps, in other areas of sub-Saharan Africa.

  1. A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

    PubMed Central

    Piper, Mary E.; Gerrard, Sonja R.

    2010-01-01

    Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrate that these RVF-VLPs are antigenically indistinguishable from authentic RVFV and respond similarly to a wide array of known and previously unknown chemical inhibitors. This system should be useful for screening for small molecule inhibitors of RVFV replication. PMID:21994655

  2. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia.

    PubMed

    Boshra, Hani; Truong, Thang; Babiuk, Shawn; Hemida, Maged Gomaa

    2015-01-01

    Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula. Saudi Arabia is a major importer of livestock, and understanding the prevalence of these viral infections would be useful for disease control. In this study, sera from sheep and goats were collected from 3 regions in Saudi Arabia. They were evaluated for antibodies specific to sheep and goat pox, peste des petits ruminants and Rift Valley fever by virus neutralization assays. To the best of our knowledge, this is the first study to evaluate the seroprevalence of these viruses in sheep and goats.

  3. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia

    PubMed Central

    Boshra, Hani; Truong, Thang; Babiuk, Shawn; Hemida, Maged Gomaa

    2015-01-01

    Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula. Saudi Arabia is a major importer of livestock, and understanding the prevalence of these viral infections would be useful for disease control. In this study, sera from sheep and goats were collected from 3 regions in Saudi Arabia. They were evaluated for antibodies specific to sheep and goat pox, peste des petits ruminants and Rift Valley fever by virus neutralization assays. To the best of our knowledge, this is the first study to evaluate the seroprevalence of these viruses in sheep and goats. PMID:26462199

  4. The role of wild mammals in the maintenance of Rift Valley fever virus.

    PubMed

    Olive, Marie-Marie; Goodman, Steven M; Reynes, Jean-Marc

    2012-04-01

    Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting primarily domestic ruminants and humans. Numerous vector species are known or implicated in the transmission of RVFV. The role of mammals in the maintenance of RVFV, and the existence of a wild mammal reservoir in the epidemiologic cycle of RVFV, remain largely unknown. Our objective is to present a detailed review of studies undertaken on RVFV, often associated with wild mammals, with the aim of focusing future research on potential reservoirs of the virus. Natural and experimental infections related to RVFV in several mammalian orders, including Artiodactyla, Chiroptera, Rodentia, Primata (nonhuman), Perissodactyla, Carnivora, Proboscidea, Erinaceomorpha, and Lagomorpha, are reviewed; the first four orders have received the greatest attention. The possible role of wild ruminants, especially African buffalo (Syncerus caffer), is also discussed. Conflicting results have been published concerning rodents but, based on the literature, the likely candidate species include the African genera Arvicanthis and Micaelamys and the widely introduced roof rat (Rattus rattus). Members of the orders Chiroptera and Rodentia should receive greater attention associated with new research programs. For the other orders mentioned above, few data are available. We are unaware of any investigation concerning the orders Afrosoricida and Soricomorpha, which are represented in the geographic area of RVFV and can be abundant. As a first step to resolve the question of wild mammals as a reservoir of RVFV, serologic and virologic surveys should be promoted during epizootic periods to document infected wild animals and, in the case of positive results, extended to interepidemic periods to explore the role of wild animals as possible reservoirs.

  5. Rift Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis.

    PubMed

    Harmon, Brooke; Schudel, Benjamin R; Maar, Dianna; Kozina, Carol; Ikegami, Tetsuro; Tseng, Chien-Te Kent; Negrete, Oscar A

    2012-12-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.

  6. Genetic Evidence for an Interferon-Antagonistic Function of Rift Valley Fever Virus Nonstructural Protein NSs

    PubMed Central

    Bouloy, Michèle; Janzen, Christian; Vialat, Pierre; Khun, Huot; Pavlovic, Jovan; Huerre, Michel; Haller, Otto

    2001-01-01

    Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR−/− mice lacking the alpha/beta interferon (IFN-α/β) receptor but remained attenuated in IFN-γ receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-α/β production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-α/β and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-α/β production, we infected susceptible IFNAR−/− mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-α/β production. These results demonstrate that the ability of RVFV to inhibit IFN-α/β production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist. PMID:11152510

  7. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination.

    PubMed

    Wilson, William C; Bawa, Bhupinder; Drolet, Barbara S; Lehiy, Chris; Faburay, Bonto; Jasperson, Dane C; Reister, Lindsey; Gaudreault, Natasha N; Carlson, Jolene; Ma, Wenjun; Morozov, Igor; McVey, D Scott; Richt, Jürgen A

    2014-08-06

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVFV MP-12 strain has been the most safety tested attenuated vaccine strain; thus it is being considered as a potential vaccine for the US national veterinary stockpile. This study was designed to establish safety protocols for large animal research with virulent RVF viruses, establish a target host immune response baseline using RVF MP-12 strain, and independently evaluate this strain as a potential US emergency response vaccine. Ten, approximately four month-old lambs and calves were vaccinated with RVF MP-12 strain; two additional animals per species provided negative control specimens. The animals were monitored for clinical and immune response, fever, and viremia. Two animals per species were sacrificed on 2, 3, 4, 10 and 28 days post infection and full necropsies were performed for histopathological examination. No clinical or febrile responses were observed in this study. The onset and titer of the immune response is discussed. There was no significant histopathology in the lambs; however, 6 out of 10 vaccinated calves had multifocal, random areas of hepatocellular degeneration and necrosis. RVF MP12 antigen was detected in these areas of necrosis by immunohistochemistry in one calf. This study provides independent and baseline information on the RVF MP-12 attenuated vaccination in vaccine relevant age target species and indicates the importance of performing safety testing on vaccine relevant aged target animals.

  8. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.

  9. Potential for North American mosquitoes to transmit Rift Valley fever virus.

    PubMed

    Turell, Michael J; Dohm, David J; Mores, Christopher N; Terracina, Lucas; Wallette, Dennis L; Hribar, Lawrence J; Pecor, James E; Blow, Jamie A

    2008-12-01

    The rapid spread of West Nile viral activity across North America since its discovery in 1999 illustrates the potential for an exotic arbovirus to be introduced and widely established across North America. Rift Valley fever virus (RVFV) has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. However, little is known about the potential for North American mosquitoes to transmit this virus should it be introduced into North America. Therefore, we evaluated selected mosquito species from the southeastern United States for their ability to serve as potential vectors for RVFV. Mosquitoes were fed on adult hamsters inoculated 1 day previously with RVFV. These mosquitoes were tested for infection and ability to transmit RVFV after incubation at 26 degrees C for 7-21 days. None of the species tested (Aedes taeniorhynchus, Ae. vexans, Culex erraticus, Cx. nigripalpus, Cx. quinquefasciatus, and Cx. salinarius) were efficient vectors after they fed on hamsters with viremias ranging from 10(4.1) to 10(6.9) plaque-forming units (PFU)/ml. However, Ae. taeniorhynchus, Ae. vexans, and Cx. erraticus all developed disseminated infections after they fed on hamsters with viremias between 10(8.5) and 10(10.2) PFU/ml, and both Ae. vexans and Cx. erraticus transmitted RVFV by bite. These studies illustrate the need to identify the ability of individual mosquito species to transmit RVFV so that appropriate decisions can be made concerning the application of control measures during an outbreak.

  10. Perceived risk factors and risk pathways of Rift Valley fever in cattle in Ijara district, Kenya.

    PubMed

    Owange, Nelson O; Ogara, William O; Kasiiti, Jacqueline; Gathura, Peter B; Okuthe, Sam; Sang, Rosemary; Affognon, Hippolyte; Onyango-Ouma, Washington; Landmann, Tobias T O; Mbabu, Murithi

    2014-11-20

    Ijara district in Kenya was one of the hotspots of Rift Valley fever (RVF) during the 2006/2007 outbreak, which led to human and animal deaths causing major economic losses. The main constraint for the control and prevention of RVF is inadequate knowledge of the risk factors for its occurrence and maintenance. This study was aimed at understanding the perceived risk factors and risk pathways of RVF in cattle in Ijara to enable the development of improved community-based disease surveillance, prediction, control and prevention. A cross-sectional study was carried out from September 2012 to June 2013. Thirty-one key informant interviews were conducted with relevant stakeholders to determine the local pastoralists' understanding of risk factors and risk pathways of RVF in cattle in Ijara district. All the key informants perceived the presence of high numbers of mosquitoes and large numbers of cattle to be the most important risk factors contributing to the occurrence of RVF in cattle in Ijara. Key informants classified high rainfall as the most important (12/31) to an important (19/31) risk factor. The main risk pathways were infected mosquitoes that bite cattle whilst grazing and at watering points as well as close contact between domestic animals and wildlife. The likelihood of contamination of the environment as a result of poor handling of carcasses and aborted foetuses during RVF outbreaks was not considered an important pathway. There is therefore a need to conduct regular participatory community awareness sessions on handling of animal carcasses in terms of preparedness, prevention and control of any possible RVF epizootics. Additionally, monitoring of environmental conditions to detect enhanced rainfall and flooding should be prioritised for preparedness.

  11. The Epidemiology of Rift Valley Fever in Mayotte: Insights and Perspectives from 11 Years of Data

    PubMed Central

    Métras, Raphaëlle; Cavalerie, Lisa; Dommergues, Laure; Mérot, Philippe; Edmunds, W. John; Keeling, Matt J.; Cêtre-Sossah, Catherine; Cardinale, Eric

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic arboviral disease that is a threat to human health, animal health and production, mainly in Sub-Saharan Africa. RVF virus dynamics have been poorly studied due to data scarcity. On the island of Mayotte in the Indian Ocean, off the Southeastern African coast, RVF has been present since at least 2004. Several retrospective and prospective serological surveys in livestock have been conducted over eleven years (2004–15). These data are collated and presented here. Temporal patterns of seroprevalence were plotted against time, as well as age-stratified seroprevalence. Results suggest that RVF was already present in 2004–07. An epidemic occurred between 2008 and 2010, with IgG and IgM peak annual prevalences of 36% in 2008–09 (N = 142, n = 51, 95% CI [17–55]) and 41% (N = 96, n = 39, 95% CI [25–56]), respectively. The virus seems to be circulating at a low level since 2011, causing few new infections. In 2015, about 95% of the livestock population was susceptible (IgG annual prevalence was 6% (N = 584, n = 29, 95% CI [3–10])). Monthly rainfall varied a lot (2–540mm), whilst average temperature remained high with little variation (about 25–30°C). This large dataset collected on an insular territory for more than 10 years, suggesting a past epidemic and a current inter-epidemic period, represents a unique opportunity to study RVF dynamics. Further data collection and modelling work may be used to test different scenarios of animal imports and rainfall pattern that could explain the observed epidemiological pattern and estimate the likelihood of a potential re-emergence. PMID:27331402

  12. Rift Valley fever virus infections in Egyptian cattle and their prevention.

    PubMed

    Mroz, C; Gwida, M; El-Ashker, M; Ziegler, U; Homeier-Bachmann, T; Eiden, M; Groschup, M H

    2017-01-24

    Rift Valley fever virus (RVFV) causes consistently severe outbreaks with high public health impacts and economic losses in livestock in many African countries and has also been introduced to Saudi Arabia and Yemen. Egypt with its four large outbreaks in the last 40 years represents the northernmost endemic area of RVFV. The purpose of this study was to provide an insight into the current anti-RVFV antibody status in immunized as well as non-immunized dairy cattle from the Nile Delta of Egypt. During 2013-2015, a total of 4,167 dairy cattle from four governorates including Dakahlia, Damietta, Gharbia and Port Said were investigated. All cattle were born after 2007 and therewith after the last reported Egyptian RVFV outbreak in 2003. The samples derived from vaccinated animals from 26 different dairy farms as well as non-immunized cattle from 27 different smallholding flocks. All samples were examined following a three-part analysis including a commercially available competition ELISA, an in-house immunofluorescence assay and a virus neutralization test. Additionally, a subset of samples was analysed for acute infections using IgM ELISA and real-time reverse transcriptase PCR. The results indicated that the RVFV is still circulating in Egypt as about 10% of the non-immunized animals exhibited RVFV-specific antibodies. Surprisingly, the antibody prevalence in immunized animals was not significantly higher than that in non-vaccinated animals which points out the need for further evaluation of the vaccination programme. Due to the substantial role of livestock in the amplification and transmission of RVFV, further recurrent monitoring of the antibody prevalence in susceptible species is highly warranted.

  13. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    PubMed Central

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH), the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV) genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process. PMID:27548280

  14. NSm protein of Rift Valley fever virus suppresses virus-induced apoptosis.

    PubMed

    Won, Sungyong; Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2007-12-01

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It can cause severe epidemics among ruminants and fever, myalgia, a hemorrhagic syndrome, and/or encephalitis in humans. The RVFV M segment encodes the NSm and 78-kDa proteins and two major envelope proteins, Gn and Gc. The biological functions of the NSm and 78-kDa proteins are unknown; both proteins are dispensable for viral replication in cell cultures. To determine the biological functions of the NSm and 78-kDa proteins, we generated the mutant virus arMP-12-del21/384, carrying a large deletion in the pre-Gn region of the M segment. Neither NSm nor the 78-kDa protein was synthesized in arMP-12-del21/384-infected cells. Although arMP-12-del21/384 and its parental virus, arMP-12, showed similar growth kinetics and viral RNA and protein accumulation in infected cells, arMP-12-del21/384-infected cells induced extensive cell death and produced larger plaques than did arMP-12-infected cells. arMP-12-del21/384 replication triggered apoptosis, including the cleavage of caspase-3, the cleavage of its downstream substrate, poly(ADP-ribose) polymerase, and activation of the initiator caspases, caspase-8 and -9, earlier in infection than arMP-12. NSm expression in arMP-12-del21/384-infected cells suppressed the severity of caspase-3 activation. Further, NSm protein expression inhibited the staurosporine-induced activation of caspase-8 and -9, demonstrating that other viral proteins were dispensable for NSm's function in inhibiting apoptosis. RVFV NSm protein is the first identified Phlebovirus protein that has an antiapoptotic function.

  15. Volcanic rocks and processes of the Mid-Atlantic Ridge rift valley near 36 ° 49′ N

    USGS Publications Warehouse

    Hekinian, R.; Moore, J.G.; Bryan, W.B.

    1976-01-01

    The above relations indicate that the diverse lava types were erupted from a shallow, zoned magma chamber from fissures distributed over the width of the inner rift valley and elongate parallel to it. Differentiation was accomplished by cooling and crystallization of plagioclase, olivine, and clinopyroxene toward the margins of the chamber. The centrally located hills were built by the piling up of frequent eruption of mainly primitive lavas which also are the youngest flows. In contrast smaller and less frequent eruptions of more differentiated lavas were exposed on both sides of the rift valley axis.

  16. The diagenesis of continental (Karoo-Tertiary?) siliciclastics from an East African rift valley (Rukwa-Tukuyu area), Tanzania

    NASA Astrophysics Data System (ADS)

    Dypvik, Henning; Nesteby, Helge

    1992-07-01

    The diagenetic history of the Karoo and Jurassic/Tertiary beds of East African rift valleys is related to the tectonic activity and sedimentary evolution of the rift valley area. In the Karoo beds early diagenetic calcite and hematite formation are succeeded by mechanical compaction and minor quartz, kaolinite and calcite precipitation. Renewed tectonic activity (possible half-graben formation) and exposure of the Karoo beds in Jurassic/Tertiary time resulted in alluvial fan deposition (the Red Sandstone Group) and associated fresh-water flushing, caliche formation and hematite precipitation. Late diagenetic precipitation of potash feldspar and feldspar leaching were the final controls on the porosity and permeability development of the sediments.

  17. Vaccination of alpacas against Rift Valley fever virus: Safety, immunogenicity and pathogenicity of MP-12 vaccine.

    PubMed

    Rissmann, M; Ulrich, R; Schröder, C; Hammerschmidt, B; Hanke, D; Mroz, C; Groschup, M H; Eiden, M

    2017-01-23

    Rift Valley fever (RVF) is an emerging zoonosis of major public health concern in Africa and Arabia. Previous outbreaks attributed camelids a significant role in the epidemiology of Rift Valley fever virus (RVFV), making them an important target species for vaccination. Using three alpacas as model-organisms for dromedary camels, the safety, immunogenicity and pathogenicity of the MP-12 vaccine were evaluated in this study. To compare both acute and subacute effects, animals were euthanized at 3 and 31days post infection (dpi). Clinical monitoring, analysis of liver enzymes and hematological parameters demonstrated the tolerability of the vaccine, as no significant adverse effects were observed. Comprehensive analysis of serological parameters illustrated the immunogenicity of the vaccine, eliciting high neutralizing antibody titers and antibodies targeting different viral antigens. RVFV was detected in serum and liver of the alpaca euthanized 3dpi, whereas no virus was detectable at 31dpi. Viral replication was confirmed by detection of various RVFV-antigens in hepatocytes by immunohistochemistry and the presence of mild multifocal necrotizing hepatitis. In conclusion, results indicate that MP-12 is a promising vaccine candidate but still has a residual pathogenicity, which requires further investigation.

  18. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice

    PubMed Central

    Indran, Sabarish V.; Lihoradova, Olga A.; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A.; Tigabu, Bersabeh; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Freiberg, Alexander N.

    2013-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV. PMID:23515022

  19. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya

    PubMed Central

    Ochieng, Alfred O.; Nanyingi, Mark; Kipruto, Edwin; Ondiba, Isabella M.; Amimo, Fred A.; Oludhe, Christopher; Olago, Daniel O.; Nyamongo, Isaac K.; Estambale, Benson B. A.

    2016-01-01

    Background Rift Valley fever (RVF) is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV). Objectives To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. Methodology The study used data on vector presence and ecological niche modelling (MaxEnt) algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000) and future (2050) Bioclim climate databases to model the vector distribution. Results Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Conclusion Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species. PMID:27863533

  20. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula

    PubMed Central

    Peterson, A. Townsend; Hall, Matthew

    2017-01-01

    Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits. PMID:28068340

  1. Descriptive and spatial epidemiology of Rift valley fever outbreak in Yemen 2000-2001.

    PubMed

    Abdo-Salem, S; Gerbier, G; Bonnet, P; Al-Qadasi, M; Tran, A; Thiry, E; Al-Eryni, G; Roger, F

    2006-10-01

    Rift valley fever (RVF) is an arboviral disease produced by a bunyavirus belonging to the genus Phlebovirus. Several species of Aedes and Culex are the vectors of this virus that affects sheep, goats, buffalos, cattle, camels and human beings. The human disease is well known, especially during periods of intense epizootic activity. The initial description of the disease dates back to 1930, when animals and human outbreaks appeared on a farm in Lake Naivasha, in the Great Rift Valley of Kenya. Until 2000, this disease was only described in Africa, and then outbreaks were also declared in the Kingdom of Saudi Arabia (2000-2001 and 2004) and in Yemen (2000-2001). Animal and human cases were recorded. This work presents a retrospective summary of the data collected on animal RVF cases during this epidemic in Yemen. Results from several RVF surveys were gathered from the Yemeni vet services and FAO experts. Geographical data (topographic maps and data freely available on internet) were used for the location of outbreaks. After cleaning and standardization of location names, all the data were introduced into a GIS database. The spatial distribution of outbreaks was then studied at two scales: at the national level and at a local scale in the particular area of Wadi Mawr in the Tihama plain, Western coast of Yemen.

  2. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates

    PubMed Central

    Laughlin, Richard C.; Drake, Kenneth L.; Morrill, John C.; Adams, L. Garry

    2016-01-01

    Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection. PMID:26783758

  3. Molecular and serological studies on the Rift Valley fever outbreak in Mauritania in 2010.

    PubMed

    Jäckel, S; Eiden, M; El Mamy, B O; Isselmou, K; Vina-Rodriguez, A; Doumbia, B; Groschup, M H

    2013-11-01

    Rift Valley fever virus (RVFV) is a vector-borne RNA virus affecting humans, livestock and wildlife. In October/November 2010, after a period of unusually heavy rainfall, a Rift Valley fever outbreak occurred in northern Mauritania causing clinical cases in cattle, sheep, goats and camels, 21 of which were of lethal outcome. The aim of this study was to obtain further information on the continuation of RVF virus activity and spread in animal species in Mauritania after this outbreak. We therefore tested sera from small ruminants, cattle and camels for the presence of viral RNA and antibodies against RVFV. These sera were collected in different parts of the country from December 2010 to February 2011 and tested with three different ELISAs and an indirect immunofluorescence assay. The results show a high seroprevalence of RVFV IgM and IgG antibodies of about 57% in all animals investigated. Moreover, in four camel sera, viral RNA was detected emphasizing the important role camels played during the latest RVF outbreak in Mauritania. The study demonstrates the continuous spread of RVFV in Mauritania after initial emergence and highlights the potential role of small ruminants and camels in virus dissemination.

  4. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.

    PubMed

    Laughlin, Richard C; Drake, Kenneth L; Morrill, John C; Adams, L Garry

    2016-01-01

    Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.

  5. The Rift Valley Fever virus protein NSm and putative cellular protein interactions.

    PubMed

    Engdahl, Cecilia; Näslund, Jonas; Lindgren, Lena; Ahlm, Clas; Bucht, Göran

    2012-07-28

    Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection.

  6. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention

    PubMed Central

    Pepin, Michel; Bouloy, Michèle; Bird, Brian H.; Kemp, Alan; Paweska, Janusz

    2010-01-01

    Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus. PMID:21188836

  7. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya.

    PubMed

    Ochieng, Alfred O; Nanyingi, Mark; Kipruto, Edwin; Ondiba, Isabella M; Amimo, Fred A; Oludhe, Christopher; Olago, Daniel O; Nyamongo, Isaac K; Estambale, Benson B A

    2016-01-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV). To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. The study used data on vector presence and ecological niche modelling (MaxEnt) algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000) and future (2050) Bioclim climate databases to model the vector distribution. Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

  8. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    PubMed

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  9. The Rift Valley Fever virus protein NSm and putative cellular protein interactions

    PubMed Central

    2012-01-01

    Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection. PMID:22838834

  10. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  11. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    transmission to humans. Maps delineating the geographic areas in Virginia with highest risk for RVF establishment in mosquito populations and RVF disease transmission to human populations were generated in a GIS using human, domestic animal, and white-tailed deer population estimates and the MaxEnt potential RVF competent vector species distribution prediction. The candidate RVF competent vector predicted distribution and RVF risk maps presented in this study can help vector control agencies and public health officials focus Rift Valley fever surveillance efforts in geographic areas with large co-located populations of potential RVF competent vectors and human, domestic animal, and wildlife hosts. Keywords. Rift Valley fever, risk assessment, Ecological Niche Modeling, MaxEnt, Geographic Information System, remote sensing, Pearson's Product-Moment Correlation Coefficient, vectors, mosquito distribution, mosquito density, mosquito surveillance, United States, Virginia, domestic animals, white-tailed deer, ArcGIS

  12. Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Renaut, R. W.; Jones, B.; Tiercelin, J.-J.; Tarits, C.

    2002-04-01

    Many lakes in volcanic regions are fed by hot springs that, in some basins, can contribute a large percentage of the annual recharge, especially during times of aridity. It is important to recognize any contemporary hydrothermal contribution in paleoenvironmental reconstruction of lake basins because recharge from thermal waters can potentially confuse paleoclimatic signals preserved in the lacustrine sedimentary record. Hot spring deposits (travertine, sinter) provide the most tangible evidence for thermal recharge to lakes. Although subaerial spring deposits have been widely studied, lacustrine thermal spring deposits, especially sublacustrine siliceous sinters, remain poorly known. Detailed field, petrographic and scanning electron microscope (SEM) studies have been made of fossil sublacustrine sinter exposed at Soro hot springs along the northeastern shoreline of Ol Kokwe, a volcanic island in Lake Baringo, Kenya. Modern hot springs at Soro, which discharge Na-HCO 3-Cl waters from a deep reservoir (˜180 °C ), have thin (1-10 mm), friable microbial silica crusts around their subaerial vents, but thicker (>1 cm) sinter deposits are not forming. The fossil sinter, which is present as intergranular cements and crusts in littoral conglomerates and sandstones, is composed mainly of opaline silica (opal-A). Three types of fossil sinter are recognized: (1) massive structureless silica, which fills intergranular pores and forms crusts up to 5 cm thick; (2) pore-lining silica, some of which is isopachous, and (3) laminated silica crusts, which formed mainly on the upper surfaces of detrital particles. All three types contain well-preserved diatoms including lacustrine planktonic forms. Microbial remains, mainly filamentous and coccoid bacteria (including cyanobacteria) and extracellular polymeric gels, are locally abundant in the opaline silica, together with detrital clays and thin laminae composed of authigenic chlorite (?). Most of the hydrothermal silica

  13. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  14. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  15. Knowledge, attitudes and practices on Rift Valley fever among agro pastoral communities in Kongwa and Kilombero districts, Tanzania.

    PubMed

    Shabani, Sasita S; Ezekiel, Mangi J; Mohamed, Mohamed; Moshiro, Candida S

    2015-08-21

    Rift valley fever (RVF) is a re-emerging viral vector-borne disease with rapid global socio-economic impact. A large RVF outbreak occurred in Tanzania in 2007 and affected more than half of the regions with high (47 %) case fatality rate. Little is known about RVF and its dynamics. A cross sectional study was conducted to assess the knowledge, attitudes and practices regarding RVF in Kongwa and Kilombero districts, Tanzania. We conducted a cross sectional survey among a randomly selected sample of individuals in 2011. We administered questionnaires to collect data on demographic characteristics, knowledge on symptoms, mode of transmission, prevention, attitudes and health seeking practices. A total of 463 community members participated in this study. The mean (±SD) age was 39.8 ± 14.4 years and 238 (51.4 %) were female. Majority of respondents had heard of RVF. However, only 8.8 % knew that mosquitoes were transmitting vectors. Male respondents were more likely to have greater knowledge about RVF. A small proportion mentioned clinical signs and symptoms of RVF in animals while 73.7 % mentioned unhealthy practices related to handling and consumption of dead animals. Thorough boiling of milk and cooking of meat were commonly mentioned as preventive measures for RVF. Majority (74.6 %) sought care for febrile illness at health facilities. Few (24.3 %) reported the use of protective gears to handle dead/sick animal while 15.5 % were consuming dead animals. Our study highlights the need to address the limited knowledge about RVF and promoting appropriate and timely health seeking practices. Rift valley fever outbreaks can be effectively managed with collaborative efforts of lay and professional communities with a shared perception that it poses a serious threat to public and animal health. The fact that this study was conducted in "high risk transmission areas" warrants further inquiry in other geographic regions with relatively low risk of RVF.

  16. Landscape Genetics of Aedes mcintoshi (Diptera: Culicidae), an Important Vector of Rift Valley Fever Virus in Northeastern Kenya.

    PubMed

    Campbell, Lindsay P; Alexander, Alana M

    2017-09-01

    Rift Valley fever virus (RVFV) is a vector-borne, zoonotic disease that affects humans, wild ungulates, and domesticated livestock in Africa and the Arabian Peninsula. Rift Valley fever virus exhibits interepizootic and epizootic phases, the latter defined by widespread virus occurrence in domesticated livestock. Kenya appears to be particularly vulnerable to epizootics, with 11 outbreaks occurring between 1951 and 2007. The mosquito species Aedes mcintoshi (subgenus Neomelaniconion) is an important primary vector for RVFV in Kenya. Here, we investigate associations between genetic diversity and differentiation of one regional subclade of Ae. mcintoshi in Northeastern Kenya with environmental variables, using a multivariate statistical approach. Using CO1 (cytochrome oxidase subunit 1) sequence data deposited in GenBank, we found no evidence of isolation by distance contributing to genetic differentiation across the study area. However, we did find significant CO1 subpopulation structure and associations with recent mean precipitation values. In addition, variation in genetic diversity across our seven sample sites was associated with both precipitation and percentage clay in the soil. The large number of haplotypes found in this data set indicates that a great deal of diversity remains unsampled in this region. Additional sampling across a larger geographic area, combined with next-generation sequencing approaches that better characterize the genome, would provide a more robust assessment of genetic diversity and differentiation. Further understanding of the genetic structure of Ae. mcintoshi could provide useful information regarding the potential for RVFV to spread across East African landscapes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Eco-climatic Conditions Associated with Rift Valley fever Activity in Southern Africa in 2008-2011

    USDA-ARS?s Scientific Manuscript database

    The time period 2008-2011 has been marked by a series of Rift Valley fever (RVF) outbreaks in Southern Africa. These multi-year episodes of RVF have not occurred in the region since the mid-1970s. We examine climatic and ecological conditions associated with the outbreaks and present results of our ...

  18. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  19. Development of a Rift Valley fever real-time RT-PCR assay that can detect all three genome segments

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of Rift Valley fever in Kenya, Madagascar, Mauritania, and South Africa had devastating effects on livestock and human health. In addition, this disease is a food security issue for endemic countries. There is growing concern for the potential introduction of RVF into non-endemic countries...

  20. Comparison of Rift Valley fever virus and MP-12 replication in domestic livestock and North American wildlife cell lines.

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen that primarily affects livestock, but can also cause mild to fatal disease in humans. Currently, there is no approved vaccine for use in the United States if it were introduced. Domestic goats, sheep and cattle are susceptible hosts ...

  1. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory...

  2. Assessment and recommendations for two sites with active and potential aquaculture production in Rift Valley and Coast Provinces, Kenya

    USDA-ARS?s Scientific Manuscript database

    Kenya has a long history of local fish consumption. The population in the Lake Victoria area (Rift Valley Province) Northwest of Nairobi and coastal communities (Coast Province) have historically included fish in their diet. Migration from villages to urban areas and increasing commerce has created ...

  3. Factors Related to the Motivation of Extension Agents in Kenya's Rift Valley Province. Summary of Research 76.

    ERIC Educational Resources Information Center

    Mwangi, John G.; McCaslin, N. L.

    Job satisfaction factors related to motivation of a random sample of 325 agents in Kenya's extension service in the Rift Valley Province were identified. Data were collected using a group-administered, closed-ended, forced-choice questionnaire with 105 job satisfaction, 10 motivational, and 10 personal characteristics items between January and…

  4. Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical episodic outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns (El Niño and La Niña) of El Niño Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite ...

  5. Prediction, Assessment of the Rift Valley fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and ...

  6. Prediction, Assessment of the Rift Valley fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and ...

  7. The Example of Eastern Africa: the dynamic of Rift Valley fever and tools for monitoring virus activity

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a mosquito-borne viral zoonosis that primarily affects animals but also has the capacity to infect humans. Outbreaks of this disease in eastern Africa are closely associated with periods of heavy rainfall and forecasting models and early warning systems have been developed to en...

  8. Safety and Immunogenicity of Recombinant Rift Valley Fever MP-12 Vaccine Candidates in Sheep

    PubMed Central

    Morrill, John C.; Laughlin, Richard C.; Lokugamage, Nandadeva; Pugh, Roberta; Sbrana, Elena; Weise, William J.; Adams, L. Garry; Makino, Shinji; Peters, C. J.

    2012-01-01

    The safety and immunogenicity of two authentic recombinant (ar) Rift Valley Fever (RVF) viruses, one with a deletion in the NSs region of the S RNA segment (arMP-12ΔNSs16/198) and the other with a large deletion of the NSm gene in the pre Gn region of the M RNA segment (arMP-12ΔNSm21/384) of the RVF MP-12 vaccine virus were tested in crossbred ewes at 30 – 50 days of gestation. First, we evaluated the neutralizing antibody response, measured by plaque reduction neutralization (PRNT80), and clinical response of the two viruses in groups of four ewes each. The virus dose was 1 × 105 plaque forming units (PFU). Control groups of four ewes each were also inoculated with a similar dose of RVF MP-12 or the parent recombinant virus (arMP-12). Neutralizing antibody was first detected in 3 of 4 animals inoculated with arMP-12ΔNSm21/384 on day 5 post inoculation and all four animals had PRNT80 titers of ≥ 1:20 on day 6. Neutralizing antibody was first detected in 2 of 4 ewes inoculated with arMP-12ΔNSs16/198 on day 7 and all had PRNT80 titers of ≥ 1:20 on day 10. We found the mean PRNT80 response to arMP-12ΔNSs16/198 to be 16- to 25-fold lower than that of ewes inoculated with arMP-12ΔNSm21/384, arMP-12 or RVF MP-12. No abortions occurred though a single fetal death in each of the arMP-12 and RVF MP-12 groups was found at necropsy. The poor PRNT80 response to arMP-12ΔNSs16/198 caused us to discontinue further testing of this candidate and focus on arMP-12ΔNSm21/384. A dose escalation study of arMP-12ΔNSm21/384, showed that 1 × 103 plaque forming units (PFU) stimulates a PRNT80 response comparable to doses of up to 1 × 105 PFU of this virus. With further study, the arMP-12ΔNSm21/384 virus may prove to be a safe and efficacious candidate for a livestock vaccine. The large deletion in the NSm gene may also provide a negative marker that will allow serologic differentiation of naturally infected animals from vaccinated animals. PMID:23153443

  9. Safety and immunogenicity of recombinant Rift Valley fever MP-12 vaccine candidates in sheep.

    PubMed

    Morrill, John C; Laughlin, Richard C; Lokugamage, Nandadeva; Pugh, Roberta; Sbrana, Elena; Weise, William J; Adams, L Garry; Makino, Shinji; Peters, C J

    2013-01-07

    The safety and immunogenicity of two authentic recombinant (ar) Rift Valley fever (RVF) viruses, one with a deletion in the NSs region of the S RNA segment (arMP-12ΔNSs16/198) and the other with a large deletion of the NSm gene in the pre Gn region of the M RNA segment (arMP-12ΔNSm21/384) of the RVF MP-12 vaccine virus were tested in crossbred ewes at 30-50 days of gestation. First, we evaluated the neutralizing antibody response, measured by plaque reduction neutralization (PRNT(80)), and clinical response of the two viruses in groups of four ewes each. The virus dose was 1×10(5)plaque forming units (PFU). Control groups of four ewes each were also inoculated with a similar dose of RVF MP-12 or the parent recombinant virus (arMP-12). Neutralizing antibody was first detected in 3 of 4 animals inoculated with arMP-12ΔNSm21/384 on Day 5 post inoculation and all four animals had PRNT(80) titers of ≥1:20 on Day 6. Neutralizing antibody was first detected in 2 of 4 ewes inoculated with arMP-12ΔNSs16/198 on Day 7 and all had PRNT(80) titers of ≥1:20 on Day 10. We found the mean PRNT(80) response to arMP-12ΔNSs16/198 to be 16- to 25-fold lower than that of ewes inoculated with arMP-12ΔNSm21/384, arMP-12 or RVF MP-12. No abortions occurred though a single fetal death in each of the arMP-12 and RVF MP-12 groups was found at necropsy. The poor PRNT(80) response to arMP-12ΔNSs16/198 caused us to discontinue further testing of this candidate and focus on arMP-12ΔNSm21/384. A dose escalation study of arMP-12ΔNSm21/384 showed that 1×10(3)plaque forming units (PFU) stimulate a PRNT(80) response comparable to doses of up to 1×10(5)PFU of this virus. With further study, the arMP-12ΔNSm21/384 virus may prove to be a safe and efficacious candidate for a livestock vaccine. The large deletion in the NSm gene may also provide a negative marker that will allow serologic differentiation of naturally infected animals from vaccinated animals.

  10. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection

    PubMed Central

    Riblett, Amber M.; Blomen, Vincent A.; Jae, Lucas T.; Altamura, Louis A.; Doms, Robert W.; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. IMPORTANCE Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral

  11. Immunogenicity of a Recombinant Rift Valley Fever MP-12-NSm Deletion Vaccine Candidate in Calves

    PubMed Central

    Morrill, John C.; Laughlin, Richard C.; Lokugamage, Nandadeva; Wu, Jing; Pugh, Roberta; Kanani, Pooja; Adams, L. Garry; Makino, Shinji; Peters, C. J.

    2013-01-01

    The safety and immunogenicity of an authentic recombinant (ar) of the live, attenuated MP-12 Rift Valley fever (RVF) vaccine virus with a large deletion of the NSm gene in the pre-Gn region of the M RNA segment (arMP-12ΔNSm21/384) was tested in 4 – 6 month old Bos taurus calves. Phase I of this study evaluated the neutralizing antibody response, measured by 80% plaque reduction neutralization (PRNT80), and clinical response of calves to doses of 1×101 through 1×107 plaque forming units (PFU) administered subcutaneously (s.c.). Phase II evaluated the clinical and neutralizing antibody response of calves inoculated s.c. or intramuscularly (i.m.) with 1×103, 1×104 or 1×105 PFU of arMP-12ΔNSm21/384. No significant adverse clinical events were observed in the animals in these studies. Of all specimens tested, only one vaccine viral isolate was recovered and that virus retained the introduced deletion. In the Phase I study, there was no statistically significant difference in the PRNT80 response between the dosage groups though the difference in IgG response between the 1×101 PFU group and the 1×105 PFU group was statistically significant (p <0.05). The PRNT80 response of the respective dosage groups corresponded to dose of vaccine with the 1×101 PFU dose group showing the least response. The Phase II study also showed no statistically significant difference in PRNT80 response between the dosage groups though the difference in RVFV-specific IgG values was significantly increased (P<0.001) in animals inoculated i.m. with 1×104 or 1×105 PFU versus those inoculated s. c. with 1×103 or 1×105 PFU. Although the study groups were small, these data suggest that 1×104 or 1×105 PFU of arMP-12ΔNSm21/384 administered i.m. to calves will consistently stimulate a presumably protective PRNT80 response for at least 91 days post inoculation. Further studies of arMP-12ΔNSm21/384 are warranted to explore its suitability as an efficacious livestock vaccine. PMID:23994375

  12. Immunogenicity of a recombinant Rift Valley fever MP-12-NSm deletion vaccine candidate in calves.

    PubMed

    Morrill, John C; Laughlin, Richard C; Lokugamage, Nandadeva; Wu, Jing; Pugh, Roberta; Kanani, Pooja; Adams, L Garry; Makino, Shinji; Peters, C J

    2013-10-09

    The safety and immunogenicity of an authentic recombinant (ar) of the live, attenuated MP-12 Rift Valley fever (RVF) vaccine virus with a large deletion of the NSm gene in the pre-Gn region of the M RNA segment (arMP-12ΔNSm21/384) was tested in 4-6 month old Bos taurus calves. Phase I of this study evaluated the neutralizing antibody response, measured by 80% plaque reduction neutralization (PRNT80), and clinical response of calves to doses of 1 × 10(1) through 1 × 10(7) plaque forming units (PFU) administered subcutaneously (s.c.). Phase II evaluated the clinical and neutralizing antibody response of calves inoculated s.c. or intramuscularly (i.m.) with 1 × 10(3), 1 × 10(4) or 1 × 10(5)PFU of arMP-12ΔNSm21/384. No significant adverse clinical events were observed in the animals in these studies. Of all specimens tested, only one vaccine viral isolate was recovered and that virus retained the introduced deletion. In the Phase I study, there was no statistically significant difference in the PRNT80 response between the dosage groups though the difference in IgG response between the 1 × 10(1)PFU group and the 1 × 10(5)PFU group was statistically significant (p<0.05). The PRNT80 response of the respective dosage groups corresponded to dose of vaccine with the 1 × 10(1)PFU dose group showing the least response. The Phase II study also showed no statistically significant difference in PRNT80 response between the dosage groups though the difference in RVFV-specific IgG values was significantly increased (p<0.001) in animals inoculated i.m. with 1 × 10(4) or 1 × 10(5)PFU versus those inoculated s.c. with 1 × 10(3) or 1 × 10(5)PFU. Although the study groups were small, these data suggest that 1 × 10(4) or 1 × 10(5)PFU of arMP-12ΔNSm21/384 administered i.m. to calves will consistently stimulate a presumably protective PRNT80 response for at least 91 days post inoculation. Further studies of arMP-12ΔNSm21/384 are warranted to explore its suitability as an

  13. Seroprevalence of Rift Valley fever in cattle along the Akagera-Nyabarongo rivers, Rwanda.

    PubMed

    Umuhoza, Thérèse; Berkvens, Dirk; Gafarasi, Isidore; Rukelibuga, Joseph; Mushonga, Borden; Biryomumaisho, Savino

    2017-01-20

    Rift Valley fever (RVF) virus is caused by a zoonotic arbovirus that is endemic to eastern and southern Africa. It has also been reported in West and North Africa, Madagascar and the Arabian Peninsula. The virus is transmitted by mosquitoes, but people can also become infected while handling blood or other body fluids of animals and humans with RVF. In 2007, there was a large outbreak of RVF in Kenya, Tanzania, Sudan and Somalia. Outbreaks were also reported in South Africa in 2008-2011. The epidemiology of RVF and factors for disease occurrence in Rwanda are neither clear nor documented. Therefore, we conducted a crosssectional study from December 2012 to March 2013 to generate baseline information on RVF in cattle. Purposive sampling of cattle (n = 595) was done in six districts, and serum samples were screened with competitive enzyme-linked immunosorbent assay (ELISA). We performed a statistical analysis on the generated data, and risk factors associated with RVF seroprevalence were determined by a simple logistic regression. Overall, RVF seroprevalence was 16.8% (95% confidence interval [CI] [13.8% - 20.0%]). The highest seroprevalence was recorded in Kirehe district (36.9%) followed by Ngoma (22.3%), and the least was recorded in Nyagatare (7.9%). RVF was more likely to occur in adult cattle (19.9% [odds ratio {OR} = 1.88, 95% CI {0.98-3.61}]) compared to young cattle (10.5% [OR = 0.47, 95% CI {0.26-0.83}]). Pure exotic or cross-breeds were significantly exposed to RVF virus (seroprevalence 22.9% [OR = 4.26, 95% CI {1.82-9.99}]) in comparison to 14.1% (OR = 0.55, 95% CI [0.35-0.86]) in local breeds. Sex differences were not statistically significant. These findings indicated that cattle have been exposed to RVF virus in six districts in Rwanda with a significant risk in adult, exotic or cross-breeds in Kirehe district.

  14. Bridging dry spells for maize cropping through supplemental irrigation in the Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh Bitew, Alemayehu; Keesstra, Saskia; Stroosnijder, Leo

    2015-04-01

    Maize yield in the Central Rift Valley of Ethiopia (CRV) suffers from dry spells at sensitive growth stages. Risk of crop failure makes farmers reluctant to invest in fertilizer. This makes the CRV food insecure. There are farms with well-maintained terraces and Rain Water Harvesting (RWH) systems using concrete farms ponds. We tested the hypothesis that in these farms supplemental irrigation with simultaneous crop intensification might boost production of a small maize area sufficient to improve food security. Intensification includes a higher plant density of a hybrid variety under optimum fertilization. First we assessed the probability of occurrence of dry spells. Then we estimated the availability of sufficient runoff in the ponds in dry years. During 2012 (dry) and 2013 (wet) on-farm field research was conducted with 10 combinations of supplemental irrigation and plant density. The simplest was rainfed farming with 30,000 plants ha-1. The most advanced was no water stress and 75,000 plants ha-1. Finally we compared our on-farm yield with that of neighbouring farmers. Because 2013 was a wet year no irrigation was needed. Our long term daily rainfall (1970-2011) analysis proves the occurrence of dry spells during the onset of the maize (Belg months March and April). In March there is hardly enough water in the ponds. So, we advise later sowing. Starting from April available water (runoff from a 2.2 ha catchment) matches crop water requirement (for 0.5 ha maize). Significant differences between grain and total biomass yield were observed between rainfed and other irrigation levels. However, since the largest difference is only 12%, the investment in irrigation non-critical drought years is not worth the effort. There was also a limited effect (18-22%) of increasing plant density. So, we advise not to use more than 45,000 plants ha-1. The grain yield and total biomass difference between farmers own practice and our on-farm research was 101% and 84% respectively

  15. Notes from the Field: Rift Valley Fever Response - Kabale District, Uganda, March 2016.

    PubMed

    de St Maurice, Annabelle; Nyakarahuka, Luke; Purpura, Lawrence; Ervin, Elizabeth; Tumusiime, Alex; Balinandi, Stephen; Kayondo, Jackson; Mulei, Sophia; Namutebi, Anne Marion; Tusiime, Patrick; Wiersma, Steven; Nichol, Stuart; Rollin, Pierre; Klena, John; Knust, Barbara; Shoemaker, Trevor

    2016-11-04

    On March 9, 2016, a male butcher from Kabale District, Uganda, aged 45 years, reported to the Kabale Regional Referral Hospital with fever, fatigue, and headache associated with black tarry stools and bleeding from the nose. One day later, a student aged 16 years from a different sub-county in Kabale District developed similar symptoms and was admitted to the same hospital. The student also had a history of contact with livestock. Blood specimens collected from both patients were sent for testing for Marburg virus disease, Ebola virus disease, Rift Valley fever (RVF), and Crimean Congo Hemorrhagic fever at the Uganda Virus Research Institute, as part of the viral hemorrhagic fevers surveillance program. The Uganda Virus Research Institute serves as the national viral hemorrhagic fever reference laboratory and hosts the national surveillance program for viral hemorrhagic fevers, in collaboration with the CDC Viral Special Pathogens Branch and the Uganda Ministry of Health.

  16. Mucosal immunization of rhesus macaques with Rift Valley Fever MP-12 vaccine.

    PubMed

    Morrill, John C; Peters, C J

    2011-08-15

    Rhesus macaques given 5 × 10(4) or 1 × 10(5) plaque-forming units (pfu) of Rift Valley fever (RVF) MP-12 vaccine by oral, intranasal drops, or small particle aerosol showed no adverse effects up to 56 days after administration. All monkeys given the vaccine by aerosol or intranasal drops developed 80% plaque reduction neutralization titers of ≥ 1:40 by day 21 after inoculation. Only 2 of 4 monkeys given the vaccine by oral instillation developed detectable neutralizing antibodies. All monkeys vaccinated by mucosal routes that developed detectable neutralizing antibodies were protected against viremia when challenged with 1 × 10(5) pfu of virulent RVF virus delivered by a small particle aerosol at 56 days after vaccination. A single inoculation of the RVF MP-12 live attenuated vaccine by the aerosol or intranasal route may provide an alternative route of protective immunization to RVFV in addition to conventional intramuscular injection.

  17. Application of Droplet Digital PCR to Validate Rift Valley Fever Vaccines.

    PubMed

    Ly, Hoai J; Lokugamage, Nandadeva; Ikegami, Tetsuro

    2016-01-01

    Droplet Digital™ polymerase chain reaction (ddPCR™) is a promising technique that quantitates the absolute concentration of nucleic acids in a given sample. This technique utilizes water-in-oil emulsion technology, a system developed by Bio-Rad Laboratories that partitions a single sample into thousands of nanoliter-sized droplets and counts nucleic acid molecules encapsulated in each individual particle as one PCR reaction. This chapter discusses the applications and methodologies of ddPCR for development of Rift Valley fever (RVF) vaccine, using an example that measures RNA copy numbers of a live-attenuated MP-12 vaccine from virus stocks, infected cells, or animal blood. We also discuss how ddPCR detects a reversion mutant of MP-12 from virus stocks accurately. The use of ddPCR improves the quality control of live-attenuated vaccines in the seed lot systems.

  18. Single-particle cryo-electron microscopy of Rift Valley fever virus.

    PubMed

    Sherman, Michael B; Freiberg, Alexander N; Holbrook, Michael R; Watowich, Stanley J

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  19. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection

    PubMed Central

    Bird, Brian H.; Albariño, Cesar G.; Nichol, Stuart T.

    2007-01-01

    Rift Valley fever (RVF) virus belongs to the Bunyaviridae family of segmented negative-strand RNA viruses and causes mosquito-borne disease in sub-Saharan Africa. We report the development of a T7 RNA polymerase driven plasmid-based genetic system for the virulent Egyptian isolate, ZH501. We have used this system to rescue a virus that has a 387 nucleotide deletion on the genomic M segment that eliminates the coding region for two non-structural proteins known as NSm. This virus, ΔNSm rZH501, is indistinguishable from the parental ZH501 strain with respect to expression of structural proteins and growth in cultured mammalian cells. PMID:17070883

  20. Ultrastructural study of Rift Valley fever virus in the mouse model

    SciTech Connect

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  1. Repurposing FDA-approved drugs as therapeutics to treat Rift Valley fever virus infection

    PubMed Central

    Benedict, Ashwini; Bansal, Neha; Senina, Svetlana; Hooper, Idris; Lundberg, Lindsay; de la Fuente, Cynthia; Narayanan, Aarthi; Gutting, Bradford; Kehn-Hall, Kylene

    2015-01-01

    There are currently no FDA-approved therapeutics available to treat Rift Valley fever virus (RVFV) infection. In an effort to repurpose drugs for RVFV treatment, a library of FDA-approved drugs was screened to determine their ability to inhibit RVFV. Several drugs from varying compound classes, including inhibitors of growth factor receptors, microtubule assembly/disassembly, and DNA synthesis, were found to reduce RVFV replication. The hepatocellular and renal cell carcinoma drug, sorafenib, was the most effective inhibitor, being non-toxic and demonstrating inhibition of RVFV in a cell-type and virus strain independent manner. Mechanism of action studies indicated that sorafenib targets at least two stages in the virus infectious cycle, RNA synthesis and viral egress. Computational modeling studies also support this conclusion. siRNA knockdown of Raf proteins indicated that non-classical targets of sorafenib are likely important for the replication of RVFV. PMID:26217313

  2. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley

    SciTech Connect

    Kingston, J.D.; Hill, A. ); Marino, B.D. )

    1994-05-13

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  3. Isotopic Evidence for Neogene Hominid Paleoenvironments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Kingston, John D.; Marino, Bruno D.; Hill, Andrew

    1994-05-01

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition (δ13C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed δ13C values offer no evidence for a shift from more-closed C3 environments to C4 grassland habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  4. Single-particle cryo-electron microscopy of Rift Valley fever virus

    SciTech Connect

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  5. A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus.

    PubMed

    Chamchod, Farida; Cantrell, Robert Stephen; Cosner, Chris; Hassan, Ali N; Beier, John C; Ruan, Shigui

    2014-08-01

    We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.

  6. Generation and characterization of monoclonal antibodies against Rift Valley fever virus nucleoprotein.

    PubMed

    Fafetine, J M; Domingos, A; Antunes, S; Esteves, A; Paweska, J T; Coetzer, J A W; Rutten, V P M G; Neves, L

    2013-11-01

    Due to the unpredictable and explosive nature of Rift Valley fever (RVF) outbreaks, rapid and accurate diagnostic assays for low-resource settings are urgently needed. To improve existing diagnostic assays, monoclonal antibodies (MAbs) specific for the nucleocapsid protein of RVF virus (RVFV) were produced and characterized. Four IgG2a MAbs showed specific binding to denatured nucleocapsid protein, both from a recombinant source and from inactivated RVFV, in Western blot analysis and in an enzyme-linked immunosorbent assay (ELISA). Cross-reactivity with genetically related and non-related arboviruses including Bunyamwera and Calovo viruses (Bunyaviridae family), West Nile and Dengue-2 viruses (Flaviviridae family), and Sindbis and Chikungunya viruses (Togaviridae family) was not detected. These MAbs represent a useful tool for the development of rapid diagnostic assays for early recognition of RVF.

  7. Single-particle cryo-electron microscopy of Rift Valley fever virus

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit-vaccines. PMID:19304307

  8. Teratogenicity of a mutagenised Rift Valley fever virus (MVP 12) in sheep.

    PubMed

    Hunter, P; Erasmus, B J; Vorster, J H

    2002-03-01

    A 5-fluorouracil mutagenised Rift Valley fever virus strain, which was shown to be attenuated and immunogenic in cattle and sheep, was evaluated for its ability to cause teratogenic effects in pregnant sheep. A group of 50 sheep at various stages of pregnancy was inoculated with the virus and the pregnancies followed to term. There were two abortions and 14% of the lambs produced by vaccinated ewes showed teratogenic effects, the most prevalent being spinal hypoplasia, hydranencephaly, brachygnathia inferior and arthrygryposis. The foetal malformations of the central nervous and musculo-skeletal systems were mostly consistent with those observed in sheep vaccinated with the attenuated Smithburn RVF strain. The teratogenic effects of MVP12 were not seen in previous experiments by other authors as immunisation of sheep took place in the second to third trimester of pregnancy, when the foetal brain tissue has completed most of its cell division.

  9. Reassortment and distinct evolutionary dynamics of Rift Valley Fever virus genomic segments.

    PubMed

    Freire, Caio C M; Iamarino, Atila; Soumaré, Peinda O Ly; Faye, Ousmane; Sall, Amadou A; Zanotto, Paolo M A

    2015-06-23

    Rift Valley Fever virus (RVFV) is a member of Bunyaviridae family that causes a febrile disease affecting mainly ruminants and occasionally humans in Africa, with symptoms that range from mid to severe. RVFV has a tri-segmented ssRNA genome that permits reassortment and could generate more virulent strains. In this study, we reveal the importance of reassortment for RVFV evolution using viral gene genealogy inference and phylodynamics. We uncovered seven events of reassortment that originated RVFV lineages with discordant origins among segments. Moreover, we also found that despite similar selection regimens, the three segments have distinct evolutionary dynamics; the longer segment L evolves at a significant lower rate. Episodes of discordance between population size estimates per segment also coincided with reassortment dating. Our results show that RVFV segments are decoupled enough to have distinct demographic histories and to evolve under different molecular rates.

  10. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    NASA Astrophysics Data System (ADS)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  11. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  12. A novel highly sensitive, rapid and safe Rift Valley fever virus neutralization test.

    PubMed

    Wichgers Schreur, Paul J; Paweska, Janusz T; Kant, Jet; Kortekaas, Jeroen

    2017-10-01

    Antibodies specific for Rift Valley fever virus (RVFV) can be detected by diverse methods, including ezyme-linked immunosortbent assay (ELISA) and virus neutralization test (VNT). The VNT is superior in sensitivity and specificity and is therefore considered the gold standard serological assay. Classical VNTs make use of virulent RVFV and therefore have to be performed in biosafety level 3 laboratories. Here, we report the development of a novel VNT that is based on an avirulent RVFV expressing the enhanced green fluorescent protein (eGFP), which can be performed safely outside level 3 biocontainment facilities. Evaluation with a broad panel of experimental sera and field sera demonstrated that this novel VNT is faster and more sensitive than the classical VNT. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental infection of young adult European breed sheep with Rift Valley fever virus field isolates.

    PubMed

    Busquets, Nuria; Xavier, F; Martín-Folgar, Raquel; Lorenzo, Gema; Galindo-Cardiel, Iván; del Val, Bernat Pérez; Rivas, Raquel; Iglesias, Javier; Rodríguez, Fernando; Solanes, David; Domingo, Mariano; Brun, Alejandro

    2010-10-01

    The increasing interest in Rift Valley fever virus (RVFV) and its potential impact on naive animal populations deserve revisiting experimental reproduction of RVFV infection, particularly in those animal breeds for which no data about their susceptibility to RVFV infection have ever been recorded. In this study we show the susceptibility of 9-10 weeks old European sheep (Ripollesa breed) to RVFV infection, showing a mild, subacute form of disease. Four different viral isolates efficiently replicated in vivo after subcutaneous experimental inoculation, and consistent viral loads in blood and virus shedding (variable in length depending on the RVFV isolate used) were detected, showing horizontal transmission to a noninfected, sentinel lamb. RVFV infection caused transient pyrexia in adult lambs and no other clinical symptoms were observed, with the exception of corneal opacity ("blue eye") found in 3 out of 16 subcutaneously inoculated sheep. In conclusion, adult sheep from this European breed are readily infected with RVFV without apparent clinical manifestations.

  14. Rift Valley fever ocular manifestations: observations during the 1977 epidemic in Egypt.

    PubMed

    Siam, A L; Meegan, J M; Gharbawi, K F

    1980-05-01

    Ocular manifestations resulting from Rift Valley fever (RVF) virus infection were studied during an extensive RVF epidemic in Egypt during 1977. Colour photography and fluorescein angiography of 7 serologically diagnosed patients showed the commonest manifestations to be macular, paramacular, and/or extramacular retinal lesions, often occurring bilaterally. Haemorrhage and oedema were frequently associated with the lesions, and vasculitis, retinitis, and vascular occlusion were also observed. Patients were monitored during a 6-month convalescence, and, though resorption of the lesions occurred, approximately half the patients experienced permanent loss of visual acuity. Ocular disease was one form of the clinical spectrum of RVF; acute febrile, encephalitic, and fatal haemorrhagic RVF illnesses were also observed during the epidemic.

  15. Epidemiologic Investigations into Outbreaks of Rift Valley Fever in Humans, South Africa, 2008–2011

    PubMed Central

    Thomas, Juno; Weyer, Jacqueline; Cengimbo, Ayanda; Landoh, Dadja E.; Jacobs, Charlene; Ntuli, Sindile; Modise, Motshabi; Mathonsi, Moshe; Mashishi, Morton S.; Leman, Patricia A.; le Roux, Chantel; Jansen van Vuren, Petrus; Kemp, Alan; Paweska, Janusz T.; Blumberg, Lucille

    2013-01-01

    Rift Valley fever (RVF) is an emerging zoonosis posing a public health threat to humans in Africa. During sporadic RVF outbreaks in 2008–2009 and widespread epidemics in 2010–2011, 302 laboratory-confirmed human infections, including 25 deaths (case-fatality rate, 8%) were identified. Incidence peaked in late summer to early autumn each year, which coincided with incidence rate patterns in livestock. Most case-patients were adults (median age 43 years), men (262; 87%), who worked in farming, animal health or meat-related industries (83%). Most case-patients reported direct contact with animal tissues, blood, or other body fluids before onset of illness (89%); mosquitoes likely played a limited role in transmission of disease to humans. Close partnership with animal health and agriculture sectors allowed early recognition of human cases and appropriate preventive health messaging.

  16. Rift Valley fever in West Africa: the role of space in endemicity.

    PubMed

    Favier, Charly; Chalvet-Monfray, Karine; Sabatier, Philippe; Lancelot, Renaud; Fontenille, Didier; Dubois, Marc A

    2006-12-01

    Rift Valley fever is an endemic vector-borne disease in West Africa, which mainly affects domestic ruminants and occasionally humans. The aetiological mechanisms of its endemicity remain under debate. We used a simple spatially explicit model to assess the possibility of endemicity without wild animals providing a permanent virus reservoir. Our model takes into account the vertical transmission in some mosquito species, the rainfall-driven emergence of their eggs and local and distant contacts because of herd migration. Endemicity without such a permanent virus reservoir would be impossible in a single site except when there is a strictly periodic rainfall pattern; but it would be possible when there are herd movements and sufficient inter-site variability in rainfall, which drives mosquito emergence.

  17. A review of mosquitoes associated with Rift Valley fever virus in Madagascar.

    PubMed

    Tantely, Luciano M; Boyer, Sébastien; Fontenille, Didier

    2015-04-01

    Rift Valley fever (RVF) is a viral zoonotic disease occurring throughout Africa, the Arabian Peninsula, and Madagascar. The disease is caused by a Phlebovirus (RVF virus [RVFV]) transmitted to vertebrate hosts through the bite of infected mosquitoes. In Madagascar, the first RVFV circulation was reported in 1979 based on detection in mosquitoes but without epidemic episode. Subsequently, two outbreaks occurred: the first along the east coast and in the central highlands in 1990 and 1991 and the most recent along the northern and eastern coasts and in the central highlands in 2008 and 2009. Despite the presence of 24 mosquitoes species potentially associated with RVFV transmission in Madagascar, little associated entomological information is available. In this review, we list the RVFV vector, Culex antennatus, as well as other taxa as candidate vector species. We discuss risk factors from an entomological perspective for the re-emergence of RVF in Madagascar.

  18. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  19. Trace Element Contamination in Tissues of Four Bird Species from the Rift Valley Region, Ethiopia.

    PubMed

    Yohannes, Yared Beyene; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Ishizuka, Mayumi

    2017-02-01

    Concentrations of ten trace elements (Hg, As, Cd, Pb, Co, Cr, Cu, Ni, Se and Zn) were determined in different tissues (liver, kidney, muscle, heart and brain) of African sacred ibis (Threskiornis aethiopicus), Hamerkop (Scopus umbretta), marabou stork (Leptoptilos crumeniferus) and great white pelican (Pelecanus onocrotalus) inhabiting the Ethiopian Rift Valley region. There were differences in trace element patterns among the bird species. Significantly (p < 0.05) higher concentrations of Cd (5.53 µg/g dw ± 2.94) in kidney and Hg (0.75 µg/g ww ± 0.30) in liver were observed in the great white pelican compared to the other species, and liver concentrations of these two elements showed positive correlations with trophic level. Concentrations of toxic elements (As, Cd, Pb and Hg) in liver were below their respective toxicological thresholds, indicating that the data may provide baseline information for future studies.

  20. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  1. Severe Human Illness Caused by Rift Valley Fever Virus in Mauritania, 2015

    PubMed Central

    Fall-Malick, Fatima Zahra; Ould Baba, Sidi El Wafi; Ould Salem, Mohamed Lemine; Belizaire, Marie Roseline Darnycka; Ledib, Hamade; Ould Baba Ahmed, Mohamed Mahmoud; Basco, Leonardo Kishi; Ba, Hampaté

    2016-01-01

    Background. Rift Valley Fever epizootics are characterized by numerous abortions and mortality among young animals. In humans, the illness is usually characterized by a mild self-limited febrile illness, which could progress to more serious complications.Objectives. The aim of the present prospective study was to describe severe clinical signs and symptoms of Rift Valley Fever in southern Mauritania. Patients and methods. Suspected cases were enrolled in Kiffa (Assaba) and Aleg (Brakna) Hospital Centers from September 1 to November 7, 2015, based on the presence of fever, hemorrhagic or meningoencephalitic syndromes, and probable contact with sick animals. Suspected cases were confirmed by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR). Results. There were thirty-one confirmed cases. The sex ratio M/F and the average age were 2.9 and 25 years old [range, 4-70 years old], respectively. Mosquito bites, direct contact with aborted or dead animals, and frequent ingestion of milk from these animals were risk factors observed in all patients. Hemorrhagic and neurological manifestations were observed in 81% and 13% of cases, respectively. The results of laboratory analysis showed high levels of transaminases, creatinine, and urea associated with thrombocytopenia, anemia, and leukopenia. All patients who died (42%) had a hemorrhagic syndrome and 3 of them had a neurological complication. Among the cured patients, none had neurologic sequelae. Conclusion. The hemorrhagic form was the most common clinical manifestation of RVF found in southern Mauritania and was responsible for a high mortality rate. Our results justify the implementation of a continuous epidemiological surveillance. PMID:27844026

  2. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus

    PubMed Central

    Wilson, William C.; Davis, A. Sally; Gaudreault, Natasha N.; Faburay, Bonto; Trujillo, Jessie D.; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S.; Ruder, Mark G.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. PMID:27223298

  3. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus.

    PubMed

    Wilson, William C; Davis, A Sally; Gaudreault, Natasha N; Faburay, Bonto; Trujillo, Jessie D; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S; Ruder, Mark G; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-05-23

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves.

  4. Molecular detection of Rift Valley fever virus in serum samples from selected areas of Tanzania.

    PubMed

    Chengula, Augustino Alfred; Kasanga, Christopher Jacob; Mdegela, Robinson Hammerthon; Sallu, Raphael; Yongolo, Mmeta

    2014-04-01

    Rift Valley fever (RVF) is an acute mosquito-borne viral zoonotic disease affecting domestic animals and humans caused by the Rift Valley fever virus (RVFV). The virus belongs to the genus Phlebovirus of the family Bunyaviridae. The main aim of this study was to detect the presence of antibodies to RVFV as well as the virus in the serum samples that were collected from livestock during the 2006/2007 RVF outbreaks in different locations in Tanzania. Analysis of selected samples was done using a RVF-specific inhibition enzyme-linked immunosorbent assay (I-ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Genomic viral RNA was extracted directly from serum samples using a QIAamp Viral RNA Mini Kit (QIAGEN), and a one-step RT-PCR protocol was used to amplify the S segment of RVFV. Positive results were obtained in 39.5% (n = 200) samples using the RVF I-ELISA, and 17.6% (n = 108) of samples were positive by RT-PCR. I-ELISA detected 41 (38.7%), 32 (39.0%), and 6 (50.0%) positive results in cattle, goats, and sheep sera, respectively, whereas the RT-PCR detected 11 (0.2%), 7 (0.2%), and 1 (0.1%) positive results in cattle, goats, and sheep sera, respectively. These findings have demonstrated the presence of RVFV in Tanzania during the 2006/2007 RVF outbreaks. To our knowledge, this is the first report to detect RVFV in serum samples from domestic animals in Tanzania using PCR technique. Therefore, a detailed molecular study to characterize the virus from different geographical locations in order to establish the profile of strains circulating in the country and develop more effective and efficient control strategies should be done.

  5. Rift Valley Fever Risk Map Model and Seroprevalence in Selected Wild Ungulates and Camels from Kenya

    PubMed Central

    Ruder, Mark G.; Linthicum, Kenneth J.; Anyamba, Assaf; Small, Jennifer L.; Tucker, Compton J.; Ateya, Leonard O.; Oriko, Abuu A.; Gacheru, Stephen; Wilson, William C.

    2013-01-01

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006–2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006–2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000–2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008–2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission. PMID:23840512

  6. Geochemistry of Rift Valley Sediments at the Ultra-slow Spreading Mohns-Knipovich Ridge

    NASA Astrophysics Data System (ADS)

    Flesland, K.; Pedersen, R.; Haflidason, H.; Thorseth, I. H.

    2010-12-01

    Submarine volcanic and hydrothermal activity is mainly located in close vicinity of the mid-ocean spreading ridges where limited amounts of sediment is accumulated. The ultra-slow spreading Mohns-Knipovich Ridges in the Norwegian-Greenland Sea (73° N) are however located close to the Norwegian-Greenland continental margins. At the Mohns-Knipovich bend the rift valley has been partially covered by thick layers of glacigenic and post-glacial sediments that represent the distal parts of the Bear Island Fan system, off N-Norway. These sediments represent a unique record of hydrothermal, tectonic and volcanic activity at an ultraslow spreading ridge. A number of 3-4 metres long sediment cores were retrieved from the ocean floor in the area around the recently discovered black smoker vent field Loki’s Castle during the H2Deep cruise of 2008. Optical, radiographic and elemental variations from splitted sediment core sections have been recorded using a non-destructive ITRAX XRF core scanner system while magnetic susceptibility, bulk density and fractional porosity were recorded using a multi sensor core logger (MSCL) from GEOTEK. Additionally the pore water chemistry (ammonium, sulphide, sulphate and major elements) of selected layers in the cores have been analysed. The sediment cores are in general quite stratified with layers of hydrothermal and volcanic origin containing sulphide minerals and basaltic glass indicating several volcanic eruptions at the ridge during the last 10 000 years. Preliminary results show several manganese peaks which may indicate incidents of hydrothermal influence. Also the red-brown colouring of the sediments proposes a hydrothermal and/or volcanic influence and an elevated iron content compared to deep sea sediments. These geochemical studies of the rift valley sediments and sediment pore water from locations close to the Loki’s Castle provide a uniqe insight into the temporal and spatial evolution of the volcanic and hydrothermal

  7. Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

    PubMed Central

    Caroline, Amy L.; Powell, Diana S.; Bethel, Laura M.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2014-01-01

    Background Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route. Methodology/Principal Findings Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease. Conclusions/Significance Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug. PMID:24722586

  8. Seroepidemiological Survey of Rift Valley Fever Virus in Ruminants in Garissa, Kenya.

    PubMed

    Nanyingi, Mark O; Muchemi, Gerald M; Thumbi, Samuel M; Ade, Fredrick; Onyango, Clayton O; Kiama, Stephen G; Bett, Bernard

    2017-02-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease caused by phlebovirus in the family Bunyaviridae. In Kenya, major outbreaks occurred in 1997-1998 and 2006-2007 leading to human deaths, huge economic losses because of livestock morbidity, mortality, and restrictions on livestock trade. This study was conducted to determine RVF seroprevalence in cattle, sheep, and goats during an interepidemic period in Garissa County in Kenya. In July 2013, we performed a cross-sectional survey and sampled 370 ruminants from eight RVF-prone areas of Garissa County. Rift Valley fever virus (RVFV) antibodies were detected using a multispecies competitive enzyme-linked immunosorbent assay. Mixed effect logistic regression models were used to determine the association between RVF seropositivity and species, sex, age, and location of the animals. A total of 271 goats, 87 sheep, and 12 cattle were sampled and the overall immunoglobulin G seroprevalence was 27.6% (95% CI [23-32.1]). Sheep, cattle, and goats had seroprevalences of 32.2% (95% CI [20.6-31]), 33.3% (95% CI [6.7-60]), and 25.8% (95% CI [22.4-42]), respectively. Seropositivity in males was 31.8% (95% CI [22.2-31.8]), whereas that of females was 27% (95% CI [18.1-45.6]). The high seroprevalence suggests RVFV circulation in domestic ruminants in Garissa and may be indicative of a subclinal infection. These findings provide evidence of RVF disease status that will assist decision-makers to flag areas of high risk of RVF outbreaks and prioritize the implementation of timely and cost-effective vaccination programs.

  9. Rift Valley fever risk map model and seroprevalence in selected wild ungulates and camels from Kenya.

    PubMed

    Britch, Seth C; Binepal, Yatinder S; Ruder, Mark G; Kariithi, Henry M; Linthicum, Kenneth J; Anyamba, Assaf; Small, Jennifer L; Tucker, Compton J; Ateya, Leonard O; Oriko, Abuu A; Gacheru, Stephen; Wilson, William C

    2013-01-01

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006-2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006-2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000-2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008-2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission.

  10. Rift Valley Fever Risk Map Model and Seroprevalence in Selected Wild Ungulates and Camels from Kenya

    NASA Technical Reports Server (NTRS)

    Britch, Seth C.; Binepal, Yatinder S.; Ruder, Mark G.; Kariithi, Henry M.; Linthicum, Kenneth J.; Anyamba, Assaf; Small, Jennifer L.; Tucker, Compton J.; Ateya, Leonard O.; Oriko, Abuu A.; Gacheru, Stephen; Wilson, William C.

    2013-01-01

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006-2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006-2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000-2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008-2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission.

  11. Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh, Alemayehu; Bewket, Woldeamlak; Keesstra, Saskia; Stroosnijder, Leo

    2017-05-01

    Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970-2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March-May) and Kiremt (June-September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7-35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.

  12. Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh, Alemayehu; Bewket, Woldeamlak; Keesstra, Saskia; Stroosnijder, Leo

    2016-02-01

    Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970-2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March-May) and Kiremt (June-September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7-35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.

  13. Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: isotopic evidence

    NASA Astrophysics Data System (ADS)

    Darling, W. George; Gizaw, Berhanu; Arusei, Musa K.

    1996-05-01

    The assessment of water resources in the Rift Valley environment is important for population, agriculture and energy-related issues and depends on a good understanding of the relationship between freshwater lakes and regional groundwater. This can be hampered by the amount of fluid-rock interaction which occurs throughout the rift, obscuring original hydrochemical signatures. However, O and H stable isotope ratios can be used as tracers of infiltration over sometimes considerable distances, while showing that the volcanic edifices of the rift floor have varying effects on groundwater flow patterns. Specific cases from Kenya and Ethiopia are considered, including Lakes Naivasha, Baringo, Awasa and Zwai. In addition to their physical tracing role, stable isotopes can reveal information about processes of fluid-rock interaction. The general lack of O isotope shifting in rift hydrothermal systems suggests a high water:rock ratio, with the implication that these systems are mature. Carbon isotope studies on the predominantly bicarbonate waters of the rift show how they evolve from dilute meteoric recharge to highly alkaline waters, via the widespread silicate hydrolysis promoted by the flux of mantle carbon dioxide which occurs in most parts of the rift. There appears to be only minor differences in the C cycle between Kenya and Ethiopia.

  14. Galapagos rift at 86 /sup 0/W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley

    SciTech Connect

    Ballard, R.D.; van Andel, T.H.; Holcomb, R.T.

    1982-02-10

    A 30-km segment of the Galapagos Rift near 86 /sup 0/W has been mapped in detail using the Angus towed camera system, the submersible Alvin, and multi-narrowbeam sonar data. Recent volcanic activity and active hydrothermal circulation are evident along the entire length of the segment mapped. There are, however, clear along-strike variations in these processes which render previous two-dimensional models obsolete. Although alternate explanations are possible, eruptive sequences appear to begin with the outpouring of surface-fed sheet flows and end with more channelized pillow flows. In the western portion of the rift studied, sheet flows dominate with the entire valley floor covered by recent flows associated with a broad shield volcano. The eastern portion, on the other hand, is narrower; consisting primarily of less voluminous pillow flows of apparently the same youthful age. Three possible models for the volcanic evolution of this rift segment are presented. According to the first model, the extrusive portion of the crust is formed by a distinct volcanic episode, followed by a long period of volcanic quiescence. The volcanic phase begins with voluminous sheet flows emerging from numerous eruptive fissures, which in time evolve into a narrow pillow ridge. Farther along-strike, where the flows are smaller and the extrusive zone narrow, the marginal portions undergo continued fissuring and subsequent uplift to form marginal highs and lows. This deformational activity also affects the extrusive zone once volcanic activity ends, converting the distinctly lobate topography of the active period into highly lineated fault-controlled terrain. According to the second model, extension and volcanism can be viewed as a continuous process without major periods of volcanic quiescence. The initial lava flows of a new eruptive sequence fill low areas, frequently spilling over local sills and flooding much of the rift valley.

  15. The Rift Valley of African Plate in Elasto-Plastic Creeping over Magma Motion

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2016-04-01

    This is a brief note to a problem on the Rift Valley in the eastern Africa. It is said that this valley was formed in an age 20,000,000 years before present though the valley is yet continuing to move eastward at an annual rate of about 5 cm/year in a geographical trend. Adding to some of the scientists tell that the separation threat of the easternAfrica from the mother land of the Africa under the effect of African crust motion over the magma. However, it is now geological understanding that the land of the Africa has been kept its basic coastal configulation in geographic pattern since the time more than 20,000,000 years before present. Sothat, it is hard to consider the above noted African land separation by part could be in the next age in a time scale of 20,000,000 years. As far as, we concern the geographic data obtaoned by the ground based survey of the African typical mountain peaks, the highest mountain peak 5885m (in 1980) is for Kilimanjaro, Kibo Peak though one of the scientific almanacs tells us its peak height as 5890m (in 2009). As for the Mount Kenia, the peak height is as 5199m (in 1980) and 5200m(in 2009). At a glance, it looks to be a trend in altimetry of the African typical mountain. Now, what trends are noted for the peak heights could be taken to suggesting the geological activity on the earth surface to maintain in a spherical shape approximately on the orbit around the Sun. In these several ten years, the digitizing of the data has been promoted even for the topographic patterns on the earth though its time scaling is extremely short comparing to the geological time scaling. Now, it should be found what is effective to monitor any trends of the African crust in motion as well as variations of the mountain peaks.

  16. Diagnosis and Chemotherapy of Human Trypanosomiasis and Vector Ecology of Rift Valley Fever and Congo-Crimean Hemorrhagic Fever in Kenya

    DTIC Science & Technology

    1991-11-06

    AD-A259 524 AD GRANT NO: DAMD17-90-Z-0005 TITLE: DIAGNOSIS AND CHEMOTHERAPY OF HUMAN TRYPANOSOMIASIS AND VECTOR ECOLOGY OF RIFT VALLEY FEVER AND...62787A 62787A870 AN 014 11. TITLE (dud Secufity Claniflcat•)n) Diagnosis and Chemotherapy of Human Trypanosomiasis and Vector Ecology of Rift Valley...OCONUS JUN 89 - -- .- . . .- . . .. ’-..." -. . :- -•- ... , .-. ,. I Diagnosis and Chemotherapy of Human Trypanosomiasis a. Screening of WRAIR

  17. The origin of hydrothermal and other gases in the Kenya Rift Valley

    SciTech Connect

    Darling, W.G.; Griesshaber, E.; Andrews, J.N.

    1995-06-01

    The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

  18. The origin of hydrothermal and other gases in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Griesshaber, E.; Andrews, J. N.; Armannsson, H.; O'Nions, R. K.

    1995-06-01

    The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N 2 and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH 4 and homologues) appears to be exclusively derived from the shallow crust, with thermogenic δ 13C values averaging -25‰ PDB for CH 4. H 2 is likely also to be crustally formed. CO 2, generally a dominant constituent, has a narrow δ 13C range averaging -3.7‰ PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/ 3He supports this view in most cases. Sulphur probably also originates there. Ratios of 3He/ 4He reach a MORB-like maximum of 8.0 R/RA and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between 3He/ 4He and the hydrocarbon parameter log (C 1/ΣC 2-4) appears to be primarily temperature related. The highest 3He/ 4He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on 3He/ 4He ratios in the KRV as a whole.

  19. A Replication-incompetent Rift Valley Fever Vaccine: Chimeric Virus-like Particles Protect Mice and Rats Against Lethal Challenge

    PubMed Central

    Mandell, Robert B.; Koukuntla, Ramesh; Mogler, Laura J. K.; Carzoli, Andrea K.; Freiberg, Alexander N.; Holbrook, Michael R.; Martin, Brian K.; Staplin, William R.; Vahanian, Nicholas N.; Link, Charles J.; Flick, Ramon

    2009-01-01

    Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate. PMID:19932911

  20. An observational study of the summer Mediterranean Sea breeze front penetration into the complex topography of the Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Naor, R.; Potchter, O.; Shafir, H.; Alpert, P.

    2017-01-01

    The Mediterranean summer sea breeze front (SBF) climatic features of penetration into the complex topography of the Jordan Rift Valley (JRV) were investigated. It was shown that the SBF penetration into the JRV occurs in a well-defined chronological order from north to south. One exception to this general rule is the breeze penetration of Sdom, which occurs after it has penetrated the Arava which is located further south, probably due to the micro-climatic effect of the Dead Sea. It was also noted that the breeze increases the local specific humidity as it reaches the JRV in spite of significant temperature increases. The temperature reaches its daily peak 2 to 3 h later in the southern valley compared to the northern valley and is suggested to be due to the later SBF penetration and the valley structure. The pre-SBF line features in the JRV are described.

  1. Sorafenib impedes Rift Valley fever virus egress by inhibiting Valosin containing protein function in the cellular secretory pathway

    DTIC Science & Technology

    2017-08-09

    combat Rift Valley fever virus (RVFV) 24 infections, which causes devastating disease in both humans and animals. In an effort to 25 repurpose drugs for...RVFV treatment, our previous studies screened a library of FDA-approved 26 drugs . The most promising candidate identified was the hepatocellular and...renal cell carcinoma 27 drug , sorafenib. Mechanism of action studies indicated sorafenib targeted a late stage in virus 28 infection and caused a

  2. Differentiation of a Human Monocytic Cell Line Associated with Increased Production of Rift Valley Fever Virus by Infected Cells

    DTIC Science & Technology

    1987-01-01

    Production of Rift Valley Fever Virus by Infected Cells Richard M. Lewis, Thomas M. Cosgriff, Clarence J. Peters, and John C. Morrill Division of Medicine and...Prior studies have shown that RVF virus productively infects peritoneal macrophages from susceptible rat strains. The U937 human monocytic cell line...was used to determine the effect of monocytic cell differentiation on the degree of viral production by cell cultures infected with RVF virus

  3. Anomalous seafloor mounds in the northern Natal Valley, southwest Indian Ocean: Implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Wiles, Errol; Green, Andrew; Watkeys, Mike; Jokat, Wilfried; Krocker, Ralph

    2014-09-01

    The Natal Valley (southwest Indian Ocean) has a complicated and protracted opening history, as has the surrounding southwest Indian Ocean. Recently collected multibeam swath bathymetry and 3.5 kHz seismic data from the Natal Valley reveal anomalous seafloor mounds in the northern Natal Valley. The significance, of these domes, as recorders of the geological history of the Natal Valley and SE African Margin has been overlooked with little attempt made to identify their origin, evolution or tectonic significance. This paper aims to describe these features from a morphological perspective and to use their occurrence as a means to better understand the geological and oceanographic evolution of this basin. The seafloor mounds are distinct in both shallow seismic and morphological character from the surrounding seafloor of the Natal Valley. Between 25 km and 31 km long, and 16 km and 18 km wide, these features rise some 400 m above the sedimentary deposits that have filled in the Natal Valley. Such macro-scale features have not previously been described from the Natal Valley or from other passive margins globally. They are not the result of bottom water circulation, salt tectonics; rather, igneous activity is favoured as the origin for these anomalous seafloor features. We propose a hypothesis that the anomalous seafloor mounds observed in the Natal Valley are related to igneous activity associated with the EARS. The complicated opening history and antecedent geology, coupled with the southward propagation of the East African Rift System creates a unique setting where continental rift associated features have been developed in a marine setting.

  4. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  5. Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya

    PubMed Central

    Njenga, M. Kariuki; Kitala, Philip; Bett, Bernard

    2016-01-01

    Background The impacts of vaccination on the transmission of Rift Valley fever virus (RVFV) have not been evaluated. We have developed a RVFV transmission model comprising two hosts—cattle as a separate host and sheep and goats as one combined host (herein after referred to as sheep)—and two vectors—Aedes species (spp) and Culex spp—and used it to predict the impacts of: (1) reactive vaccination implemented at various levels of coverage at pre-determined time points, (2) targeted vaccination involving either of the two host species, and (3) a periodic vaccination implemented biannually or annually before an outbreak. Methodology/Principal Findings The model comprises coupled vector and host modules where the dynamics of vectors and hosts are described using a system of difference equations. Vector populations are structured into egg, larva, pupa and adult stages and the latter stage is further categorized into three infection categories: susceptible, exposed and infectious mosquitoes. The survival rates of the immature stages (egg, larva and pupa) are dependent on rainfall densities extracted from the Tropical Rainfall Measuring Mission (TRMM) for a Rift Valley fever (RVF) endemic site in Kenya over a period of 1827 days. The host populations are structured into four age classes comprising young, weaners, yearlings and adults and four infection categories including susceptible, exposed, infectious, and immune categories. The model reproduces the 2006/2007 RVF outbreak reported in empirical surveys in the target area and other seasonal transmission events that are perceived to occur during the wet seasons. Mass reactive vaccination strategies greatly reduce the potential for a major outbreak. The results also suggest that the effectiveness of vaccination can be enhanced by increasing the vaccination coverage, targeting vaccination on cattle given that this species plays a major role in the transmission of the virus, and using both periodic and reactive

  6. Postepidemic Analysis of Rift Valley Fever Virus Transmission in Northeastern Kenya: A Village Cohort Study

    PubMed Central

    LaBeaud, A. Desirée; Muiruri, Samuel; Sutherland, Laura J.; Dahir, Saidi; Gildengorin, Ginny; Morrill, John; Muchiri, Eric M.; Peters, Clarence J.; King, Charles H.

    2011-01-01

    Background In endemic areas, Rift Valley fever virus (RVFV) is a significant threat to both human and animal health. Goals of this study were to measure human anti-RVFV seroprevalence in a high-risk area following the 2006–2007 Kenyan Rift Valley Fever (RVF) epidemic, to identify risk factors for interval seroconversion, and to monitor individuals previously exposed to RVFV in order to document the persistence of their anti-RVFV antibodies. Methodology/Findings We conducted a village cohort study in Ijara District, Northeastern Province, Kenya. One hundred two individuals tested for RVFV exposure before the 2006–2007 RVF outbreak were restudied to determine interval anti-RVFV seroconversion and persistence of humoral immunity since 2006. Ninety-two additional subjects were enrolled from randomly selected households to help identify risk factors for current seropositivity. Overall, 44/194 or 23% (CI95%:17%–29%) of local residents were RVFV seropositive. 1/85 at-risk individuals restudied in the follow-up cohort had seroconverted since early 2006. 27/92 (29%, CI95%: 20%–39%) of newly tested individuals were seropositive. All 13 individuals with positive titers (by plaque reduction neutralization testing (PRNT80)) in 2006 remained positive in 2009. After adjustment in multivariable logistic models, age, village, and drinking raw milk were significantly associated with RVFV seropositivity. Visual impairment (defined as ≤20/80) was much more likely in the RVFV-seropositive group (P<0.0001). Conclusions Our results highlight significant variability in RVFV exposure in two neighboring villages having very similar climate, terrain, and insect density. Among those with previous exposure, RVFV titers remained at >1∶40 for more than 3 years. In concordance with previous studies, residents of the more rural village were more likely to be seropositive and RVFV seropositivity was associated with poor visual acuity. Raw milk consumption was strongly associated with

  7. Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya.

    PubMed

    Gachohi, John M; Njenga, M Kariuki; Kitala, Philip; Bett, Bernard

    2016-12-01

    The impacts of vaccination on the transmission of Rift Valley fever virus (RVFV) have not been evaluated. We have developed a RVFV transmission model comprising two hosts-cattle as a separate host and sheep and goats as one combined host (herein after referred to as sheep)-and two vectors-Aedes species (spp) and Culex spp-and used it to predict the impacts of: (1) reactive vaccination implemented at various levels of coverage at pre-determined time points, (2) targeted vaccination involving either of the two host species, and (3) a periodic vaccination implemented biannually or annually before an outbreak. The model comprises coupled vector and host modules where the dynamics of vectors and hosts are described using a system of difference equations. Vector populations are structured into egg, larva, pupa and adult stages and the latter stage is further categorized into three infection categories: susceptible, exposed and infectious mosquitoes. The survival rates of the immature stages (egg, larva and pupa) are dependent on rainfall densities extracted from the Tropical Rainfall Measuring Mission (TRMM) for a Rift Valley fever (RVF) endemic site in Kenya over a period of 1827 days. The host populations are structured into four age classes comprising young, weaners, yearlings and adults and four infection categories including susceptible, exposed, infectious, and immune categories. The model reproduces the 2006/2007 RVF outbreak reported in empirical surveys in the target area and other seasonal transmission events that are perceived to occur during the wet seasons. Mass reactive vaccination strategies greatly reduce the potential for a major outbreak. The results also suggest that the effectiveness of vaccination can be enhanced by increasing the vaccination coverage, targeting vaccination on cattle given that this species plays a major role in the transmission of the virus, and using both periodic and reactive vaccination strategies. Reactive vaccination can be

  8. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo.

    PubMed

    Broadhurst, C L; Cunnane, S C; Crawford, M A

    1998-01-01

    An abundant, balanced dietary intake of long-chain polyunsaturated fatty acids is an absolute requirement for sustaining the very rapid expansion of the hominid cerebral cortex during the last one to two million years. The brain contains 600 g lipid/kg, with a long-chain polyunsaturated fatty acid profile containing approximately equal proportions of arachidonic acid and docosahexaenoic acid. Long-chain polyunsaturated fatty acid deficiency at any stage of fetal and/or infant development can result in irreversible failure to accomplish specific components of brain growth. For the past fifteen million years, the East African Rift Valley has been a unique geological environment which contains many enormous freshwater lakes. Paleoanthropological evidence clearly indicates that hominids evolved in East Africa, and that early Homo inhabited the Rift Valley lake shores. Although earlier hominid species migrated to Eurasia, modern Homo sapiens is believed to have originated in Africa between 100 and 200 thousand years ago, and subsequently migrated throughout the world. A shift in the hominid resource base towards more high-quality foods occurred approximately two million years ago; this was accompanied by an increase in relative brain size and a shift towards modern patterns of fetal and infant development. There is evidence for both meat and fish scavenging, although sophisticated tool industries and organized hunting had not yet developed. The earliest occurrences of modern H. sapiens and sophisticated tool technology are associated with aquatic resource bases. Tropical freshwater fish and shellfish have long-chain polyunsaturated lipid ratios more similar to that of the human brain than any other food source known. Consistent consumption of lacustrine foods could have provided a means of initiating and sustaining cerebral cortex growth without an attendant increase in body mass. A modest intake of fish and shellfish (6-12% total dietary energy intake) can provide more

  9. A network-based meta-population approach to model Rift Valley fever epidemics.

    PubMed

    Xue, Ling; Scott, H Morgan; Cohnstaedt, Lee W; Scoglio, Caterina

    2012-08-07

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and veterinary infrastructures and human morbidity, mortality, and economic endpoints. Furthermore, worldwide attention should be directed towards the broader infection dynamics of RVFV, because suitable host, vector and environmental conditions for additional epidemics likely exist on other continents; including Asia, Europe and the Americas. We propose a new compartmentalized model of RVF and the related ordinary differential equations to assess disease spread in both time and space; with the latter driven as a function of contact networks. Humans and livestock hosts and two species of vector mosquitoes are included in the model. The model is based on weighted contact networks, where nodes of the networks represent geographical regions and the weights represent the level of contact between regional pairings for each set of species. The inclusion of human, animal, and vector movements among regions is new to RVF modeling. The movement of the infected individuals is not only treated as a possibility, but also an actuality that can be incorporated into the model. We have tested, calibrated, and evaluated the model using data from the recent 2010 RVF outbreak in South Africa as a case study; mapping the epidemic spread within and among three South African provinces. An extensive set of simulation results shows the potential of the proposed approach for accurately modeling the RVF spreading process in additional regions of the world. The benefits of the proposed model are twofold: not only can the model differentiate the maximum number of infected individuals among different provinces, but also it can reproduce the different starting times of the outbreak in multiple locations

  10. Seroprevalence of Rift Valley fever virus in sheep and goats in Zambézia, Mozambique.

    PubMed

    Blomström, Anne-Lie; Scharin, Isabelle; Stenberg, Hedvig; Figueiredo, Jaquline; Nhambirre, Ofélia; Abilio, Ana; Berg, Mikael; Fafetine, José

    2016-01-01

    The Rift Valley fever virus (RVFV) is a vector-borne virus that causes disease in ruminants, but it can also infect humans. In humans, the infection can be asymptomatic but can also lead to illness, ranging from a mild disease with fever, headache and muscle pain to a severe disease with encephalitis and haemorrhagic fever. In rare cases, death can occur. In infected animals, influenza-like symptoms can occur, and abortion and mortality in young animals are indicative of RVFV infection. Since the initial outbreak in Kenya in the 1930s, the virus has become endemic to most of sub-Saharan Africa. In 2000, the virus appeared in Yemen and Saudi Arabia; this was the first outbreak of RVF outside of Africa. Rift Valley fever epidemics are often connected to heavy rainfall, leading to an increased vector population and spread of the virus to animals and/or humans. However, the virus needs to be maintained during the inter-epidemic periods. In this study, we investigated the circulation of RVFV in small ruminants (goats and sheep) in Zambézia, Mozambique, an area with a close vector/wildlife/livestock/human interface. Between September and October 2013, 181 sheep and 187 goat blood samples were collected from eight localities in the central region of Zambézia, Mozambique. The samples were analysed for the presence of antibodies against RVFV using a commercial competitive ELISA. The overall seroprevalence was higher in sheep (44.2%) than goats (25.1%); however, there was a high variation in seroprevalence between different localities. The data indicate an increased seroprevalence for sheep compared to 2010, when a similar study was conducted in this region and in overlapping villages. No noticeable health problems in the herds were reported. This study shows an inter-epidemic circulation of RVFV in small ruminants in Zambézia, Mozambique. Neither outbreaks of RVF nor typical clinical signs of RVFV have been reported in the investigated herds, indicating subclinical

  11. Seroprevalence of Rift Valley fever virus in sheep and goats in Zambézia, Mozambique

    PubMed Central

    Blomström, Anne-Lie; Scharin, Isabelle; Stenberg, Hedvig; Figueiredo, Jaquline; Nhambirre, Ofélia; Abilio, Ana; Berg, Mikael; Fafetine, José

    2016-01-01

    Background The Rift Valley fever virus (RVFV) is a vector-borne virus that causes disease in ruminants, but it can also infect humans. In humans, the infection can be asymptomatic but can also lead to illness, ranging from a mild disease with fever, headache and muscle pain to a severe disease with encephalitis and haemorrhagic fever. In rare cases, death can occur. In infected animals, influenza-like symptoms can occur, and abortion and mortality in young animals are indicative of RVFV infection. Since the initial outbreak in Kenya in the 1930s, the virus has become endemic to most of sub-Saharan Africa. In 2000, the virus appeared in Yemen and Saudi Arabia; this was the first outbreak of RVF outside of Africa. Rift Valley fever epidemics are often connected to heavy rainfall, leading to an increased vector population and spread of the virus to animals and/or humans. However, the virus needs to be maintained during the inter-epidemic periods. In this study, we investigated the circulation of RVFV in small ruminants (goats and sheep) in Zambézia, Mozambique, an area with a close vector/wildlife/livestock/human interface. Materials and methods Between September and October 2013, 181 sheep and 187 goat blood samples were collected from eight localities in the central region of Zambézia, Mozambique. The samples were analysed for the presence of antibodies against RVFV using a commercial competitive ELISA. Results and discussion The overall seroprevalence was higher in sheep (44.2%) than goats (25.1%); however, there was a high variation in seroprevalence between different localities. The data indicate an increased seroprevalence for sheep compared to 2010, when a similar study was conducted in this region and in overlapping villages. No noticeable health problems in the herds were reported. Conclusions This study shows an inter-epidemic circulation of RVFV in small ruminants in Zambézia, Mozambique. Neither outbreaks of RVF nor typical clinical signs of RVFV have

  12. DoD-GEIS Rift Valley Fever Monitoring and Prediction System as a Tool for Defense and US Diplomacy

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Tucker, Compton J.; Linthicum, Kenneth J.; Witt, Clara J.; Gaydos, Joel C.; Russell, Kevin L.

    2011-01-01

    Over the last 10 years the Armed Forces Health Surveillance Center's Global Emerging Infections Surveillance and Response System (GEIS) partnering with NASA'S Goddard Space Flight Center and USDA's USDA-Center for Medical, Agricultural & Veterinary Entomology established and have operated the Rift Valley fever Monitoring and Prediction System to monitor, predict and assess the risk of Rift Valley fever outbreaks and other vector-borne diseases over Africa and the Middle East. This system is built on legacy DoD basic research conducted by Walter Reed Army Institute of Research overseas laboratory (US Army Medical Research Unit-Kenya) and the operational satellite environmental monitoring by NASA GSFC. Over the last 10 years of operation the system has predicted outbreaks of Rift Valley fever in the Horn of Africa, Sudan, South Africa and Mauritania. The ability to predict an outbreak several months before it occurs provides early warning to protect deployed forces, enhance public health in concerned countries and is a valuable tool use.d by the State Department in US Diplomacy. At the international level the system has been used by the Food and Agricultural Organization (FAD) and the World Health Organization (WHO) to support their monitoring, surveillance and response programs in the livestock sector and human health. This project is a successful testament of leveraging resources of different federal agencies to achieve objectives of force health protection, health and diplomacy.

  13. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection

    PubMed Central

    Ahsan, Noor A.; Sampey, Gavin C.; Lepene, Ben; Akpamagbo, Yao; Barclay, Robert A.; Iordanskiy, Sergey; Hakami, Ramin M.; Kashanchi, Fatah

    2016-01-01

    Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of

  14. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection.

    PubMed

    Ahsan, Noor A; Sampey, Gavin C; Lepene, Ben; Akpamagbo, Yao; Barclay, Robert A; Iordanskiy, Sergey; Hakami, Ramin M; Kashanchi, Fatah

    2016-01-01

    Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of

  15. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  16. Venus: Geology of Beta Regio rift system

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  17. Seroprevalence of West Nile, Rift Valley, and sandfly arboviruses in Hashimiah, Jordan.

    PubMed Central

    Batieha, A.; Saliba, E. K.; Graham, R.; Mohareb, E.; Hijazi, Y.; Wijeyaratne, P.

    2000-01-01

    We conducted a serosurvey among patients of a health center in Hashimiah, a Jordanian town of 30,000 inhabitants located near a wastewater treatment plant and its effluent channel. Serum samples from 261 patients >/=5 years of age were assessed for immunoglobulin G (IgG) and IgM antibodies against West Nile, sandfly Sicilian, sandfly Naples, and Rift Valley viruses; the seroprevalence of IgG antibodies was 8%, 47%, 30%, and 0%, respectively. Female participants were more likely to have been infected than male. Persons living within 2 km of the treatment plant were more likely to have been infected with West Nile (p=0.016) and sandfly Sicilian (p=0.010) viruses. Raising domestic animals within the house was a risk factor for sandfly Sicilian (p=0.003) but not for sandfly Naples virus (p=0.148). All serum samples were negative for IgM antibodies against the tested viruses. Our study is the first documentation of West Nile and sandfly viruses in Jordan and calls attention to the possible health hazards of living close to wastewater treatment plants and their effluent channels. PMID:10905968

  18. Elevated antibodies against Rift Valley fever virus among humans with exposure to ruminants in Saudi Arabia.

    PubMed

    Memish, Ziad A; Masri, Malak A; Anderson, Benjamin D; Heil, Gary L; Merrill, Hunter R; Khan, Salah U; Alsahly, Ahmad; Gray, Gregory C

    2015-04-01

    In 2000, an outbreak of Rift Valley fever virus (RVFV) occurred in the Kingdom of Saudi Arabia (KSA). Since then there have been sparse efforts to monitor for RVFV reemergence. During 2012, we enrolled 300 individuals with ruminant exposure and 50 age-group matched non-exposed controls in southwestern KSA, in a cross-sectional epidemiological study of RVFV. Sera from the participants were screened with an enzyme-linked immunosorbent assay (ELISA) for anti-RVFV IgG antibodies of which 39 (11.1%) were positive. Sixteen (41.0%) of those 39 were also positive by a plaque reduction neutralization assay (PRNT). The PRNT-positive subjects were further studied with an IgM ELISA and one was positive. No RVFV was detected in the 350 sera using real-time reverse transcription polymerase chain reaction. Contact with cattle (odds ratio [OR] = 3.16, 95% confidence interval [CI] 1.01, 9.90) and a history of chronic medical illness (OR = 6.41, 95% CI 1.75, 23.44) were associated with greater odds of RVFV seropositivity by PRNT. The IgM-positive participant was 36 years of age, and reported multiple risk factors for ruminant contact. Although these findings simply may be vestiges of the 2000 epidemic, KSA's frequent visits from pilgrims and importations of live animals from RVFV-endemic areas suggest that more comprehensive surveillance for imported RVFV virus in ruminants, mosquitoes, and travelers is imperative.

  19. Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever.

    PubMed

    Wallace, D B; Ellis, C E; Espach, A; Smith, S J; Greyling, R R; Viljoen, G J

    2006-11-30

    The glycoprotein (GP) and nucleocapsid (NC) genes of Rift Valley fever virus (RVFV) were expressed in different expression systems and were evaluated for their ability to protect mice from virulent challenge using a prime-boost regime. Mice vaccinated with a lumpy skin disease virus-vectored recombinant vaccine (rLSDV-RVFV) expressing the two RVFV glycoproteins (G1 and G2) developed neutralising antibodies and were fully protected when challenged, as were those vaccinated with a crude extract of truncated G2 glycoprotein (tG2). By contrast mice vaccinated with a DNA vaccine expressing G1 and G2 did not sero-convert with only 20% of them surviving challenge. Mice vaccinated with the DNA vaccine and boosted with rLSDV-RVFV also failed to sero-convert but 40% survived challenge. Surprisingly, although none of the mice immunised with the purified NC protein sero-converted, 60% of them survived virulent challenge. The rLSDV-RVFV construct was then further evaluated in sheep for its dual protective abilities against RVFV and sheeppox virus (SPV). Vaccinated sheep sero-converted for both viruses and were protected against RVFV challenge, however, neither the immunised or negative control animals showed any significant reactions to the virulent SPV challenge.

  20. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression

    PubMed Central

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  1. Elevated Antibodies against Rift Valley Fever Virus among Humans with Exposure to Ruminants in Saudi Arabia

    PubMed Central

    Memish, Ziad A.; Masri, Malak A.; Anderson, Benjamin D.; Heil, Gary L.; Merrill, Hunter R.; Khan, Salah U.; Alsahly, Ahmad; Gray, Gregory C.

    2015-01-01

    In 2000, an outbreak of Rift Valley fever virus (RVFV) occurred in the Kingdom of Saudi Arabia (KSA). Since then there have been sparse efforts to monitor for RVFV reemergence. During 2012, we enrolled 300 individuals with ruminant exposure and 50 age-group matched non-exposed controls in southwestern KSA, in a cross-sectional epidemiological study of RVFV. Sera from the participants were screened with an enzyme-linked immunosorbent assay (ELISA) for anti-RVFV IgG antibodies of which 39 (11.1%) were positive. Sixteen (41.0%) of those 39 were also positive by a plaque reduction neutralization assay (PRNT). The PRNT-positive subjects were further studied with an IgM ELISA and one was positive. No RVFV was detected in the 350 sera using real-time reverse transcription polymerase chain reaction. Contact with cattle (odds ratio [OR] = 3.16, 95% confidence interval [CI] 1.01, 9.90) and a history of chronic medical illness (OR = 6.41, 95% CI 1.75, 23.44) were associated with greater odds of RVFV seropositivity by PRNT. The IgM-positive participant was 36 years of age, and reported multiple risk factors for ruminant contact. Although these findings simply may be vestiges of the 2000 epidemic, KSA's frequent visits from pilgrims and importations of live animals from RVFV-endemic areas suggest that more comprehensive surveillance for imported RVFV virus in ruminants, mosquitoes, and travelers is imperative. PMID:25646253

  2. Inhibition of Rift Valley Fever Virus Replication and Perturbation of Nucleocapsid-RNA Interactions by Suramin

    PubMed Central

    Ellenbecker, Mary; Lanchy, Jean-Marc

    2014-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. There are currently no proven safe and effective treatment options for RVFV infection. Inhibition of RNA binding to RVFV nucleocapsid protein (N) represents an attractive antiviral therapeutic strategy because several essential steps in the RVFV replication cycle involve N binding to viral RNA. In this study, we demonstrate the therapeutic potential of the drug suramin by showing that it functions well as an inhibitor of RVFV replication at multiple stages in human cell culture. Suramin has been used previously to treat trypanosomiasis in Africa. We characterize the dynamic and cooperative nature of N-RNA binding interactions and the dissociation of high-molecular-mass ribonucleoprotein complexes using suramin, which we previously identified as an N-RNA binding inhibitor in a high-throughput screen. Finally, we elucidate the molecular mechanism used by suramin in vitro to disrupt both specific and nonspecific binding events important for ribonucleoprotein formation. PMID:25267680

  3. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  4. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model

    PubMed Central

    Caroline, Amy L.; Kujawa, Michael R.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2016-01-01

    Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1–2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3–5 dpi) followed by brain (5–7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics. PMID:26779164

  5. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography.

    PubMed

    Freiberg, Alexander N; Sherman, Michael B; Morais, Marc C; Holbrook, Michael R; Watowich, Stanley J

    2008-11-01

    Rift Valley fever virus (RVFV) is a member of the Bunyaviridae virus family (genus Phlebovirus) and is considered to be one of the most important pathogens in Africa, causing viral zoonoses in livestock and humans. Here, we report the characterization of the three-dimensional structural organization of RVFV vaccine strain MP-12 by cryoelectron tomography. Vitrified-hydrated virions were found to be spherical, with an average diameter of 100 nm. The virus glycoproteins formed cylindrical hollow spikes that clustered into distinct capsomeres. In contrast to previous assertions that RVFV is pleomorphic, the structure of RVFV MP-12 was found to be highly ordered. The three-dimensional map was resolved to a resolution of 6.1 nm, and capsomeres were observed to be arranged on the virus surface in an icosahedral lattice with clear T=12 quasisymmetry. All icosahedral symmetry axes were visible in self-rotation functions calculated using the Fourier transform of the RVFV MP-12 tomogram. To the best of our knowledge, a triangulation number of 12 had previously been reported only for Uukuniemi virus, a bunyavirus also within the Phlebovirus genus. The results presented in this study demonstrate that RVFV MP-12 possesses T=12 icosahedral symmetry and suggest that other members of the Phlebovirus genus, as well as of the Bunyaviridae family, may adopt icosahedral symmetry. Knowledge of the virus architecture may provide a structural template to develop vaccines and diagnostics, since no effective anti-RVFV treatments are available for human use.

  6. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression.

    PubMed

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-05-24

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.

  7. p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production

    PubMed Central

    Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production. PMID:22574148

  8. Modeling the Impact of Climate Change on the Dynamics of Rift Valley Fever

    PubMed Central

    Mpeshe, Saul C.; Luboobi, Livingstone S.; Nkansah-Gyekye, Yaw

    2014-01-01

    A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic reproduction number ℛ 0 and investigate the impact of temperature and precipitation on ℛ 0. To study the effect of model parameters to ℛ 0, sensitivity and elasticity analysis of ℛ 0 were performed. When temperature and precipitation effects are not considered, ℛ 0 is more sensitive to the expected number of infected Aedes spp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infected Aedes spp. When climatic data are used, ℛ 0 is found to be more sensitive and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in Aedes species. PMID:24795775

  9. First serological investigation of peste-des-petits-ruminants and Rift Valley fever in Tunisia.

    PubMed

    Ayari-Fakhfakh, Emna; Ghram, Abdeljelil; Bouattour, Ali; Larbi, Imen; Gribâa-Dridi, Latifa; Kwiatek, Olivier; Bouloy, Michèle; Libeau, Geneviève; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2011-03-01

    This study, carried out between September 2006 and January 2007, is the first cross-sectional serological investigation of peste-des-petits-ruminants (PPR) and Rift Valley fever (RVF) in Tunisia. The objective was to assess the potential need to develop a dual, recombinant PPR-RVF vaccine and how such a vaccine might be utilised in Tunisia. An overall PPR seroprevalence of 7.45% was determined, a finding supported by the high specificity (99.4%) and sensitivity (94.5%) of the ELISA used. On assessment of the diversity and density of mosquitoes in the sampling area, four species of RVF-vectors of the genus Aedes and Culex were identified. However, no serological evidence of RVF was found despite the use of a highly sensitive ELISA (99-100%). Larger scale investigations are underway to confirm these findings and the continuation of the emergency vaccination program against these two diseases remains valid. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania.

    PubMed

    Mweya, Clement N; Mboera, Leonard E G; Kimera, Sharadhuli I

    2017-07-01

    Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.

  11. Association of ecological factors with Rift Valley fever occurrence and mapping of risk zones in Kenya.

    PubMed

    Mosomtai, Gladys; Evander, Magnus; Sandström, Per; Ahlm, Clas; Sang, Rosemary; Hassan, Osama Ahmed; Affognon, Hippolyte; Landmann, Tobias

    2016-05-01

    Rift Valley fever (RVF) is a mosquito-borne infection with great impact on animal and human health. The objectives of this study were to identify ecological factors that explain the risk of RVF outbreaks in eastern and central Kenya and to produce a spatially explicit risk map. The sensitivity of seven selected ecological variables to RVF occurrence was assessed by generalized linear modelling (GLM). Vegetation seasonality variables (from normalized difference vegetation index (NDVI) data) and 'evapotranspiration' (ET) (metrics) were obtained from 0.25-1km MODIS satellite data observations; 'livestock density' (N/km(2)), 'elevation' (m), and 'soil ratio' (fraction of all significant soil types within a certain county as a function of the total area of that county) were used as covariates. 'Livestock density', 'small vegetation integral', and the second principal component of ET were the most significant determinants of RVF occurrence in Kenya (all p ≤ 0.01), with high RVF risk areas identified in the counties of Tana River, Garissa, Isiolo, and Lamu. Wet soil fluxes measured with ET and vegetation seasonality variables could be used to map RVF risk zones on a sub-regional scale. Future outbreaks could be better managed if relevant RVF variables are integrated into early warning systems. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa.

    PubMed

    Campbell, L M; Osano, O; Hecky, R E; Dixon, D G

    2003-01-01

    Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g(-1) wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g(-1). The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g(-1). In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g(-1)), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g(-1), THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g(-1) for at-risk groups.

  13. Rift Valley Fever Virus Epidemic in Kenya, 2006/2007: The Entomologic Investigations

    PubMed Central

    Sang, Rosemary; Kioko, Elizabeth; Lutomiah, Joel; Warigia, Marion; Ochieng, Caroline; O'Guinn, Monica; Lee, John S.; Koka, Hellen; Godsey, Marvin; Hoel, David; Hanafi, Hanafi; Miller, Barry; Schnabel, David; Breiman, Robert F.; Richardson, Jason

    2010-01-01

    In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa. PMID:20682903

  14. An Investigation of a Major Outbreak of Rift Valley Fever in Kenya: 2006–2007

    PubMed Central

    Nguku, Patrick M.; Sharif, S. K.; Mutonga, David; Amwayi, Samuel; Omolo, Jared; Mohammed, Omar; Farnon, Eileen C.; Gould, L. Hannah; Lederman, Edith; Rao, Carol; Sang, Rosemary; Schnabel, David; Feikin, Daniel R.; Hightower, Allen; Njenga, M. Kariuki; Breiman, Robert F.

    2010-01-01

    An outbreak of Rift Valley fever (RVF) occurred in Kenya during November 2006 through March 2007. We characterized the magnitude of the outbreak through disease surveillance and serosurveys, and investigated contributing factors to enhance strategies for forecasting to prevent or minimize the impact of future outbreaks. Of 700 suspected cases, 392 met probable or confirmed case definitions; demographic data were available for 340 (87%), including 90 (26.4%) deaths. Male cases were more likely to die than females, Case Fatality Rate Ratio 1.8 (95% Confidence Interval [CI] 1.3–3.8). Serosurveys suggested an attack rate up to 13% of residents in heavily affected areas. Genetic sequencing showed high homology among viruses from this and earlier RVF outbreaks. Case areas were more likely than non-case areas to have soil types that retain surface moisture. The outbreak had a devastatingly high case-fatality rate for hospitalized patients. However, there were up to 180,000 infected mildly ill or asymptomatic people within highly affected areas. Soil type data may add specificity to climate-based forecasting models for RVF. PMID:20682900

  15. Mapping a Major Gene for Resistance to Rift Valley Fever Virus in Laboratory Rats.

    PubMed

    Busch, Catherine M; Callicott, Ralph J; Peters, Clarence J; Morrill, John C; Womack, James E

    2015-01-01

    The Rift Valley Fever virus (RVFV) presents an epidemic and epizootic threat in sub-Saharan Africa, Egypt, and the Arabian Peninsula, and has furthermore recently gained attention as a potential weapon of bioterrorism due to its ability to infect both livestock and humans. Inbred rat strains show similar characteristic responses to the disease as humans and livestock, making them a suitable model species. Previous studies had indicated differences in susceptibility to RVFV hepatic disease among various rat strains, including a higher susceptibility of Wistar-Furth (WF) compared to a more resistant Lewis (LEW) strain. Further study revealed that this resistance trait exhibits the pattern of a major dominant gene inherited in Mendelian fashion. A genome scan of a congenic WF.LEW strain, created from the susceptible WF and resistant LEW strains and itself resistant to infection with RVFV, revealed 2 potential regions for the location of the gene, 1 on chromosome 3 and the other on chromosome 9. Through backcrossing of WF.LEW rats to WF rats, genotyping offspring using SNPs and microsatellites, and viral challenges of 3 N1 litters, we have mapped the gene to the distal end of chromosome 3. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Seroprevalence of antibodies against Chikungunya, Dengue, and Rift Valley fever viruses after febrile illness outbreak, Madagascar.

    PubMed

    Schwarz, Norbert G; Girmann, Mirko; Randriamampionona, Njary; Bialonski, Alexandra; Maus, Deborah; Krefis, Anne Caroline; Njarasoa, Christine; Rajanalison, Jeanne Fleury; Ramandrisoa, Herly Daniel; Randriarison, Maurice Lucien; May, Jürgen; Schmidt-Chanasit, Jonas; Rakotozandrindrainy, Raphael

    2012-11-01

    In October 2009, two-3 months after an outbreak of a febrile disease with joint pain on the eastern coast of Madagascar, we assessed serologic markers for chikungunya virus (CHIKV), dengue virus (DENV), and Rift Valley fever virus (RVFV) in 1,244 pregnant women at 6 locations. In 2 eastern coast towns, IgG seroprevalence against CHIKV was 45% and 23%; IgM seroprevalence was 28% and 5%. IgG seroprevalence against DENV was 17% and 11%. No anti-DENV IgM was detected. At 4 locations, 450-1,300 m high, IgG seroprevalence against CHIKV was 0%-3%, suggesting CHIKV had not spread to higher inland-altitudes. Four women had IgG against RVFV, probably antibodies from a 2008 epidemic. Most (78%) women from coastal locations with CHIKV-specific IgG reported joint pain and stiffness; 21% reported no symptoms. CHIKV infection was significantly associated with high bodyweight. The outbreak was an isolated CHIKV epidemic without relevant DENV co-transmission.

  17. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa?

    PubMed

    Baba, Marycelin; Masiga, Daniel K; Sang, Rosemary; Villinger, Jandouwe

    2016-06-22

    Rift Valley fever (RVF) outbreaks have occurred across eastern Africa from 1912 to 2010 approximately every 4-15 years, most of which have not been accompanied by significant epidemics in human populations. However, human epidemics during RVF outbreaks in eastern Africa have involved 478 deaths in 1998, 1107 reported cases with 350 deaths from 2006 to 2007 and 1174 cases with 241 deaths in 2008. We review the history of RVF outbreaks in eastern Africa to identify the epidemiological factors that could have influenced its increasing severity in humans. Diverse ecological factors influence outbreak frequency, whereas virus evolution has a greater impact on its virulence in hosts. Several factors could have influenced the lack of information on RVF in humans during earlier outbreaks, but the explosive nature of human RVF epidemics in recent years mirrors the evolutionary trend of the virus. Comparisons between isolates from different outbreaks have revealed an accumulation of genetic mutations and genomic reassortments that have diversified RVF virus genomes over several decades. The threat to humans posed by the diversified RVF virus strains increases the potential public health and socioeconomic impacts of future outbreaks. Understanding the shifting RVF epidemiology as determined by its evolution is key to developing new strategies for outbreak mitigation and prevention of future human RVF casualties.

  18. Data-driven modeling to assess receptivity for Rift Valley Fever virus.

    PubMed

    Barker, Christopher M; Niu, Tianchan; Reisen, William K; Hartley, David M

    2013-11-01

    Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with [Formula: see text]1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from February-November, but would progress slowly during winter-early spring or early fall and be limited spatially to areas with early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur. To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies, models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to address the numerous remaining gaps in data and knowledge for this system.

  19. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    PubMed Central

    Fournié, Guillaume; Dommergues, Laure; Camacho, Anton; Cavalerie, Lisa; Mérot, Philippe; Keeling, Matt J.; Cêtre-Sossah, Catherine

    2017-01-01

    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data. PMID:28732006

  20. Modeling the impact of climate change on the dynamics of Rift Valley Fever.

    PubMed

    Mpeshe, Saul C; Luboobi, Livingstone S; Nkansah-Gyekye, Yaw

    2014-01-01

    A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic reproduction number ℛ 0 and investigate the impact of temperature and precipitation on ℛ 0. To study the effect of model parameters to ℛ 0, sensitivity and elasticity analysis of ℛ 0 were performed. When temperature and precipitation effects are not considered, ℛ 0 is more sensitive to the expected number of infected Aedes spp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infected Aedes spp. When climatic data are used, ℛ 0 is found to be more sensitive and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in Aedes species.

  1. Enhanced Detection of Rift Valley Fever Virus using Molecular Assays on Whole Blood Samples

    PubMed Central

    Grolla, Allen; Mehedi, Masfique; Lindsay, Robbin; Bosio, Catharine; Duse, Adriano; Feldmann, Heinz

    2012-01-01

    Background Rift Valley fever (RVF) is an emerging arthropod-borne zoonoses of global agricultural and public health importance. In December 2006, an RVF outbreak was recognized in Kenya which led to the deployment of international response laboratory teams to the area. Objectives A field laboratory was operated in Malindi, Kenya to provide safe sample handling and molecular testing for RVF virus (RVFV) as well as selected other pathogens for differential diagnosis. Study Design Safe sample handling was carried out using a negative pressure flexible film isolator (glovebox) and commercial reagents to inactivate clinical specimens and purify nucleic acid. Whole blood was routinely used for diagnostic testing although paired plasma samples were also tested in select cases. Subsequently, human macrophages were tested in vitro for their susceptibility to RVFV. Results The field laboratory received samples from 33 individuals and a definite laboratory diagnosis was provided in 16 of these cases. Using molecular diagnostic techniques, RVFV was more consistently detected in whole blood than in plasma samples most likely due to association of RVFV with blood cells. Subsequent in vitro studies identified macrophages as a target cell for RVFV replication. Conclusions RVFV appears to replicate in blood cells such as macrophages. Thus, the sensitivity of molecular diagnostic testing is improved if whole blood is used as the clinical specimen rather than plasma or serum. PMID:22632901

  2. Seroepidemiological study of Rift Valley fever (RVF) in animals in Saudi Arabia.

    PubMed

    Al-Afaleq, Adel I; Hussein, Mansour F; Al-Naeem, Abdulmohsin A; Housawi, Fadil; Kabati, Anwar G

    2012-10-01

    Serological prevalence of IgG antibodies against Rift Valley fever (RVFV) virus was investigated in 22 major localities in five different regions of Saudi Arabia where vaccination against RVF virus (RVFV) is not practiced. The study excludes the southwestern region where a major outbreak of RVF occurred in 2000 and where annual vaccination of ruminants is practiced. Sheep and goat IgG-sandwich ELISA were used to test serum samples from sheep and goats, and bovine IgG-sandwich ELISA was used to test cattle sera. A nonspecies-specific, nonantibody isotype-specific ELISA was used to test camel sera. A total of 3,480 sheep, goats, cattle and camels with no previous history of vaccination against RVFV were randomly tested. All tested animals were negative for IgG class antibodies against the virus except four out of 1,508 sheep and three out of 913 goats, which tested positive. All animals were clinically normal and no evidence was found of virus activity in the studied areas. It is, therefore, most likely that those rare positive cases, which constituted 0.002% of the total animals tested, were either false positives or vaccinates smuggled from the outbreak zone. The need for regular monitoring of animals both within the outbreak zone of 2000 and other parts of the kingdom is strongly emphasized.

  3. Aerosolized Rift Valley Fever Virus Causes Fatal Encephalitis in African Green Monkeys and Common Marmosets

    PubMed Central

    Hartman, Amy L.; Powell, Diana S.; Bethel, Laura M.; Caroline, Amy L.; Schmid, Richard J.; Oury, Tim

    2013-01-01

    Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV. PMID:24335307

  4. Wicking assay for the rapid detection of Rift Valley fever viral antigens in mosquitoes (Diptera: Culicidae).

    PubMed

    Turell, M; Davé, K; Mayda, M; Parker, Z; Coleman, R; Davé, S; Strickman, D

    2011-05-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in domestic ungulates as well as humans in Africa. There is a logical concern that RVFV could be introduced into the Americas and cause significant health and economic damage based on the precedent of the introduction and spread of West Nile virus (WNV). Unfortunately, there are currently no licensed diagnostic assays available for RVFV in the Americas. In this work, we report on the ability of a novel dipstick assay, VectorTest RVFV antigen assay, modeled on the VecTest assay for WNV, to detect a RVFV-infected female within a pool of mosquitoes. The dipsticks provided results in <20 min, were easy to use, and did not require a laboratory with containment facilities. Although readily able to detect a mosquito with a disseminated RVFV infection, it only occasionally detected RVFV in a mosquito with a nondisseminated infection, and therefore may fail to detect some pools that actually contain one or more positive mosquitoes. The RVFV dipstick assay was highly specific and did not react with samples to which had been added yellow fever, West Nile, Venezuelan equine encephalitis, sandfly fever Naples, sandfly fever Sicilian, or sandfly fever Toscana viruses. The RVFV assay can provide a rapid, safe, easy-to-use assay to alert public health personnel to the presence of RVFV in mosquitoes. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.

  5. Geographically weighted discriminant analysis of environmental conditions associated with Rift Valley fever outbreaks in South Africa.

    PubMed

    Nicholas, Dennis E; Delamater, Paul L; Waters, Nigel M; Jacobsen, Kathryn H

    2016-05-01

    Rift Valley fever (RVF) is a zoonotic arboviral infection that has occurred across Africa and parts of the Middle East. Geographically weighted discriminant analysis (GWDA) is a spatially-adaptive extension of traditional discriminant analysis (DA) which has rarely been applied to infectious disease epidemiology research. This study compares the classification performance of GWDA and traditional DA when used to distinguish between locations where livestock are at risk or are not at risk for acquiring RVF virus (RVFV) using 699 case reports of RVF (affecting 18,894 animals) from two outbreaks in South Africa in 2008-2009 and 2010-2011. GWDA produced better results than traditional DA for all bandwidth and kernel combinations. The best GWDA model correctly classified 96.6% of the original data versus 84.5% obtained with traditional DA. With GWDA, false positives decreased from 10.9% to 3.7%, and false negatives decreased from 19.9% to 3.2%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa?

    PubMed Central

    Baba, Marycelin; Masiga, Daniel K; Sang, Rosemary; Villinger, Jandouwe

    2016-01-01

    Rift Valley fever (RVF) outbreaks have occurred across eastern Africa from 1912 to 2010 approximately every 4–15 years, most of which have not been accompanied by significant epidemics in human populations. However, human epidemics during RVF outbreaks in eastern Africa have involved 478 deaths in 1998, 1107 reported cases with 350 deaths from 2006 to 2007 and 1174 cases with 241 deaths in 2008. We review the history of RVF outbreaks in eastern Africa to identify the epidemiological factors that could have influenced its increasing severity in humans. Diverse ecological factors influence outbreak frequency, whereas virus evolution has a greater impact on its virulence in hosts. Several factors could have influenced the lack of information on RVF in humans during earlier outbreaks, but the explosive nature of human RVF epidemics in recent years mirrors the evolutionary trend of the virus. Comparisons between isolates from different outbreaks have revealed an accumulation of genetic mutations and genomic reassortments that have diversified RVF virus genomes over several decades. The threat to humans posed by the diversified RVF virus strains increases the potential public health and socioeconomic impacts of future outbreaks. Understanding the shifting RVF epidemiology as determined by its evolution is key to developing new strategies for outbreak mitigation and prevention of future human RVF casualties. PMID:27329846

  7. Sequential Rift Valley Fever Outbreaks in Eastern Africa Caused by Multiple Lineages of the Virus

    PubMed Central

    Nderitu, Leonard; Lee, John S.; Omolo, Jared; Omulo, Sylvia; O'Guinn, Monica L.; Hightower, Allen; Mosha, Fausta; Mohamed, Mohamed; Munyua, Peninah; Nganga, Zipporah; Hiett, Kelli; Seal, Bruce; Feikin, Daniel R.; Breiman, Robert F.

    2011-01-01

    Background. During the Rift Valley fever (RVF) epidemic of 2006–2007 in eastern Africa, spatial mapping of the outbreaks across Kenya, Somalia, and Tanzania was performed and the RVF viruses were isolated and genetically characterized. Methods. Following confirmation of the RVF epidemic in Kenya on 19 December 2006 and in Tanzania on 2 February 2007, teams were sent to the field for case finding. Human, livestock, and mosquito specimens were collected and viruses isolated. The World Health Organization response team in Kenya worked with the WHO’s polio surveillance team inside Somalia to collect information and specimens from Somalia. Results. Seven geographical foci that reported hundreds of livestock and >25 cases in humans between December 2006 and June 2007 were identified. The onset of RVF cases in each epidemic focus was preceded by heavy rainfall and flooding for at least 10 days. Full-length genome analysis of 16 RVF virus isolates recovered from humans, livestock, and mosquitoes in 5 of the 7 outbreak foci revealed 3 distinct lineages of the viruses within and across outbreak foci. Conclusion. The findings indicate that the sequential RVF epidemics in the region were caused by multiple lineages of the RVF virus, sometimes independently activated or introduced in distinct outbreak foci. PMID:21282193

  8. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach.

    PubMed

    Métras, Raphaëlle; Fournié, Guillaume; Dommergues, Laure; Camacho, Anton; Cavalerie, Lisa; Mérot, Philippe; Keeling, Matt J; Cêtre-Sossah, Catherine; Cardinale, Eric; Edmunds, W John

    2017-07-01

    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006-2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data.

  9. Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.

    PubMed

    Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E

    2017-07-19

    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  10. Seroprevalence of Antibodies against Chikungunya, Dengue, and Rift Valley Fever Viruses after Febrile Illness Outbreak, Madagascar

    PubMed Central

    Girmann, Mirko; Randriamampionona, Njary; Bialonski, Alexandra; Maus, Deborah; Krefis, Anne Caroline; Njarasoa, Christine; Rajanalison, Jeanne Fleury; Ramandrisoa, Herly Daniel; Randriarison, Maurice Lucien; May, Jürgen; Schmidt-Chanasit, Jonas; Rakotozandrindrainy, Raphael

    2012-01-01

    In October 2009, two–3 months after an outbreak of a febrile disease with joint pain on the eastern coast of Madagascar, we assessed serologic markers for chikungunya virus (CHIKV), dengue virus (DENV), and Rift Valley fever virus (RVFV) in 1,244 pregnant women at 6 locations. In 2 eastern coast towns, IgG seroprevalence against CHIKV was 45% and 23%; IgM seroprevalence was 28% and 5%. IgG seroprevalence against DENV was 17% and 11%. No anti-DENV IgM was detected. At 4 locations, 450–1,300 m high, IgG seroprevalence against CHIKV was 0%–3%, suggesting CHIKV had not spread to higher inland-altitudes. Four women had IgG against RVFV, probably antibodies from a 2008 epidemic. Most (78%) women from coastal locations with CHIKV-specific IgG reported joint pain and stiffness; 21% reported no symptoms. CHIKV infection was significantly associated with high bodyweight. The outbreak was an isolated CHIKV epidemic without relevant DENV co-transmission. PMID:23092548

  11. Understanding Rift Valley fever: contributions of animal models to disease characterization and control.

    PubMed

    Lorenzo, Gema; López-Gil, Elena; Warimwe, George M; Brun, Alejandro

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis.

    PubMed

    Carnec, Xavier; Ermonval, Myriam; Kreher, Felix; Flamand, Marie; Bouloy, Michèle

    2014-01-05

    The correct folding, heterodimerization and trafficking of Gn/Gc envelope glycoproteins of Rift Valley fever virus, RVFV (Bunyaviridae and Phlebovirus genus) are essential for Golgi assembly and budding of viral particles. The Gn and Gc carboxy-terminus contain a Golgi targeting and an ER-retrieval signal, respectively. We generated RVFV-like particles with mutations in the cytosolic tails of Gn or Gc and identified regions important for release of infectious particles. The role of specific amino-acids in these regions was further investigated by creating recombinant mutant viruses by reverse-genetics. Residues outside the suspected Golgi targeting motif, i.e. the di-lysine K29-K30 motif and the N43, R44 and I46 residues of the Gn cytosolic domain, appeared important for Golgi localization and RNP packaging. Concerning the Gc tail, replacement of K2 or K3 in the di-lysine motif, had a drastic impact on Gn trafficking and induced an important organelle redistribution and cell remodeling, greatly affecting particle formation and release.

  13. Serologic evidence of exposure to Rift Valley fever virus detected in Tunisia

    PubMed Central

    Bosworth, A.; Ghabbari, T.; Dowall, S.; Varghese, A.; Fares, W.; Hewson, R.; Zhioua, E.; Chakroun, M.; Tiouiri, H.; Ben Jemaa, M.; Znazen, A.; Letaief, A.

    2015-01-01

    Rift Valley fever virus (RVFv) is capable of causing dramatic outbreaks amongst economically important animal species and is capable of causing severe symptoms and mortality in humans. RVFv is known to circulate widely throughout East Africa; serologic evidence of exposure has also been found in some northern African countries, including Mauritania. This study aimed to ascertain whether RVFv is circulating in regions beyond its known geographic range. Samples from febrile patients (n = 181) and nonfebrile healthy agricultural and slaughterhouse workers (n = 38) were collected during the summer of 2014 and surveyed for exposure to RVFv by both serologic tests and PCR. Of the 219 samples tested, 7.8% of nonfebrile participants showed immunoglobulin G reactivity to RVFv nucleoprotein and 8.3% of febrile patients showed immunoglobulin M reactivity, with the latter samples indicating recent exposure to the virus. Our results suggest an active circulation of RVFv and evidence of human exposure in the population of Tunisia. PMID:26740887

  14. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    PubMed

    Austin, Dana; Baer, Alan; Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  15. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model.

    PubMed

    Caroline, Amy L; Kujawa, Michael R; Oury, Tim D; Reed, Douglas S; Hartman, Amy L

    2015-01-01

    Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1-2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3-5 dpi) followed by brain (5-7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics.

  16. The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection.

    PubMed

    Pinkham, Chelsea; An, Soyeon; Lundberg, Lindsay; Bansal, Neha; Benedict, Ashwini; Narayanan, Aarthi; Kehn-Hall, Kylene

    2016-09-01

    Rift Valley fever (RVF) is a zoonotic disease that can cause severe illness in humans and livestock, triggering spontaneous abortion in almost 100% of pregnant ruminants. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3) is phosphorylated on its conserved tyrosine residue (Y705) following RVFV infection. This phosphorylation was dependent on a major virulence factor, the viral nonstructural protein NSs. Loss of STAT3 had little effect on viral replication, but rather resulted in cells being more susceptible to RVFV-induced cell death. Phosphorylated STAT3 translocated to the nucleus, coinciding with inhibition of fos, jun, and nr4a2 gene expression, and the presence of STAT3 and NSs at the nr4a2 promoter. NSs was found predominantly in the cytoplasm of STAT3 null cells, indicating that STAT3 influences NSs nuclear localization. Collectively, these data demonstrate that STAT3 functions in a pro-survival capacity through modulation of NSs localization.

  17. Creation of a recombinant Rift Valley fever virus with a two-segmented genome.

    PubMed

    Brennan, Benjamin; Welch, Stephen R; McLees, Angela; Elliott, Richard M

    2011-10-01

    Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed.

  18. Mechanism of tripartite RNA genome packaging in Rift Valley fever virus

    PubMed Central

    Terasaki, Kaori; Murakami, Shin; Lokugamage, Kumari G.; Makino, Shinji

    2011-01-01

    The Bunyaviridae family includes pathogens of medical and veterinary importance. Rift Valley fever virus (RVFV), a member in the Phlebovirus genus of the family Bunyaviridae, is endemic to sub-Saharan Africa and causes a mosquito-borne disease in ruminants and humans. Viruses in the family Bunyaviridae carry a tripartite, single-stranded, negative-sense RNA genome composed of L, M, and S RNAs. Little is known about how the three genomic RNA segments are copackaged to generate infectious bunyaviruses. We explored the mechanism that governs the copackaging of the three genomic RNAs into RVFV particles. The expression of viral structural proteins along with replicating S and M RNAs resulted in the copackaging of both RNAs into RVFV-like particles, while replacing M RNA with M1 RNA, lacking a part of the M RNA 5′ UTR, abrogated the RNA copackaging. L RNA was efficiently packaged into virus particles released from cells supporting the replication of L, M, and S RNAs, and replacing M RNA with M1 RNA abolished the packaging of L RNA. Detailed analyses using various combinations of replicating viral RNAs suggest that M RNA alone or a coordinated function of M and S RNAs exerted efficient L RNA packaging either directly or indirectly. Collectively, these data are consistent with the possibility that specific intermolecular interactions among the three viral RNAs drive the copackaging of these RNAs to produce infectious RVFV. PMID:21187405

  19. Immunological reactions of Rift Valley fever virus strains from East and West Africa.

    PubMed

    Tomori, O

    1979-03-01

    Three strains of Rift Valley fever virus, namely Nigerian (NIG), Smithburn's neurotropic (SNT), and Lunyo variant (LUN) were compared by complement fixation (CF), neutralisation (N), haemagglutination/haemagglutination-inhibition (HA/HI) and agar gel diffusion (AGD) tests. They showed reciprocal cross-reactivity in CF tests. In N tests, using immune sheep sera, there was reciprocal cross-neutralisation between the NIG and SNT strains, but not with the LUN strain, the antiserum of which neutralised both NIG and SNT antigens whereas the reverse was not the case. When hyperimmune mouse ascitic fluid was employed in N tests, there was cross-reactivity between the three strains. Both the NIG and SNT strains yielded haemagglutinins, but not the LUN strain. Furthermore, by the antibody absorption and AGD techniques, the NIG and SNT strains were found to be identical and distinct from the LUN variant strain. The techniques found most useful in distinguishing between the three strains were HA and AGD. Laboratory neuro-adaptation of the classical pantropic virus did not appear to affect its haemagglutination activity.

  20. Seroprevalence of West Nile, Rift Valley, and sandfly arboviruses in Hashimiah, Jordan.

    PubMed

    Batieha, A; Saliba, E K; Graham, R; Mohareb, E; Hijazi, Y; Wijeyaratne, P

    2000-01-01

    We conducted a serosurvey among patients of a health center in Hashimiah, a Jordanian town of 30,000 inhabitants located near a wastewater treatment plant and its effluent channel. Serum samples from 261 patients >/=5 years of age were assessed for immunoglobulin G (IgG) and IgM antibodies against West Nile, sandfly Sicilian, sandfly Naples, and Rift Valley viruses; the seroprevalence of IgG antibodies was 8%, 47%, 30%, and 0%, respectively. Female participants were more likely to have been infected than male. Persons living within 2 km of the treatment plant were more likely to have been infected with West Nile (p=0.016) and sandfly Sicilian (p=0.010) viruses. Raising domestic animals within the house was a risk factor for sandfly Sicilian (p=0.003) but not for sandfly Naples virus (p=0.148). All serum samples were negative for IgM antibodies against the tested viruses. Our study is the first documentation of West Nile and sandfly viruses in Jordan and calls attention to the possible health hazards of living close to wastewater treatment plants and their effluent channels.

  1. The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection

    SciTech Connect

    Pinkham, Chelsea; An, Soyeon; Lundberg, Lindsay; Bansal, Neha; Benedict, Ashwini; Narayanan, Aarthi; Kehn-Hall, Kylene

    2016-09-15

    Rift Valley fever (RVF) is a zoonotic disease that can cause severe illness in humans and livestock, triggering spontaneous abortion in almost 100% of pregnant ruminants. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3) is phosphorylated on its conserved tyrosine residue (Y705) following RVFV infection. This phosphorylation was dependent on a major virulence factor, the viral nonstructural protein NSs. Loss of STAT3 had little effect on viral replication, but rather resulted in cells being more susceptible to RVFV-induced cell death. Phosphorylated STAT3 translocated to the nucleus, coinciding with inhibition of fos, jun, and nr4a2 gene expression, and the presence of STAT3 and NSs at the nr4a2 promoter. NSs was found predominantly in the cytoplasm of STAT3 null cells, indicating that STAT3 influences NSs nuclear localization. Collectively, these data demonstrate that STAT3 functions in a pro-survival capacity through modulation of NSs localization. - Highlights: • STAT3 is phosphorylated on tyrosine residue 705 following RVFV infection. • Phosphorylation of STAT3 was dependent on the viral protein NSs. • STAT3 -/- MEFs were more susceptible to RVFV-induced cell death. • Loss of STAT3 led to an increase in pro-apoptotic gene expression. • STAT3 functions in a pro-survival capacity by modulation of NSs localization.

  2. Risk factors associated with human Rift Valley fever infection: systematic review and meta-analysis.

    PubMed

    Nicholas, Dennis E; Jacobsen, Kathryn H; Waters, Nigel M

    2014-12-01

    To identify risk factors for human Rift Valley fever virus (RVFV) infection. A systematic review identified 17 articles reporting on 16 studies examining risk factors for RVFV. Pooled odds ratios (pOR) were calculated for exposures examined in four or more studies. Being male [pOR = 1.4 (1.0, 1.8)], contact with aborted animal tissue [pOR = 3.4 (1.6, 7.3)], birthing an animal [pOR = 3.2 (2.4, 4.2)], skinning an animal [pOR = 2.5 (1.9, 3.2)], slaughtering an animal [pOR = 2.4 (1.4, 4.1)] and drinking raw milk [pOR = 1.8 (1.2, 2.6)] were significantly associated with RVF infection after meta-analysis. Other potential risk factors include sheltering animals in the home and milking an animal, which may both involve contact with animal body fluids. Based on the identified risk factors, use of personal protective equipment and disinfectants by animal handlers may help reduce RVFV transmission during outbreaks. Milk pasteurisation and other possible preventive methods require further investigation. © 2014 John Wiley & Sons Ltd.

  3. Impact of rainfall variability on land cover changes in the Ethiopian Rift Valley escarpments

    NASA Astrophysics Data System (ADS)

    Annys, Sofie; Demissie, Biadgilgn; Lanckriet, Sil; Zenebe, Amanuel; Nyssen, Jan

    2016-04-01

    Magnitudes of land cover changes nowadays can be assessed properly, but their driving forces are subject to many discussions. Next to the accepted role of human influence, the impact of natural climate variability is often neglected. In this study, the impact of rainfall variability on land cover changes (LCC) is investigated for the western escarpment of the Raya graben along the northern Ethiopian Rift Valley. First, LCC between 2000 and 2014 were analysed using Landsat imagery. Based on the obtained LCC maps, the link was set with rainfall variability, obtained by means of the satellite-derived Rainfall Estimates (RFEs) from NOAA-CPC. After a correction by the incorporation of local meteorological station data, these estimates prove to be good estimators for the actual amount of precipitation. By performing several bivariate correlation analyses, a significant positive relationship between the precipitation parameter DIFF 5Y (i.e. the at-RFE pixel scale difference in five-year average annual precipitation for the two periods preceding the land cover maps) and the changes in the woody vegetation cover was found (ρ = 0.23, p = 0.02, n = 108). Despite the dominance of direct human impact, further regreening of the study area can be expected for the future concomitantly to a wetter climate, if all other factors remain constant.

  4. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  5. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep.

    PubMed

    Weingartl, Hana M; Nfon, Charles K; Zhang, Shunzhen; Marszal, Peter; Wilson, William C; Morrill, John C; Bettinger, George E; Peters, Clarence J

    2014-04-25

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory and thus the need exists to develop safe and efficacious vaccines that can be used outside the endemic zones. Commercial RVFV vaccines are available but have limitations that prevent their use in disease-free countries. Consequently, there are ongoing efforts to develop and/or improve RVFV vaccines with global acceptability. In this study a previously developed MP-12-derived vaccine candidate with a large deletion of the NSm gene in the pre Gn region of the M segment (arMP-12-ΔNSm21/384) developed by T. Ikegami, that was already shown to be safe in pregnant sheep causing neither abortion nor fetal malformation was further evaluated. This vaccine was tested for protection of sheep from viremia and fever following challenge with virulent RVFV ZH501 strain. A single vaccination with arMP-12-ΔNSm21/384 fully protected sheep when challenged four weeks post vaccination, thereby demonstrating that this vaccine is efficacious in protecting these animals from RVFV infection.

  6. The risk of Rift Valley fever virus introduction and establishment in the United States and European Union

    PubMed Central

    Rolin, Alicia I; Berrang-Ford, Lea; Kulkarni, Manisha A

    2013-01-01

    Rift Valley fever virus (RVFV) is an arthropod-borne disease resulting in severe morbidity and mortality in both human and ruminant populations. First identified in Kenya in 1930, the geographical range of RVFV has been largely constrained to the African continent, yet has recently spread to new regions, and is identified as a priority disease with potential for geographic emergence. We present a systematic literature review assessing the potential for RVFV introduction and establishment in the United States (US) and European Union (EU). Viable pathways for the introduction of RVFV include: transport of virus-carrying vectors, importation of viremic hosts and intentional entry of RVFV as a biological weapon. It is generally assumed that the risk of RVFV introduction into the US or EU is low. We argue that the risk of sporadic introduction is likely high, though currently an insufficient proportion of such introductions coincide with optimal environmental conditions. Future global trends may increase the likelihood of risk factors for RVFV spread. PMID:26038446

  7. A preliminary evaluation of the DDT contamination of sediments in lakes Natron and Bogoria (Eastern Rift Valley, Africa).

    PubMed

    Bettinetti, Roberta; Quadroni, Silvia; Crosa, Giuseppe; Harper, David; Dickie, Jennifer; Kyalo, Margaret; Mavuti, Kenneth; Galassi, Silvana

    2011-06-01

    Dichlorodiphenyltrichloroethane (DDT) is still used in Africa for the indoor control of malaria and it may represent a potential hazard for wildlife. The littoral sediments of two alkaline-saline lakes, Natron (Tanzania) and Bogoria (Kenya), in the Eastern Rift Valley, supporting large populations of lesser flamingos (Phoeniconaias minor), were analysed for DDT residues. Physical-chemical analyses (temperature, conductivity, pH and dissolved oxygen) were also performed on the water of the two lakes and in the tributaries of Lake Natron, to evaluate the influence of the environmental variables on pollutant occurrence. At Lake Natron, around 1 km from the sediment collection sites, tree leaves of Acacia tortilis were also collected. The main metabolite found in all sediment samples was pp'DDE, whilst equal concentrations of pp'DDT and pp'DDE were measured in acacia leaves. The levels of DDTs measured in the sediments were within 5.9-30.9 ng g(-1) d.w., reaching the maximum value in a tributary of Lake Natron. On the whole, the contamination of Lake Natron and Lake Bogoria basins seems to be quite moderate. Nevertheless, the pp'DDE/pp'DDT ratio equals 1 in the Acacia tortilis leaves, which makes one suppose that the input of the parent compound was rather recent and could have been from aerial transport or dust from relatively close-by old pesticides storage sites.

  8. Inter-epidemic Acquisition of Rift Valley Fever Virus in Humans in Tanzania

    PubMed Central

    Sumaye, Robert David; Abatih, Emmanuel Nji; Thiry, Etienne; Amuri, Mbaraka; Berkvens, Dirk; Geubbels, Eveline

    2015-01-01

    Background In East Africa, epidemics of Rift Valley fever (RVF) occur in cycles of 5–15 years following unusually high rainfall. RVF transmission during inter-epidemic periods (IEP) generally passes undetected in absence of surveillance in mammalian hosts and vectors. We studied IEP transmission of RVF and evaluated the demographic, behavioural, occupational and spatial determinants of past RVF infection. Methodology Between March and August 2012 we collected blood samples, and administered a risk factor questionnaire among 606 inhabitants of 6 villages in the seasonally inundated Kilombero Valley, Tanzania. ELISA tests were used to detect RVFV IgM and IgG antibodies in serum samples. Risk factors were examined by mixed effects logistic regression. Findings RVF virus IgM antibodies, indicating recent RVFV acquisition, were detected in 16 participants, representing 2.6% overall and in 22.5% of inhibition ELISA positives (n = 71). Four of 16 (25.0%) IgM positives and 11/71 (15.5%) of individuals with inhibition ELISA sero-positivity reported they had had no previous contact with host animals. Sero-positivity on inhibition ELISA was 11.7% (95% CI 9.2–14.5) and risk was elevated with age (odds ratio (OR) 1.03 per year; 95% CI 1.01–1.04), among milkers (OR 2.19; 95% CI 1.23–3.91), and individuals eating raw meat (OR 4.17; 95% CI 1.18–14.66). Households keeping livestock had a higher probability of having members with evidence of past infection (OR = 3.04, 95% CI = 1.42–6.48) than those that do not keep livestock. Conclusion There is inter-epidemic acquisition of RVFV in Kilombero Valley inhabitants. In the wake of declining malaria incidence, these findings underscore the need for clinicians to consider RVF in the differential diagnosis for febrile illnesses. Several types of direct contact with livestock are important risk factors for past infection with RVFV in this study’s population. However, at least part of RVFV transmission appears to have occurred

  9. Molecular genetic analyses of historical lake sediments from the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Epp, L. S.; Stoof, K.; Trauth, M. H.; Tiedemann, R.

    2009-04-01

    Ancient DNA research, especially that of environmental samples, has to date focussed mainly on samples obtained from colder regions, owing to better DNA preservation. We explored the potential of using ancient DNA from sediments and sediment cores of shallow lakes in Kenya. These lakes, located in the eastern branch of the East African Rift Valley, are in close proximity, yet display strikingly different hydrological and geological features. Present day lakes range in alkalinity from pH 11 (Lake Elmenteita) to pH 8 (Lake Naivasha), and in depth from less than one meter to 15 meters. Historically they have undergone a number of drastic changes in lake level and environmental conditions, both on geological timescales and during the last centuries. Within this setting we employed molecular genetic methods to study DNA from recent and historic lake sediments, focussing on rotifers and diatoms. We analyzed population and species succession in the alkaline-saline crater lake Sonachi since the beginning of the 19th century, as well as distributions in recent and historic sediments of other lakes of the East African Rift System. To specifically detect diatoms, we developed a protocol using taxon-specific polymerase chain reactions and separation of products by denaturing high performance liquid chromatography (DHPLC). Employing this protocol we retrieved "ancient" DNA from a number of taxonomically diverse organisms, but found diatoms only in sediments younger than approximately 90 years. Using higly specific reactions for rotifers of the genus Brachionus, we tracked species and population succession in Lake Sonachi during the last 200 years. Populations were dominated by a single mitochondrial haplotype for a period of 150 years, and two putatively intraspecific turnovers in dominance occurred. They were both correlated to major environmental changes documented by profound visible changes in sediment composition of the core: the deposition of a volcanic ash and a

  10. Carbon and Sulphur Geochemistry of Rift Valley Sediments and Hydrothermal Fluids at the Ultra-Slow Spreading Southern Knipovich Ridge

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Frueh-Green, G. L.; Pedersen, R. B.; Thorseth, I. H.; Bernasconi, S. M.; Lilley, M. D.

    2008-12-01

    The rift valley of the ultra-slow spreading southern Knipovich Ridge in the Norwegian-Greenland Sea (73°N) is partly buried by a thick sediment cover, as at Middle Valley, Escanaba Trough and Guaymas Basin. These glacial and post-glacial sediments (12000-20000 years) derived from the nearby Bear Island fan likely act as a thermal and hydrogeological boundary to heat and fluid flow and influence hydrothermal fluid compositions. Geochemical studies of the rift valley sediments and the hydrothermal vent fluids of the recently discovered black smoker vent field Loki's Castle provide insights into the influence of the sediment cover on the composition of the hydrothermal fluids at the southern Knipovich Ridge. Here we present an overview of preliminary data on the carbon and sulphur geochemistry of the sedimentary and hydrothermal components at Loki's Castle and compare these with other sedimented and un-sedimented mid-ocean ridge hydrothermal systems. The hydrothermal vent fluids have a pH of 5.5 and are characterized by elevated concentrations of hydrogen, methane, hydrogen sulphide and ammonia, which reflect a strong sedimentary input. Short gravity cores of the rift valley sediments show relatively constant total carbon contents of approximately 1 wt%, but locally reach up to 4 wt%. Varying carbon isotope compositions reflect a mix of marine carbonates with organic carbon. Extracted sediment pore fluids show an increase in alkalinity and dissolved inorganic carbon (DIC) concentrations with increasing burial depth. The corresponding δ13CDIC values show a clear depletion with increasing alkalinity and DIC concentrations. The vent fluid compositions and carbon and sulphur isotope geochemistry provide constraints on redox conditions and thermocatalysis of organic carbon during fluid-sediment interaction, and are distinct from un- sedimented mid-ocean ridge hydrothermal fluids.

  11. Surface slip during large Owens Valley earthquakes

    NASA Astrophysics Data System (ADS)

    Haddon, E. K.; Amos, C. B.; Zielke, O.; Jayko, A. S.; Bürgmann, R.

    2016-06-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ˜1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ˜0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ˜6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ˜7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ˜0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  12. Further evaluation of a mutagen-attenuated Rift Valley fever vaccine in sheep.

    PubMed

    Morrill, J C; Carpenter, L; Taylor, D; Ramsburg, H H; Quance, J; Peters, C J

    1991-01-01

    A previous study demonstrated that a mutagen-attenuated Rift Valley fever virus (RVFV) vaccine, RVF MP-12, was immunogenic and non-abortogenic when ewes, 90-110 days pregnant, were inoculated with 5 x 10(5) plaque-forming units (p.f.u.) of the virus strain. The ewes delivered live, healthy lambs that had no neutralizing antibody to RVFV until after they had ingested colostrum. To assess further the safety and protective capability of this candidate vaccine, six pregnant ewes were inoculated with 5 x 10(3) p.f.u. of RVF MP-12 and challenged with 5 x 10(5) p.f.u. of virulent ZH-501 strain of RVFV 30 days later. No viraemia was detected after vaccination or challenge and all six ewes delivered live, healthy lambs. Those lambs tested before their nursing did not have neutralizing antibody to RVFV but quickly acquired antibody titres of 1:320 to greater than or equal to 1:10,240 after ingesting colostrum. To test the safety of the RVF MP-12 immunogen in neonates, lambs less than or equal to 7 days old, born to unvaccinated ewes, were inoculated with 5 x 10(5) p.f.u. of RVF MP-12. With the exception of brief pyrexia in 18 of 26 lambs, and a transient low-titred viraemia in 16 of 26 lambs after inoculation, no untoward effects were observed. Serum-neutralizing antibody to RVFV was detected 5-7 days after inoculation. Lambs vaccinated with either 5 x 10(5) or 5 x 10(3) p.f.u. of RVF MP-12 were protected against virulent RVFV challenge at 14 days postvaccination.

  13. Generation of a Single-Cycle Replicable Rift Valley Fever Vaccine.

    PubMed

    Murakami, Shin; Terasaki, Kaori; Makino, Shinji

    2016-01-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative-sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.

  14. Computational prediction and biochemical characterization of novel RNA aptamers to Rift Valley fever virus nucleocapsid protein

    PubMed Central

    Ellenbecker, Mary; St. Goddard, Jeremy; Sundet, Alec; Lanchy, Jean-Marc; Raiford, Douglas; Lodmell, J. Stephen

    2015-01-01

    Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications. PMID:26141677

  15. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  16. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley Fever vaccine in mice

    PubMed Central

    2013-01-01

    Background Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Methods Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. Results A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Conclusions Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials. PMID:24304565

  17. Development of a Novel, Single-Cycle Replicable Rift Valley Fever Vaccine

    PubMed Central

    Ramirez, Sydney I.; Morrill, John C.; Makino, Shinji

    2014-01-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate. PMID:24651859

  18. Rift valley fever in humans and animals in Mayotte, an endemic situation?

    PubMed

    Lernout, Tinne; Cardinale, Eric; Jego, Maël; Desprès, Philippe; Collet, Louis; Zumbo, Betty; Tillard, Emmanuel; Girard, Sébastien; Filleul, Laurent

    2013-01-01

    Retrospective studies and surveillance on humans and animals revealed that Rift Valley Fever virus (RVFV) has been circulating on Mayotte for at least several years. A study was conducted in 2011 to estimate the seroprevalence of RVF in humans and in animals and to identify associated risk factors. Using a multistage cluster sampling method, 1420 individuals were enrolled in the human study, including 337 children aged 5 to 14 years. For the animal study, 198 seronegative ruminants from 33 randomly selected sentinel ruminant herds were followed up for more than one year. In both studies, information on environment and risk factors was collected through a standardized questionnaire. The overall weighted seroprevalence of RVFV antibodies in the general population aged ≥5 years was 3.5% (95% CI 2.6-4.8). The overall seroprevalence of RVFV antibodies in the ruminant population was 25.3% (95% CI 19.8-32.2). Age (≥15), gender (men), place of birth on the Comoros, living in Mayotte since less than 5 years, low educational level, farming and living close to a water source were significantly associated with RVFV seropositivity in humans. Major risk factors for RFV infection in animals were the proximity of the farm to a water point, previous two-month rainfall and absence of abortions disposal. Although resulting in few clinical cases in humans and in animals, RVFV has been circulating actively on the island of Mayotte, in a context of regular import of the virus from nearby countries through illegal animal movements, the presence of susceptible animals and a favorable environment for mosquito vectors to maintain virus transmission locally. Humans and animals share the same ways of RVFV transmission, with mosquitoes playing an important role. The studies emphasize the need for a one health approach in which humans and animals within their ecosystems are included.

  19. Exploratory Space-Time Analyses of Rift Valley Fever in South Africa in 2008–2011

    PubMed Central

    Métras, Raphaëlle; Porphyre, Thibaud; Pfeiffer, Dirk U.; Kemp, Alan; Thompson, Peter N.

    2012-01-01

    Background Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950–1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008–11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission. Methodology/Principal Findings A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km). Conclusions/Significance The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread. PMID:22953020

  20. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines.

    PubMed

    Gaudreault, Natasha N; Indran, Sabarish V; Bryant, P K; Richt, Juergen A; Wilson, William C

    2015-01-01

    Rift Valley fever virus (RVFV) causes disease outbreaks across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spreading to the United States or other countries worldwide is of significant concern to animal and public health, livestock production, and trade. The mechanism for persistence of RVFV during inter-epidemic periods may be through mosquito transovarial transmission and/or by means of a wildlife reservoir. Field investigations in endemic areas and previous in vivo studies have demonstrated that RVFV can infect a wide range of animals, including indigenous wild ruminants of Africa. Yet no predominant wildlife reservoir has been identified, and gaps in our knowledge of RVFV permissive hosts still remain. In North America, domestic goats, sheep, and cattle are susceptible hosts for RVFV and several competent vectors exist. Wild ruminants such as deer might serve as a virus reservoir and given their abundance, wide distribution, and overlap with livestock farms and human populated areas could represent an important risk factor. The objective of this study was to assess a variety of cell lines derived from North American livestock and wildlife for susceptibility and permissiveness to RVFV. Results of this study suggest that RVFV could potentially replicate in native deer species such as white-tailed deer, and possibly a wide range of non-ruminant animals. This work serves to guide and support future animal model studies and risk model assessment regarding this high-consequence zoonotic pathogen.

  1. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife.

    PubMed

    Evans, A; Gakuya, F; Paweska, J T; Rostal, M; Akoolo, L; Van Vuren, P J; Manyibe, T; Macharia, J M; Ksiazek, T G; Feikin, D R; Breiman, R F; Kariuki Njenga, M

    2008-09-01

    Rift Valley fever virus (RVFV) is an arbovirus associated with periodic outbreaks, mostly on the African continent, of febrile disease accompanied by abortion in livestock, and a severe, fatal haemorrhagic syndrome in humans. However, the maintenance of the virus during the inter-epidemic period (IEP) when there is low or no disease activity detected in livestock or humans has not been determined. This study report prevalence of RVFV-neutralizing antibodies in sera (n=896) collected from 16 Kenyan wildlife species including at least 35% that were born during the 1999-2006 IEP. Specimens from seven species had detectable neutralizing antibodies against RVFV, including African buffalo, black rhino, lesser kudu, impala, African elephant, kongoni, and waterbuck. High RVFV antibody prevalence (>15%) was observed in black rhinos and ruminants (kudu, impala, buffalo, and waterbuck) with the highest titres (up to 1:1280) observed mostly in buffalo, including animals born during the IEP. All lions, giraffes, plains zebras, and warthogs tested were either negative or less than two animals in each species had low (or= 1:80. These data provide evidence that wild ruminants are infected by RVFV but further studies are required to determine whether these animals play a role in the virus maintenance between outbreaks and virus amplification prior to a noticeable outbreak.

  2. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife

    PubMed Central

    EVANS, A.; GAKUYA, F.; PAWESKA, J. T.; ROSTAL, M.; AKOOLO, L.; VAN VUREN, P. J.; MANYIBE, T.; MACHARIA, J. M.; KSIAZEK, T. G.; FEIKIN, D. R.; BREIMAN, R. F.; KARIUKI NJENGA, M.

    2008-01-01

    SUMMARY Rift Valley fever virus (RVFV) is an arbovirus associated with periodic outbreaks, mostly on the African continent, of febrile disease accompanied by abortion in livestock, and a severe, fatal haemorrhagic syndrome in humans. However, the maintenance of the virus during the inter-epidemic period (IEP) when there is low or no disease activity detected in livestock or humans has not been determined. This study report prevalence of RVFV-neutralizing antibodies in sera (n=896) collected from 16 Kenyan wildlife species including at least 35% that were born during the 1999–2006 IEP. Specimens from seven species had detectable neutralizing antibodies against RVFV, including African buffalo, black rhino, lesser kudu, impala, African elephant, kongoni, and waterbuck. High RVFV antibody prevalence (>15%) was observed in black rhinos and ruminants (kudu, impala, buffalo, and waterbuck) with the highest titres (up to 1:1280) observed mostly in buffalo, including animals born during the IEP. All lions, giraffes, plains zebras, and warthogs tested were either negative or less than two animals in each species had low (⩽1:16) titres of RVFV antibodies. Of 249 sera collected from five wildlife species during the 2006–2007 outbreak, 16 out of 19 (84%) of the ruminant (gerenuk, waterbuck, and eland) specimens had RVFV-neutralizing titres ⩾1:80. These data provide evidence that wild ruminants are infected by RVFV but further studies are required to determine whether these animals play a role in the virus maintenance between outbreaks and virus amplification prior to a noticeable outbreak. PMID:17988425

  3. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines

    PubMed Central

    Gaudreault, Natasha N.; Indran, Sabarish V.; Bryant, P. K.; Richt, Juergen A.; Wilson, William C.

    2015-01-01

    Rift Valley fever virus (RVFV) causes disease outbreaks across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spreading to the United States or other countries worldwide is of significant concern to animal and public health, livestock production, and trade. The mechanism for persistence of RVFV during inter-epidemic periods may be through mosquito transovarial transmission and/or by means of a wildlife reservoir. Field investigations in endemic areas and previous in vivo studies have demonstrated that RVFV can infect a wide range of animals, including indigenous wild ruminants of Africa. Yet no predominant wildlife reservoir has been identified, and gaps in our knowledge of RVFV permissive hosts still remain. In North America, domestic goats, sheep, and cattle are susceptible hosts for RVFV and several competent vectors exist. Wild ruminants such as deer might serve as a virus reservoir and given their abundance, wide distribution, and overlap with livestock farms and human populated areas could represent an important risk factor. The objective of this study was to assess a variety of cell lines derived from North American livestock and wildlife for susceptibility and permissiveness to RVFV. Results of this study suggest that RVFV could potentially replicate in native deer species such as white-tailed deer, and possibly a wide range of non-ruminant animals. This work serves to guide and support future animal model studies and risk model assessment regarding this high-consequence zoonotic pathogen. PMID:26175725

  4. Geochemical evidence of hydrothermal recharge in Lake Baringo, central Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Tarits, Corinne; Renaut, Robin W.; Tiercelin, Jean-Jacques; Le Hérissé, Alain; Cotten, Jo; Cabon, Jean-Yves

    2006-06-01

    Lake Baringo, a freshwater lake in the central Kenya Rift Valley, is fed by perennial and ephemeral rivers, direct rainfall, and hot springs on Ol Kokwe Island near the centre of the lake. The lake has no surface outlet, but despite high evaporation rates it maintains dilute waters by subsurface seepage through permeable sediments and faulted lavas. New geochemical analyses (major ions, trace elements) of the river, lake, and hot spring waters and the suspended sediments have been made to determine the main controls of lake water quality. The results show that evaporative concentration and the binary mixing between two end members (rivers and thermal waters) can explain the hydrochemistry of the lake waters.Two zones are recognized from water composition. The southern part of the lake near sites of perennial river inflow is weakly influenced by evaporation, has low total dissolved species (TDS), and has a seasonally variable load of mainly detrital suspended sediments. In contrast, waters of the northern part of the lake show evidence for strong evaporation (TDS of up to eight times inflow). Authigenic clay minerals and calcite may be precipitating from those more concentrated fluids.The subaerial hot-spring waters have a distinctive chemistry and are enriched in some elements that are also present in the lake water. Comparison of the chemical composition of the inflowing surface waters and lake water shows (1) an enrichment of some species (HCO3-, Cl, SO42-, F, Na, B, V, Cr, As, Mo, Ba and U) in the lake, (2) a depletion in SiO2 in the lake, and (3) a possible hydrothermal origin for most F. The rare earth element distribution and the F/Cl and Na/Cl ratios give valuable information on the rate of mixing of the river and hydrothermal fluids in the lake water. Calculations imply that thermal fluids may be seeping upward locally into the lake through grid-faulted lavas, particularly south of Ol Kokwe Island.

  5. Epidemiologic and Environmental Risk Factors of Rift Valley Fever in Southern Africa from 2008 to 2011

    PubMed Central

    Glancey, Margaret M.; Linthicum, Kenneth J.

    2015-01-01

    Abstract Background: Rift Valley fever (RVF) outbreaks have been associated with periods of widespread and above-normal rainfall over several months. Knowledge on the environmental factors influencing disease transmission dynamics has provided the basis for developing models to predict RVF outbreaks in Africa. From 2008 to 2011, South Africa experienced the worst wave of RVF outbreaks in almost 40 years. We investigated rainfall-associated environmental factors in southern Africa preceding these outbreaks. Methods: RVF epizootic records obtained from the World Animal Health Information Database (WAHID), documenting livestock species affected, location, and time, were analyzed. Environmental variables including rainfall and satellite-derived normalized difference vegetation index (NDVI) data were collected and assessed in outbreak regions to understand the underlying drivers of the outbreaks. Results: The predominant domestic vertebrate species affected in 2008 and 2009 were cattle, when outbreaks were concentrated in the eastern provinces of South Africa. In 2010 and 2011, outbreaks occurred in the interior and southern provinces affecting over 16,000 sheep. The highest number of cases occurred between January and April but epidemics occurred in different regions every year, moving from the northeast of South Africa toward the southwest with each progressing year. The outbreaks showed a pattern of increased rainfall preceding epizootics ranging from 9 to 152 days; however, NDVI and rainfall were less correlated with the start of the outbreaks than has been observed in eastern Africa. Conclusions: Analyses of the multiyear RVF outbreaks of 2008 to 2011 in South Africa indicated that rainfall, NDVI, and other environmental and geographical factors, such as land use, drainage, and topography, play a role in disease emergence. Current and future investigations into these factors will be able to contribute to improving spatial accuracy of models to map risk areas

  6. Nocardiopsis mwathae sp. nov., isolated from the haloalkaline Lake Elmenteita in the African Rift Valley.

    PubMed

    Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Boga, Hamadi Iddi; Klenk, Hans-Peter

    2016-03-01

    During a screening for novel and biotechnologically useful bacteria in haloalkaline lakes, strain No.156(T) was isolated from a sediment sample from lake Elmenteita in the African Rift Valley and studied by a polyphasic taxonomic approach. The strain was observed to form yellow aerial and substrate mycelia; optimal growth was found to be at 30-35 °C in salt concentrations of 6-9 % (w/v) and at pH 7-9. The DNA G+C content of the novel strain was 71 mol%. Analysis of 16S rRNA sequences indicated that the isolate belongs to the genus Nocardiopsis with sequence similarities below 98 % to the type strains of all other representatives of the genus. Mycolic acids were not detected in whole cell methanolysates. The peptidoglycan was found to contain meso-diaminopimelic acid as the diamino acid with no diagnostic sugars. The main polar lipids were identified as phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol but no diphosphatidylglycerol. The predominant menaquinones were MK-11(H8), MK-11(H6), MK-10(H8) and MK-10(H6). Cellular fatty acids were found to consist of saturated and monounsaturated iso- and anteiso-branched acids with 16-18 C-length, tuberculostearic acid (Me18:0), and straight-chain saturated (16:0, 18:0) acids. These characteristics match those of the genus Nocardiopsis. Based on 16S rRNA gene sequence analysis and phenotypic characteristics, a novel species with the name Nocardiopsis mwathae is proposed. The type strain is No.156(T) (=DSM 46659(T) = CECT 8552(T)). The INSDC accession number for the 16S rRNA gene sequence of strain No.156(T) is KF976731.

  7. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    SciTech Connect

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.; Smith, Janet L.

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA species of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.

  8. Evidence for circulation of the rift valley fever virus among livestock in the union of Comoros.

    PubMed

    Roger, Matthieu; Beral, Marina; Licciardi, Séverine; Soulé, Miradje; Faharoudine, Abdourahime; Foray, Coralie; Olive, Marie-Marie; Maquart, Marianne; Soulaimane, Abdouroihamane; Madi Kassim, Ahmed; Cêtre-Sossah, Catherine; Cardinale, Eric

    2014-01-01

    Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus reported to be circulating in most parts of Africa. Since 2009, RVFV has been suspected of continuously circulating in the Union of Comoros. To estimate the incidence of RVFV antibody acquisition in the Comorian ruminant population, 191 young goats and cattle were selected in six distinct zones and sampled periodically from April 2010 to August 2011. We found an estimated incidence of RVFV antibody acquisition of 17.5% (95% confidence interval (CI): [8.9-26.1]) with a significant difference between islands (8.2% in Grande Comore, 72.3% in Moheli and 5.8% in Anjouan). Simultaneously, a longitudinal entomological survey was conducted and ruminant trade-related information was collected. No RVFV RNA was detected out of the 1,568 blood-sucking caught insects, including three potential vectors of RVFV mosquito species. Our trade survey suggests that there is a continuous flow of live animals from eastern Africa to the Union of Comoros and movements of ruminants between the three Comoro islands. Finally, a cross-sectional study was performed in August 2011 at the end of the follow-up. We found an estimated RVFV antibody prevalence of 19.3% (95% CI: [15.6%-23.0%]). Our findings suggest a complex RVFV epidemiological cycle in the Union of Comoros with probable inter-islands differences in RVFV circulation patterns. Moheli, and potentially Anjouan, appear to be acting as endemic reservoir of infection whereas RVFV persistence in Grande Comore could be correlated with trade in live animals with the eastern coast of Africa. More data are needed to estimate the real impact of the disease on human health and on the national economy.

  9. Modelling the effects of seasonality and socioeconomic impact on the transmission of rift valley Fever virus.

    PubMed

    Xiao, Yanyu; Beier, John C; Cantrell, Robert Stephen; Cosner, Chris; DeAngelis, Donald L; Ruan, Shigui

    2015-01-01

    Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).

  10. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  11. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.

    PubMed

    Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro

    2014-08-01

    The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted.

  12. Computational prediction and biochemical characterization of novel RNA aptamers to Rift Valley fever virus nucleocapsid protein.

    PubMed

    Ellenbecker, Mary; St Goddard, Jeremy; Sundet, Alec; Lanchy, Jean-Marc; Raiford, Douglas; Lodmell, J Stephen

    2015-10-01

    Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications.

  13. Exploratory space-time analyses of Rift Valley Fever in South Africa in 2008-2011.

    PubMed

    Métras, Raphaëlle; Porphyre, Thibaud; Pfeiffer, Dirk U; Kemp, Alan; Thompson, Peter N; Collins, Lisa M; White, Richard G

    2012-01-01

    Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950-1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008-11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission. A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km). The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.

  14. Modelling the Effects of Seasonality and Socioeconomic Impact on the Transmission of Rift Valley Fever Virus

    PubMed Central

    Xiao, Yanyu; Beier, John C.; Cantrell, Robert Stephen; Cosner, Chris; DeAngelis, Donald L.; Ruan, Shigui

    2015-01-01

    Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held). PMID:25569474

  15. Predictive Factors and Risk Mapping for Rift Valley Fever Epidemics in Kenya

    PubMed Central

    Munyua, Peninah M.; Murithi, R. Mbabu; Ithondeka, Peter; Hightower, Allen; Thumbi, Samuel M.; Anyangu, Samuel A.; Kiplimo, Jusper; Bett, Bernard; Vrieling, Anton; Breiman, Robert F.; Njenga, M. Kariuki

    2016-01-01

    Background To-date, Rift Valley fever (RVF) outbreaks have occurred in 38 of the 69 administrative districts in Kenya. Using surveillance records collected between 1951 and 2007, we determined the risk of exposure and outcome of an RVF outbreak, examined the ecological and climatic factors associated with the outbreaks, and used these data to develop an RVF risk map for Kenya. Methods Exposure to RVF was evaluated as the proportion of the total outbreak years that each district was involved in prior epizootics, whereas risk of outcome was assessed as severity of observed disease in humans and animals for each district. A probability-impact weighted score (1 to 9) of the combined exposure and outcome risks was used to classify a district as high (score ≥ 5) or medium (score ≥2 - <5) risk, a classification that was subsequently subjected to expert group analysis for final risk level determination at the division levels (total = 391 divisions). Divisions that never reported RVF disease (score < 2) were classified as low risk. Using data from the 2006/07 RVF outbreak, the predictive risk factors for an RVF outbreak were identified. The predictive probabilities from the model were further used to develop an RVF risk map for Kenya. Results The final output was a RVF risk map that classified 101 of 391 divisions (26%) located in 21 districts as high risk, and 100 of 391 divisions (26%) located in 35 districts as medium risk and 190 divisions (48%) as low risk, including all 97 divisions in Nyanza and Western provinces. The risk of RVF was positively associated with Normalized Difference Vegetation Index (NDVI), low altitude below 1000m and high precipitation in areas with solonertz, luvisols and vertisols soil types (p <0.05). Conclusion RVF risk map serves as an important tool for developing and deploying prevention and control measures against the disease. PMID:26808021

  16. Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic

    PubMed Central

    Nakouné, Emmanuel; Kamgang, Basile; Berthet, Nicolas; Manirakiza, Alexandre; Kazanji, Mirdad

    2016-01-01

    Background Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. Methodology/Principal Findings To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. Conclusion and significance This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs. PMID:27760144

  17. Remote Sensing in a Changing Climate and Environment: the Rift Valley Fever Case

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.; Lacaux, J.-P.; Vignolles, C.; Lafaye, M.

    2012-07-01

    Climate and environment are changing rapidly whilst global population already reached 7 billions people. New public health challenges are posed by new and re-emerging diseases. Innovation is a must i.e., 1) using high resolution remote sensing, 2) re-invent health politics and trans-disciplinary management. The above are part of the 'TransCube Approach' i.e., Transition, Translation, and Transformation. The new concept of Tele-epidemiology includes such approach. A conceptual approach (CA) associated with Rift Valley Fever (RVF) epidemics in Senegal is presented. Ponds are detected using high-resolution SPOT-5 satellite images and radar data from space. Data on rainfall events obtained from the Tropical Rainfall Measuring Mission (NASA/JAXA) are combined with in-situ data. Localization of vulnerable and parked hosts (obtained from QuickBird satellite) is also used. The dynamic spatio-temporal distribution and aggressiveness of RVF mosquitoes, are based on total rainfall amounts, ponds' dynamics and entomological observations. Detailed risks maps (hazards + vulnerability) in real-time are expressed in percentages of parks where animals are potentially at risks. This CA which simply relies upon rainfall distribution from space, is meant to contribute to the implementation of the RVF early warning system (RVFews). It is meant to be applied to other diseases and elsewhere. This is particularly true in new places where new vectors have been rapidly adapting (such as Aedes albopictus) whilst viruses (such as West Nile and Chikungunya,) circulate from constantly moving reservoirs and increasing population.

  18. Seroprevalence of Infections with Dengue, Rift Valley Fever and Chikungunya Viruses in Kenya, 2007

    PubMed Central

    Ochieng, Caroline; Ahenda, Petronella; Vittor, Amy Y.; Nyoka, Raymond; Gikunju, Stella; Wachira, Cyrus; Waiboci, Lilian; Umuro, Mamo; Kim, Andrea A.; Nderitu, Leonard; Juma, Bonventure; Montgomery, Joel M.; Breiman, Robert F.; Fields, Barry

    2015-01-01

    Arthropod-borne viruses are a major constituent of emerging infectious diseases worldwide, but limited data are available on the prevalence, distribution, and risk factors for transmission in Kenya and East Africa. In this study, we used 1,091 HIV-negative blood specimens from the 2007 Kenya AIDS Indicator Survey (KAIS 2007) to test for the presence of IgG antibodies to dengue virus (DENV), chikungunya virus (CHIKV) and Rift Valley fever virus (RVFV).The KAIS 2007 was a national population-based survey conducted by the Government of Kenya to provide comprehensive information needed to address the HIV/AIDS epidemic. Antibody testing for arboviruses was performed on stored blood specimens from KAIS 2007 through a two-step sandwich IgG ELISA using either commercially available kits or CDC-developed assays. Out of the 1,091 samples tested, 210 (19.2%) were positive for IgG antibodies against at least one of the three arboviruses. DENV was the most common of the three viruses tested (12.5% positive), followed by RVFV and CHIKV (4.5% and 0.97%, respectively). For DENV and RVFV, the participant’s province of residence was significantly associated (P≤.01) with seropositivity. Seroprevalence of DENV and RVFV increased with age, while there was no correlation between province of residence/age and seropositivity for CHIKV. Females had twelve times higher odds of exposure to CHIK as opposed to DENV and RVFV where both males and females had the same odds of exposure. Lack of education was significantly associated with a higher odds of previous infection with either DENV or RVFV (p <0.01). These data show that a number of people are at risk of arbovirus infections depending on their geographic location in Kenya and transmission of these pathogens is greater than previously appreciated. This poses a public health risk, especially for DENV. PMID:26177451

  19. Safety and Efficacy Profile of Commercial Veterinary Vaccines against Rift Valley Fever: A Review Study.

    PubMed

    Alhaj, Moataz

    Rift Valley Fever (RVF) is an infectious illness with serious clinical manifestations and health consequences in humans as well as a wide range of domestic ruminants. This review provides significant information about the prevention options of RVF along with the safety-efficacy profile of commercial vaccines and some of RVF vaccination strategies. Information presented in this paper was obtained through a systematic investigation of published data about RVF vaccines. Like other viral diseases, the prevention of RVF relies heavily on immunization of susceptible herds with safe and cost-effective vaccine that is able to confer long-term protective immunity. Several strains of RVF vaccines have been developed and are available in commercial production including Formalin-Inactivated vaccine, live attenuated Smithburn vaccine, and the most recent Clone13. Although Formalin-Inactivated vaccine and live attenuated Smithburn vaccine are immunogenic and widely used in prevention programs, they proved to be accompanied by significant concerns. Despite Clone13 vaccine being suggested as safe in pregnant ewes and as highly immunogenic along with its potential for differentiating infected from vaccinated animals (DIVA), a recent study raised concerns about the safety of the vaccine during the first trimester of gestation. Accordingly, RVF vaccines that are currently available in the market to a significant extent do not fulfill the requirements of safety, potency, and DIVA. These adverse effects stressed the need for developing new vaccines with an excellent safety profile to bridge the gap in safety and immunity. Bringing RVF vaccine candidates to local markets besides the absence of validated serological test for DIVA remain the major challenges of RVF control.

  20. A systematic review of Rift Valley Fever epidemiology 1931-2014.

    PubMed

    Nanyingi, Mark O; Munyua, Peninah; Kiama, Stephen G; Muchemi, Gerald M; Thumbi, Samuel M; Bitek, Austine O; Bett, Bernard; Muriithi, Reese M; Njenga, M Kariuki

    2015-01-01

    Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.

  1. Rift Valley fever among children and adolescents in southwestern Saudi Arabia.

    PubMed

    Al Azraqi, Tarik A; El Mekki, Awad A; Mahfouz, Ahmed A

    2013-06-01

    Rift Valley fever (RVF) virus has expanded its geographical range, reaching Asia in 2000. This work investigated RVF seroprevalence among children born after the 2000-2001 outbreak in Saudi Arabia and compared it with the seroprevalence of adolescents born before the outbreak. In a seroepidemiological study in southwestern Saudi Arabia (Jazan, Aseer, and Al-Qunfuda), a random sample of 389 children and adolescents was investigated. Data were collected regarding the subjects' sociodemographic status, housing conditions, and animal contact. Blood samples were collected and tested for RVF-specific IgG and IgM. None of the study samples were found to be seropositive for anti-RVF virus IgM. None of the study subjects aged 1-8 years (born after the outbreak) were positive for RVF-specific IgG. In contrast, 14 subjects (4.8%) aged 9-19 years (born before the outbreak) were positive for RVF-specific IgG. Among adolescents in our study, 4.9% were positive for anti-RVF IgG. This study showed that among adolescents, a history of contact with aborted animals (aOR=13.361, 95% CI=5.091-35.072) and transporting aborted animals (aOR=18.861, 95% CI=11.125-31.622) were significant risk factors. Despite the low virus activity recently reported among animals, neither clinically apparent RVF infections nor outbreaks among humans have been documented, indicating that the control measures taken by the Ministry of Agriculture and Ministry of Health are effective. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  2. Predictive Factors and Risk Mapping for Rift Valley Fever Epidemics in Kenya.

    PubMed

    Munyua, Peninah M; Murithi, R Mbabu; Ithondeka, Peter; Hightower, Allen; Thumbi, Samuel M; Anyangu, Samuel A; Kiplimo, Jusper; Bett, Bernard; Vrieling, Anton; Breiman, Robert F; Njenga, M Kariuki

    2016-01-01

    To-date, Rift Valley fever (RVF) outbreaks have occurred in 38 of the 69 administrative districts in Kenya. Using surveillance records collected between 1951 and 2007, we determined the risk of exposure and outcome of an RVF outbreak, examined the ecological and climatic factors associated with the outbreaks, and used these data to develop an RVF risk map for Kenya. Exposure to RVF was evaluated as the proportion of the total outbreak years that each district was involved in prior epizootics, whereas risk of outcome was assessed as severity of observed disease in humans and animals for each district. A probability-impact weighted score (1 to 9) of the combined exposure and outcome risks was used to classify a district as high (score ≥ 5) or medium (score ≥2 - <5) risk, a classification that was subsequently subjected to expert group analysis for final risk level determination at the division levels (total = 391 divisions). Divisions that never reported RVF disease (score < 2) were classified as low risk. Using data from the 2006/07 RVF outbreak, the predictive risk factors for an RVF outbreak were identified. The predictive probabilities from the model were further used to develop an RVF risk map for Kenya. The final output was a RVF risk map that classified 101 of 391 divisions (26%) located in 21 districts as high risk, and 100 of 391 divisions (26%) located in 35 districts as medium risk and 190 divisions (48%) as low risk, including all 97 divisions in Nyanza and Western provinces. The risk of RVF was positively associated with Normalized Difference Vegetation Index (NDVI), low altitude below 1000m and high precipitation in areas with solonertz, luvisols and vertisols soil types (p <0.05). RVF risk map serves as an important tool for developing and deploying prevention and control measures against the disease.

  3. Ethnic groups’ knowledge, attitude and practices and Rift Valley fever exposure in Isiolo County of Kenya

    PubMed Central

    Affognon, Hippolyte; Mburu, Peter; Hassan, Osama Ahmed; Kingori, Sarah; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2017-01-01

    Rift Valley fever (RVF) is an emerging mosquito-borne viral hemorrhagic fever in Africa and the Arabian Peninsula, affecting humans and livestock. For spread of infectious diseases, including RVF, knowledge, attitude and practices play an important role, and the understanding of the influence of behavior is crucial to improve prevention and control efforts. The objective of the study was to assess RVF exposure, in a multiethnic region in Kenya known to experience RVF outbreaks, from the behavior perspective. We investigated how communities in Isiolo County, Kenya were affected, in relation to their knowledge, attitude and practices, by the RVF outbreak of 2006/2007. A cross-sectional study was conducted involving 698 households selected randomly from three different ethnic communities. Data were collected using a structured questionnaire regarding knowledge, attitudes and practices that could affect the spread of RVF. In addition, information was collected from the communities regarding the number of humans and livestock affected during the RVF outbreak. This study found that better knowledge about a specific disease does not always translate to better practices to avoid exposure to the disease. However, the high knowledge, attitude and practice score measured as a single index of the Maasai community may explain why they were less affected, compared to other investigated communities (Borana and Turkana), by RVF during the 2006/2007 outbreak. We conclude that RVF exposure in Isiolo County, Kenya during the outbreak was likely determined by the behavioral differences of different resident community groups. We then recommend that strategies to combat RVF should take into consideration behavioral differences among communities. PMID:28273071

  4. Recent Outbreaks of Rift Valley Fever in East Africa and the Middle East

    PubMed Central

    Himeidan, Yousif E.; Kweka, Eliningaya J.; Mahgoub, Mostafa M.; El Rayah, El Amin; Ouma, Johnson O.

    2014-01-01

    Rift Valley fever (RVF) is an important neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health. Mosquitoes in the Aedes genus have been considered as the reservoir, as well as vectors, since their transovarially infected eggs withstand desiccation and larvae hatch when in contact with water. However, different mosquito species serve as epizootic/epidemic vectors of RVF, creating a complex epidemiologic pattern in East Africa. The recent RVF outbreaks in Somalia (2006–2007), Kenya (2006–2007), Tanzania (2007), and Sudan (2007–2008) showed extension to districts, which were not involved before. These outbreaks also demonstrated the changing epidemiology of the disease from being originally associated with livestock, to a seemingly highly virulent form infecting humans and causing considerably high-fatality rates. The amount of rainfall is considered to be the main factor initiating RVF outbreaks. The interaction between rainfall and local environment, i.e., type of soil, livestock, and human determine the space-time clustering of RVF outbreaks. Contact with animals or their products was the most dominant risk factor to transfer the infection to humans. Uncontrolled movement of livestock during an outbreak is responsible for introducing RVF to new areas. For example, the virus that caused the Saudi Arabia outbreak in 2000 was found to be the same strain that caused the 1997–98 outbreaks in East Africa. A strategy that involves active surveillance with effective case management and diagnosis for humans and identifying target areas for animal vaccination, restriction on animal movements outside the affected areas, identifying breeding sites, and targeted intensive mosquito control programs has been shown to succeed in limiting the effect of RVF outbreak and curb the spread of the disease from the onset. PMID:25340047

  5. Rift Valley fever epidemiology, surveillance, and control: what have models contributed?

    PubMed

    Métras, Raphaëlle; Collins, Lisa M; White, Richard G; Alonso, Silvia; Chevalier, Véronique; Thuranira-McKeever, Christine; Pfeiffer, Dirk U

    2011-06-01

    Rift Valley fever (RVF) is an emerging vector-borne zoonotic disease that represents a threat to human health, animal health, and livestock production, particularly in Africa. The epidemiology of RVF is not well understood, so that forecasting RVF outbreaks and carrying out efficient and timely control measures remains a challenge. Various epidemiological modeling tools have been used to increase knowledge on RVF epidemiology and to inform disease management policies. This narrative review gives an overview of modeling tools used to date to measure or model RVF risk in animals, and presents how they have contributed to increasing our understanding of RVF occurrence or informed RVF surveillance and control strategies. Systematic literature searches were performed in PubMed and ISI Web of Knowledge. Additional research work was identified from other sources. Literature was scarce. Research work was highly heterogeneous in methodology, level of complexity, geographic scale of approach, and geographical area of study. Gaps in knowledge and data were frequent, and uncertainty was not always explored. Spatial approaches were the most commonly utilized techniques and have been used at both local and continental scales, the latter leading to the implementation of an early warning system. Three articles using dynamic transmission models explored the potential of RVF endemicity. Risk factor studies identified water-related environmental risk factors associated with RVF occurrence in domestic livestock. Risk assessments identified importation of infected animals, contaminated products, or infected vectors as key risk pathways for the introduction of RVF virus into disease-free areas. Enhanced outbreak prediction and control and increased knowledge on RVF epidemiology would benefit from additional field data, continued development, and refinement of modeling techniques for exploring plausible disease transmission mechanisms and the impact of intervention strategies.

  6. Evidence of Rift Valley fever seroprevalence in the Sahrawi semi-nomadic pastoralist system, Western Sahara.

    PubMed

    Di Nardo, Antonello; Rossi, Davide; Saleh, Saleh M Lamin; Lejlifa, Saleh M; Hamdi, Sidumu J; Di Gennaro, Annapia; Savini, Giovanni; Thrusfield, Michael V

    2014-04-24

    The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p = 0.007 and p = 0.007, respectively). The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa.

  7. Recent outbreaks of rift valley Fever in East Africa and the middle East.

    PubMed

    Himeidan, Yousif E; Kweka, Eliningaya J; Mahgoub, Mostafa M; El Rayah, El Amin; Ouma, Johnson O

    2014-01-01

    Rift Valley fever (RVF) is an important neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health. Mosquitoes in the Aedes genus have been considered as the reservoir, as well as vectors, since their transovarially infected eggs withstand desiccation and larvae hatch when in contact with water. However, different mosquito species serve as epizootic/epidemic vectors of RVF, creating a complex epidemiologic pattern in East Africa. The recent RVF outbreaks in Somalia (2006-2007), Kenya (2006-2007), Tanzania (2007), and Sudan (2007-2008) showed extension to districts, which were not involved before. These outbreaks also demonstrated the changing epidemiology of the disease from being originally associated with livestock, to a seemingly highly virulent form infecting humans and causing considerably high-fatality rates. The amount of rainfall is considered to be the main factor initiating RVF outbreaks. The interaction between rainfall and local environment, i.e., type of soil, livestock, and human determine the space-time clustering of RVF outbreaks. Contact with animals or their products was the most dominant risk factor to transfer the infection to humans. Uncontrolled movement of livestock during an outbreak is responsible for introducing RVF to new areas. For example, the virus that caused the Saudi Arabia outbreak in 2000 was found to be the same strain that caused the 1997-98 outbreaks in East Africa. A strategy that involves active surveillance with effective case management and diagnosis for humans and identifying target areas for animal vaccination, restriction on animal movements outside the affected areas, identifying breeding sites, and targeted intensive mosquito control programs has been shown to succeed in limiting the effect of RVF outbreak and curb the spread of the disease from the onset.

  8. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  9. Safety and Efficacy Profile of Commercial Veterinary Vaccines against Rift Valley Fever: A Review Study

    PubMed Central

    2016-01-01

    Rift Valley Fever (RVF) is an infectious illness with serious clinical manifestations and health consequences in humans as well as a wide range of domestic ruminants. This review provides significant information about the prevention options of RVF along with the safety-efficacy profile of commercial vaccines and some of RVF vaccination strategies. Information presented in this paper was obtained through a systematic investigation of published data about RVF vaccines. Like other viral diseases, the prevention of RVF relies heavily on immunization of susceptible herds with safe and cost-effective vaccine that is able to confer long-term protective immunity. Several strains of RVF vaccines have been developed and are available in commercial production including Formalin-Inactivated vaccine, live attenuated Smithburn vaccine, and the most recent Clone13. Although Formalin-Inactivated vaccine and live attenuated Smithburn vaccine are immunogenic and widely used in prevention programs, they proved to be accompanied by significant concerns. Despite Clone13 vaccine being suggested as safe in pregnant ewes and as highly immunogenic along with its potential for differentiating infected from vaccinated animals (DIVA), a recent study raised concerns about the safety of the vaccine during the first trimester of gestation. Accordingly, RVF vaccines that are currently available in the market to a significant extent do not fulfill the requirements of safety, potency, and DIVA. These adverse effects stressed the need for developing new vaccines with an excellent safety profile to bridge the gap in safety and immunity. Bringing RVF vaccine candidates to local markets besides the absence of validated serological test for DIVA remain the major challenges of RVF control. PMID:27689098

  10. Ethnic groups' knowledge, attitude and practices and Rift Valley fever exposure in Isiolo County of Kenya.

    PubMed

    Affognon, Hippolyte; Mburu, Peter; Hassan, Osama Ahmed; Kingori, Sarah; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2017-03-01

    Rift Valley fever (RVF) is an emerging mosquito-borne viral hemorrhagic fever in Africa and the Arabian Peninsula, affecting humans and livestock. For spread of infectious diseases, including RVF, knowledge, attitude and practices play an important role, and the understanding of the influence of behavior is crucial to improve prevention and control efforts. The objective of the study was to assess RVF exposure, in a multiethnic region in Kenya known to experience RVF outbreaks, from the behavior perspective. We investigated how communities in Isiolo County, Kenya were affected, in relation to their knowledge, attitude and practices, by the RVF outbreak of 2006/2007. A cross-sectional study was conducted involving 698 households selected randomly from three different ethnic communities. Data were collected using a structured questionnaire regarding knowledge, attitudes and practices that could affect the spread of RVF. In addition, information was collected from the communities regarding the number of humans and livestock affected during the RVF outbreak. This study found that better knowledge about a specific disease does not always translate to better practices to avoid exposure to the disease. However, the high knowledge, attitude and practice score measured as a single index of the Maasai community may explain why they were less affected, compared to other investigated communities (Borana and Turkana), by RVF during the 2006/2007 outbreak. We conclude that RVF exposure in Isiolo County, Kenya during the outbreak was likely determined by the behavioral differences of different resident community groups. We then recommend that strategies to combat RVF should take into consideration behavioral differences among communities.

  11. [Survey of investigation around cases of Rift Valley Fever at Tagant, Mauritania].

    PubMed

    Boushab, B M; Savadogo, M; Sow, S M; Soufiane, S

    2015-06-01

    Rift Valley Fever (RVF) is a zoonotic arbovirosis. Among animals, it mainly affects ruminants, causing abortions in gravid females and deaths among young animals. In humans, RVF virus infection is usually asymptomatic or characterized by a moderate fever. However, in 1-3% of cases, the disease progresses to a severe form with 50% mortality. Search for risk factors and to propose appropriate measures to prevent the potential for extension of the epidemic, and to make recommendations for disease monitoring and control. This investigation involved human RVF cases reported between October 12 and November 20, 2012 in the area of Tagant in Mauritania. Arbovirosis diagnosis was established by the laboratory of the National Institute of Public Health Research in Nouakchott (Mauritania) in collaboration with the Pasteur Institute of Dakar (Senegal). Of 212 subjects, RVF serology was positive in 26 (12%). Among those seropositive for RVF, 11 (42%) had severe hemorrhagic forms. The case fatality rate was 91%. A series of animal abortions (cattle, sheep and goats) was observed in the area where all but two subjects resided. Exposure to potential risk factors for RVF virus infection was found in all patients. Mortality is very high in the hemorrhagic forms of RVF. Disease prevention is necessary by strengthening the fight against vectors, avoiding contact and consumption of organic products from diseased animals and vaccination of animals in areas where the disease is endemic. Furthermore, it is essential to establish management procedures for patients infected with the RVF virus. An appropriately equipped referral hospital is necessary, together with strengthened epidemiological surveillance by notifying all suspected cases of hemorrhagic fevers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. The Use of Nanotrap Particles in the Enhanced Detection of Rift Valley Fever Virus Nucleoprotein

    PubMed Central

    Shafagati, Nazly; Lundberg, Lindsay; Baer, Alan; Patanarut, Alexis; Fite, Katherine; Lepene, Benjamin; Kehn-Hall, Kylene

    2015-01-01

    Background Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus that has a detrimental effect on both livestock and human populations. While there are several diagnostic methodologies available for RVFV detection, many are not sensitive enough to diagnose early infections. Furthermore, detection may be hindered by high abundant proteins such as albumin. Previous findings have shown that Nanotrap particles can be used to significantly enhance detection of various small analytes of low abundance. We have expanded upon this repertoire to show that this simple and efficient sample preparation technology can drastically improve the detection of the RVFV nucleoprotein (NP), the most abundant and widely used viral protein for RVFV diagnostics. Results After screening multiple Nanotrap particle architectures, we found that one particle, NT45, was optimal for RVFV NP capture, as demonstrated by western blotting. NT45 significantly enhanced detection of the NP at levels undetectable without the technology. Importantly, we demonstrated that Nanotrap particles are capable of concentrating NP in a number of matrices, including infected cell lysates, viral supernatants, and animal sera. Specifically, NT45 enhanced detection of NP at various viral titers, multiplicity of infections, and time points. Our most dramatic results were observed in spiked serum samples, where high abundance serum proteins hindered detection of NP without Nanotrap particles. Nanotrap particles allowed for sample cleanup and subsequent detection of RVFV NP. Finally, we demonstrated that incubation of our samples with Nanotrap particles protects the NP from degradation over extended periods of time (up to 120 hours) and at elevated temperatures (at 37ºC). Conclusion This study demonstrates that Nanotrap particles are capable of drastically lowering the limit of detection for RVFV NP by capturing, concentrating, and preserving RVFV NP in clinically relevant matrices. These studies

  13. Rainwater harvesting for small-scale irrigation of maize in the Central Rift Valley, Ethiopia

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Hartog, Maaike; Muluneh, Alemayehu; Stroosnijder, Leo

    2013-04-01

    In the Central Rift Valley of Ethiopia, small scale farmers mostly rely on rainfall for crop production. The erratic nature of rainfall causes frequent crop failures and makes the region structurally dependent on food aid. Rainwater Harvesting (RWH) is a technique to collect and store runoff that could provide water for livestock, domestic use or small scale irrigation. Usually, such irrigation is promoted for high value crops, but in the light of regional food security it may become interesting to invest in irrigation of maize. In this research, two cemented RWH cisterns were investigated to determine their economic and social potential for supplemental irrigation of maize using drip irrigation. For this, data from test fields with irrigated maize and monitoring of water levels of the cisterns were used, as well as a survey under 30 farmers living close to the experimental site. The results show that catchment size and management should be in balance with the designed RWH system, to prevent too little runoff or flooding. An analysis with Cropwat 8.0 was used to investigate the possibility of irrigating maize with the observed amounts of water in the RWH cisterns. This would suffice for 0.3-0.8 ha of maize. For a RWH cistern with a drip irrigation system to be economically viable, the production on this acreage should become 3-4 ton/ha; 2.5 times higher than the current yield. But the biggest challenge would be to change the perception of respondents, who don't find it logical to spend precious water on a common crop like maize. Therefore, if the Ethiopian government considers the irrigation of maize to be important for regional food security, it is recommended to either subsidize the construction of RWH cisterns or provide credit on favourable terms.

  14. Development of a novel, single-cycle replicable rift valley Fever vaccine.

    PubMed

    Murakami, Shin; Terasaki, Kaori; Ramirez, Sydney I; Morrill, John C; Makino, Shinji

    2014-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.

  15. International external quality assessment of molecular detection of Rift Valley fever virus.

    PubMed

    Escadafal, Camille; Paweska, Janusz T; Grobbelaar, Antoinette; le Roux, Chantel; Bouloy, Michèle; Patel, Pranav; Teichmann, Anette; Donoso-Mantke, Oliver; Niedrig, Matthias

    2013-01-01

    Rift Valley fever (RVF) is a viral zoonosis that primarily affects animals resulting in considerable economic losses due to death and abortions among infected livestock. RVF also affects humans with clinical symptoms ranging from an influenza-like illness to a hemorrhagic fever. Over the past years, RVF virus (RVFV) has caused severe outbreaks in livestock and humans throughout Africa and regions of the world previously regarded as free of the virus. This situation prompts the need to evaluate the diagnostic capacity and performance of laboratories worldwide. Diagnostic methods for RVFV detection include virus isolation, antigen and antibody detection methods, and nucleic acid amplification techniques. Molecular methods such as reverse-transcriptase polymerase chain reaction and other newly developed techniques allow for a rapid and accurate detection of RVFV. This study aims to assess the efficiency and accurateness of RVFV molecular diagnostic methods used by expert laboratories worldwide. Thirty expert laboratories from 16 countries received a panel of 14 samples which included RVFV preparations representing several genetic lineages, a specificity control and negative controls. In this study we present the results of the first international external quality assessment (EQA) for the molecular diagnosis of RVF. Optimal results were reported by 64% of the analyses, 21% of the analyses achieved acceptable results and 15% of the results revealed that there is need for improvement. Evenly good performances were achieved by specific protocols which can therefore be recommended as an accurate molecular protocol for the diagnosis of RVF. Other protocols showed uneven performances revealing the need for improved optimization and standardization of these protocols.

  16. Evidence of rift valley fever seroprevalence in the Sahrawi semi-nomadic pastoralist system, Western Sahara

    PubMed Central

    2014-01-01

    Background The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. Results A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p = 0.007 and p = 0.007, respectively). Conclusion The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa. PMID:24758592

  17. A step towards decentralized wastewater management in the Lower Jordan Rift Valley.

    PubMed

    van Afferden, M; Cardona, J A; Rahman, K Z; Daoud, R; Headley, T; Kilani, Z; Subah, A; Mueller, R A

    2010-01-01

    In order to address serious concerns over public health, water scarcity and groundwater pollution in Jordan, the expansion of decentralized wastewater treatment and reuse (DWWT&R) systems to small communities is one of the goals defined by the Jordan government in the "Water Strategy 2009-2022". This paper evaluates the general potential of decentralized wastewater system solutions to be applied in a selected area of the Lower Jordan Rift Valley in Jordan. For the study area, the connection degree to sewer systems was calculated as 67% (5% in the rural sector and 75% in the urban sector). The annual wastewater production available for DWWT&R in the rural sector of the investigation area was calculated to be nearly 3.8 million m(3) at the end of 2007. The future need of wastewater treatment and reuse facilities of the rural sector was estimated to be increasing by 0.11 million m(3) year(-1), with an overall potential of new treatment capacity of nearly 15,500 population equivalents (pe) year(-1). The overall potential for implementing DWWT&R systems in the urban sector was estimated as nearly 25 million m(3) of wastewater in 2007. The future need of wastewater treatment and reuse facilities required for the urban sector was estimated to be increasing at a rate of 0.12 million pe year(-1). Together with the decision makers and the stakeholders, a potential map with three regions has been defined: Region 1 with existing central wastewater infrastructure, Region 2 with already planned central infrastructure and Region 3 with the highest potential for implementing DWWT&R systems.

  18. Rift Valley fever among domestic animals in the recent West African outbreak.

    PubMed

    Ksiazek, T G; Jouan, A; Meegan, J M; Le Guenno, B; Wilson, M L; Peters, C J; Digoutte, J P; Guillaud, M; Merzoug, N O; Touray, E M

    1989-01-01

    Severe haemorrhagic disease among the human population of the Senegal River Basin brought the Rift Valley fever virus (RVFV) outbreak of 1987 to the attention of science. As in previous RVFV outbreaks, local herdsmen reported a high incidence of abortion and disease in their livestock. Serum samples were obtained from domestic animal populations from areas near Rosso, the best studied focus of human infection, as well as other areas distant from known human disease. Among animals from the area of high incidence of human disease, antibody prevalence was as high as 85%, with approximately 80% of the sera positive for both RVFV IgG- and viral-specific IgM antibodies. In contrast, human populations in the same area had lower RVFV antibody prevalences, 40% or less, with 90% also being IgM-positive. Sera from livestock in coastal areas 280 km south of the epidemic area were negative for RVFV antibodies. Thus, the detection of RVFV specific IgG and IgM antibodies provided evidence of recent disease activity without the requirement to establish pre-disease antibody levels in populations or individuals and without viral isolation. Subsequently, detection of modest levels of IgG and IgM in the Ferlo region, 130 km south of the Senegal River flood plain, established that RVFV transmission also occurred in another area of the basin. Similar serological testing of domestic ungulates in The Gambia, 340 km south of Rosso, demonstrated antibody prevalence consistent with a lower level of recent transmission of RVFV, i.e., 24% IgG-positive with 6% of the positive sera also having RVFV-specific IgM.

  19. Factors associated with rift valley fever in south-west Saudi Arabia.

    PubMed

    Elfadil, A A; Hasab-Allah, K A; Dafa-Allah, O M

    2006-12-01

    The authors undertook a study of environmental and animal risk factors associated with Rift Valley fever (RVF) in south-west Saudi Arabia. An enzyme-linked immunosorbent assay was used to detect the presence of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the RVF virus in serum samples from sentinel animals. In addition, a further 32 known IgM-positive serum samples were tested using the reverse transcription polymerase chain reaction (RT-PCR) to detect the RVF virus genome. The results were analysed using the univariate odds ratio (OR). To control for confounding, Mantel-Haenszel adjusted odds ratio (M-H OR) was used. Positive associations were found between RVF and the following factors: a dense mosquito population (OR = 4.2), high rainfall (M-H OR = 2) and the presence of lakes and/or ponds (M-H OR = 2.2). The RVF virus genome was detected in four (12.5%) serum samples, indicating an early stage of RVF. The study found that the probability of detecting the virus genome was greater in animals with a high percentage of IgM antibodies against the virus (OR = 3) and in animals who had aborted (OR = 4.3). In addition, more sheep than goats tested positive for the presence of the genome (OR = 4). The authors conclude that the environmental and animal risk factors identified in this study can be considered good predictors for RVF and that the animal factors, in particular, should be considered when developing an efficient and cost-effective control strategy.

  20. Modelling the effects of seasonality and socioeconomic impact on the transmission of Rift Valley fever virus

    USGS Publications Warehouse

    Xiao, Yanyu; Beier, John C.; Cantrell, Robert Stephen; Cosner, Chris; DeAngelis, Donald L.; Ruan, Shigui

    2015-01-01

    Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).

  1. A systematic review of Rift Valley Fever epidemiology 1931–2014

    PubMed Central

    Nanyingi, Mark O.; Munyua, Peninah; Kiama, Stephen G.; Muchemi, Gerald M.; Thumbi, Samuel M.; Bitek, Austine O.; Bett, Bernard; Muriithi, Reese M.; Njenga, M. Kariuki

    2015-01-01

    Background Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. Methodology Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. Results and discussion A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. Conclusion This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic

  2. Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.

    NASA Astrophysics Data System (ADS)

    Levy, D. A.; Haproff, P. J.; Yin, A.

    2016-12-01

    Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.

  3. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  4. Natural resources and their prospects in the closed basins of rift valley marginal grabens in northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Meaza, Hailemariam; Frankl, Amaury; Poesen, Jean; Zenebe, Amanuel; Deckers, Jozef; Vaneetvelde, Veerle; Lanckriet, Sil; Nyssen, Jan

    2016-04-01

    With increasing population, producing more food and fibers has led to an expansion of the area under cultivation. For this, much attention is given to low-lying flat areas in search of suitable agricultural lands. The objectives of this paper are therefore: (1) to review the opportunities and challenges of natural resources in the marginal grabens for rural development; (2) to highlight the knowledge gaps and priorities in research and development in the marginal grabens, and (3) to supplement the literature review through repeat transect walks, focus group discussions and interviews across the western rift valley of northern Ethiopia. The paper shows that marginal grabens along the rift valleys are rich both in blue and green water resources due to their topographical and geological characteristics. Spate irrigation has been a growing water management practice to respond to soil moisture deficit. Besides, marginal grabens are fertile plains as a result of alluvial deposition that could be suitable for agricultural development. However, rainfall variability and groundwater withdrawal lead to graben basin closure and salinization. Notably, riverbed incisions and sediment deposition affects drainage systems and water supply in the marginal grabens. As a result, socioeconomic and natural capital of the marginal graben farmers are continuously threatened. Thus, the benefits of natural resources for rural development in the marginal grabens along the rift valley can be optimized if the current bottlenecks are converted into opportunities. A better understanding of the complex marginal graben system via a robust land evaluation framework will improve livelihoods of the communities that live in the (closed) marginal grabens. Keywords: population pressure, marginal grabens, endorheic lakes, salinization, Ethiopia

  5. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    PubMed

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.

  6. Rift Valley Fever Virus: Molecular Biologic Studies of the M Segment RNA for Application in Disease Prevention.

    DTIC Science & Technology

    1986-08-01

    AD-A174 610 RIFT VALLEY FEVER VIRUS- MOLECULAR BIOLOGIC STUDIES 6F 1/1 THE M SEGMENT RNA (U) MOLECULAR GENETICS INC MINNETONK~A MN M COLLETT AUG 86...Molecular Genetics , In. DTIC ioso Eron Road East --ELECTE -Minetnka, Minnesota 64 DEC 0 11986 DOD DISTRIBUTION unE"--£ Approved for public release...ForNTIS GRA&I DTIC TAB Contract No. DAMD17-8S-C-6220 U:Iannouned Justiff cat toa_____ Molecular Genetlcs. Inc. 1010 Oran Road East Mlnnetonka, Milnneoota

  7. Mixing models and ionic geothermometers applied to warm (up to 60°C) springs: Jordan Rift Valley, Israel

    USGS Publications Warehouse

    Mazor, E.; Levitte, D.; Truesdell, A.H.; Healy, J.; Nissenbaum, A.

    1980-01-01

    No indications are available for the existence of above-boiling geothermal systems in the Jordan Rift Valley. Slightly higher than observed temperatures are concluded for a deep component at the springs of Hammat Gader (67°C), Gofra (68°C), the Russian Garden (40°C), and the Yesha well (53–65°C). These temperatures may encourage further developments for spas and bathing installations and, to a limited extent, for space heating, but are not favorable for geothermal power generation.

  8. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines.

    PubMed

    Bouloy, Michele; Flick, Ramon

    2009-11-01

    The advent of reverse genetics technology has revolutionized the study of RNA viruses, making it possible to manipulate their genomes and evaluate the effects of these changes on their biology and pathogenesis. The fundamental insights gleaned from reverse genetics-based studies over the last several years provide a new momentum for the development of designed therapies for the control and prevention of these viral pathogens. This review summarizes the successes and stumbling blocks in the development of reverse genetics technologies for Rift Valley fever virus and their application to the further dissection of its pathogenesis and the design of new therapeutics and safe and effective vaccines.

  9. Surface slip during large Owens Valley earthquakes

    USGS Publications Warehouse

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  10. First External Quality Assessment of Molecular and Serological Detection of Rift Valley Fever in the Western Mediterranean Region.

    PubMed

    Monaco, Federica; Cosseddu, Gian Mario; Doumbia, Baba; Madani, Hafsa; El Mellouli, Fatiha; Jiménez-Clavero, Miguel Angel; Sghaier, Soufien; Marianneau, Philippe; Cetre-Sossah, Catherine; Polci, Andrea; Lacote, Sandra; Lakhdar, Magtouf; Fernandez-Pinero, Jovita; Sari Nassim, Chabane; Pinoni, Chiara; Capobianco Dondona, Andrea; Gallardo, Carmina; Bouzid, Taoufiq; Conte, Annamaria; Bortone, Grazia; Savini, Giovanni; Petrini, Antonio; Puech, Lilian

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment--EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently

  11. Integrated Analysis of Environment, Cattle and Human Serological Data: Risks and Mechanisms of Transmission of Rift Valley Fever in Madagascar

    PubMed Central

    Olive, Marie-Marie; Chevalier, Véronique; Grosbois, Vladimir; Tran, Annelise; Andriamandimby, Soa-Fy; Durand, Benoit; Ravalohery, Jean-Pierre; Andriamamonjy, Seta; Rakotomanana, Fanjasoa; Rogier, Christophe; Heraud, Jean-Michel

    2016-01-01

    Background Rift Valley fever (RVF) is a vector-borne disease affecting ruminants and humans. Madagascar was heavily affected by RVF in 2008–2009, with evidence of a large and heterogeneous spread of the disease. The identification of at-risk environments is essential to optimize the available resources by targeting RVF surveillance in Madagascar. Herein, the objectives of our study were: (i) to identify the environmental factors and areas favorable to RVF transmission to both cattle and human and (ii) to identify human behaviors favoring human infections in Malagasy contexts. Methodology/Principal Findings First, we characterized the environments of Malagasy communes using a Multiple Factor Analysis (MFA). Then, we analyzed cattle and human serological data collected at national level using Generalized Linear Mixed Models, with the individual serological status (cattle or human) as the response, and MFA factors, as well as other potential risk factors (cattle density, human behavior) as explanatory variables. Cattle and human seroprevalence rates were positively associated to humid environments (p<0.001). Areas with high cattle density were at risk (p<0.01; OR = 2.6). Furthermore, our analysis showed that frequent contact with raw milk contributed to explain human infection (OR = 1.6). Finally, our study highlighted the eastern-coast, western and north-western parts as high-risk areas for RVF transmission in cattle. Conclusions/Significance Our integrated approach analyzing environmental, cattle and human datasets allow us to bring new insight on RVF transmission patterns in Madagascar. The association between cattle seroprevalence, humid environments and high cattle density suggests that concomitant vectorial and direct transmissions are critical to maintain RVF enzootic transmission. Additionally, in the at-risk humid environment of the western, north-western and the eastern-coast areas, suitable to Culex and Anopheles mosquitoes, vectorial transmission

  12. Integrated Analysis of Environment, Cattle and Human Serological Data: Risks and Mechanisms of Transmission of Rift Valley Fever in Madagascar.

    PubMed

    Olive, Marie-Marie; Chevalier, Véronique; Grosbois, Vladimir; Tran, Annelise; Andriamandimby, Soa-Fy; Durand, Benoit; Ravalohery, Jean-Pierre; Andriamamonjy, Seta; Rakotomanana, Fanjasoa; Rogier, Christophe; Heraud, Jean-Michel

    2016-07-01

    Rift Valley fever (RVF) is a vector-borne disease affecting ruminants and humans. Madagascar was heavily affected by RVF in 2008-2009, with evidence of a large and heterogeneous spread of the disease. The identification of at-risk environments is essential to optimize the available resources by targeting RVF surveillance in Madagascar. Herein, the objectives of our study were: (i) to identify the environmental factors and areas favorable to RVF transmission to both cattle and human and (ii) to identify human behaviors favoring human infections in Malagasy contexts. First, we characterized the environments of Malagasy communes using a Multiple Factor Analysis (MFA). Then, we analyzed cattle and human serological data collected at national level using Generalized Linear Mixed Models, with the individual serological status (cattle or human) as the response, and MFA factors, as well as other potential risk factors (cattle density, human behavior) as explanatory variables. Cattle and human seroprevalence rates were positively associated to humid environments (p<0.001). Areas with high cattle density were at risk (p<0.01; OR = 2.6). Furthermore, our analysis showed that frequent contact with raw milk contributed to explain human infection (OR = 1.6). Finally, our study highlighted the eastern-coast, western and north-western parts as high-risk areas for RVF transmission in cattle. Our integrated approach analyzing environmental, cattle and human datasets allow us to bring new insight on RVF transmission patterns in Madagascar. The association between cattle seroprevalence, humid environments and high cattle density suggests that concomitant vectorial and direct transmissions are critical to maintain RVF enzootic transmission. Additionally, in the at-risk humid environment of the western, north-western and the eastern-coast areas, suitable to Culex and Anopheles mosquitoes, vectorial transmission probably occurs in both cattle and human. The relative contribution of

  13. Inter-epidemic Rift Valley fever virus seroconversions in an irrigation scheme in Bura, south-east Kenya.

    PubMed

    Mbotha, D; Bett, B; Kairu-Wanyoike, S; Grace, D; Kihara, A; Wainaina, M; Hoppenheit, A; Clausen, P-H; Lindahl, J

    2017-07-14

    Rift Valley fever (RVF) is an acute mosquito-borne viral zoonosis whose outbreaks are often associated with prolonged rainfall and flooding, during which large numbers of vectors emerge. Recent studies into the inter-epidemic maintenance of RVF virus (RVFV) suggest that both vertical transmission in vectors and direct transmission between hosts act in combination with predisposing factors for persistence of the virus. A comparative longitudinal survey was carried out in Tana River County, Kenya, in irrigated, riverine and pastoral ecosystems from September 2014-June 2015. The objectives were to investigate the possibility of low-level RVFV transmission in these ecosystems during an inter-epidemic period (IEP), examine variations in RVFV seroprevalence in sheep and goats and determine the risk factors for transmission. Three hundred and sixteen small ruminants were selected and tested for immunoglobulin G antibodies against RVFV nucleoprotein using a competitive ELISA during six visits. Data on potential risk factors were also captured. Inter-epidemic RVFV transmission was evidenced by 15 seroconversions within the irrigated and riverine villages. The number of seroconversions was not significantly different (OR = 0.66, CI = 0.19-2.17, p = .59) between irrigated and riverine areas. No seroconversions were detected in the pastoral ecosystem. This study highlights the increased risk of inter-epidemic RVFV transmission posed by irrigation, through provision of necessary environmental conditions that enable vectors access to more breeding grounds, resting places and shade, which favour their breeding and survival. © 2017 Blackwell Verlag GmbH.

  14. First External Quality Assessment of Molecular and Serological Detection of Rift Valley Fever in the Western Mediterranean Region

    PubMed Central

    Monaco, Federica; Cosseddu, Gian Mario; Doumbia, Baba; Madani, Hafsa; El Mellouli, Fatiha; Jiménez-Clavero, Miguel Angel; Sghaier, Soufien; Marianneau, Philippe; Cetre-Sossah, Catherine; Polci, Andrea; Lacote, Sandra; Lakhdar, Magtouf; Fernandez-Pinero, Jovita; Sari Nassim, Chabane; Pinoni, Chiara; Capobianco Dondona, Andrea; Gallardo, Carmina; Bouzid, Taoufiq; Conte, Annamaria; Bortone, Grazia; Savini, Giovanni; Petrini, Antonio; Puech, Lilian

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment—EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently

  15. The Environmental Settings of Homo-Sapience Dispersal and the Neolithic Revolution in the Dead Sea - Red Sea Rift Valley

    NASA Astrophysics Data System (ADS)

    Stein, M.

    2014-12-01

    The Dead Sea-Red Sea Rift accommodated climatic and historic events that have fundamentally influenced the evolution of hominids. Among these developments, the Homo-Sapience (HS) dispersal "out of Africa" and the "Neolithic Revolution (NR)" represent major benchmarks. These developments occurred during the last interglacial and the post-glacial periods when the Red Sea - Levant region was overall arid. Nevertheless, wetter intervals prevailed within these arid periods, allowed the human culture development. The information on these wetter periods is stored in the sedimentary archives that were formed in the Rift. Lake Lisan that expanded all over the Dead Sea- Jordan- Kinnarot basin during the last glacial period retreated and contracted when the ice receded at the northern latitudes. At ~ 14-13 ka BP the lake dropped abruptly and deposited thick sequences of halite. Subsequently, terra rossa soil was re-mobilized from the Judea Mountains and accumulated along the Jordan Valley comprising the Fazael Fm. This soil and the availability of water in the Jordan Valley allow the establishment of the early agriculture settlements of Jericho, Gilgal and Fazael (at ~10-9 ka BP, the "peak" of sapropel S1, when enhance flow of Nile waters arrived to the Mediterranean). During the last interglacial HS dispersal occurs along the Red Sea- Jordan Valley corridor. Evidence for periods of wetness in this rather hyperarid region comes from fringing coral reefs along the Red Sea- Gulf of Aqaba shores, speleothems and travertines in the southern Negev desert -Arava valley and from lake sediments that were recently drilled at the deepest floor of the Dead Sea. All inventories indicate interval of enhanced wetness at ~ 128-122 ka BP, when sapropel S5 occurred. Thus, it appears that the periods of sapropels S1 and S5 were favorite for human culture development along the Red Sea - Jordan rift valley. Nevertheless, these human-development periods terminated abruptly at ~118-116 ka BP and

  16. Functional Analysis of Rift Valley Fever Virus NSs Encoding a Partial Truncation

    PubMed Central

    Head, Jennifer A.; Kalveram, Birte; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV), belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN)-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR). NSs self-associates at the C-terminus 17 aa., while NSs at aa.210–230 binds to Sin3A-associated protein (SAP30) to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s) can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6–30, 31–55, 56–80, 81–105, 106–130, 131–155, 156–180, 181–205, 206–230, 231–248 or 249–265 lack functions of IFN–β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81–105, 106–130, 131–155, 156–180, 181–205, 206–230 or 231–248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant

  17. Sheep Skin Odor Improves Trap Captures of Mosquito Vectors of Rift Valley Fever

    PubMed Central

    Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Mithoefer, Klaus; Torto, Baldwyn

    2012-01-01

    In recent years, the East African region has seen an increase in arboviral diseases transmitted by blood-feeding arthropods. Effective surveillance to monitor and reduce incidence of these infections requires the use of appropriate vector sampling tools. Here, trapped skin volatiles on fur from sheep, a known preferred host of mosquito vectors of Rift Valley fever virus (RVFV), were used with a standard CDC light trap to improve catches of mosquito vectors. We tested the standard CDC light trap alone (L), and baited with (a) CO2 (LC), (b) animal volatiles (LF), and (c) CO2 plus animal volatiles (LCF) in two highly endemic areas for RVF in Kenya (Marigat and Ijara districts) from March–June and September–December 2010. The incidence rate ratios (IRR) that mosquito species chose traps baited with treatments (LCF, LC and LF) instead of the control (L) were estimated. Marigat was dominated by secondary vectors and host-seeking mosquitoes were 3–4 times more likely to enter LC and LCF traps [IRR = 3.1 and IRR = 3.8 respectively] than the L only trap. The LCF trap captured a greater number of mosquitoes than the LC trap (IRR = 1.23) although the difference was not significant. Analogous results were observed at Ijara, where species were dominated by key primary and primary RVFV vectors, with 1.6-, 6.5-, and 8.5-fold increases in trap captures recorded in LF, LC and LCF baited traps respectively, relative to the control. These catches all differed significantly from those trapped in L only. Further, there was a significant increase in trap captures in LCF compared to LC (IRR = 1.63). Mosquito species composition and trap counts differed between the RVF sites. However, within each site, catches differed in abundance only and no species preferences were noted in the different baited-traps. Identifying the attractive components present in these natural odors should lead to development of an effective odor-bait trapping system for population density

  18. Spatial-temporal analysis of the of the risk of Rift Valley Fever in Kenya

    NASA Astrophysics Data System (ADS)

    Bett, B.; Omolo, A.; Hansen, F.; Notenbaert, A.; Kemp, S.

    2012-04-01

    Historical data on Rift Valley Fever (RVF) outbreaks in Kenya covering the period 1951 - 2010 were analyzed using a logistic regression model to identify factors associated with RVF occurrence. The analysis used a division, an administrative unit below a district, as the unit of analysis. The infection status of each division was defined on a monthly time scale and used as a dependent variable. Predictors investigated include: monthly precipitation (minimum, maximum and total), normalized difference vegetation index, altitude, agro-ecological zone, presence of game, livestock and human population densities, the number of times a division has had an outbreak before and time interval in months between successive outbreaks (used as a proxy for immunity). Both univariable and multivariable analyses were conducted. The models used incorporated an auto-regressive correlation matrix to account for clustering of observations in time, while dummy variables were fitted in the multivariable model to account for spatial relatedness/topology between divisions. This last procedure was followed because it is expected that the risk of RVF occurring in a given division increases when its immediate neighbor gets infected. Functional relationships between the continuous and the outcome variables were assessed to ensure that the linearity assumption was met. Deviance and leverage residuals were also generated from the final model and used for evaluating the goodness of fit of the model. Descriptive analyzes indicate that a total of 91 divisions in 42 districts (of the original 69 districts in place by 1999) reported RVF outbreaks at least once over the period. The mean interval between outbreaks was determined to be about 43 months. Factors that were positively associated with RVF occurrence include increased precipitation, high outbreak interval and the number of times a division has been infected or reported an outbreak. The model will be validated and used for developing an RVF

  19. Occurrence of rift valley fever in cattle in Ijara district, Kenya.

    PubMed

    Owange, Nelson O; Ogara, William O; Affognon, Hippolyte; Peter, Gathura B; Kasiiti, Jacqueline; Okuthe, Sam; Onyango-Ouma, W; Landmann, Tobias; Sang, Rosemary; Mbabu, Murithi

    2014-11-01

    Ijara district in Kenya was one of the hotspots of rift valley fever (RVF) during the 2006/2007 outbreak which led to human and animal deaths causing huge economic and public health losses. The main constraint in the control and prevention of RVF is inadequate knowledge on its occurrence during the interepidemic period. This study was aimed at understanding the occurrence of RVF in cattle in Ijara to enable the development of improved community-based disease surveillance, prediction, control and prevention. Six herds each 700-1000 cattle were identified with participatory involvement of locals and project technical team of the project. One animal per herd was tagged with global position system (GPS) collar to enable follow up. Sero-surveys were conducted periodically to understand the herd's movement through various ecological zones and risk of exposure to RVF virus. Sixty animals less than 3 years old from each herd were randomly selected each sampling time and sero-surveyed for RVF four times (September 2012, December 2012, February 2013 and May 2013) during the study period and along the nomadic movement route. The serum samples collected were subjected to RVF inhibition ELISA test to detect if there was exposure for RVF virus (RVFV). The RVF inhibition ELISA positive samples were subjected to IgM ELISA test to determine if the exposures were current or recent (within 14 days). The result of the survey indicated that 13.1% (183/1396) of cattle sero-surveyed had RVFV antibodies by inhibition ELISA test while 1.4% (18/1396) was positive for IgM ELISA test. The highest RVFV circulation was detected after herds pass through bony forest between Lamu and Ijara and Halei forested areas. These forested areas also had the highest IgM detections. The findings indicate that even limited rainfall was able to initiate RVFV circulation in Ijara region with highest circulation detected within forested areas with potential to become epidemic if rains persist with extensive

  20. Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift Valley

    NASA Image and Video Library

    2002-07-11

    Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.

  1. Protection of MP-12-vaccinated rhesus macaques against parenteral and aerosol challenge with virulent rift valley fever virus.

    PubMed

    Morrill, John C; Peters, C J

    2011-07-15

    To test safety and efficacy of the Rift Valley fever MP-12 (RVF MP-12) vaccine, 9 healthy adult Rhesus macaques, weighing 5-10 kg, were inoculated intramuscularly with 6 × 10(3) plaque forming units (PFUs) of MP-12 vaccine. The monkeys developed neutralizing antibody responses with no adverse effects other than a transient, low-titer viremia in 3 monkeys. Four vaccinated animals challenged intravenously with 3 × 10(6) PFUs of virulent Rift Valley fever virus strain ZH-501 (RVFV ZH-501) at 126 days after vaccination were protected against infection. The remaining 5 vaccinated monkeys along with 2 monkeys that had been vaccinated 6 years prior were completely protected against a small particle aerosol challenge of 5 × 10(5) PFUs of RVFV ZH-501. The mutagen-attenuated RVF MP-12 vaccine was determined to be protective against intravenous and aerosol challenge with virulent RVFV in these macaques, which suggests further development as a vaccine for humans is warranted.

  2. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  3. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses.

    PubMed

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  4. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    PubMed Central

    Scoglio, Caterina M.

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585

  5. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods.

  6. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    SciTech Connect

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S.

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  7. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate.

    PubMed

    Ikegami, Tetsuro

    2017-06-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.

  8. Aluto-Langano geothermal field, Ethiopian Rift Valley: Physical characteristics and the effects of gas on well performance

    SciTech Connect

    Gizaw, B. )

    1993-04-01

    This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigation of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360[degree]C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by boiling. As a result, the deep upflow zone loses some water as steam and produces a cooler saline shallow aquifer. The high partial pressure of carbon dioxide (about 30 bar in the reservoir) depresses the water table and restricts boiling to deeper levels. The main aquifer for the systems is in the Tertiary ignimbrite, which lies below 1400 m. The capacity of the existing wells is close to 7 MW[sub c]: the energy potential of the area is estimated to be between 3000 and 6000 MW[sub t] yr/km[sup 3], or 10-20 MW[sub c]/km[sup 3] for over 30 years.

  9. DDTs and other organochlorine pesticides in tissues of four bird species from the Rift Valley region, Ethiopia.

    PubMed

    Yohannes, Yared Beyene; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Ishizuka, Mayumi

    2017-01-01

    Despite the presence of a wide variety and number of birds, there is exceedingly little data on organochlorine pesticide (OCP) residues in birds inhabiting in Africa. In the present study, concentrations of dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes, drins, cyclodienes, and hexachlorobenzene were measured in liver, kidney, heart and brain of 4 bird species from the Rift Valley region, Ethiopia. Indoor residual spraying of DDT for malaria vector control, and indiscriminate and illegal use of pesticides underline the relevance of this study. Levels of ΣOCPs ranged from 1.87 to 4586ng/g wet weight, and the scavenger bird species Leptoptilos crumeniferus had the highest level in liver. In all tissues, contamination profiles of OCPs within the species were similar, with DDTs≫other OCPs. Among the DDTs, p,p'-DDE was the most abundant compound and had significantly a higher burden in all tissues. The risk characterization demonstrated potential risks to the studied birds associated with DDE exposure. Maximum hepatic levels of p,p'-DDE exceeded the levels reported to trigger adverse effects. The detection of p,p'-DDT in all bird tissues suggests the release of fresh DDT to the environment. This is the first study to assay OCPs in different tissues of birds from the Ethiopian Rift Valley region, and henceforth the data will serve as a reference data for future studies.

  10. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley province, Kenya.

    PubMed

    Miller, B R; Nasci, R S; Godsey, M S; Savage, H M; Lutwama, J J; Lanciotti, R S; Peters, C J

    2000-02-01

    West Nile virus is a mosquito borne flavivirus endemic over a large geographic area including Africa, Asia, and the Middle East. Although the virus generally causes a mild, self-limiting febrile illness in humans, it has sporadically caused central nervous system infections during epidemics. An isolate of West Nile virus was obtained from a pool of four male Culex univittatus complex mosquitoes while we were conducting an investigation of Rift Valley fever along the Kenya-Uganda border in February-March 1998. This represents the first field isolation of West Nile virus from male mosquitoes and strongly suggests that vertical transmission of the virus occurs in the primary maintenance mosquito vector in Kenya. A phylogenetic analysis of the complete amino acid sequence of the viral envelope glycoprotein demonstrated a sister relationship with a Culex pipiens mosquito isolate from Romania made in 1996. This unexpected finding probably reflects the role of migratory birds in disseminating West Nile virus between Africa and Europe.

  11. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  12. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN.

    PubMed

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E; Huante, Matthew B; Slack, Olga A L; Carpio, Victor H; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-05-23

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.

  13. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy.

    PubMed

    Tran, A; Ippoliti, C; Balenghien, T; Conte, A; Gely, M; Calistri, P; Goffredo, M; Baldet, T; Chevalier, V

    2013-11-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present. In this study, we assumed the introduction of the virus into Italy and focused on the risk of vector-borne transmission of RVFV to three main European potential hosts (cattle, sheep and goats). Five main potential mosquito vectors belonging to the Culex and Aedes genera that are present in Italy were identified in a literature review. We first modelled the geographical distribution of these five species based on expert knowledge and using land cover as a proxy of mosquito presence. The mosquito distribution maps were compared with field mosquito collections from Italy to validate the model. Next, the risk of RVFV transmission was modelled using a multicriteria evaluation (MCE) approach, integrating expert knowledge and the results of a literature review on host sensitivity and vector competence, feeding behaviour and abundance. A sensitivity analysis was performed to assess the robustness of the results with respect to expert choices. The resulting maps include (i) five maps of the vector distribution, (ii) a map of suitable areas for vector-borne transmission of RVFV and (iii) a map of the risk of RVFV vector-borne transmission to sensitive hosts given a viral introduction. Good agreement was found between the modelled presence probability and the observed presence or absence of each vector species. The resulting RVF risk map highlighted strong spatial heterogeneity and could be used to target surveillance. In conclusion, the geographical information system (GIS)-based MCE served as a valuable framework and a flexible tool for mapping the

  14. Development and evaluation of one-step rRT-PCR and immunohistochemical methods for detection of Rift Valley fever virus in biosafety level 2 diagnostic laboratories

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a zoonotic insect transmitted virus endemic to Africa and the Arabian Peninsula. Infection causes abortions and high mortality in newborn ruminants with an overall human infection rate of <1%. The potential of RVFV as a bioterrorism agent and/or being accidentally i...

  15. Complete Genome Sequence of Two Rift Valley Fever Virus Strains Isolated from Outbreaks in Saudi Arabia (2000) and Kenya (2006 to 2007)

    PubMed Central

    Shivanna, Vinay; McDowell, Chester; Wilson, William C.

    2016-01-01

    The complete genome sequence, including the untranslated regions, of two Rift Valley fever virus (RVFV) strains isolated from mosquitoes that were collected from disease outbreaks in Saudi Arabia (2001) and Kenya (2006 to 2007) were sequenced using next-generation sequencing technology. PMID:27609913

  16. Blood Meal Analysis of and Virus Detection in Mosquitoes Collected during a Rift Valley fever Epizootic/Epidemic: Implications for epidemic disease transmission dynamics

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Bloodfed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the bloodmeals. Bloodmeals from individual mosquito abdomens were screened for v...

  17. Evaluation of efficacy, potential for vector transmission and duration of immunity testing of MP-12, an attenuated Rift Valley fever virus vaccine candidate, in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. There are currently no fully licensed vaccines for this arthropod-borne virus in the US. Studies in sheep and cattle have found an attenuated strain of RVFV, MP-12, to be both safe and efficacious, and a conditi...

  18. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    PubMed

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus.

  19. Multiplex Detection of IgG and IgM to Rift Valley Fever Virus Nucleoprotein, Nonstructural Proteins, and Glycoprotein in Ovine and Bovine

    USDA-ARS?s Scientific Manuscript database

    A multiplex fluorescence microsphere immunoassay (FMIA) was used to detect bovine and ovine IgM and IgG antibodies to several Rift Valley fever virus (RVFV) proteins, including the major surface glycoprotein, Gn; the nonstructural proteins, NSs and NSm; and the nucleoprotein, N. Target antigens were...

  20. Incorporation of antigens from whole cell lysates and purified virions from MP12 into fluorescence microsphere immunoassays for the detection of antibodies against Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Background: The purpose of this study was the development of multiplex fluorescence microsphere immunoassay (FMIA) for the detection of Rift Valley fever virus (RVFV) IgG and IgM antibodies by incorporation of antigens from whole cell lysates and purified virions from MP12. Methods and Findings: Vir...

  1. Complete Genome Sequence of Two Rift Valley Fever Virus Strains Isolated from Outbreaks in Saudi Arabia (2000) and Kenya (2006 to 2007).

    PubMed

    Shivanna, Vinay; McDowell, Chester; Wilson, William C; Richt, Juergen A

    2016-09-08

    The complete genome sequence, including the untranslated regions, of two Rift Valley fever virus (RVFV) strains isolated from mosquitoes that were collected from disease outbreaks in Saudi Arabia (2001) and Kenya (2006 to 2007) were sequenced using next-generation sequencing technology. Copyright © 2016 Shivanna et al.

  2. Rift Valley fever virus incorporates the 78kDa glycoprotein into virions matured in C6/36 2 mosquito cells

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment codi...

  3. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health problem in sub-Saharan Africa. The emergence and re-emergence of the disease in the last 20 years especially in East Africa, poses a looming health threat which is likely to spread to beyond Africa. This threat is exacerbat...

  4. 3D hydrogeological model of the Lower Yarmouk Gorge, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Inbar, Nimrod; Möller, Peter; Raggad, Marwan; Rödiger, Tino; Rosenthal, Eliahu; Shentsis, Izabela; Tzoufka, Kalliopi; Siebert, Christian

    2017-04-01

    The Lower Yarmouk Gorge (LYG) lies on the eastern margin of the lower Jordan Rift Valley (JRV), bounded to the south by the Ajlun and to the north by the Golan Heights. It allows the outflow of the Yarmouk drainage basin and flow into the Jordan River, a few kilometers south of Lake Tiberias. The main aquifer system of the LYG is built mostly of Cretaceous sandstones and carbonates confined by Maastrichtian aquiclude. Fissures allow hydraulic connections between the major water-bearing formations from Quaternary to Upper Cretaceous age. It is supposed that the gorge acts as the mixing zone of two crossing flow pathways: N-S from the Hermon Mountains and from the Ajlun Dome, and E-W from Jebel al Arab Mountain in Syria (also known as Huran Plateau or Yarmouk drainage basin). As a result, several springs can be found within the gorge. These are characterized by widespread temperatures (20 - 60 °C) which indicate that, beside the complex regional flow, also ascending thermal waters control the hydrologic behavior of the LYG. Previous simulations based on a conceptual simplified 3D model (Magri et al., 2016) showed that crossing flow paths result from the coexistence of convection, that can develop for example along NE-SW oriented faults within the gorge or in permeable aquifers below Maastrichtian aquiclude, and additional flow fields that are induced by the N-S topographic gradients. Here we present the first 3D hydrogeological model of the entire LYG that includes structural features based on actual logs and interpreted seismic lines from both Israeli and Jordanian territories. The model distinguishes seven units from upper Eocene to the Lower Triassic, accounting for major aquifers, aquicludes and deep-cutting faults. Recharges are implemented based on the numerical representation developed by Shentsis (1990) that considers relationships between mean annual rain and topographic elevation. The model reveals that topography-driven N-S and E-W flows strongly control

  5. Ecological Succession, Land use Changes and Soil Organic C Stock in a Lake Retreat Area (Main Ethiopian Rift Valley)

    NASA Astrophysics Data System (ADS)

    Nyssen, J.; Temesgen, H.; Lemenih, M.; Zenebe, A.; Kindu, M.; Haile, M.

    2007-12-01

    In the Main Ethiopian Rift Valley, ecological succession is related to continuous lake retreat (Nyssen et al., 2004). Human activities, through their impact on land use and cover, affect this ecological succession. Through a remote sensing study, we extricated ecological succession and human activity as causative factors for land use and cover changes (LUCC) and explored which impact this has on soil organic C (SOC) stock in lake retreat areas. Remote sensing data used include a Landsat MSS from 1973, a Landsat TM from 1986 and a Landsat ETM+ from 2000. A conventional type of classification was used whereby supervised classification of the 2000 image was supplemented by unsupervised classification of the older datasets. Due to decreased rainfall and water abstraction for intense irrigated agriculture and floriculture in its catchment, Lake Abijata lost 46 % of its area between 2000 and 2006. On the emerged lands, a good ecological succession was observed between 1973 and 1986, with clear evidence for: emerged land -> grassland -> Acacia bushes -> open woodland. Between 1986 and 2000, LUCC tendencies were totally reversed and woody vegetation decreased strongly, indicating increased human impact (Habtamu et al., 2007). Based on an analysis of the Landsat imagery, coupled with soil and land use studies, determinants for SOC stock were found. Firstly, SOC stock significantly differs between cultivated land and grazing land (3301 and 2626 g m-2) on the one hand, and woodland (4594 g m-2) on the other. The strongest explanation of SOC stock is related to the duration of emergence and hence of pedogenesis. Its proxy, elevation, explains much of the variability of SOC (R2 = 0.48). Using a multiple regression model involving elevation and IR reflectance, the SOC stock in the study area could be assessed at 2196 (+ - 1517) g m-2 SOC in 2000, against 3222 (+ - 1639) g m-2 in 1973 (Nyssen et al., 2007), which is related to the post-1986 reversing of ecological succession in

  6. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  7. Seroepidemiological survey on Rift Valley fever among small ruminants and their close human contacts in Makkah, Saudi Arabia, in 2011.

    PubMed

    Mohamed, A M; Ashshi, A M; Asghar, A H; Abd El-Rahim, I H A; El-Shemi, A G; Zafar, T

    2014-12-01

    This study describes a seroepidemiological survey on Rift Valley fever (RVF) among small ruminants and their close human contacts in Makkah, Saudi Arabia. A total of 500 small ruminants (126 local, 374 imported) were randomly selected from the sacrifice livestock yards of Al-Kaakiah slaughterhouse, in the holy city of Makkah, during the pilgrimage season 1432 H (4-9 November 2011). In addition, blood samples were collected from 100 local workers in close contact with the animals at the slaughterhouse. An RVF competition multi-species enzyme-linked immunosorbent assay (ELISA) detecting anti-RVF virus immunoglobulin G (IgG)/ immunoglobulin M (IgM) antibodies and an RVF IgM-specific ELISA were used for serological investigations. In total, 84 (16.8%) of the 500 sacrificial sheep and goats tested seropositive in the competition ELISA but no IgM antibodies were detected in the IgM-specific assay. All seropositive samples, comprising 17.91% of the imported animals and 13.49% of the local ones, were therefore designated positive for anti-RVF virus IgG antibody. Among the local personnel working in close contact with the animals, 9% tested seropositive in the RVF competition ELISA. The study indicates that two factors may increase the likelihood of an RVF outbreak among sacrificial animals and pilgrims: i) the large-scale importation of small ruminants into Saudi Arabia from the Horn of Africa shortly before the pilgrimage season, and ii) the movement of animals within Saudi Arabia, from the RVF-endemic south-western area (Jizan region) to the Makkah region, particularly in the few weeks before the pilgrimage season. From these findings, it is recommended that i) all regulations concerning the import of animals into Saudi Arabia from Africa should be rigorously applied, particularly the RVF vaccination of all ruminants destined for export at least two weeks before exportation, and ii) the movement of animals from the RVF-endemic south-western area (Jizan region) of Saudi

  8. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    PubMed Central

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug screening assay and tested 26,424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of FDA approved drugs, drug-like molecules and natural products extracts we identified several lead compounds that are promising candidates for medicinal chemistry. PMID:22644268

  9. Transmission potential of Rift Valley fever virus over the course of the 2010 epidemic in South Africa.

    PubMed

    Métras, Raphaëlle; Baguelin, Marc; Edmunds, W John; Thompson, Peter N; Kemp, Alan; Pfeiffer, Dirk U; Collins, Lisa M; White, Richard G

    2013-06-01

    A Rift Valley fever (RVF) epidemic affecting animals on domestic livestock farms was reported in South Africa during January-August 2010. The first cases occurred after heavy rainfall, and the virus subsequently spread countrywide. To determine the possible effect of environmental conditions and vaccination on RVF virus transmissibility, we estimated the effective reproduction number (Re) for the virus over the course of the epidemic by extending the Wallinga and Teunis algorithm with spatial information. Re reached its highest value in mid-February and fell below unity around mid-March, when vaccination coverage was 7.5%-45.7% and vector-suitable environmental conditions were maintained. The epidemic fade-out likely resulted first from the immunization of animals following natural infection or vaccination. The decline in vector-suitable environmental conditions from April onwards and further vaccination helped maintain Re below unity. Increased availability of vaccine use data would enable evaluation of the effect of RVF vaccination campaigns.

  10. RNA helicase signaling is critical for type i interferon production and protection against Rift Valley fever virus during mucosal challenge.

    PubMed

    Ermler, Megan E; Yerukhim, Ekaterina; Schriewer, Jill; Schattgen, Stefan; Traylor, Zachary; Wespiser, Adam R; Caffrey, Daniel R; Chen, Zhijian J; King, Charles H; Gale, Michael; Colonna, Marco; Fitzgerald, Katherine A; Buller, R Mark L; Hise, Amy G

    2013-05-01

    Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV.

  11. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008–2011

    PubMed Central

    Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-01-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008–2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks. PMID:27403563

  12. Decision-Support Tool for Prevention and Control of Rift Valley Fever Epizootics in the Greater Horn of Africa

    PubMed Central

    2010-01-01

    Abstract: In East Africa, Rift Valley fever (RVF) usually occurs as explosive epizootics with prolonged inter-epidemic periods on the order of 8 to 10 years. The episodic nature of the disease and the rapid evolution of outbreaks create special challenges for its mitigation and control. Following the events of the 2006 and 2007 RVF outbreak in East Africa, decision-makers assembled their collective experiences in the form of a risk-based decision support tool to help guide responses in future emergencies. The premise of the tool is that a series of natural events are indicative of the increasing risk of an outbreak and that actions should be matched to this evolving risk profile. In this manner, investment in prevention and control can be qualitatively optimized. The decision support tool is a living document written through stakeholder input. This publication captures the current tool as an example of risk-based decision support. PMID:20682910

  13. Rift Valley fever virus infection in African Buffalo (Syncerus caffer) herds in rural South Africa: Evidence of interepidemic transmission

    USGS Publications Warehouse

    LaBeaud, A.D.; Cross, P.C.; Getz, W.M.; Glinka, A.; King, C.H.

    2011-01-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk. Copyright ?? 2011 by The American Society of Tropical Medicine and Hygiene.

  14. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo.

    PubMed

    Borrego, Belén; Lorenzo, Gema; Mota-Morales, Josué D; Almanza-Reyes, Horacio; Mateos, Francisco; López-Gil, Elena; de la Losa, Nuria; Burmistrov, Vasily A; Pestryakov, Alexey N; Brun, Alejandro; Bogdanchikova, Nina

    2016-07-01

    In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.

  15. Rift Valley fever virus infection in African buffalo (Syncerus caffer) herds in rural South Africa: evidence of interepidemic transmission.

    PubMed

    LaBeaud, A Desirée; Cross, Paul C; Getz, Wayne M; Glinka, Allison; King, Charles H

    2011-04-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk.

  16. Interventions against West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus: where are we?

    PubMed

    Kortekaas, Jeroen; Ergönül, Onder; Moormann, Rob J M

    2010-10-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus. To evaluate the status quo of control measures against these viruses, an ARBO-ZOONET meeting was held in Istanbul, Turkey, from 19 to 20 November 2009. The symposium consisted of three themes: (1) vaccines: new and existing ones; (2) antivirals: existing and new developments; and (3) antivector vaccines. In addition, a satellite workshop was held on epidemiology and diagnosis. The meeting brought together foremost international experts on the subjects from both within and without the ARBO-ZOONET consortium. This report highlights selected results from these presentations and major conclusions that emanated from the discussions held.

  17. Analysis of surveillance systems in place in European Mediterranean countries for West Nile virus (WNV) and Rift Valley fever (RVF).

    PubMed

    Cito, F; Narcisi, V; Danzetta, M L; Iannetti, S; Sabatino, D D; Bruno, R; Carvelli, A; Atzeni, M; Sauro, F; Calistri, P

    2013-11-01

    West Nile virus (WNV) and Rift Valley fever virus (RVFV) represent an important group of viral agents responsible for vector-borne zoonotic diseases constituting an emerging sanitary threat for the Mediterranean Basin and the neighbouring countries. WNV infection is present in several Mediterranean countries, whereas RVF has never been introduced into Europe, but it is considered a major threat for North African countries. Being vector-borne diseases, they cannot be prevented only through an animal trade control policy. Several approaches are used for the surveillance of WNV and RVFV. With the aim of assessing the surveillance systems in place in Mediterranean countries, two disease-specific questionnaires (WNV, RVFV) have been prepared and submitted to Public Health and Veterinary Authorities of six EU countries. This study presents the information gathered through the questionnaires and describes some critical points in the prevention and surveillance of these diseases as emerged by the answers received.

  18. Seroepidemiological Study of West Nile Virus and Rift Valley Fever Virus in Some of Mammalian Species (Herbivores) in Northern Turkey

    PubMed Central

    Albayrak, Harun; Ozan, Emre

    2013-01-01

    Background West Nile virus (WNV) and Rift Valley fever virus (RVFV) are mosquito-borne viral diseases. The objective of this study was to investigate the RVFV and WNV infections as serologically in different mammalian species (cattle, horse, goat, sheep and water buffalo) in the northern Turkey. Methods: Blood samples randomly collected from 70 each cattle, horse, sheep, goat and water buffalo were analyzed for the presence of antibodies to RVFV and WNV using an competitive enzyme-linked immunosorbent assay (C-ELISA) in northern Turkey. Results: None of the animals were positive for antibodies to RVFV. In contrast, WNV antibodies were found in two of 350 samples (0.57%). Conclusion: This may suggest that the RVFV disease is not present in northern Turkey.This is the first serological study on RVFV in Turkey. PMID:23785699

  19. Response of laboratory staff to vaccination with an inactivated Rift Valley fever vaccine--TSI-GSD 200.

    PubMed

    Frank-Peterside, N

    2000-06-01

    Laboratory staff and students were vaccinated with a formalin-inactivated rift valley fever (RVF) vaccine. This study showed that the vaccine used (TSI-GSD 200) was able to bring about the production of antibodies in recipients. For the production of a high titered antibody response, three doses of the vaccine were required. One or two doses of the vaccine did not produce a greater than four-fold rise in antibody titre. A greater than four-fold rise in antibody titre following vaccination, is considered significant. The complete dose of the vaccine, that is, three doses, was necessary for protection. This study also showed that the haemagglutination inhibition (HI) test was capable of detecting antibodies, few