Spectral fingerprints of large-scale neuronal interactions.
Siegel, Markus; Donner, Tobias H; Engel, Andreas K
2012-01-11
Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.
Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh
2018-06-25
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
Herculano-Houzel, Suzana; Kaas, Jon H.
2011-01-01
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547
Herculano-Houzel, Suzana; Kaas, Jon H
2011-01-01
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. Copyright © 2011 S. Karger AG, Basel.
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu
2016-01-01
Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.
Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.
2015-01-01
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162
Barrett, Lisa Feldman; Satpute, Ajay
2013-01-01
Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202
Foundational perspectives on causality in large-scale brain networks
NASA Astrophysics Data System (ADS)
Mannino, Michael; Bressler, Steven L.
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.
Foundational perspectives on causality in large-scale brain networks.
Mannino, Michael; Bressler, Steven L
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Large-Scale Brain Systems in ADHD: Beyond the Prefrontal-Striatal Model
Castellanos, F. Xavier; Proal, Erika
2012-01-01
Attention-deficit/hyperactivity disorder (ADHD) has long been thought to reflect dysfunction of prefrontal-striatal circuitry, with involvement of other circuits largely ignored. Recent advances in systems neuroscience-based approaches to brain dysfunction enable the development of models of ADHD pathophysiology that encompass a number of different large-scale “resting state” networks. Here we review progress in delineating large-scale neural systems and illustrate their relevance to ADHD. We relate frontoparietal, dorsal attentional, motor, visual, and default networks to the ADHD functional and structural literature. Insights emerging from mapping intrinsic brain connectivity networks provide a potentially mechanistic framework for understanding aspects of ADHD, such as neuropsychological and behavioral inconsistency, and the possible role of primary visual cortex in attentional dysfunction in the disorder. PMID:22169776
Heymsfield, Steven B; Chirachariyavej, Thamrong; Rhyu, Im Joo; Roongpisuthipong, Chulaporn; Heo, Moonseong; Pietrobelli, Angelo
2009-01-01
Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age < or =45 yr (n = 299) and with brain magnetic resonance imaging (MRI) studies in Korean men (n = 30) age > or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirements.
Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G
2016-05-25
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.
Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.
2016-01-01
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
Integration and segregation of large-scale brain networks during short-term task automatization
Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes
2016-01-01
The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095
Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys
Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.
2014-01-01
Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634
Development of large-scale functional brain networks in children.
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-07-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.
Development of Large-Scale Functional Brain Networks in Children
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-01-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066
Weighted and directed interactions in evolving large-scale epileptic brain networks
NASA Astrophysics Data System (ADS)
Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus
2016-10-01
Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J
2014-08-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.
Large scale preparation and crystallization of neuron-specific enolase.
Ishioka, N; Isobe, T; Kadoya, T; Okuyama, T; Nakajima, T
1984-03-01
A simple method has been developed for the large scale purification of neuron-specific enolase [EC 4.2.1.11]. The method consists of ammonium sulfate fractionation of brain extract, and two subsequent column chromatography steps on DEAE Sephadex A-50. The chromatography was performed on a short (25 cm height) and thick (8.5 cm inside diameter) column unit that was specially devised for the large scale preparation. The purified enolase was crystallized in 0.05 M imidazole-HCl buffer containing 1.6 M ammonium sulfate (pH 6.39), with a yield of 0.9 g/kg of bovine brain tissue.
Santangelo, Valerio
2018-01-01
Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614
Santangelo, Valerio
2018-01-01
Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.
Chen, Rong; Nixon, Erika; Herskovits, Edward
2016-04-01
Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.
Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar
2017-09-01
Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.
Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.
Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R
2017-12-01
Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity
Wang, Lubin; Zhai, Tianye; Zou, Feng; Ye, Enmao; Jin, Xiao; Li, Wuju; Qi, Jianlin; Yang, Zheng
2015-01-01
Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM) task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN) and default mode network (DMN). Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation. PMID:26218521
From a meso- to micro-scale connectome: array tomography and mGRASP
Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun
2015-01-01
Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781
States of mind: Emotions, body feelings, and thoughts share distributed neural networks
Oosterwijk, Suzanne; Lindquist, Kristen A.; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman
2012-01-01
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. PMID:22677148
Large-scale neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Furber, Steve
2016-10-01
Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
Large-scale automated histology in the pursuit of connectomes.
Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert
2011-11-09
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.
Large-Scale Automated Histology in the Pursuit of Connectomes
Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert
2011-01-01
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665
Why build a virtual brain? Large-scale neural simulations as jump start for cognitive computing
NASA Astrophysics Data System (ADS)
Colombo, Matteo
2017-03-01
Despite the impressive amount of financial resources recently invested in carrying out large-scale brain simulations, it is controversial what the pay-offs are of pursuing this project. One idea is that from designing, building, and running a large-scale neural simulation, scientists acquire knowledge about the computational performance of the simulating system, rather than about the neurobiological system represented in the simulation. It has been claimed that this knowledge may usher in a new era of neuromorphic, cognitive computing systems. This study elucidates this claim and argues that the main challenge this era is facing is not the lack of biological realism. The challenge lies in identifying general neurocomputational principles for the design of artificial systems, which could display the robust flexibility characteristic of biological intelligence.
Multi-scale integration and predictability in resting state brain activity
Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín
2014-01-01
The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933
Segregated Systems of Human Brain Networks.
Wig, Gagan S
2017-12-01
The organization of the brain network enables its function. Evaluation of this organization has revealed that large-scale brain networks consist of multiple segregated subnetworks of interacting brain areas. Descriptions of resting-state network architecture have provided clues for understanding the functional significance of these segregated subnetworks, many of which correspond to distinct brain systems. The present report synthesizes accumulating evidence to reveal how maintaining segregated brain systems renders the human brain network functionally specialized, adaptable to task demands, and largely resilient following focal brain damage. The organizational properties that support system segregation are harmonious with the properties that promote integration across the network, but confer unique and important features to the brain network that are central to its function and behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
State-dependencies of learning across brain scales
Ritter, Petra; Born, Jan; Brecht, Michael; Dinse, Hubert R.; Heinemann, Uwe; Pleger, Burkhard; Schmitz, Dietmar; Schreiber, Susanne; Villringer, Arno; Kempter, Richard
2015-01-01
Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous “spontaneous” shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, particularly during sleep, are essential for learning and memory consolidation. Oscillatory activity plays a crucial role on several spatial scales, for example in plasticity at a synaptic level or in communication across brain areas. However, the underlying mechanisms and computational rules linking brain states and rhythms to learning, though relevant for our understanding of brain function and therapeutic approaches in brain disease, have not yet been elucidated. Here we review known mechanisms of how brain states mediate and modulate learning by their characteristic rhythmic signatures. To understand the critical interplay between brain states, brain rhythms, and learning processes, a wide range of experimental and theoretical work in animal models and human subjects from the single synapse to the large-scale cortical level needs to be integrated. By discussing results from experiments and theoretical approaches, we illuminate new avenues for utilizing neuronal learning mechanisms in developing tools and therapies, e.g., for stroke patients and to devise memory enhancement strategies for the elderly. PMID:25767445
Network-dependent modulation of brain activity during sleep.
Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki
2014-09-01
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Large-scale recording of neuronal ensembles.
Buzsáki, György
2004-05-01
How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuron-electrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.
Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding
Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro
2015-01-01
Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
States of mind: emotions, body feelings, and thoughts share distributed neural networks.
Oosterwijk, Suzanne; Lindquist, Kristen A; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman
2012-09-01
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
The circuit architecture of whole brains at the mesoscopic scale.
Mitra, Partha P
2014-09-17
Vertebrate brains of even moderate size are composed of astronomically large numbers of neurons and show a great degree of individual variability at the microscopic scale. This variation is presumably the result of phenotypic plasticity and individual experience. At a larger scale, however, relatively stable species-typical spatial patterns are observed in neuronal architecture, e.g., the spatial distributions of somata and axonal projection patterns, probably the result of a genetically encoded developmental program. The mesoscopic scale of analysis of brain architecture is the transitional point between a microscopic scale where individual variation is prominent and the macroscopic level where a stable, species-typical neural architecture is observed. The empirical existence of this scale, implicit in neuroanatomical atlases, combined with advances in computational resources, makes studying the circuit architecture of entire brains a practical task. A methodology has previously been proposed that employs a shotgun-like grid-based approach to systematically cover entire brain volumes with injections of neuronal tracers. This methodology is being employed to obtain mesoscale circuit maps in mouse and should be applicable to other vertebrate taxa. The resulting large data sets raise issues of data representation, analysis, and interpretation, which must be resolved. Even for data representation the challenges are nontrivial: the conventional approach using regional connectivity matrices fails to capture the collateral branching patterns of projection neurons. Future success of this promising research enterprise depends on the integration of previous neuroanatomical knowledge, partly through the development of suitable computational tools that encapsulate such expertise. Copyright © 2014 Elsevier Inc. All rights reserved.
Farisco, Michele; Kotaleski, Jeanette H; Evers, Kathinka
2018-01-01
Modeling and simulations have gained a leading position in contemporary attempts to describe, explain, and quantitatively predict the human brain's operations. Computer models are highly sophisticated tools developed to achieve an integrated knowledge of the brain with the aim of overcoming the actual fragmentation resulting from different neuroscientific approaches. In this paper we investigate the plausibility of simulation technologies for emulation of consciousness and the potential clinical impact of large-scale brain simulation on the assessment and care of disorders of consciousness (DOCs), e.g., Coma, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State. Notwithstanding their technical limitations, we suggest that simulation technologies may offer new solutions to old practical problems, particularly in clinical contexts. We take DOCs as an illustrative case, arguing that the simulation of neural correlates of consciousness is potentially useful for improving treatments of patients with DOCs.
Surface shape analysis with an application to brain surface asymmetry in schizophrenia.
Brignell, Christopher J; Dryden, Ian L; Gattone, S Antonio; Park, Bert; Leask, Stuart; Browne, William J; Flynn, Sean
2010-10-01
Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus on a case study where magnetic resonance images of the brain are available from groups of 30 schizophrenia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects of shape analysis are to remove nuisance transformations by registration and to identify which parts of one object correspond with the parts of another object. We introduce maximum likelihood and Bayesian methods for registering brain images and providing large-scale correspondences of the brain surfaces. Brain surface size-and-shape analysis is considered using random field theory, and also dimension reduction is carried out using principal and independent components analysis. Some small but significant differences are observed between the the patient and control groups. We then investigate a particular type of asymmetry called torque. Differences in asymmetry are observed between the control and patient groups, which add strength to other observations in the literature. Further investigations of the midline plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
ICA model order selection of task co-activation networks
Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less
NASA Astrophysics Data System (ADS)
Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo
2013-12-01
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
Probing the brain with molecular fMRI.
Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan
2018-06-01
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.
On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.
Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-10-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus
Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-01-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072
A Multiscale Parallel Computing Architecture for Automated Segmentation of the Brain Connectome
Knobe, Kathleen; Newton, Ryan R.; Schlimbach, Frank; Blower, Melanie; Reid, R. Clay
2015-01-01
Several groups in neurobiology have embarked into deciphering the brain circuitry using large-scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating a graph of the brain circuitry, also called a connectome, could have a huge impact on the understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably smaller than a human brain, a mouse brain already exhibits one billion connections and manually tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to scale up the tracing by using automated image segmentation and a parallel computing approach designed for domain experts. We explain the design decisions behind our parallel approach and we present our results for the segmentation of the vasculature and the cell nuclei, which have been obtained without any manual intervention. PMID:21926011
Implementation of the Agitated Behavior Scale in the Electronic Health Record.
Wilson, Helen John; Dasgupta, Kritis; Michael, Kathleen
The purpose of the study was to implement an Agitated Behavior Scale through an electronic health record and to evaluate the usability of the scale in a brain injury unit at a rehabilitation hospital. A quality improvement project was conducted in the brain injury unit at a large rehabilitation hospital with registered nurses as participants using convenience sampling. The project consisted of three phases and included education, implementation of the scale in the electronic health record, and administration of the survey questionnaire, which utilized the system usability scale. The Agitated Behavior Scale was found to be usable, and there was 92.2% compliance with the use of the electronic Electronic Agitated Behavior Scale. The Agitated Behavior Scale was effectively implemented in the electronic health record and was found to be usable in the assessment of agitation. Utilization of the scale through the electronic health record on a daily basis will allow for an early identification of agitation in patients with traumatic brain injury and enable prompt interventions to manage agitation.
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives
Bowman, Ian; Joshi, Shantanu H.; Van Horn, John D.
2012-01-01
While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining. PMID:22536181
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain
Falcon, Maria I.; Jirsa, Viktor; Solodkin, Ana
2017-01-01
Purpose of review An exciting advance in the field of neuroimaging is the acquisition and processing of very large data sets (so called ‘big data’), permitting large-scale inferences that foster a greater understanding of brain function in health and disease. Yet what we are clearly lacking are quantitative integrative tools to translate this understanding to the individual level to lay the basis for personalized medicine. Recent findings Here we address this challenge through a review on how the relatively new field of neuroinformatics modeling has the capacity to track brain network function at different levels of inquiry, from microscopic to macroscopic and from the localized to the distributed. In this context, we introduce a new and unique multiscale approach, The Virtual Brain (TVB), that effectively models individualized brain activity, linking large-scale (macroscopic) brain dynamics with biophysical parameters at the microscopic level. We also show how TVB modeling provides unique biological interpretable data in epilepsy and stroke. Summary These results establish the basis for a deliberate integration of computational biology and neuroscience into clinical approaches for elucidating cellular mechanisms of disease. In the future, this can provide the means to create a collection of disease-specific models that can be applied on the individual level to personalize therapeutic interventions. Video abstract http://links.lww.com/CONR/A41 PMID:27224088
Neural encoding of large-scale three-dimensional space-properties and constraints.
Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.
Large-Scale Phase Synchrony Reflects Clinical Status After Stroke: An EEG Study.
Kawano, Teiji; Hattori, Noriaki; Uno, Yutaka; Kitajo, Keiichi; Hatakenaka, Megumi; Yagura, Hajime; Fujimoto, Hiroaki; Yoshioka, Tomomi; Nagasako, Michiko; Otomune, Hironori; Miyai, Ichiro
2017-06-01
Stroke-induced focal brain lesions often exert remote effects via residual neural network activity. Electroencephalographic (EEG) techniques can assess neural network modifications after brain damage. Recently, EEG phase synchrony analyses have shown associations between the level of large-scale phase synchrony of brain activity and clinical symptoms; however, few reports have assessed such associations in stroke patients. The aim of this study was to investigate the clinical relevance of hemispheric phase synchrony in stroke patients by calculating its correlation with clinical status. This cross-sectional study included 19 patients with post-acute ischemic stroke admitted for inpatient rehabilitation. Interhemispheric phase synchrony indices (IH-PSIs) were computed in 2 frequency bands (alpha [α], and beta [β]), and associations between indices and scores of the Functional Independence Measure (FIM), the National Institutes of Health Stroke Scale (NIHSS), and the Fugl-Meyer Motor Assessment (FMA) were analyzed. For further assessments of IH-PSIs, ipsilesional intrahemispheric PSIs (IntraH-PSIs) as well as IH- and IntraH-phase lag indices (PLIs) were also evaluated. IH-PSIs correlated significantly with FIM scores and NIHSS scores. In contrast, IH-PSIs did not correlate with FMA scores. IntraH-PSIs correlate with FIM scores after removal of the outlier. The results of analysis with PLIs were consistent with IH-PSIs. The PSIs correlated with performance on the activities of daily living scale but not with scores on a pure motor impairment scale. These results suggest that large-scale phase synchrony represented by IH-PSIs provides a novel surrogate marker for clinical status after stroke.
Tommasin, Silvia; Mascali, Daniele; Moraschi, Marta; Gili, Tommaso; Assan, Ibrahim Eid; Fratini, Michela; DiNuzzo, Mauro; Wise, Richard G; Mangia, Silvia; Macaluso, Emiliano; Giove, Federico
2018-06-14
Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation. Copyright © 2018. Published by Elsevier Inc.
Salience network-based classification and prediction of symptom severity in children with autism.
Uddin, Lucina Q; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Feinstein, Carl; Ryali, Srikanth; Menon, Vinod
2013-08-01
Autism spectrum disorder (ASD) affects 1 in 88 children and is characterized by a complex phenotype, including social, communicative, and sensorimotor deficits. Autism spectrum disorder has been linked with atypical connectivity across multiple brain systems, yet the nature of these differences in young children with the disorder is not well understood. To examine connectivity of large-scale brain networks and determine whether specific networks can distinguish children with ASD from typically developing (TD) children and predict symptom severity in children with ASD. Case-control study performed at Stanford University School of Medicine of 20 children 7 to 12 years old with ASD and 20 age-, sex-, and IQ-matched TD children. Between-group differences in intrinsic functional connectivity of large-scale brain networks, performance of a classifier built to discriminate children with ASD from TD children based on specific brain networks, and correlations between brain networks and core symptoms of ASD. We observed stronger functional connectivity within several large-scale brain networks in children with ASD compared with TD children. This hyperconnectivity in ASD encompassed salience, default mode, frontotemporal, motor, and visual networks. This hyperconnectivity result was replicated in an independent cohort obtained from publicly available databases. Using maps of each individual's salience network, children with ASD could be discriminated from TD children with a classification accuracy of 78%, with 75% sensitivity and 80% specificity. The salience network showed the highest classification accuracy among all networks examined, and the blood oxygen-level dependent signal in this network predicted restricted and repetitive behavior scores. The classifier discriminated ASD from TD in the independent sample with 83% accuracy, 67% sensitivity, and 100% specificity. Salience network hyperconnectivity may be a distinguishing feature in children with ASD. Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with ASD.
Salience Network–Based Classification and Prediction of Symptom Severity in Children With Autism
Uddin, Lucina Q.; Supekar, Kaustubh; Lynch, Charles J.; Khouzam, Amirah; Phillips, Jennifer; Feinstein, Carl; Ryali, Srikanth; Menon, Vinod
2014-01-01
IMPORTANCE Autism spectrum disorder (ASD) affects 1 in 88 children and is characterized by a complex phenotype, including social, communicative, and sensorimotor deficits. Autism spectrum disorder has been linked with atypical connectivity across multiple brain systems, yet the nature of these differences in young children with the disorder is not well understood. OBJECTIVES To examine connectivity of large-scale brain networks and determine whether specific networks can distinguish children with ASD from typically developing (TD) children and predict symptom severity in children with ASD. DESIGN, SETTING, AND PARTICIPANTS Case-control study performed at Stanford University School of Medicine of 20 children 7 to 12 years old with ASD and 20 age-, sex-, and IQ-matched TD children. MAIN OUTCOMES AND MEASURES Between-group differences in intrinsic functional connectivity of large-scale brain networks, performance of a classifier built to discriminate children with ASD from TD children based on specific brain networks, and correlations between brain networks and core symptoms of ASD. RESULTS We observed stronger functional connectivity within several large-scale brain networks in children with ASD compared with TD children. This hyperconnectivity in ASD encompassed salience, default mode, frontotemporal, motor, and visual networks. This hyperconnectivity result was replicated in an independent cohort obtained from publicly available databases. Using maps of each individual’s salience network, children with ASD could be discriminated from TD children with a classification accuracy of 78%, with 75% sensitivity and 80% specificity. The salience network showed the highest classification accuracy among all networks examined, and the blood oxygen–level dependent signal in this network predicted restricted and repetitive behavior scores. The classifier discriminated ASD from TD in the independent sample with 83% accuracy, 67% sensitivity, and 100% specificity. CONCLUSIONS AND RELEVANCE Salience network hyperconnectivity may be a distinguishing feature in children with ASD. Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with ASD. PMID:23803651
Neuroscience thinks big (and collaboratively).
Kandel, Eric R; Markram, Henry; Matthews, Paul M; Yuste, Rafael; Koch, Christof
2013-09-01
Despite cash-strapped times for research, several ambitious collaborative neuroscience projects have attracted large amounts of funding and media attention. In Europe, the Human Brain Project aims to develop a large-scale computer simulation of the brain, whereas in the United States, the Brain Activity Map is working towards establishing a functional connectome of the entire brain, and the Allen Institute for Brain Science has embarked upon a 10-year project to understand the mouse visual cortex (the MindScope project). US President Barack Obama's announcement of the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies Initiative) in April 2013 highlights the political commitment to neuroscience and is expected to further foster interdisciplinary collaborations, accelerate the development of new technologies and thus fuel much needed medical advances. In this Viewpoint article, five prominent neuroscientists explain the aims of the projects and how they are addressing some of the questions (and criticisms) that have arisen.
Brain Drain, Brain Gain, and Mobility: Theories and Prospective Methods
ERIC Educational Resources Information Center
Jalowiecki, Bohdan; Gorzelak, Grzegorz Jerzy
2004-01-01
This paper presents some theoretical and methodological considerations associated with the geographical and professional mobility of science professionals, including the conduct by the authors of a large scale survey questionnaire in Poland in 1994. It does not directly relate to research conducted elsewhere in the region, but does reflect…
To the Cloud! A Grassroots Proposal to Accelerate Brain Science Discovery
Vogelstein, Joshua T.; Mensh, Brett; Hausser, Michael; Spruston, Nelson; Evans, Alan; Kording, Konrad; Amunts, Katrin; Ebell, Christoph; Muller, Jeff; Telefont, Martin; Hill, Sean; Koushika, Sandhya P.; Cali, Corrado; Valdés-Sosa, Pedro Antonio; Littlewood, Peter; Koch, Christof; Saalfeld, Stephan; Kepecs, Adam; Peng, Hanchuan; Halchenko, Yaroslav O.; Kiar, Gregory; Poo, Mu-Ming; Poline, Jean-Baptiste; Milham, Michael P.; Schaffer, Alyssa Picchini; Gidron, Rafi; Okano, Hideyuki; Calhoun, Vince D; Chun, Miyoung; Kleissas, Dean M.; Vogelstein, R. Jacob; Perlman, Eric; Burns, Randal; Huganir, Richard; Miller, Michael I.
2018-01-01
The revolution in neuroscientific data acquisition is creating an analysis challenge. We propose leveraging cloud-computing technologies to enable large-scale neurodata storing, exploring, analyzing, and modeling. This utility will empower scientists globally to generate and test theories of brain function and dysfunction. PMID:27810005
Massive cortical reorganization in sighted Braille readers.
Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin
2016-03-15
The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.
Large-Scale Brain Simulation and Disorders of Consciousness. Mapping Technical and Conceptual Issues
Farisco, Michele; Kotaleski, Jeanette H.; Evers, Kathinka
2018-01-01
Modeling and simulations have gained a leading position in contemporary attempts to describe, explain, and quantitatively predict the human brain’s operations. Computer models are highly sophisticated tools developed to achieve an integrated knowledge of the brain with the aim of overcoming the actual fragmentation resulting from different neuroscientific approaches. In this paper we investigate the plausibility of simulation technologies for emulation of consciousness and the potential clinical impact of large-scale brain simulation on the assessment and care of disorders of consciousness (DOCs), e.g., Coma, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State. Notwithstanding their technical limitations, we suggest that simulation technologies may offer new solutions to old practical problems, particularly in clinical contexts. We take DOCs as an illustrative case, arguing that the simulation of neural correlates of consciousness is potentially useful for improving treatments of patients with DOCs. PMID:29740372
Novel Neuroimaging Methods to Understand How HIV Affects the Brain
Thompson, Paul
2015-01-01
In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu
2013-09-25
Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.
Differentiating unipolar and bipolar depression by alterations in large-scale brain networks.
Goya-Maldonado, Roberto; Brodmann, Katja; Keil, Maria; Trost, Sarah; Dechent, Peter; Gruber, Oliver
2016-02-01
Misdiagnosing bipolar depression can lead to very deleterious consequences of mistreatment. Although depressive symptoms may be similarly expressed in unipolar and bipolar disorder, changes in specific brain networks could be very distinct, being therefore informative markers for the differential diagnosis. We aimed to characterize specific alterations in candidate large-scale networks (frontoparietal, cingulo-opercular, and default mode) in symptomatic unipolar and bipolar patients using resting state fMRI, a cognitively low demanding paradigm ideal to investigate patients. Networks were selected after independent component analysis, compared across 40 patients acutely depressed (20 unipolar, 20 bipolar), and 20 controls well-matched for age, gender, and education levels, and alterations were correlated to clinical parameters. Despite comparable symptoms, patient groups were robustly differentiated by large-scale network alterations. Differences were driven in bipolar patients by increased functional connectivity in the frontoparietal network, a central executive and externally-oriented network. Conversely, unipolar patients presented increased functional connectivity in the default mode network, an introspective and self-referential network, as much as reduced connectivity of the cingulo-opercular network to default mode regions, a network involved in detecting the need to switch between internally and externally oriented demands. These findings were mostly unaffected by current medication, comorbidity, and structural changes. Moreover, network alterations in unipolar patients were significantly correlated to the number of depressive episodes. Unipolar and bipolar groups displaying similar symptomatology could be clearly distinguished by characteristic changes in large-scale networks, encouraging further investigation of network fingerprints for clinical use. Hum Brain Mapp 37:808-818, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Third International Congress on Epilepsy, Brain and Mind: Part 1
Korczyn, Amos D.; Schachter, Steven C.; Amlerova, Jana; Bialer, Meir; van Emde Boas, Walter; Brázdil, Milan; Brodtkorb, Eylert; Engel, Jerome; Gotman, Jean; Komárek, Vladmir; Leppik, Ilo E.; Marusic, Petr; Meletti, Stefano; Metternich, Birgitta; Moulin, Chris J.A.; Muhlert, Nils; Mula, Marco; Nakken, Karl O.; Picard, Fabienne; Schulze-Bonhage, Andreas; Theodore, William; Wolf, Peter; Zeman, Adam; Rektor, Ivan
2017-01-01
Epilepsyis both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3–5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks. PMID:26276417
Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H
2014-05-01
Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data
Venkat, A.; Christensen, C.; Gyulassy, A.; Summa, B.; Federer, F.; Angelucci, A.; Pascucci, V.
2017-01-01
The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data. PMID:28638896
A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data.
Venkat, A; Christensen, C; Gyulassy, A; Summa, B; Federer, F; Angelucci, A; Pascucci, V
2016-08-01
The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
Catroppa, Cathy; Beare, Richard; Silk, Timothy J.; Hearps, Stephen J.; Beauchamp, Miriam H.; Yeates, Keith O.; Anderson, Vicki A.
2017-01-01
Abstract Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure–function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems—the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment. PMID:28505355
Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Hearps, Stephen J; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A
2017-09-01
Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure-function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems-the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment. © The Author (2017). Published by Oxford University Press.
Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.
2014-01-01
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220
Differences between child and adult large-scale functional brain networks for reading tasks.
Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li
2018-02-01
Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.
Evolution of brain region volumes during artificial selection for relative brain size.
Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas
2017-12-01
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian
2015-11-01
Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.
2015-06-01
Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.
Hagmann, Patric; Deco, Gustavo
2015-01-01
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432
Gratton, Caterina; Sun, Haoxin; Petersen, Steven E
2018-03-01
Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease. © 2017 Society for Psychophysiological Research.
Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.
de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando
2016-09-01
Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity
Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.
2012-01-01
The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406
Miniaturized integration of a fluorescence microscope
Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.
2013-01-01
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102
Miniaturized integration of a fluorescence microscope.
Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J
2011-09-11
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.
Robust regression for large-scale neuroimaging studies.
Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand
2015-05-01
Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploring the brain on multiple scales with correlative two-photon and light sheet microscopy
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Allegra Mascaro, Anna Letizia; Costantini, Irene; Sacconi, Leonardo; Pavone, Francesco S.
2014-02-01
One of the unique features of the brain is that its activity cannot be framed in a single spatio-temporal scale, but rather spans many orders of magnitude both in space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, taking advantage of blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living thy1-GFP-M mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from the apical portion, the whole pyramidal neuron can then be segmented. The correlative approach presented here allows contextualizing within a three-dimensional anatomic framework the neurons whose dynamics have been observed with high detail in vivo.
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A
2014-05-01
Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.
Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar
2017-01-01
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. PMID:28314818
Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain?
Frégnac, Yves
2017-10-27
New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain. Copyright © 2017, American Association for the Advancement of Science.
Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395
Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H
2014-04-01
Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness , a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.
Massive cortical reorganization in sighted Braille readers
Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin
2016-01-01
The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813
Large-scale extraction of brain connectivity from the neuroscientific literature
Richardet, Renaud; Chappelier, Jean-Cédric; Telefont, Martin; Hill, Sean
2015-01-01
Motivation: In neuroscience, as in many other scientific domains, the primary form of knowledge dissemination is through published articles. One challenge for modern neuroinformatics is finding methods to make the knowledge from the tremendous backlog of publications accessible for search, analysis and the integration of such data into computational models. A key example of this is metascale brain connectivity, where results are not reported in a normalized repository. Instead, these experimental results are published in natural language, scattered among individual scientific publications. This lack of normalization and centralization hinders the large-scale integration of brain connectivity results. In this article, we present text-mining models to extract and aggregate brain connectivity results from 13.2 million PubMed abstracts and 630 216 full-text publications related to neuroscience. The brain regions are identified with three different named entity recognizers (NERs) and then normalized against two atlases: the Allen Brain Atlas (ABA) and the atlas from the Brain Architecture Management System (BAMS). We then use three different extractors to assess inter-region connectivity. Results: NERs and connectivity extractors are evaluated against a manually annotated corpus. The complete in litero extraction models are also evaluated against in vivo connectivity data from ABA with an estimated precision of 78%. The resulting database contains over 4 million brain region mentions and over 100 000 (ABA) and 122 000 (BAMS) potential brain region connections. This database drastically accelerates connectivity literature review, by providing a centralized repository of connectivity data to neuroscientists. Availability and implementation: The resulting models are publicly available at github.com/BlueBrain/bluima. Contact: renaud.richardet@epfl.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25609795
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state
Hermans, Erno J.; Fernández, Guillén
2017-01-01
Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480
Cognitive, Affective, and Conative Theory of Mind (ToM) in Children with Traumatic Brain Injury
Dennis, Maureen; Simic, Nevena; Bigler, Erin D.; Abildskov, Tracy; Agostino, Alba; Taylor, H. Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A.; Stancin, Terry; Yeates, Keith Owen
2012-01-01
We studied three forms of dyadic communication involving theory of mind (ToM) in 82 children with traumatic brain injury (TBI) and 61 children with orthopedic injury (OI): Cognitive (concerned with false belief), Affective (concerned with expressing socially deceptive facial expressions), and Conative (concerned with influencing another’s thoughts or feelings). We analyzed the pattern of brain lesions in the TBI group and conducted voxel-based morphometry for all participants in five large-scale functional brain networks, and related lesion and volumetric data to ToM outcomes. Children with TBI exhibited difficulty with Cognitive, Affective, and Conative ToM. The perturbation threshold for Cognitive ToM is higher than that for Affective and Conative ToM, in that Severe TBI disturbs Cognitive ToM but even Mild-Moderate TBI disrupt Affective and Conative ToM. Childhood TBI was associated with damage to all five large-scale brain networks. Lesions in the Mirror Neuron Empathy network predicted lower Conative ToM involving ironic criticism and empathic praise. Conative ToM was significantly and positively related to the package of Default Mode, Central Executive, and Mirror Neuron Empathy networks and, more specifically, to two hubs of the Default Mode network, the posterior cingulate/retrosplenial cortex and the hippocampal formation, including entorhinal cortex and parahippocampal cortex. PMID:23291312
Rebling, Johannes; Estrada, Héctor; Gottschalk, Sven; Sela, Gali; Zwack, Michael; Wissmeyer, Georg; Ntziachristos, Vasilis; Razansky, Daniel
2018-04-19
A critical link exists between pathological changes of cerebral vasculature and diseases affecting brain function. Microscopic techniques have played an indispensable role in the study of neurovascular anatomy and functions. Yet, investigations are often hindered by suboptimal trade-offs between the spatiotemporal resolution, field-of-view (FOV) and type of contrast offered by the existing optical microscopy techniques. We present a hybrid dual-wavelength optoacoustic (OA) biomicroscope capable of rapid transcranial visualization of large-scale cerebral vascular networks. The system offers 3-dimensional views of the morphology and oxygenation status of the cerebral vasculature with single capillary resolution and a FOV exceeding 6 × 8 mm 2 , thus covering the entire cortical vasculature in mice. The large-scale OA imaging capacity is complemented by simultaneously acquired pulse-echo ultrasound (US) biomicroscopy scans of the mouse skull. The new approach holds great potential to provide better insights into cerebrovascular function and facilitate efficient studies into neurological and vascular abnormalities of the brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large scale digital atlases in neuroscience
NASA Astrophysics Data System (ADS)
Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.
2014-03-01
Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.
Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong
2014-12-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.
Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe
2017-01-01
Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.
Stable functional networks exhibit consistent timing in the human brain.
Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A
2017-03-01
Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate that cortical regions exhibit functional relationships with well-defined and consistent timing, and the stability of these relationships over multiple time scales suggests that these stable pathways may be reliably and repeatedly used for large-scale cortical communication. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.
Batch Immunostaining for Large-Scale Protein Detection in the Whole Monkey Brain
Zangenehpour, Shahin; Burke, Mark W.; Chaudhuri, Avi; Ptito, Maurice
2009-01-01
Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges. Here we present a systematic approach for immunodetection of target proteins in an adult monkey brain. This approach relies on the tissue embedding and sectioning methodology of NeuroScience Associates (NSA) as well as tools developed specifically for batch-staining of free-floating sections. It results in uniform staining of a set of sections which, at a particular interval, represents the entire brain. The resulting stained sections can be subjected to a wide variety of analytical procedures in order to measure protein levels, the population of neurons expressing a certain protein. PMID:19636291
Understanding emotion with brain networks.
Pessoa, Luiz
2018-02-01
Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.
Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder
Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng
2016-01-01
Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320
2010-09-01
working with equally experienced partners who can, cumulatively, help each other make sense of chaotic situations. “Human brains collect, organize...but a process reinforced by years of Fire Department training. No matter what we do, even an optimally functioning human brain will prepare for...trick or reorganize the brain of those who will be first responding incident commanders to an edge-of-chaos event into creatively making sense of
Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset
Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.
2017-01-01
The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131
Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang
2014-01-01
Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639
Role of local network oscillations in resting-state functional connectivity.
Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo
2011-07-01
Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
NeuroGrid: recording action potentials from the surface of the brain.
Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György
2015-02-01
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
Chopra, Amit; Abulseoud, Osama A; Sampson, Shirlene; Lee, Kendall H; Klassen, Bryan T; Fields, Julie A; Matsumoto, Joseph Y; Adams, Andrea C; Stoppel, Cynthia J; Geske, Jennifer R; Frye, Mark A
2014-01-01
Deep brain stimulation for Parkinson disease has been associated with psychiatric adverse effects including anxiety, depression, mania, psychosis, and suicide. The purpose of this study was to evaluate the safety of deep brain stimulation in a large Parkinson disease clinical practice. Patients approved for surgery by the Mayo Clinic deep brain stimulation clinical committee participated in a 6-month prospective naturalistic follow-up study. In addition to the Unified Parkinson's Disease Rating Scale, stability and psychiatric safety were measured using the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating scale. Outcomes were compared in patients with Parkinson disease who had a psychiatric history to those with no co-morbid psychiatric history. The study was completed by 49 of 54 patients. Statistically significant 6-month baseline to end-point improvement was found in motor and mood scales. No significant differences were found in psychiatric outcomes based on the presence or absence of psychiatric comorbidity. Our study suggests that patients with Parkinson disease who have a history of psychiatric co-morbidity can safely respond to deep brain stimulation with no greater risk of psychiatric adverse effect occurrence. A multidisciplinary team approach, including careful psychiatric screening ensuring mood stabilization and psychiatric follow-up, should be viewed as standard of care to optimize the psychiatric outcome in the course of deep brain stimulation treatment. © 2013 Published by The Academy of Psychosomatic Medicine on behalf of The Academy of Psychosomatic Medicine.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...
2017-01-28
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing
2016-11-01
Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.
Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing
2016-01-01
Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530
Imaging of Brain Slices with a Genetically Encoded Voltage Indicator.
Quicke, Peter; Barnes, Samuel J; Knöpfel, Thomas
2017-01-01
Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.
ERIC Educational Resources Information Center
Rossion, Bruno; Hanseeuw, Bernard; Dricot, Laurence
2012-01-01
A number of human brain areas showing a larger response to faces than to objects from different categories, or to scrambled faces, have been identified in neuroimaging studies. Depending on the statistical criteria used, the set of areas can be overextended or minimized, both at the local (size of areas) and global (number of areas) levels. Here…
Differential brain network activity across mood states in bipolar disorder.
Brady, Roscoe O; Tandon, Neeraj; Masters, Grace A; Margolis, Allison; Cohen, Bruce M; Keshavan, Matcheri; Öngür, Dost
2017-01-01
This study aimed to identify how the activity of large-scale brain networks differs between mood states in bipolar disorder. The authors measured spontaneous brain activity in subjects with bipolar disorder in mania and euthymia and compared these states to a healthy comparison population. 23 subjects with bipolar disorder type I in a manic episode, 24 euthymic bipolar I subjects, and 23 matched healthy comparison (HC) subjects underwent resting state fMRI scans. Using an existing parcellation of the whole brain, we measured functional connectivity between brain regions and identified significant differences between groups. In unbiased whole-brain analyses, functional connectivity between parietal, occipital, and frontal nodes within the dorsal attention network (DAN) were significantly greater in mania than euthymia or HC subjects. In the default mode network (DMN), connectivity between dorsal frontal nodes and the rest of the DMN differentiated both mood state and diagnosis. The bipolar groups were separate cohorts rather than subjects imaged longitudinally across mood states. Bipolar mood states are associated with highly significant alterations in connectivity in two large-scale brain networks. These same networks also differentiate bipolar mania and euthymia from a HC population. State related changes in DAN and DMN connectivity suggest a circuit based pathology underlying cognitive dysfunction as well as activity/reactivity in bipolar mania. Altered activities in neural networks may be biomarkers of bipolar disorder diagnosis and mood state that are accessible to neuromodulation and are promising novel targets for scientific investigation and possible clinical intervention. Copyright © 2016 Elsevier B.V. All rights reserved.
Vaccarino, Anthony L; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M; Stuss, Donald T; Theriault, Elizabeth; Evans, Kenneth R
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute's "Brain-CODE" is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care.
Vaccarino, Anthony L.; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R.; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G.; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F. Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M.; Stuss, Donald T.; Theriault, Elizabeth; Evans, Kenneth R.
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care. PMID:29875648
Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2017-05-24
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. Copyright © 2017 the authors 0270-6474/17/375222-11$15.00/0.
Flexible Redistribution in Cognitive Networks.
Hartwigsen, Gesa
2018-06-15
Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
The dynamics of Machiavellian intelligence.
Gavrilets, Sergey; Vose, Aaron
2006-11-07
The "Machiavellian intelligence" hypothesis (or the "social brain" hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated "Machiavellian" strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the "Machiavellian intelligence" hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury.
Dennis, Maureen; Simic, Nevena; Bigler, Erin D; Abildskov, Tracy; Agostino, Alba; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen
2013-07-01
We studied three forms of dyadic communication involving theory of mind (ToM) in 82 children with traumatic brain injury (TBI) and 61 children with orthopedic injury (OI): Cognitive (concerned with false belief), Affective (concerned with expressing socially deceptive facial expressions), and Conative (concerned with influencing another's thoughts or feelings). We analyzed the pattern of brain lesions in the TBI group and conducted voxel-based morphometry for all participants in five large-scale functional brain networks, and related lesion and volumetric data to ToM outcomes. Children with TBI exhibited difficulty with Cognitive, Affective, and Conative ToM. The perturbation threshold for Cognitive ToM is higher than that for Affective and Conative ToM, in that Severe TBI disturbs Cognitive ToM but even Mild-Moderate TBI disrupt Affective and Conative ToM. Childhood TBI was associated with damage to all five large-scale brain networks. Lesions in the Mirror Neuron Empathy network predicted lower Conative ToM involving ironic criticism and empathic praise. Conative ToM was significantly and positively related to the package of Default Mode, Central Executive, and Mirror Neuron Empathy networks and, more specifically, to two hubs of the Default Mode Network, the posterior cingulate/retrosplenial cortex and the hippocampal formation, including entorhinal cortex and parahippocampal cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Robust prediction of individual creative ability from brain functional connectivity.
Beaty, Roger E; Kenett, Yoed N; Christensen, Alexander P; Rosenberg, Monica D; Benedek, Mathias; Chen, Qunlin; Fink, Andreas; Qiu, Jiang; Kwapil, Thomas R; Kane, Michael J; Silvia, Paul J
2018-01-30
People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.
Direction of information flow in large-scale resting-state networks is frequency-dependent.
Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J
2016-04-05
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.
GeNN: a code generation framework for accelerated brain simulations
NASA Astrophysics Data System (ADS)
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations.
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-07
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369
Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons
Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana
2014-01-01
Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261
Spatiotemporal dynamics of large-scale brain activity
NASA Astrophysics Data System (ADS)
Neuman, Jeremy
Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some light on this issue.
From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.
Poldrack, Russell A; Yarkoni, Tal
2016-01-01
A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.
From brain maps to cognitive ontologies: informatics and the search for mental structure
Poldrack, Russell A.; Yarkoni, Tal
2015-01-01
A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings—for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis—including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience. PMID:26393866
Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok
2018-04-01
Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional network.
Quantum probability, choice in large worlds, and the statistical structure of reality.
Ross, Don; Ladyman, James
2013-06-01
Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.
Large-scale imaging in small brains
Ahrens, Misha B.; Engert, Florian
2016-01-01
The dense connectivity in the brain and arrangements of cells into circuits means that one neuron’s activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. PMID:25636154
Large-scale imaging in small brains.
Ahrens, Misha B; Engert, Florian
2015-06-01
The dense connectivity in the brain means that one neuron's activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of playing American professional football on long-term brain function.
Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen
2011-01-01
The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A.
2014-01-01
IMPORTANCE Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. OBJECTIVES To test the hypothesis that the strength of coupling among 3 large-scale brain networks–salience, executive control, and default mode–will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. DESIGN, SETTING, AND PARTICIPANTS A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. INTERVENTIONS Twenty-four hours of abstinence vs smoking satiety. MAIN OUTCOMES AND MEASURES Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). RESULTS The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = −0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = −0.66, P = .003; posterior cingulate cortex, r = −0.65, P = .001). CONCLUSIONS AND RELEVANCE Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence. PMID:24622915
Congenital blindness is associated with large-scale reorganization of anatomical networks.
Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier
2016-03-01
Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.
Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus
2014-12-01
We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.
Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination
NASA Astrophysics Data System (ADS)
Bumstead, Jonathan R.
The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology
Mello, C.V.; Clayton, D.F.
2014-01-01
High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907
Dimitriadis, Stavros I.; Salis, Christos; Tarnanas, Ioannis; Linden, David E.
2017-01-01
The human brain is a large-scale system of functionally connected brain regions. This system can be modeled as a network, or graph, by dividing the brain into a set of regions, or “nodes,” and quantifying the strength of the connections between nodes, or “edges,” as the temporal correlation in their patterns of activity. Network analysis, a part of graph theory, provides a set of summary statistics that can be used to describe complex brain networks in a meaningful way. The large-scale organization of the brain has features of complex networks that can be quantified using network measures from graph theory. The adaptation of both bivariate (mutual information) and multivariate (Granger causality) connectivity estimators to quantify the synchronization between multichannel recordings yields a fully connected, weighted, (a)symmetric functional connectivity graph (FCG), representing the associations among all brain areas. The aforementioned procedure leads to an extremely dense network of tens up to a few hundreds of weights. Therefore, this FCG must be filtered out so that the “true” connectivity pattern can emerge. Here, we compared a large number of well-known topological thresholding techniques with the novel proposed data-driven scheme based on orthogonal minimal spanning trees (OMSTs). OMSTs filter brain connectivity networks based on the optimization between the global efficiency of the network and the cost preserving its wiring. We demonstrated the proposed method in a large EEG database (N = 101 subjects) with eyes-open (EO) and eyes-closed (EC) tasks by adopting a time-varying approach with the main goal to extract features that can totally distinguish each subject from the rest of the set. Additionally, the reliability of the proposed scheme was estimated in a second case study of fMRI resting-state activity with multiple scans. Our results demonstrated clearly that the proposed thresholding scheme outperformed a large list of thresholding schemes based on the recognition accuracy of each subject compared to the rest of the cohort (EEG). Additionally, the reliability of the network metrics based on the fMRI static networks was improved based on the proposed topological filtering scheme. Overall, the proposed algorithm could be used across neuroimaging and multimodal studies as a common computationally efficient standardized tool for a great number of neuroscientists and physicists working on numerous of projects. PMID:28491032
DBMap: a TreeMap-based framework for data navigation and visualization of brain research registry
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhang, Hong; Tjandra, Donny; Wong, Stephen T. C.
2003-05-01
The purpose of this study is to investigate and apply a new, intuitive and space-conscious visualization framework to facilitate efficient data presentation and exploration of large-scale data warehouses. We have implemented the DBMap framework for the UCSF Brain Research Registry. Such a novel utility would facilitate medical specialists and clinical researchers in better exploring and evaluating a number of attributes organized in the brain research registry. The current UCSF Brain Research Registry consists of a federation of disease-oriented database modules, including Epilepsy, Brain Tumor, Intracerebral Hemorrphage, and CJD (Creuzfeld-Jacob disease). These database modules organize large volumes of imaging and non-imaging data to support Web-based clinical research. While the data warehouse supports general information retrieval and analysis, there lacks an effective way to visualize and present the voluminous and complex data stored. This study investigates whether the TreeMap algorithm can be adapted to display and navigate categorical biomedical data warehouse or registry. TreeMap is a space constrained graphical representation of large hierarchical data sets, mapped to a matrix of rectangles, whose size and color represent interested database fields. It allows the display of a large amount of numerical and categorical information in limited real estate of computer screen with an intuitive user interface. The paper will describe, DBMap, the proposed new data visualization framework for large biomedical databases. Built upon XML, Java and JDBC technologies, the prototype system includes a set of software modules that reside in the application server tier and provide interface to backend database tier and front-end Web tier of the brain registry.
Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.
2013-01-01
Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300
Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne
2018-01-01
State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.
Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers
Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne
2018-01-01
State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian
2015-03-01
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.
Di Martino, Adriana; Yan, Chao-Gan; Li, Qingyang; Denio, Erin; Castellanos, Francisco X.; Alaerts, Kaat; Anderson, Jeffrey S.; Assaf, Michal; Bookheimer, Susan Y.; Dapretto, Mirella; Deen, Ben; Delmonte, Sonja; Dinstein, Ilan; Ertl-Wagner, Birgit; Fair, Damien A.; Gallagher, Louise; Kennedy, Daniel P.; Keown, Christopher L.; Keysers, Christian; Lainhart, Janet E.; Lord, Catherine; Luna, Beatriz; Menon, Vinod; Minshew, Nancy; Monk, Christopher S.; Mueller, Sophia; Müller, Ralph-Axel; Nebel, Mary Beth; Nigg, Joel T.; O’Hearn, Kirsten; Pelphrey, Kevin A.; Peltier, Scott J.; Rudie, Jeffrey D.; Sunaert, Stefan; Thioux, Marc; Tyszka, J. Michael; Uddin, Lucina Q.; Verhoeven, Judith S.; Wenderoth, Nicole; Wiggins, Jillian L.; Mostofsky, Stewart H.; Milham, Michael P.
2014-01-01
Autism spectrum disorders (ASD) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, life-long nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. While the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE) – a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) datasets with corresponding structural MRI and phenotypic information from 539 individuals with ASD and 573 age-matched typical controls (TC; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 males with ASD and 403 male age-matched TC. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo and hyperconnectivity in the ASD literature; both were detected, though hypoconnectivity dominated, particularly for cortico-cortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASD (mid and posterior insula, posterior cingulate cortex), and highlighted less commonly explored regions such as thalamus. The survey of the ABIDE R-fMRI datasets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international datasets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies. PMID:23774715
Zhao, Yu; Ge, Fangfei; Liu, Tianming
2018-07-01
fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.
Large-scale structural alteration of brain in epileptic children with SCN1A mutation.
Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung
2017-01-01
Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n = 21) with those of age and gender matched healthy controls ( n = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.
Potential Beneficial Effects of Probiotics on Human Migraine Headache: A Literature Review.
Dai, Yu-Jie; Wang, Hai-Yan; Wang, Xi-Jian; Kaye, Alan D; Sun, Yong-Hai
2017-02-01
Recent studies have shown that migraine headache is often associated with concomitant gastrointestinal diseases. There is a higher prevalence of headaches in patients with gastrointestinal disorders. These associations between migraine and gastrointestinal disorders suggest a potential link to a bidirectional modulation of gut microbiota and brain function. The underlying working mechanistic links between migraine and gastrointestinal diseases may include increased intestinal epithelial permeability and inflammation. This review presents an overview of the relationship between gut microbiota and brain function, especially with regard to migraine headache. Literature review. Anesthesia and Operation Center, Department of Anesthesiology, Chinese PLA General Hospital. The present investigation included a PubMed search using the following terms: migraine headache, gut microbiota, brain function, and probiotics. In this literature review, we mainly discussed the relationship between gut microbiota and brain function, especially with regard to migraine headache. The potential effects of probiotics supplement on migraine headache were also included. There is limited evidence from clinical studies of the positive effects of probiotics in patients with migraine headache. Large-scale randomized, placebo-controlled clinical trials are warranted to evaluate the clinical efficacy and safety of probiotics in patients with migraine headache. Similar to migraine headache, disorders of the brain involving depression and anxiety have been demonstrated to be associated with increased gut permeability. An improvement in gut microbiota and reduction of inflammation can have positive effects on strengthening gut and brain function. Moreover, it can be inferred that probiotics may have a beneficial effect on the frequency and severity of migraine headache attacks. Large-scale randomized, placebo-controlled studies are warranted in the future to evaluate the clinical efficacy and safety of probiotics in patients with migraine headache.Key words: Migraine headache, gut microbiota, brain function, probiotics.
Di Martino, A; Yan, C-G; Li, Q; Denio, E; Castellanos, F X; Alaerts, K; Anderson, J S; Assaf, M; Bookheimer, S Y; Dapretto, M; Deen, B; Delmonte, S; Dinstein, I; Ertl-Wagner, B; Fair, D A; Gallagher, L; Kennedy, D P; Keown, C L; Keysers, C; Lainhart, J E; Lord, C; Luna, B; Menon, V; Minshew, N J; Monk, C S; Mueller, S; Müller, R-A; Nebel, M B; Nigg, J T; O'Hearn, K; Pelphrey, K A; Peltier, S J; Rudie, J D; Sunaert, S; Thioux, M; Tyszka, J M; Uddin, L Q; Verhoeven, J S; Wenderoth, N; Wiggins, J L; Mostofsky, S H; Milham, M P
2014-06-01
Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)-a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7-64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.
Dynamic functional connectivity: Promise, issues, and interpretations
Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie
2013-01-01
The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587
Cerebral cartography and connectomics
Sporns, Olaf
2015-01-01
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870
The dynamics of Machiavellian intelligence
Gavrilets, Sergey; Vose, Aaron
2006-01-01
The “Machiavellian intelligence” hypothesis (or the “social brain” hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated “Machiavellian” strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the “Machiavellian intelligence” hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies. PMID:17075072
Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A
2007-01-01
To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.
Brain and Cognitive Reserve: Translation via Network Control Theory
Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2017-01-01
Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411
Creative Cognition and Brain Network Dynamics
Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.
2015-01-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223
Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo
2017-01-01
Abstract Lateralized behavior (“handedness”) is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior—biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. PMID:29069363
Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo; Meyer, Axel
2017-11-01
Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Deco, Gustavo; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-01-01
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure–function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure–function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications. PMID:23825427
Deco, Gustavo; Ponce-Alvarez, Adrián; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-07-03
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging
Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.
2012-01-01
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750
NASA Astrophysics Data System (ADS)
Diwadkar, Vaibhav A.
2015-12-01
The human brain is an impossibly difficult cartographic landscape to map out. Within it's convoluted and labyrinthine structure is folded a million years of phylogeny, somehow expressed in the ontogeny of the specific organism; an ontogeny that conceals idiosyncratic effects of countless genes, and then the (perhaps) countably infinite effects of processes of the organism's lifespan subsequently resulting in remarkable heterogeneity [1,2]. The physical brain itself is therefore a nearly un-decodable ;time machine; motivating more questions than frameworks for answering those questions: Why has evolution endowed it with the general structure that is possesses [3]; Is there regularity in macroscopic metrics of structure across species [4]; What are the most meaningful structural units in the brain: molecules, neurons, cortical columns or cortical maps [5]? Remarkably, understanding the intricacies of structure is perhaps not even the most difficult aspect of understanding the human brain. In fact, and as recently argued, a central issue lies in resolving the dialectic between structure and function: how does dynamic function arises from static (at least at the time scales at which human brain function is experimentally studied) brain structures [6]? In other words, if the mind is the brain ;in action;, how does it arise?
Episodic memory in aspects of large-scale brain networks
Jeong, Woorim; Chung, Chun Kee; Kim, June Sic
2015-01-01
Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939
Probing Intrinsic Resting-State Networks in the Infant Rat Brain
Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino
2016-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653
Lange, Nicholas; Froimowitz, Michael P; Bigler, Erin D; Lainhart, Janet E
2010-01-01
In the course of efforts to establish quantitative norms for healthy brain development by magnetic resonance imaging (MRI) (Brain Development Cooperative Group, 2006), previously unreported associations of parental education and temporal and frontal lobe volumes with full scale IQ and its verbal and performance subscales were discovered. Our findings were derived from the largest, most representative MRI sample to date of healthy children and adolescents, ages 4 years 10 months to 18 years 4 months. We first find that parental education has a strong association with IQ in children that is not mediated by total or regional brain volumes. Second, we find that our observed correlations between temporal gray matter, temporal white matter and frontal white matter volumes with full scale IQ, between 0.14 to 0.27 in children and adolescents, are due in large part to their correlations with performance IQ and not verbal IQ. The volumes of other lobar gray and white matter, subcortical gray matter (thalamus, caudate nucleus, putamen, and globus pallidus), cerebellum, and brainstem do not contribute significantly to IQ variation. Third, we find that head circumference is an insufficient index of cerebral volume in typically developing older children and adolescents. The relations between total and regional brain volumes and IQ can best be discerned when additional variables known to be associated with IQ, especially parental education and other demographic measures, are considered concurrently.
English, L K; Fearnbach, S N; Lasschuijt, M; Schlegel, A; Anderson, K; Harris, S; Wilson, S J; Fisher, J O; Savage, J S; Rolls, B J; Keller, K L
2016-10-01
Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional magnetic resonance imaging (fMRI). Blood-oxygen-level-dependent (BOLD) fMRI was completed in 36 children (ages 7-10 years) after a 2-h fast while viewing food images at two levels of PS (Large PS, Small PS) and two levels of ED (High ED, Low ED). Children rated perceived fullness pre- and post-fMRI, as well as liking of images on visual analog scales post-fMRI. Anthropometrics were completed 4 weeks before the fMRI. Large PS vs Small PS and High ED vs Low ED were compared with region-of-interest analyses using Brain Voyager v 2.8. Region-of-interest analyses revealed that activation in the right inferior frontal gyrus (P=0.03) was greater for Large PS vs Small PS. Activation was reduced for High ED vs Low ED in the left hypothalamus (P=0.03). Main effects were no longer significant after adjustment for pre-fMRI fullness and liking ratings (PS, P=0.92; ED, P=0.58). This is the first fMRI study to report increased activation to large portions in a brain region that is involved in inhibitory control. These findings may contribute to understanding why some children overeat when presented with large portions of palatable food.
NASA Astrophysics Data System (ADS)
Griffiths, John D.
2015-12-01
The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.
NASA Astrophysics Data System (ADS)
Shikunova, Irina A.; Zaytsev, Kirill I.; Stryukov, Dmitrii O.; Dubyanskaya, Evgenia N.; Kurlov, Vladimir N.
2017-07-01
In this paper, a handheld contact probe based on sapphire shaped crystal was developed for the intraoperative optical diagnosis and aspiration of malignant brain tissue combined with the laser hemostasis. Such a favorable combination of several functions in a single instrument significantly increases its clinical relevance. It makes possible highly-accurate real-time detection and removal of either large-scale malignancies or even separate invasive cancer cells. The proposed neuroprobe was integrated into the clinical neurosurgical workflow for the intraoperative fluorescence identification and removal of malignant tissues of the brain.
Large-scale coupling dynamics of instructed reversal learning.
Mohr, Holger; Wolfensteller, Uta; Ruge, Hannes
2018-02-15
The ability to rapidly learn from others by instruction is an important characteristic of human cognition. A recent study found that the rapid transfer from initial instructions to fluid behavior is supported by changes of functional connectivity between and within several large-scale brain networks, and particularly by the coupling of the dorsal attention network (DAN) with the cingulo-opercular network (CON). In the present study, we extended this approach to investigate how these brain networks interact when stimulus-response mappings are altered by novel instructions. We hypothesized that residual stimulus-response associations from initial practice might negatively impact the ability to implement novel instructions. Using functional imaging and large-scale connectivity analysis, we found that functional coupling between the CON and DAN was generally at a higher level during initial than reversal learning. Examining the learning-related connectivity dynamics between the CON and DAN in more detail by means of multivariate patterns analyses, we identified a specific subset of connections which showed a particularly high increase in connectivity during initial learning compared to reversal learning. This finding suggests that the CON-DAN connections can be separated into two functionally dissociable yet spatially intertwined subsystems supporting different aspects of short-term task automatization. Copyright © 2017 Elsevier Inc. All rights reserved.
Young Kim, Eun; Johnson, Hans J
2013-01-01
A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.
NASA Astrophysics Data System (ADS)
Dhamala, Mukesh
2015-12-01
Understanding cause-and-effect (causal) relations from observations concerns all sciences including neuroscience. Appropriately defining causality and its nature, though, has been a topic of active discussion for philosophers and scientists for centuries. Although brain research, particularly functional neuroimaging research, is now moving rapidly beyond identification of brain regional activations towards uncovering causal relations between regions, the nature of causality has not be been thoroughly described and resolved. In the current review article [1], Mannino and Bressler take us on a beautiful journey into the history of the work on causality and make a well-reasoned argument that the causality in the brain is inherently probabilistic. This notion is consistent with brain anatomy and functions, and is also inclusive of deterministic cases of inputs leading to outputs in the brain.
Resting state brain networks in the prairie vole.
Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael
2018-01-19
Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
Rudolph, Marc D; Graham, Alice M; Feczko, Eric; Miranda-Dominguez, Oscar; Rasmussen, Jerod M; Nardos, Rahel; Entringer, Sonja; Wadhwa, Pathik D; Buss, Claudia; Fair, Damien A
2018-05-01
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function.
Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis.
Koy, Anne; Hellmich, Martin; Pauls, K Amande M; Marks, Warren; Lin, Jean-Pierre; Fricke, Oliver; Timmermann, Lars
2013-05-01
Secondary dystonia encompasses a heterogeneous group with different etiologies. Cerebral palsy is the most common cause. Pharmacological treatment is often unsatisfactory. There are only limited data on the therapeutic outcomes of deep brain stimulation in dyskinetic cerebral palsy. The published literature regarding deep brain stimulation and secondary dystonia was reviewed in a meta-analysis to reevaluate the effect on cerebral palsy. The Burke-Fahn-Marsden Dystonia Rating Scale movement score was chosen as the primary outcome measure. Outcome over time was evaluated and summarized by mixed-model repeated-measures analysis, paired Student t test, and Pearson's correlation coefficient. Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (P < .001) at a median follow-up of 12 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale disability score was 18.54 ± 6.15 preoperatively and 16.83 ± 6.42 postoperatively, with a mean improvement of 9.2% (P < .001). There was a significant negative correlation between severity of dystonia and clinical outcome (P < .05). Deep brain stimulation can be an effective treatment option for dyskinetic cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.
Robust Long-Range Coordination of Spontaneous Neural Activity in Waking, Sleep and Anesthesia.
Liu, Xiao; Yanagawa, Toru; Leopold, David A; Fujii, Naotaka; Duyn, Jeff H
2015-09-01
Although the emerging field of functional connectomics relies increasingly on the analysis of spontaneous fMRI signal covariation to infer the spatial fingerprint of the brain's large-scale functional networks, the nature of the underlying neuro-electrical activity remains incompletely understood. In part, this lack in understanding owes to the invasiveness of electrophysiological acquisition, the difficulty in their simultaneous recording over large cortical areas, and the absence of fully established methods for unbiased extraction of network information from these data. Here, we demonstrate a novel, data-driven approach to analyze spontaneous signal variations in electrocorticographic (ECoG) recordings from nearly entire hemispheres of macaque monkeys. Based on both broadband analysis and analysis of specific frequency bands, the ECoG signals were found to co-vary in patterns that resembled the fMRI networks reported in previous studies. The extracted patterns were robust against changes in consciousness associated with sleep and anesthesia, despite profound changes in intrinsic characteristics of the raw signals, including their spectral signatures. These results suggest that the spatial organization of large-scale brain networks results from neural activity with a broadband spectral feature and is a core aspect of the brain's physiology that does not depend on the state of consciousness. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
To simulate or not to simulate: what are the questions?
Dudai, Yadin; Evers, Kathinka
2014-10-22
Simulation is a powerful method in science and engineering. However, simulation is an umbrella term, and its meaning and goals differ among disciplines. Rapid advances in neuroscience and computing draw increasing attention to large-scale brain simulations. What is the meaning of simulation, and what should the method expect to achieve? We discuss the concept of simulation from an integrated scientific and philosophical vantage point and pinpoint selected issues that are specific to brain simulation.
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Chockanathan, Udaysankar; DSouza, Adora M.; Inglese, Matilde; Wismüller, Axel
2017-03-01
Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality (lsGC) framework. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We study for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 female, 9 with CIS and 9 healthy controls). Global network properties captured trending differences with modularity and clustering coefficient (p<0.1). Additionally, local network properties, such as local efficiency and the strength of connections, captured statistically significant (p<0.01) differences in some regions of the inferior frontal and parietal lobe. We conclude that multivariate analysis of fMRI time-series can reveal interesting information about changes occurring in the brain in early stages of MS.
Towards large-scale, human-based, mesoscopic neurotechnologies.
Chang, Edward F
2015-04-08
Direct human brain recordings have transformed the scope of neuroscience in the past decade. Progress has relied upon currently available neurophysiological approaches in the context of patients undergoing neurosurgical procedures for medical treatment. While this setting has provided precious opportunities for scientific research, it also has presented significant constraints on the development of new neurotechnologies. A major challenge now is how to achieve high-resolution spatiotemporal neural recordings at a large scale. By narrowing the gap between current approaches, new directions tailored to the mesoscopic (intermediate) scale of resolution may overcome the barriers towards safe and reliable human-based neurotechnology development, with major implications for advancing both basic research and clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Disruption of posteromedial large-scale neural communication predicts recovery from coma.
Silva, Stein; de Pasquale, Francesco; Vuillaume, Corine; Riu, Beatrice; Loubinoux, Isabelle; Geeraerts, Thomas; Seguin, Thierry; Bounes, Vincent; Fourcade, Olivier; Demonet, Jean-Francois; Péran, Patrice
2015-12-08
We hypothesize that the major consciousness deficit observed in coma is due to the breakdown of long-range neuronal communication supported by precuneus and posterior cingulate cortex (PCC), and that prognosis depends on a specific connectivity pattern in these networks. We compared 27 prospectively recruited comatose patients who had severe brain injury (Glasgow Coma Scale score <8; 14 traumatic and 13 anoxic cases) with 14 age-matched healthy participants. Standardized clinical assessment and fMRI were performed on average 4 ± 2 days after withdrawal of sedation. Analysis of resting-state fMRI connectivity involved a hypothesis-driven, region of interest-based strategy. We assessed patient outcome after 3 months using the Coma Recovery Scale-Revised (CRS-R). Patients who were comatose showed a significant disruption of functional connectivity of brain areas spontaneously synchronized with PCC, globally notwithstanding etiology. The functional connectivity strength between PCC and medial prefrontal cortex (mPFC) was significantly different between comatose patients who went on to recover and those who eventually scored an unfavorable outcome 3 months after brain injury (Kruskal-Wallis test, p < 0.001; linear regression between CRS-R and PCC-mPFC activity coupling at rest, Spearman ρ = 0.93, p < 0.003). In both etiology groups (traumatic and anoxic), changes in the connectivity of PCC-centered, spontaneously synchronized, large-scale networks account for the loss of external and internal self-centered awareness observed during coma. Sparing of functional connectivity between PCC and mPFC may predict patient outcome, and further studies are needed to substantiate this potential prognosis biomarker. © 2015 American Academy of Neurology.
Creative Cognition and Brain Network Dynamics.
Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2016-02-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
Charvet, Christine J.; Finlay, Barbara L.
2012-01-01
Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623
The effect of brain atrophy on outcome after a large cerebral infarction.
Lee, Sang Hyung; Oh, Chang Wan; Han, Jung Ho; Kim, Chae-Yong; Kwon, O-Ki; Son, Young-Je; Bae, Hee-Joon; Han, Moon-Ku; Chung, Young Seob
2010-12-01
We retrospectively evaluated the effect of brain atrophy on the outcome of patients after a large cerebral infarct. Between June 2003 and Oct 2008, 134 of 2975 patients with stroke were diagnosed as having a large cerebral infarct. The mean age of the patients was 70 (21-95) y. The mean infarct volume was 223.6±95.2 cm(3) (46.0-491.0). The inter-caudate distance (ICD) was calculated as an indicator of brain atrophy by measuring the hemi-ICD of the intact side and then multiplying by two to account for brain swelling at the infarct site. The mean ICD was 18.0±4.8 mm (9.6-37.6). Forty-nine (36.6%) patients experienced a malignant clinical outcome (MCO) during management in the hospital. Thirty-one (23.1%) patients had a favourable functional outcome (FO) (modified Rankin scale (mRS) ≤3) and 49 (36.6%) had an acceptable functional outcome (AO) (mRS≤4) at 6 months after stroke onset. In the multivariate analysis, brain atrophy (ICD≥20 mm) had a significant and independent protective effect on MCO (p=0.003; OR=0.137; 95% CI 0.037 to 0.503). With respect to FO, the age and infarct volume reached statistical significance (p<0.001, OR=0.844, 95% CI 0.781 to 0.913; p=0.006, OR=0.987, 95% CI 0.977 to 0.996, respectively). Brain atrophy (ICD≥20 mm) was negatively associated only with AO (p=0.022; OR=0.164; 95% CI 0.035 to 0.767). Brain atrophy may have an association with clinical outcome after a large stroke by a trend of saving patients from an MCO but also by interfering with their functional recovery.
Simonyan, Kristina; Fuertinger, Stefan
2015-04-01
Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-01-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-04-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.
Geurtsen, Gert J; van Heugten, Caroline M; Martina, Juan D; Rietveld, Antonius C; Meijer, Ron; Geurts, Alexander C
2011-05-01
To examine the effects of a residential community reintegration program on independent living, societal participation, emotional well-being, and quality of life in patients with chronic acquired brain injury and psychosocial problems hampering societal participation. A prospective cohort study with a 3-month waiting list control period and 1-year follow up. A tertiary rehabilitation center for acquired brain injury. Patients (N=70) with acquired brain injury (46 men; mean age, 25.1y; mean time post-onset, 5.2y; at follow up n=67). A structured residential treatment program was offered directed at improving independence in domestic life, work, leisure time, and social interactions. Community Integration Questionnaire (CIQ), Employability Rating Scale, living situation, school, work situation, work hours, Center for Epidemiological Studies Depression Scale, EuroQOL quality of life scale (2 scales), World Health Organization Quality of Life Scale Abbreviated (WHOQOL-BREF; 5 scales), and the Global Assessment of Functioning (GAF) scale. There was an overall significant time effect for all outcome measures (multiple analysis of variance T(2)=26.16; F(36,557) 134.9; P=.000). There was no spontaneous recovery during the waiting-list period. The effect sizes for the CIQ, Employability Rating Scale, work hours, and GAF were large (partial η(2)=0.25, 0.35, 0.22, and 0.72, respectively). The effect sizes were moderate for 7 of the 8 emotional well-being and quality of life (sub)scales (partial η(2)=0.11-0.20). The WHOQOL-BREF environment subscale showed a small effect size (partial η(2)=0.05). Living independently rose from 25.4% before treatment to 72.4% after treatment and was still 65.7% at follow up. This study shows that a residential community reintegration program leads to significant and relevant improvements of independent living, societal participation, emotional well-being, and quality of life in patients with chronic acquired brain injury and psychosocial problems hampering societal participation. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Large-scale changes in network interactions as a physiological signature of spatial neglect.
Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio
2014-12-01
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cerebral energy metabolism and the brain's functional network architecture: an integrative review.
Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E
2013-09-01
Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.
A biased competition account of attention and memory in Alzheimer's disease
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-01-01
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD. PMID:24018724
A biased competition account of attention and memory in Alzheimer's disease.
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-10-19
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.
Reduced Global Functional Connectivity of the Medial Prefrontal Cortex in Major Depressive Disorder
Murrough, James W.; Abdallah, Chadi G.; Anticevic, Alan; Collins, Katherine A.; Geha, Paul; Averill, Lynnette A.; Schwartz, Jaclyn; DeWilde, Kaitlin E.; Averill, Christopher; Yang, Genevieve Jia-wei; Wong, Edmund; Tang, Cheuk Y.; Krystal, John H.; Iosifescu, Dan V.; Charney, Dennis S.
2016-01-01
Background Major depressive disorder is a disabling neuropsychiatric condition that is associated with disrupted functional connectivity across brain networks. The precise nature of altered connectivity, however, remains incompletely understood. The current study was designed to examine the coherence of large-scale connectivity in depression using a recently developed technique termed global brain connectivity. Methods A total of 82 subjects, including medication-free patients with major depression (n=57) and healthy volunteers (n=25) underwent functional magnetic resonance imaging with resting data acquisition for functional connectivity analysis. Global brain connectivity was computed as the mean of each voxel’s time series correlation with every other voxel and compared between study groups. Relationships between global connectivity and depressive symptom severity measured using the Montgomery-Åsberg Depression Rating Scale were examined by means of linear correlation. Results Relative to the healthy group, patients with depression evidenced reduced global connectivity bilaterally within multiple regions of medial and lateral prefrontal cortex. The largest between-group difference was observed within the right subgenual anterior cingulate cortex, extending into ventromedial prefrontal cortex bilaterally (Hedges’ g = −1.48, p<0.000001). Within the depressed group, patients with the lowest connectivity evidenced the highest symptom severity within ventromedial prefrontal cortex (r = −0.47, p=0.0005). Conclusions Patients with major depressive evidenced abnormal large-scale functional coherence in the brain that was centered within the subgenual cingulate cortex, and medial prefrontal cortex more broadly. These data extend prior studies of connectivity in depression and demonstrate that functional disconnection of the medial prefrontal cortex is a key pathological feature of the disorder. PMID:27144347
Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard
2013-12-01
Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.
The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields
Deco, Gustavo; Jirsa, Viktor K.; Robinson, Peter A.; Breakspear, Michael; Friston, Karl
2008-01-01
The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences. PMID:18769680
Gray matter alterations in chronic pain: A network-oriented meta-analytic approach
Cauda, Franco; Palermo, Sara; Costa, Tommaso; Torta, Riccardo; Duca, Sergio; Vercelli, Ugo; Geminiani, Giuliano; Torta, Diana M.E.
2014-01-01
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. PMID:24936419
Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.
Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu
2018-02-01
One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.
Distributed XQuery-Based Integration and Visualization of Multimodality Brain Mapping Data
Detwiler, Landon T.; Suciu, Dan; Franklin, Joshua D.; Moore, Eider B.; Poliakov, Andrew V.; Lee, Eunjung S.; Corina, David P.; Ojemann, George A.; Brinkley, James F.
2008-01-01
This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts. PMID:19198662
Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng
2013-01-01
Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272
A generative model of whole-brain effective connectivity.
Frässle, Stefan; Lomakina, Ekaterina I; Kasper, Lars; Manjaly, Zina M; Leff, Alex; Pruessmann, Klaas P; Buhmann, Joachim M; Stephan, Klaas E
2018-05-25
The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data - in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling - for example, for phenotyping individual patients in terms of whole-brain network structure. Copyright © 2018. Published by Elsevier Inc.
Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.
Milton, John G
2012-07-01
Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Cerebral cartography and connectomics.
Sporns, Olaf
2015-05-19
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Decoding the Nature of Emotion in the Brain.
Kragel, Philip A; LaBar, Kevin S
2016-06-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This 'new look' into emotion representation promises to improve and reformulate neurobiological models of affect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decoding the Nature of Emotion in the Brain
Kragel, Philip A.; LaBar, Kevin S.
2016-01-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This ‘new look’ into emotion representation promises to improve and reformulate neurobiological models of affect. PMID:27133227
2014-03-01
streamlines) from two types of diffusion weighted imaging scans, diffusion tensor imaging ( DTI ) and diffusion spectrum imaging (DSI). We examined...individuals. Importantly, the results also showed that this effect was greater for the DTI method than the DSI method. This suggested that DTI can better...compared to level surface walking. This project combines experimental EEG data and electromyography (EMG) data recorded from seven muscles of the leg
Jones, Michael N.
2017-01-01
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185
The development of Human Functional Brain Networks
Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L
2010-01-01
Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306
Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J
2016-01-01
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805
Rewiring the connectome: Evidence and effects.
Bennett, Sophie H; Kirby, Alastair J; Finnerty, Gerald T
2018-05-01
Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the "connectome" to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.
He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming
2018-06-04
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.
Franke, Barbara; Stein, Jason L; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne Yw; Martin, Nicholas G; Wright, Margaret J; O'Donovan, Michael C; Thompson, Paul M; Neale, Benjamin M; Medland, Sarah E; Sullivan, Patrick F
2016-03-01
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders.
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors.
NASA Astrophysics Data System (ADS)
Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.
2018-02-01
In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.
The social brain in psychiatric and neurological disorders
Kennedy, Daniel P.; Adolphs, Ralph
2013-01-01
Psychiatric and neurological disorders have historically provided key insights into the structure-function relationships that subserve human social cognition and behavior, informing the concept of the ‘social brain’. In this review, we take stock of the current status of this concept, retaining a focus on disorders that impact social behavior. We discuss how the social brain, social cognition, and social behavior are interdependent, and emphasize the important role of development and compensation. We suggest that the social brain, and its dysfunction and recovery, must be understood not in terms of specific structures, but rather in terms of their interaction in large-scale networks. PMID:23047070
Large-scale cortical correlation structure of spontaneous oscillatory activity
Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.
2013-01-01
Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Activity flow over resting-state networks shapes cognitive task activations.
Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H
2016-12-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.
Activity flow over resting-state networks shapes cognitive task activations
Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.
2016-01-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746
Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck
2011-01-01
Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
Regional gray matter correlates of vocational interests
2012-01-01
Background Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. Findings First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic (“blue-collar”) interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Conclusions Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations. PMID:22591829
Regional gray matter correlates of vocational interests.
Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying
2012-05-16
Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
Hierarchical random cellular neural networks for system-level brain-like signal processing.
Kozma, Robert; Puljic, Marko
2013-09-01
Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets.
Guy, Joseph R; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S
2016-01-15
MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.
2017-01-01
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528
A model for brain life history evolution.
González-Forero, Mauricio; Faulwasser, Timm; Lehmann, Laurent
2017-03-01
Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain's energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting ("me vs nature"), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model's parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.
Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn
2014-01-01
Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.
Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn
2013-01-01
Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert
2015-06-17
Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.
A regulatory toolbox of MiniPromoters to drive selective expression in the brain.
Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2010-09-21
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Altered intrinsic and extrinsic connectivity in schizophrenia.
Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J
2018-01-01
Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.
Large-scale functional models of visual cortex for remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumby, Steven P; Kenyon, Garrett; Rasmussen, Craig E
Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simplemore » region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.« less
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof
2016-07-05
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
Simulation research on the process of large scale ship plane segmentation intelligent workshop
NASA Astrophysics Data System (ADS)
Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei
2017-04-01
Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.
Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing
2016-01-01
Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855
Fraiman, Daniel; Chialvo, Dante R.
2012-01-01
The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058
Large-scale changes in network interactions as a physiological signature of spatial neglect
Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L.; Callejas, Alicia; Astafiev, Serguei V.; Metcalf, Nicholas V.; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z.; Carter, Alex R.; Shulman, Gordon L.
2014-01-01
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n = 84) heterogeneous sample of first-ever stroke patients (within 1–2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. PMID:25367028
Florin, Esther; Baillet, Sylvain
2015-01-01
Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519
A Network Model of the Emotional Brain.
Pessoa, Luiz
2017-05-01
Emotion is often understood in terms of a circumscribed set of cortical and subcortical brain regions. I propose, instead, that emotion should be understood in terms of large-scale network interactions spanning the entire neuroaxis. I describe multiple anatomical and functional principles of brain organization that lead to the concept of 'functionally integrated systems', cortical-subcortical systems that anchor the organization of emotion in the brain. The proposal is illustrated by describing the cortex-amygdala integrated system and how it intersects with systems involving the ventral striatum/accumbens, septum, hippocampus, hypothalamus, and brainstem. The important role of the thalamus is also highlighted. Overall, the model clarifies why the impact of emotion is wide-ranging, and how emotion is interlocked with perception, cognition, motivation, and action. Copyright © 2017 Elsevier Ltd. All rights reserved.
HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
Minkovich, Kirill; Thibeault, Corey M; O'Brien, Michael John; Nogin, Aleksey; Cho, Youngkwan; Srinivasa, Narayan
2014-02-01
Modeling of large-scale spiking neural models is an important tool in the quest to understand brain function and subsequently create real-world applications. This paper describes a spiking neural network simulator environment called HRL Spiking Simulator (HRLSim). This simulator is suitable for implementation on a cluster of general purpose graphical processing units (GPGPUs). Novel aspects of HRLSim are described and an analysis of its performance is provided for various configurations of the cluster. With the advent of inexpensive GPGPU cards and compute power, HRLSim offers an affordable and scalable tool for design, real-time simulation, and analysis of large-scale spiking neural networks.
A model for brain life history evolution
Lehmann, Laurent
2017-01-01
Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting (“me vs nature”), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model’s parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills. PMID:28278153
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework
Yavari, Fatemeh; Nitsche, Michael A.; Ekhtiari, Hamed
2017-01-01
During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future. PMID:28450832
Tough times call for bigger brains
Pravosudov, Vladimir V
2009-01-01
Memory is crucial for survival in many animals. Spatial memory in particular is important for food-caching species and may be influenced by selective pressures such as climate. The influence of climate on memory may be facilitated through the hippocampus (Hp), the part of the brain responsible in part for spatial memory. In a recent paper, we conducted the first large-scale test of the relationship between memory, the climate and the brain in a single food-caching species, the black-capped chickadee (Poecile atricapillus). We found that birds from more harsh northern climates had significantly larger hippocampal volumes and more neurons than those from more mild southern latitudes. This work suggests that environmental pressures are capable of influencing specific brain regions, which may result in enhanced memory, and hence survival, in harsh climates. This work gives us a better understanding of how the brain responds to different environments and how animals can adapt to their environment in general. PMID:19641741
Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.
2014-01-01
Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947
Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain
Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.
2012-01-01
How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814
A common brain network links development, aging, and vulnerability to disease.
Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi
2014-12-09
Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong
2016-12-01
Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.
Li, Jing; Guo, Hao; Ge, Ling; Cheng, Long; Wang, Junjie; Li, Hong; Zhang, Kerang; Xiang, Jie; Chen, Junjie; Zhang, Hui; Xu, Yong
2017-01-01
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
NASA Astrophysics Data System (ADS)
Wu, Huijun; Wang, Hao; Lü, Linyuan
Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.
Regional Variations in Brain Gyrification Are Associated with General Cognitive Ability in Humans
Gregory, Michael D.; Kippenhan, J. Shane; Dickinson, Dwight; Carrasco, Jessica; Mattay, Venkata S.; Weinberger, Daniel R.; Berman, Karen F.
2016-01-01
Summary Searching for a neurobiological understanding of human intellectual capabilities has long occupied those very capabilities. Brain gyrification, or folding of the cortex, is as highly-evolved and variable a characteristic in humans as is intelligence. Indeed, gyrification scales with brain size, and relationships between brain size and intelligence have been demonstrated in humans [1-3]. However, gyrification shows a large degree of variability that is independent from brain size [4-6], suggesting that the former may independently contribute to cognitive abilities, and thus supporting a direct investigation of this parameter in the context of intelligence. Moreover, uncovering the regional pattern of such an association could offer insights into evolutionary and neural mechanisms. We tested for this brain-behavior relationship in two separate, independently-collected, large cohorts: 440 healthy adults and 662 healthy children, using high-resolution structural neuroimaging and comprehensive neuropsychometric batteries. In both samples, general cognitive ability was significantly associated (pfdr<0.01) with increasing gyrification in a network of neocortical regions, including large portions of the prefrontal cortex, inferior parietal lobule, and temporoparietal junction, as well as the insula, cingulate cortex, and fusiform gyrus, a regional distribution that was nearly identical in both samples (Dice similarity coefficient=0.80). This neuroanatomical pattern is consistent with an existing, well-known proposal, the Parieto-Frontal Integration Theory of Intelligence [7], and is also consistent with research in comparative evolutionary biology showing rapid neocortical expansion of these regions in humans relative to other species. These data provide a framework for understanding the neurobiology of human cognitive abilities, and suggest a potential neurocellular association. PMID:27133866
Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S
2017-05-31
Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.
Schmithorst, Vincent J; Panigrahy, Ashok; Gaynor, J William; Watson, Christopher G; Lee, Vince; Bellinger, David C; Rivkin, Michael J; Newburger, Jane W
2016-08-01
Little is currently known about the impact of congenital heart disease (CHD) on the organization of large-scale brain networks in relation to neurobehavioral outcome. We investigated whether CHD might impact ADHD symptoms via changes in brain structural network topology in a cohort of adolescents with d-transposition of the great arteries (d-TGA) repaired with the arterial switch operation in early infancy and referent subjects. We also explored whether these effects might be modified by apolipoprotein E (APOE) genotype, as the APOE ε2 allele has been associated with worse neurodevelopmental outcomes after repair of d-TGA in infancy. We applied graph analysis techniques to diffusion tensor imaging (DTI) data obtained from 47 d-TGA adolescents and 29 healthy referents to construct measures of structural topology at the global and regional levels. We developed statistical mediation models revealing the respective contributions of d-TGA, APOE genotype, and structural network topology on ADHD outcome as measured by the Connors ADHD/DSM-IV Scales (CADS). Changes in overall network connectivity, integration, and segregation mediated worse ADHD outcomes in d-TGA patients compared to healthy referents; these changes were predominantly in the left and right intrahemispheric regional subnetworks. Exploratory analysis revealed that network topology also mediated detrimental effects of the APOE ε4 allele but improved neurobehavioral outcomes for the APOE ε2 allele. Our results suggest that disruption of organization of large-scale networks may contribute to neurobehavioral dysfunction in adolescents with CHD and that this effect may interact with APOE genotype.
Disruption of posteromedial large-scale neural communication predicts recovery from coma
de Pasquale, Francesco; Vuillaume, Corine; Riu, Beatrice; Loubinoux, Isabelle; Geeraerts, Thomas; Seguin, Thierry; Bounes, Vincent; Fourcade, Olivier; Demonet, Jean-Francois; Péran, Patrice
2015-01-01
Objective: We hypothesize that the major consciousness deficit observed in coma is due to the breakdown of long-range neuronal communication supported by precuneus and posterior cingulate cortex (PCC), and that prognosis depends on a specific connectivity pattern in these networks. Methods: We compared 27 prospectively recruited comatose patients who had severe brain injury (Glasgow Coma Scale score <8; 14 traumatic and 13 anoxic cases) with 14 age-matched healthy participants. Standardized clinical assessment and fMRI were performed on average 4 ± 2 days after withdrawal of sedation. Analysis of resting-state fMRI connectivity involved a hypothesis-driven, region of interest–based strategy. We assessed patient outcome after 3 months using the Coma Recovery Scale–Revised (CRS-R). Results: Patients who were comatose showed a significant disruption of functional connectivity of brain areas spontaneously synchronized with PCC, globally notwithstanding etiology. The functional connectivity strength between PCC and medial prefrontal cortex (mPFC) was significantly different between comatose patients who went on to recover and those who eventually scored an unfavorable outcome 3 months after brain injury (Kruskal-Wallis test, p < 0.001; linear regression between CRS-R and PCC-mPFC activity coupling at rest, Spearman ρ = 0.93, p < 0.003). Conclusion: In both etiology groups (traumatic and anoxic), changes in the connectivity of PCC-centered, spontaneously synchronized, large-scale networks account for the loss of external and internal self-centered awareness observed during coma. Sparing of functional connectivity between PCC and mPFC may predict patient outcome, and further studies are needed to substantiate this potential prognosis biomarker. PMID:26561296
Prediction of brain maturity based on cortical thickness at different spatial resolutions.
Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C
2015-05-01
Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity. Copyright © 2015 Elsevier Inc. All rights reserved.
Herculano-Houzel, Suzana
2011-01-01
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution. PMID:21390261
Herculano-Houzel, Suzana
2011-03-01
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.
Gut Microbes and the Brain: Paradigm Shift in Neuroscience
Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten
2014-01-01
The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392516
Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.
2017-01-01
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680
A pairwise maximum entropy model accurately describes resting-state human brain networks
Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki
2013-01-01
The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410
Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P
2016-03-24
Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.
The Dynamical Balance of the Brain at Rest
Deco, Gustavo; Corbetta, Maurizio
2014-01-01
We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530
Formal Models of the Network Co-occurrence Underlying Mental Operations.
Bzdok, Danilo; Varoquaux, Gaël; Grisel, Olivier; Eickenberg, Michael; Poupon, Cyril; Thirion, Bertrand
2016-06-01
Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition.
Formal Models of the Network Co-occurrence Underlying Mental Operations
Bzdok, Danilo; Varoquaux, Gaël; Grisel, Olivier; Eickenberg, Michael; Poupon, Cyril; Thirion, Bertrand
2016-01-01
Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition. PMID:27310288
Communication between Brain Areas Based on Nested Oscillations
Kastner, Sabine
2017-01-01
Abstract Unraveling how brain regions communicate is crucial for understanding how the brain processes external and internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial role in this process. Two main hypotheses have been suggested for routing of information based on oscillations, namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between two regions is established by phase synchronization of oscillations at lower frequencies (<25 Hz), which serve as temporal reference frame for information carried by high-frequency activity (>40 Hz). Our framework, consistent with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding how large-scale cognitive and perceptual networks operate. PMID:28374013
Large-scale functional networks connect differently for processing words and symbol strings.
Liljeström, Mia; Vartiainen, Johanna; Kujala, Jan; Salmelin, Riitta
2018-01-01
Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalography (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved functional connectivity patterns underlying reading of single words and visual recognition of symbol strings. Word reading emphasized coherence in a left-lateralized network with nodes in classical perisylvian language regions, whereas symbol processing recruited a bilateral network, including connections between frontal and parietal regions previously associated with spatial attention and visual working memory. Our results illustrate the flexible nature of functional networks, whereby processing of different form categories, written words vs. symbol strings, leads to the formation of large-scale functional networks that operate at distinct oscillatory frequencies and incorporate task-relevant regions. These results suggest that category-specific processing should be viewed not so much as a local process but as a distributed neural process implemented in signature networks. For words, increased coherence was detected particularly in the alpha (8-13 Hz) and high gamma (60-90 Hz) frequency bands, whereas increased coherence for symbol strings was observed in the high beta (21-29 Hz) and low gamma (30-45 Hz) frequency range. These findings attest to the role of coherence in specific frequency bands as a general mechanism for integrating stimulus-dependent information across brain regions.
On the nature of the NAA diffusion attenuated MR signal in the central nervous system.
Kroenke, Christopher D; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2004-11-01
In the brain, on a macroscopic scale, diffusion of the intraneuronal constituent N-acetyl-L-aspartate (NAA) appears to be isotropic. In contrast, on a microscopic scale, NAA diffusion is likely highly anisotropic, with displacements perpendicular to neuronal fibers being markedly hindered, and parallel displacements less so. In this report we first substantiate that local anisotropy influences NAA diffusion in vivo by observing differing diffusivities parallel and perpendicular to human corpus callosum axonal fibers. We then extend our measurements to large voxels within rat brains. As expected, the macroscopic apparent diffusion coefficient (ADC) of NAA is practically isotropic due to averaging of the numerous and diverse fiber orientations. We demonstrate that the substantially non-monoexponential diffusion-mediated MR signal decay vs. b value can be quantitatively explained by a theoretical model of NAA confined to an ensemble of differently oriented neuronal fibers. On the microscopic scale, NAA diffusion is found to be strongly anisotropic, with displacements occurring almost exclusively parallel to the local fiber axis. This parallel diffusivity, ADCparallel, is 0.36 +/- 0.01 microm2/ms, and ADCperpendicular is essentially zero. From ADCparallel the apparent viscosity of the neuron cytoplasm is estimated to be twice as large as that of a temperature-matched dilute aqueous solution. (c) 2004 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel
2017-02-01
We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.
Gerraty, Raphael T.; Davidow, Juliet Y.; Wimmer, G. Elliott; Kahn, Itamar
2014-01-01
An important aspect of adaptive learning is the ability to flexibly use past experiences to guide new decisions. When facing a new decision, some people automatically leverage previously learned associations, while others do not. This variability in transfer of learning across individuals has been demonstrated repeatedly and has important implications for understanding adaptive behavior, yet the source of these individual differences remains poorly understood. In particular, it is unknown why such variability in transfer emerges even among homogeneous groups of young healthy participants who do not vary on other learning-related measures. Here we hypothesized that individual differences in the transfer of learning could be related to relatively stable differences in intrinsic brain connectivity, which could constrain how individuals learn. To test this, we obtained a behavioral measure of memory-based transfer outside of the scanner and on a separate day acquired resting-state functional MRI images in 42 participants. We then analyzed connectivity across independent component analysis-derived brain networks during rest, and tested whether intrinsic connectivity in learning-related networks was associated with transfer. We found that individual differences in transfer were related to intrinsic connectivity between the hippocampus and the ventromedial prefrontal cortex, and between these regions and large-scale functional brain networks. Together, the findings demonstrate a novel role for intrinsic brain dynamics in flexible learning-guided behavior, both within a set of functionally specific regions known to be important for learning, as well as between these regions and the default and frontoparietal networks, which are thought to serve more general cognitive functions. PMID:25143610
Mindcontrol: A web application for brain segmentation quality control.
Keshavan, Anisha; Datta, Esha; M McDonough, Ian; Madan, Christopher R; Jordan, Kesshi; Henry, Roland G
2018-04-15
Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
How the amygdala affects emotional memory by altering brain network properties.
Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno
2014-07-01
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István
2016-11-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.
Du, Jia; Younes, Laurent; Qiu, Anqi
2011-01-01
This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors. PMID:27536235
Kurowski, Brad G; Wade, Shari L; Kirkwood, Michael W; Brown, Tanya M; Stancin, Terry; Taylor, H Gerry
2013-12-01
To characterize utilization of mental health services and determine the ability of a behavior problem and clinical functioning assessment to predict utilization of such services within the first 6 months after moderate and severe traumatic brain injury in a large cohort of adolescents. Multicenter cross-sectional study. Outpatient setting of 4 tertiary pediatric hospitals, 2 tertiary general medical centers, and 1 specialized children's hospital. Adolescents age 12-17 years (n = 132), 1-6 months after moderate-to-severe traumatic brain injury. Logistic regression was used to determine the association of mental health service utilization with clinical functioning as assessed by the Child and Adolescent Functional Assessment Scale and behavior problems assessed by the Child Behavioral Checklist. Mental health service utilization measured by the Service Assessment for Children and Adolescents. Behavioral or functional impairment occurred in 37%-56%. Of the total study population, 24.2% reported receiving outpatient mental health services, 8.3% reported receiving school services, and 28.8% reported receiving any type of mental health service. Use of any (school or outpatient) mental health service was associated with borderline to impaired total Child and Adolescent Functional Assessment Scale (odds ratio 3.50 [95% confidence interval, 1.46-8.40]; P < .01) and the Child Behavioral Checklist Total Competence (odds ratio 5.08 [95% confidence interval, 2.02-12.76]; P < .01). A large proportion of participants had unmet mental health needs. Both the Child and Adolescent Functional Assessment Scale and the Child Behavioral Checklist identified individuals who would likely benefit from mental health services in outpatient or school settings. Future research should focus on methods to ensure early identification by health care providers of adolescents with traumatic brain injury in need of mental health services. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito
2018-04-24
Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.
Mapping human brain networks with cortico-cortical evoked potentials
Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.
2014-01-01
The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306
Losing protein in the brain: the case of progranulin.
Ghidoni, Roberta; Paterlini, Anna; Albertini, Valentina; Binetti, Giuliano; Benussi, Luisa
2012-10-02
It is well known that progranulin protein is involved in wound repair, inflammation, and tumor formation. The wedding between progranulin and brain was celebrated in 2006 with the involvement of progranulin gene (GRN) in Frontotemporal lobar degeneration (FTLD), the most common form of early-onset dementia: up to date, 75 mutations have been detected in FTLD patients as well as in patients with widely variable clinical phenotypes. All pathogenic GRN mutations identified thus far cause the disease through a uniform mechanism, i.e. loss of functional progranulin or haploinsufficiency. Studies on GRN knockout mice suggest that progranulin-related neurodegenerative diseases may result from lifetime depletion of neurotrophic support together with cumulative damage in association with dysregulated inflammation, thus highlighting possible new molecular targets for GRN-related FTLD treatment. Recently, the dosage of plasma progranulin has been proposed as a useful tool for a quick and inexpensive large-scale screening of affected and unaffected carriers of GRN mutations. Before it is systematically translated into clinical practice and, more importantly, included into diagnostic criteria for dementias, further standardization of plasma progranulin test and harmonization of its use are required. Once a specific treatment becomes available for these pathologies, this test - being applicable on large scale - will represent an important step towards personalized healthcare. This article is part of a Special Issue entitled: Brain Integration. Copyright © 2012 Elsevier B.V. All rights reserved.
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Lifestyle-dependent brain change: a longitudinal cohort MRI study.
Kim, Regina Ey; Yun, Chang-Ho; Thomas, Robert J; Oh, Jang-Hoon; Johnson, Hans J; Kim, Soriul; Lee, Seungku; Seo, Hyung Suk; Shin, Chol
2018-05-07
We investigated both independent and interconnected effects of 3 lifestyle factors on brain volume, measuring yearly changes using large-scale longitudinal magnetic resonance imaging, in middle-aged to older adults. We measured brain volumes in a cohort (n = 984, 49-79 years) from the Korean Genome and Epidemiology Study group, using baseline and follow-up estimates after 4 years. In our analysis, the accelerated brain atrophy in normal aging was observed across regions (e.g., brain tissue: -0.098 ± 0.01 mL/y, p < 0.001). An independent lifestyle-specific trend of brain atrophy across time was also evident in men, where smoking (p = 0.012) and physical activity (p = 0.014) showed the strongest association with the atrophy rate. Linear regression analysis of the interconnected effect revealed that brain atrophy is mitigated by intense physical activity in smoking males. Lifestyle factors did not show any significant effect on brain volume in women. These results provide important information regarding lifestyle factors that affect brain aging in mid-to-late adulthood. Our findings may aid in the identification of preventive measures against dementia. Copyright © 2018 Elsevier Inc. All rights reserved.
A regulatory toolbox of MiniPromoters to drive selective expression in the brain
Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.
2010-01-01
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748
A review of structural and functional brain networks: small world and atlas.
Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang
2015-03-01
Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.
Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong
2015-01-01
For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the underlying neurobiological mechanisms remain elusive. Using a large sample of patients with varying degrees of consciousness loss, we demonstrate that intrinsic functional connectivity strength in many brain regions, especially in the posterior cingulate cortex and precuneus, significantly correlated with consciousness level and recovery outcome. We further demonstrate that the functional connectivity pattern of these regions can predict patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%. Our study thus provides potentially important biomarkers of acquired brain injury in clinical diagnosis, prediction of recovery outcome, and decision making for treatment strategies for patients with severe loss of consciousness. PMID:26377477
Whispering - The hidden side of auditory communication.
Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier
2016-11-15
Whispering is a unique expression mode that is specific to auditory communication. Individuals switch their vocalization mode to whispering especially when affected by inner emotions in certain social contexts, such as in intimate relationships or intimidating social interactions. Although this context-dependent whispering is adaptive, whispered voices are acoustically far less rich than phonated voices and thus impose higher hearing and neural auditory decoding demands for recognizing their socio-affective value by listeners. The neural dynamics underlying this recognition especially from whispered voices are largely unknown. Here we show that whispered voices in humans are considerably impoverished as quantified by an entropy measure of spectral acoustic information, and this missing information needs large-scale neural compensation in terms of auditory and cognitive processing. Notably, recognizing the socio-affective information from voices was slightly more difficult from whispered voices, probably based on missing tonal information. While phonated voices elicited extended activity in auditory regions for decoding of relevant tonal and time information and the valence of voices, whispered voices elicited activity in a complex auditory-frontal brain network. Our data suggest that a large-scale multidirectional brain network compensates for the impoverished sound quality of socially meaningful environmental signals to support their accurate recognition and valence attribution. Copyright © 2016 Elsevier Inc. All rights reserved.
Lange, Rael T; Brickell, Tracey A; Bailie, Jason M; Tulsky, David S; French, Louis M
2016-01-01
To examine the clinical utility and psychometric properties of the Traumatic Brain Injury Quality of Life (TBI-QOL) scale in a US military population. One hundred fifty-two US military service members (age: M = 34.3, SD = 9.4; 89.5% men) prospectively enrolled from the Walter Reed National Military Medical Center and other nationwide community outreach initiatives. Participants included 99 service members who had sustained a mild traumatic brain injury (TBI) and 53 injured or noninjured controls without TBI (n = 29 and n = 24, respectively). Participants completed the TBI-QOL scale and 5 other behavioral measures, on average, 33.8 months postinjury (SD = 37.9). Fourteen TBI-QOL subscales; Neurobehavioral Symptom Inventory; Posttraumatic Stress Disorder Checklist-Civilian version; Alcohol Use Disorders Identification Test; Combat Exposure Scale. The internal consistency reliability of the TBI-QOL scales ranged from α = .91 to α = .98. The convergent and discriminant validity of the 14 TBI-QOL subscales was high. The mild TBI group had significantly worse scores on 10 of the 14 TBI-QOL subscales than the control group (range, P < .001 to P = .043). Effect sizes ranged from medium to very large (d = 0.35 to d = 1.13). The largest differences were found on the Cognition-General Concerns (d = 1.13), Executive Function (d = 0.94), Grief-Loss (d = 0.88), Pain Interference (d = 0.83), and Headache Pain (d = 0.83) subscales. These results support the use of the TBI-QOL scale as a measure of health-related quality of life in a mild TBI military sample. Additional research is recommended to further evaluate the clinical utility of the TBI-QOL scale in both military and civilian settings.
Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness
Liu, Xiping; Pillay, Siveshigan
2015-01-01
Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200
Kozma, Robert
2016-12-01
Walter J. Freeman was a giant of the field of neuroscience whose visionary work contributed various experimental and theoretical breakthroughs to brain research in the past 60 years. He has pioneered a number of Electroencephalogram and Electrocorticogram tools and approaches that shaped the field, while "Freeman Neurodynamics" is a theoretical concept that is widely known, used, and respected among neuroscientists all over the world. His recent death is a profound loss to neuroscience and biomedical engineering. Many of his revolutionary ideas on brain dynamics have been ahead of their time by decades. We summarize his following groundbreaking achievements: (1) Mass Action in the Nervous System, from microscopic (single cell) recordings, through mesoscopic populations, to large-scale collective brain patterns underlying cognition; (2) Freeman-Kachalsky model of multi-scale, modular brain dynamics; (3) cinematic theory of cognitive dynamics; (4) phase transitions in cortical dynamics modeled with random graphs and quantum field theory; (5) philosophical aspects of intentionality, consciousness, and the unity of brain-mind-body. His work has been admired by many of his neuroscientist colleagues and followers. At the same time, his multidisciplinary approach combining advanced concepts of control theory and the mathematics of nonlinear systems and chaos, poses significant challenges to those who wish to thoroughly understand his message. The goal of this commemorative paper is to review key aspects of Freeman's neurodynamics and to provide some handles to gain better understanding about Freeman's extraordinary intellectual achievement.
Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime
2016-01-01
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks
Zhu, Dajiang; Guo, Lei; Jiang, Xi; Zhang, Tuo; Zhang, Degang; Chen, Hanbo; Deng, Fan; Faraco, Carlos; Jin, Changfeng; Wee, Chong-Yaw; Yuan, Yixuan; Lv, Peili; Yin, Yan; Hu, Xiaolei; Duan, Lian; Hu, Xintao; Han, Junwei; Wang, Lihong; Shen, Dinggang; Miller, L Stephen
2013-01-01
Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work. PMID:22490548
‘My Virtual Dream’: Collective Neurofeedback in an Immersive Art Environment
Kovacevic, Natasha; Ritter, Petra; Tays, William; Moreno, Sylvain; McIntosh, Anthony Randal
2015-01-01
While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions. PMID:26154513
Spontaneous rapid reduction of a large acute subdural hematoma.
Lee, Chul-Hee; Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-12-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy.
Spontaneous Rapid Reduction of a Large Acute Subdural Hematoma
Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-01-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy. PMID:19949689
Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models
NASA Astrophysics Data System (ADS)
Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.
2014-12-01
The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.
TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain
Matzke, Henrik; Schirner, Michael; Vollbrecht, Daniel; Rothmeier, Simon; Llarena, Adalberto; Rojas, Raúl; Triebkorn, Paul; Domide, Lia; Mersmann, Jochen; Solodkin, Ana; Jirsa, Viktor K.; McIntosh, Anthony Randal; Ritter, Petra
2015-01-01
The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org. PMID:26635597
Functional Brain Connectivity as a New Feature for P300 Speller.
Kabbara, Aya; Khalil, Mohamad; El-Falou, Wassim; Eid, Hassan; Hassan, Mahmoud
2016-01-01
The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of 'P300 speller'. The proposed approach was compared to the well-known methods proposed in the state of the art of "P300 Speller", mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.
Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate
Dotson, Nicholas M.; Goodell, Baldwin; Salazar, Rodrigo F.; Hoffman, Steven J.; Gray, Charles M.
2015-01-01
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field. PMID:26578906
Integrating neuroinformatics tools in TheVirtualBrain.
Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.
Integrating neuroinformatics tools in TheVirtualBrain
Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617
Whole-brain serial-section electron microscopy in larval zebrafish.
Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian
2017-05-18
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.
2015-01-01
Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908
Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C
2015-01-01
Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.
Whole-brain serial-section electron microscopy in larval zebrafish
NASA Astrophysics Data System (ADS)
Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian
2017-05-01
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
A conserved pattern of differential expansion of cortical areas in simian primates.
Chaplin, Tristan A; Yu, Hsin-Hao; Soares, Juliana G M; Gattass, Ricardo; Rosa, Marcello G P
2013-09-18
The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.
Prediction complements explanation in understanding the developing brain.
Rosenberg, Monica D; Casey, B J; Holmes, Avram J
2018-02-21
A central aim of human neuroscience is understanding the neurobiology of cognition and behavior. Although we have made significant progress towards this goal, reliance on group-level studies of the developed adult brain has limited our ability to explain population variability and developmental changes in neural circuitry and behavior. In this review, we suggest that predictive modeling, a method for predicting individual differences in behavior from brain features, can complement descriptive approaches and provide new ways to account for this variability. Highlighting the outsized scientific and clinical benefits of prediction in developmental populations including adolescence, we show that predictive brain-based models are already providing new insights on adolescent-specific risk-related behaviors. Together with large-scale developmental neuroimaging datasets and complementary analytic approaches, predictive modeling affords us the opportunity and obligation to identify novel treatment targets and individually tailor the course of interventions for developmental psychopathologies that impact so many young people today.
AlRyalat, Saif Aldeen
2017-01-01
Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.
The social brain: scale-invariant layering of Erdős-Rényi networks in small-scale human societies.
Harré, Michael S; Prokopenko, Mikhail
2016-05-01
The cognitive ability to form social links that can bind individuals together into large cooperative groups for safety and resource sharing was a key development in human evolutionary and social history. The 'social brain hypothesis' argues that the size of these social groups is based on a neurologically constrained capacity for maintaining long-term stable relationships. No model to date has been able to combine a specific socio-cognitive mechanism with the discrete scale invariance observed in ethnographic studies. We show that these properties result in nested layers of self-organizing Erdős-Rényi networks formed by each individual's ability to maintain only a small number of social links. Each set of links plays a specific role in the formation of different social groups. The scale invariance in our model is distinct from previous 'scale-free networks' studied using much larger social groups; here, the scale invariance is in the relationship between group sizes, rather than in the link degree distribution. We also compare our model with a dominance-based hierarchy and conclude that humans were probably egalitarian in hunter-gatherer-like societies, maintaining an average maximum of four or five social links connecting all members in a largest social network of around 132 people. © 2016 The Author(s).
3D deformable image matching: a hierarchical approach over nested subspaces
NASA Astrophysics Data System (ADS)
Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul
2000-06-01
This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.
How can we study reasoning in the brain?
Papo, David
2015-01-01
The brain did not develop a dedicated device for reasoning. This fact bears dramatic consequences. While for perceptuo-motor functions neural activity is shaped by the input's statistical properties, and processing is carried out at high speed in hardwired spatially segregated modules, in reasoning, neural activity is driven by internal dynamics and processing times, stages, and functional brain geometry are largely unconstrained a priori. Here, it is shown that the complex properties of spontaneous activity, which can be ignored in a short-lived event-related world, become prominent at the long time scales of certain forms of reasoning. It is argued that the neural correlates of reasoning should in fact be defined in terms of non-trivial generic properties of spontaneous brain activity, and that this implies resorting to concepts, analytical tools, and ways of designing experiments that are as yet non-standard in cognitive neuroscience. The implications in terms of models of brain activity, shape of the neural correlates, methods of data analysis, observability of the phenomenon, and experimental designs are discussed. PMID:25964755
How can we study reasoning in the brain?
Papo, David
2015-01-01
The brain did not develop a dedicated device for reasoning. This fact bears dramatic consequences. While for perceptuo-motor functions neural activity is shaped by the input's statistical properties, and processing is carried out at high speed in hardwired spatially segregated modules, in reasoning, neural activity is driven by internal dynamics and processing times, stages, and functional brain geometry are largely unconstrained a priori. Here, it is shown that the complex properties of spontaneous activity, which can be ignored in a short-lived event-related world, become prominent at the long time scales of certain forms of reasoning. It is argued that the neural correlates of reasoning should in fact be defined in terms of non-trivial generic properties of spontaneous brain activity, and that this implies resorting to concepts, analytical tools, and ways of designing experiments that are as yet non-standard in cognitive neuroscience. The implications in terms of models of brain activity, shape of the neural correlates, methods of data analysis, observability of the phenomenon, and experimental designs are discussed.
High-resolution digital brain atlases: a Hubble telescope for the brain.
Jones, Edward G; Stone, James M; Karten, Harvey J
2011-05-01
We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.
Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.
Pinho, Ana Luísa; Amadon, Alexis; Ruest, Torsten; Fabre, Murielle; Dohmatob, Elvis; Denghien, Isabelle; Ginisty, Chantal; Becuwe-Desmidt, Séverine; Roger, Séverine; Laurier, Laurence; Joly-Testault, Véronique; Médiouni-Cloarec, Gaëlle; Doublé, Christine; Martins, Bernadette; Pinel, Philippe; Eger, Evelyn; Varoquaux, Gaël; Pallier, Christophe; Dehaene, Stanislas; Hertz-Pannier, Lucie; Thirion, Bertrand
2018-06-12
Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.
Computing Arm Movements with a Monkey Brainet.
Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L
2015-07-09
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.
Computing Arm Movements with a Monkey Brainet
Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.
2015-01-01
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo
2015-09-01
Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.
NASA Astrophysics Data System (ADS)
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo
2015-09-01
Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.
An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.
Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl
2014-10-28
Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M.; de Castro Leal, Maria E.; Bertelsen, Mads F.; Alagaili, Abdulaziz N.; Mohammad, Osama B.; Manger, Paul R.; Herculano-Houzel, Suzana
2017-01-01
Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons. PMID:29311850
Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M; de Castro Leal, Maria E; Bertelsen, Mads F; Alagaili, Abdulaziz N; Mohammad, Osama B; Manger, Paul R; Herculano-Houzel, Suzana
2017-01-01
Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.
Nicotine increases brain functional network efficiency.
Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R
2012-10-15
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.
Gut microbes and the brain: paradigm shift in neuroscience.
Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K; Cryan, John F; Tillisch, Kirsten
2014-11-12
The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. Copyright © 2014 the authors 0270-6474/14/3415490-07$15.00/0.
Realistic modeling of neurons and networks: towards brain simulation.
D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
2013-01-01
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
Realistic modeling of neurons and networks: towards brain simulation
D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652
Nicotine Increases Brain Functional Network Efficiency
Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.
2012-01-01
Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985
Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics
Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella
2015-01-01
Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468
Brain MR image segmentation using NAMS in pseudo-color.
Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong
2017-12-01
Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.
Individual brain structure and modelling predict seizure propagation
Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K.
2017-01-01
Abstract See Lytton (doi:10.1093/awx018) for a scientific commentary on this article. Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. PMID:28364550
A comparative study of two prediction models for brain tumor progression
NASA Astrophysics Data System (ADS)
Zhou, Deqi; Tran, Loc; Wang, Jihong; Li, Jiang
2015-03-01
MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images. We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight coadaptation to avoid over-fitting (Hinton et al. 2012). We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity and precision. The quantitative performance metrics were calculated as average over the four patients. Experimental results show that both the manifold learning and deep neural network models produced better results compared to using raw data and principle component analysis (PCA), and the deep learning model is a better method than manifold learning on this data set. The averaged sensitivity and specificity by deep learning are comparable with these by the manifold learning approach while its precision is considerably higher. This means that the predicted abnormal points by deep learning are more likely to correspond to the actual progression region.
Gerraty, Raphael T; Davidow, Juliet Y; Wimmer, G Elliott; Kahn, Itamar; Shohamy, Daphna
2014-08-20
An important aspect of adaptive learning is the ability to flexibly use past experiences to guide new decisions. When facing a new decision, some people automatically leverage previously learned associations, while others do not. This variability in transfer of learning across individuals has been demonstrated repeatedly and has important implications for understanding adaptive behavior, yet the source of these individual differences remains poorly understood. In particular, it is unknown why such variability in transfer emerges even among homogeneous groups of young healthy participants who do not vary on other learning-related measures. Here we hypothesized that individual differences in the transfer of learning could be related to relatively stable differences in intrinsic brain connectivity, which could constrain how individuals learn. To test this, we obtained a behavioral measure of memory-based transfer outside of the scanner and on a separate day acquired resting-state functional MRI images in 42 participants. We then analyzed connectivity across independent component analysis-derived brain networks during rest, and tested whether intrinsic connectivity in learning-related networks was associated with transfer. We found that individual differences in transfer were related to intrinsic connectivity between the hippocampus and the ventromedial prefrontal cortex, and between these regions and large-scale functional brain networks. Together, the findings demonstrate a novel role for intrinsic brain dynamics in flexible learning-guided behavior, both within a set of functionally specific regions known to be important for learning, as well as between these regions and the default and frontoparietal networks, which are thought to serve more general cognitive functions. Copyright © 2014 the authors 0270-6474/14/3411297-07$15.00/0.
Cisler, Josh M; Sigel, Benjamin A; Kramer, Teresa L; Smitherman, Sonet; Vanderzee, Karin; Pemberton, Joy; Kilts, Clinton D
2016-01-01
Posttraumatic stress disorder (PTSD) is often chronic and disabling across the lifespan. The gold standard treatment for adolescent PTSD is Trauma-Focused Cognitive-Behavioral Therapy (TF-CBT), though treatment response is variable and mediating neural mechanisms are not well understood. Here, we test whether PTSD symptom reduction during TF-CBT is associated with individual differences in large-scale brain network organization during emotion processing. Twenty adolescent girls, aged 11-16, with PTSD related to assaultive violence completed a 12-session protocol of TF-CBT. Participants completed an emotion processing task, in which neutral and fearful facial expressions were presented either overtly or covertly during 3T fMRI, before and after treatment. Analyses focused on characterizing network properties of modularity, assortativity, and global efficiency within an 824 region-of-interest brain parcellation separately during each of the task blocks using weighted functional connectivity matrices. We similarly analyzed an existing dataset of healthy adolescent girls undergoing an identical emotion processing task to characterize normative network organization. Pre-treatment individual differences in modularity, assortativity, and global efficiency during covert fear vs neutral blocks predicted PTSD symptom reduction. Patients who responded better to treatment had greater network modularity and assortativity but lesser efficiency, a pattern that closely resembled the control participants. At a group level, greater symptom reduction was associated with greater pre-to-post-treatment increases in network assortativity and modularity, but this was more pronounced among participants with less symptom improvement. The results support the hypothesis that modularized and resilient brain organization during emotion processing operate as mechanisms enabling symptom reduction during TF-CBT.
Low-frequency connectivity is associated with mild traumatic brain injury.
Dunkley, B T; Da Costa, L; Bethune, A; Jetly, R; Pang, E W; Taylor, M J; Doesburg, S M
2015-01-01
Mild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges.
The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks
Hillary, Frank G.; Rajtmajer, Sarah M.; Roman, Cristina A.; Medaglia, John D.; Slocomb-Dluzen, Julia E.; Calhoun, Vincent D.; Good, David C.; Wylie, Glenn R.
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the “rich club”. The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury. PMID:25121760
The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.
Hillary, Frank G; Rajtmajer, Sarah M; Roman, Cristina A; Medaglia, John D; Slocomb-Dluzen, Julia E; Calhoun, Vincent D; Good, David C; Wylie, Glenn R
2014-01-01
There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.
Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.
Haberl, Matthias G; Ginger, Melanie; Frick, Andreas
2017-01-01
Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Exact solution for the optimal neuronal layout problem.
Chklovskii, Dmitri B
2004-10-01
Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.
Toward a whole-body neuroprosthetic.
Lebedev, Mikhail A; Nicolelis, Miguel A L
2011-01-01
Brain-machine interfaces (BMIs) hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurological diseases, and limb loss. Considerable progress has been achieved in BMIs that enact arm movements, and initial work has been done on BMIs for lower limb and trunk control. These developments put Duke University Center for Neuroengineering in the position to develop the first BMI for whole-body control. This whole-body BMI will incorporate very large-scale brain recordings, advanced decoding algorithms, artificial sensory feedback based on electrical stimulation of somatosensory areas, virtual environment representations, and a whole-body exoskeleton. This system will be first tested in nonhuman primates and then transferred to clinical trials in humans. Copyright © 2011 Elsevier B.V. All rights reserved.
The Myth of Optimality in Clinical Neuroscience.
Holmes, Avram J; Patrick, Lauren M
2018-03-01
Clear evidence supports a dimensional view of psychiatric illness. Within this framework the expression of disorder-relevant phenotypes is often interpreted as a breakdown or departure from normal brain function. Conversely, health is reified, conceptualized as possessing a single ideal state. We challenge this concept here, arguing that there is no universally optimal profile of brain functioning. The evolutionary forces that shape our species select for a staggering diversity of human behaviors. To support our position we highlight pervasive population-level variability within large-scale functional networks and discrete circuits. We propose that, instead of examining behaviors in isolation, psychiatric illnesses can be best understood through the study of domains of functioning and associated multivariate patterns of variation across distributed brain systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alcohol Affects the Brain's Resting-State Network in Social Drinkers
Lithari, Chrysa; Klados, Manousos A.; Pappas, Costas; Albani, Maria; Kapoukranidou, Dorothea; Kovatsi, Leda
2012-01-01
Acute alcohol intake is known to enhance inhibition through facilitation of GABAA receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected, to increased GABA transmission and functional connectivity, while long-term alcohol consumption may be linked to exactly the opposite effect. PMID:23119078
Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.
Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F
2014-01-01
The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.
VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
Chen, Hao; Dou, Qi; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann
2018-04-15
Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain structures is critical. Copyright © 2017 Elsevier Inc. All rights reserved.
Ridgway, Sam H; Hanson, Alicia C
2014-01-01
Among cetaceans, killer whales and sperm whales have the widest distribution in the world's oceans. Both species use echolocation, are long-lived, and have the longest periods of gestation among whales. Sperm whales dive much deeper and much longer than killer whales. It has long been thought that sperm whales have the largest brains of all living things, but our brain mass evidence, from published sources and our own specimens, shows that big males of these two species share this distinction. Despite this, we also find that cerebellum size is very different between killer whales and sperm whales. The sperm whale cerebellum is only about 7% of the total brain mass, while the killer whale cerebellum is almost 14%. These results are significant because they contradict claims that the cerebellum scales proportionally with the rest of the brain in all mammals. They also correct the generalization that all cetaceans have enlarged cerebella. We suggest possible reasons for the existence of such a large cerebellar size difference between these two species. Cerebellar function is not fully understood, and comparing the abilities of animals with differently sized cerebella can help uncover functional roles of the cerebellum in humans and animals. Here we show that the large cerebellar difference likely relates to evolutionary history, diving, sensory capability, and ecology. © 2014 S. Karger AG, Basel.
Dykstra, Andrew R.; Halgren, Eric; Thesen, Thomas; Carlson, Chad E.; Doyle, Werner; Madsen, Joseph R.; Eskandar, Emad N.; Cash, Sydney S.
2011-01-01
The auditory system must constantly decompose the complex mixture of sound arriving at the ear into perceptually independent streams constituting accurate representations of individual sources in the acoustic environment. How the brain accomplishes this task is not well understood. The present study combined a classic behavioral paradigm with direct cortical recordings from neurosurgical patients with epilepsy in order to further describe the neural correlates of auditory streaming. Participants listened to sequences of pure tones alternating in frequency and indicated whether they heard one or two “streams.” The intracranial EEG was simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal cortex. Like healthy subjects, patients heard one stream when the frequency separation between tones was small and two when it was large. Robust evoked-potential correlates of frequency separation were observed over widespread brain areas. Waveform morphology was highly variable across individual electrode sites both within and across gross brain regions. Surprisingly, few evoked-potential correlates of perceptual organization were observed after controlling for physical stimulus differences. The results indicate that the cortical areas engaged during the streaming task are more complex and widespread than has been demonstrated by previous work, and that, by-and-large, correlates of bistability during streaming are probably located on a spatial scale not assessed – or in a brain area not examined – by the present study. PMID:21886615
Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity
Samu, David; Seth, Anil K.; Nowotny, Thomas
2014-01-01
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain. PMID:24699277
Cortical travelling waves: mechanisms and computational principles
Muller, Lyle; Chavane, Frédéric; Reynolds, John
2018-01-01
Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex. PMID:29563572
Flexible Organic Electronics for Use in Neural Sensing
Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie
2016-01-01
Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558
Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2015-01-01
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.
Thompson, Paul M; Stein, Jason L; Medland, Sarah E; Hibar, Derrek P; Vasquez, Alejandro Arias; Renteria, Miguel E; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J; Martin, Nicholas G; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C; Andreassen, Ole A; Apostolova, Liana G; Appel, Katja; Armstrong, Nicola J; Aribisala, Benjamin; Bastin, Mark E; Bauer, Michael; Bearden, Carrie E; Bergmann, Orjan; Binder, Elisabeth B; Blangero, John; Bockholt, Henry J; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I; Booth, Tom; Bowman, Ian J; Bralten, Janita; Brouwer, Rachel M; Brunner, Han G; Brohawn, David G; Buckner, Randy L; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R; Calhoun, Vince D; Cannon, Dara M; Cantor, Rita M; Carless, Melanie A; Caseras, Xavier; Cavalleri, Gianpiero L; Chakravarty, M Mallar; Chang, Kiki D; Ching, Christopher R K; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Deary, Ian J; de Geus, Eco J C; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E; Foroud, Tatiana; Fox, Peter T; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C; Godlewska, Beata; Goldstein, Rita Z; Gollub, Randy L; Grabe, Hans J; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E; Gur, Ruben C; Göring, Harald H H; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B; Hall, Jeremy; Hardy, John; Hartman, Catharina A; Hass, Johanna; Hatton, Sean N; Haukvik, Unn K; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hoogman, Martine; Hong, L Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Hwang, Kristy S; Jack, Clifford R; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G; Kahn, René S; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B J; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A; Lauriello, John; Lawrie, Stephen M; Lee, Phil H; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D; Li, Chiang-Shan; Liberg, Benny; Liewald, David C; Liu, Xinmin; Lopez, Lorna M; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W J; Macqueen, Glenda M; Malt, Ulrik F; Mandl, René; Manoach, Dara S; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Moses, Eric K; Mueller, Bryon A; Muñoz Maniega, Susana; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E; Nilsson, Lars-Göran; Nugent, Allison C; Nyberg, Lars; Olvera, Rene L; Oosterlaan, Jaap; Ophoff, Roel A; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D; Penninx, Brenda W; Peterson, Charles P; Pfennig, Andrea; Phillips, Mary; Pike, G Bruce; Poline, Jean-Baptiste; Potkin, Steven G; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L; Roffman, Joshua L; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J; Royle, Natalie A; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S; Salami, Alireza; Satterthwaite, Theodore D; Savitz, Jonathan; Saykin, Andrew J; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G; Schork, Andrew J; Schulz, S Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M; Simmons, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soares, Jair C; Sponheim, Scott R; Sprooten, Emma; Starr, John M; Steen, Vidar M; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G; Teumer, Alexander; Toga, Arthur W; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J; van Eijk, Kristel; van Erp, Theo G M; van Haren, Neeltje E M; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C; Veltman, Dick J; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M; Weale, Michael E; Weiner, Michael W; Wen, Wei; Westlye, Lars T; Whalley, Heather C; Whelan, Christopher D; White, Tonya; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P; Thalamuthu, Anbupalam; Schofield, Peter R; Freimer, Nelson B; Lawrence, Natalia S; Drevets, Wayne
2014-06-01
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats.
Ash, Jessica A; Lu, Hanbing; Taxier, Lisa R; Long, Jeffrey M; Yang, Yihong; Stein, Elliot A; Rapp, Peter R
2016-10-25
Changes in the functional connectivity (FC) of large-scale brain networks are a prominent feature of brain aging, but defining their relationship to variability along the continuum of normal and pathological cognitive outcomes has proved challenging. Here we took advantage of a well-characterized rat model that displays substantial individual differences in hippocampal memory during aging, uncontaminated by slowly progressive, spontaneous neurodegenerative disease. By this approach, we aimed to interrogate the underlying neural network substrates that mediate aging as a uniquely permissive condition and the primary risk for neurodegeneration. Using resting state (rs) blood oxygenation level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated a large-scale network that had a spatial distribution similar to the default mode network (DMN) in humans, consistent with earlier findings in younger animals. Between-group whole brain contrasts revealed that aged subjects with documented deficits in memory (aged impaired) displayed widespread reductions in cortical FC, prominently including many areas outside the DMN, relative to both young adults (Y) and aged rats with preserved memory (aged unimpaired, AU). Whereas functional connectivity was relatively preserved in AU rats, they exhibited a qualitatively distinct network signature, comprising the loss of an anticorrelated network observed in Y adults. Together the findings demonstrate that changes in rs-FC are specifically coupled to variability in the cognitive outcome of aging, and that successful neurocognitive aging is associated with adaptive remodeling, not simply the persistence of youthful network dynamics.
Spreng, R Nathan; Stevens, W Dale; Viviano, Joseph D; Schacter, Daniel L
2016-09-01
Anticorrelation between the default and dorsal attention networks is a central feature of human functional brain organization. Hallmarks of aging include impaired default network modulation and declining medial temporal lobe (MTL) function. However, it remains unclear if this anticorrelation is preserved into older adulthood during task performance, or how this is related to the intrinsic architecture of the brain. We hypothesized that older adults would show reduced within- and increased between-network functional connectivity (FC) across the default and dorsal attention networks. To test this hypothesis, we examined the effects of aging on task-related and intrinsic FC using functional magnetic resonance imaging during an autobiographical planning task known to engage the default network and during rest, respectively, with young (n = 72) and older (n = 79) participants. The task-related FC analysis revealed reduced anticorrelation with aging. At rest, there was a robust double dissociation, with older adults showing a pattern of reduced within-network FC, but increased between-network FC, across both networks, relative to young adults. Moreover, older adults showed reduced intrinsic resting-state FC of the MTL with both networks suggesting a fractionation of the MTL memory system in healthy aging. These findings demonstrate age-related dedifferentiation among these competitive large-scale networks during both task and rest, consistent with the idea that age-related changes are associated with a breakdown in the intrinsic functional architecture within and among large-scale brain networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks.
Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena
2014-01-01
A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.
Neurolinguistic approach to natural language processing with applications to medical text analysis.
Duch, Włodzisław; Matykiewicz, Paweł; Pestian, John
2008-12-01
Understanding written or spoken language presumably involves spreading neural activation in the brain. This process may be approximated by spreading activation in semantic networks, providing enhanced representations that involve concepts not found directly in the text. The approximation of this process is of great practical and theoretical interest. Although activations of neural circuits involved in representation of words rapidly change in time snapshots of these activations spreading through associative networks may be captured in a vector model. Concepts of similar type activate larger clusters of neurons, priming areas in the left and right hemisphere. Analysis of recent brain imaging experiments shows the importance of the right hemisphere non-verbal clusterization. Medical ontologies enable development of a large-scale practical algorithm to re-create pathways of spreading neural activations. First concepts of specific semantic type are identified in the text, and then all related concepts of the same type are added to the text, providing expanded representations. To avoid rapid growth of the extended feature space after each step only the most useful features that increase document clusterization are retained. Short hospital discharge summaries are used to illustrate how this process works on a real, very noisy data. Expanded texts show significantly improved clustering and may be classified with much higher accuracy. Although better approximations to the spreading of neural activations may be devised a practical approach presented in this paper helps to discover pathways used by the brain to process specific concepts, and may be used in large-scale applications.
Large-scale Granger causality analysis on resting-state functional MRI
NASA Astrophysics Data System (ADS)
D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel
2016-03-01
We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.
Shin, Jeong-Hyeon; Um, Yu Hyun; Lee, Chang Uk; Lim, Hyun Kook; Seong, Joon-Kyung
2018-03-15
Coordinated and pattern-wise changes in large scale gray matter structural networks reflect neural circuitry dysfunction in late life depression (LLD), which in turn is associated with emotional dysregulation and cognitive impairments. However, due to methodological limitations, there have been few attempts made to identify individual-level structural network properties or sub-networks that are involved in important brain functions in LLD. In this study, we sought to construct individual-level gray matter structural networks using average cortical thicknesses of several brain areas to investigate the characteristics of the gray matter structural networks in normal controls and LLD patients. Additionally, we investigated the structural sub-networks correlated with several clinical measurements including cognitive impairment and depression severity. We observed that small worldness, clustering coefficients, global and local efficiency, and hub structures in the brains of LLD patients were significantly different from healthy controls. We further found that a sub-network including the anterior cingulate, dorsolateral prefrontal cortex and superior prefrontal cortex is significantly associated with attention control and executive function. The severity of depression was associated with the sub-networks comprising the salience network, including the anterior cingulate and insula. We investigated cortico-cortical connectivity, but omitted the subcortical structures such as the striatum and thalamus. We report differences in patterns between several clinical measurements and sub-networks from large-scale and individual-level cortical thickness networks in LLD. Copyright © 2018 Elsevier B.V. All rights reserved.
Mapping human brain networks with cortico-cortical evoked potentials.
Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D
2014-10-05
The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks
Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena
2014-01-01
A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic–phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits. PMID:24723897
Dynamics of Intersubject Brain Networks during Anxious Anticipation
Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz
2017-01-01
How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184
Synchronized delta oscillations correlate with the resting-state functional MRI signal
Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.
2007-01-01
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges
2018-01-01
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ. PMID:29324666
Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Katz, Amanda; Sidransky, David; Kovalchuk, Olga; Kolb, Bryan
2017-01-01
Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain. PMID:28758896
Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.
2013-01-01
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307
A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration
Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.
2017-01-01
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725
van ’t Ent, D.; Lehn, H.; Derks, E.M.; Hudziak, J.J.; Van Strien, N.M.; Veltman, D.J.; De Geus, E.J.C.; Todd, R.D.; Boomsma, D.I.
2007-01-01
Several structural brain abnormalities have been reported in patients with Attention Deficit Hyperactivity Disorder (ADHD). However, the aetiology of these brain changes is still unclear. To investigate genetic and environmental influences on ADHD related neurobiological changes we performed Voxel Based Morphometry on MRI scans from monozygotic (MZ) twins selected from a large longitudinal population database to be highly concordant or highly discordant for ratings on the Child Behavior Checklist Attention Problem scale (CBCL-AP). Children scoring low on the CBCL-AP are at low risk for ADHD, whereas children scoring high on this scale are at high risk for ADHD. Brain differences between concordant high risk twin pairs and concordant low risk twin pairs likely reflect the genetic risk for ADHD; brain differences between the low risk and high risk twins from discordant MZ twin pairs reflect the environmental risk for ADHD. A major difference between comparisons of high and low risk twins from concordant pairs and high/low twins from discordant pairs was found for the prefrontal lobes. The concordant high risk pairs showed volume loss in orbitofrontal subdivisions. High risk members from the discordant twin pairs exhibited volume reduction in the right inferior dorsolateral prefontal cortex. In addition, the posterior corpus callosum was compromised in concordant high risk pairs, only. Our findings indicate that inattention and hyperactivity symptoms are associated with anatomical abnormalities of a distributed action-attentional network. Different brain areas of this network appear to be affected in inattention/hyperactivity caused by genetic (i.e., high concordant MZ pairs) versus environmental (i.e., high-low discordant MZ pairs) risk factors. These results provide clues that further our understanding of brain alterations in ADHD. PMID:17346990
NASA Astrophysics Data System (ADS)
Chen, Yu; Wang, Qihua; Wang, Tingmei
2015-10-01
The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. Electronic supplementary information (ESI) available: The average particle size distribution of LPASN-1, LPASN-2 and LPASN-3; the wide-angle XRD pattern of LPASN-2/LPASN-3/LPASN-4; the catalytic properties of LPASN-PNIPAM at different temperatures (15 °C and 33 °C). See DOI: 10.1039/c5nr04123f
Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.
2016-01-01
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758
Instantaneous brain dynamics mapped to a continuous state space.
Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D
2017-11-15
Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.
Individual brain structure and modelling predict seizure propagation.
Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K
2017-03-01
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming
2017-12-01
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.
Fish, Ari M; Cachia, Arnaud; Fischer, Clara; Mankiw, Catherine; Reardon, P K; Clasen, Liv S; Blumenthal, Jonathan D; Greenstein, Deanna; Giedd, Jay N; Mangin, Jean-François; Raznahan, Armin
2017-12-01
Gyrification is a fundamental property of the human cortex that is increasingly studied by basic and clinical neuroscience. However, it remains unclear if and how the global architecture of cortical folding varies with 3 interwoven sources of anatomical variation: brain size, sex, and sex chromosome dosage (SCD). Here, for 375 individuals spanning 7 karyotype groups (XX, XY, XXX, XYY, XXY, XXYY, XXXXY), we use structural neuroimaging to measure a global sulcation index (SI, total sulcal/cortical hull area) and both determinants of sulcal area: total sulcal length and mean sulcal depth. We detail large and patterned effects of sex and SCD across all folding metrics, but show that these effects are in fact largely consistent with the normative scaling of cortical folding in health: larger human brains have disproportionately high SI due to a relative expansion of sulcal area versus hull area, which arises because disproportionate sulcal lengthening overcomes a lack of proportionate sulcal deepening. Accounting for these normative allometries reveals 1) brain size-independent sulcal lengthening in males versus females, and 2) insensitivity of overall folding architecture to SCD. Our methodology and findings provide a novel context for future studies of human cortical folding in health and disease. Published by Oxford University Press 2016.
The temporal structures and functional significance of scale-free brain activity
He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.
2010-01-01
SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349
Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing
2018-04-26
One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.
Data-driven analysis of functional brain interactions during free listening to music and speech.
Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming
2015-06-01
Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang
2018-01-01
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease.
Berman, Brian D; Smucny, Jason; Wylie, Korey P; Shelton, Erika; Kronberg, Eugene; Leehey, Maureen; Tregellas, Jason R
2016-11-01
PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Fifth dimension of life and the 4/5 allometric scaling law for human brain.
He, Ji-Huan; Zhang, Juan
2004-01-01
Brain cells are not spherical. The basal metabolic rate (B) of a spherical cell scales as B approximately r2, where r is the radius of the cell; that of a brain cell scales as B approximately r(d), where r is the characteristic radius of the cell and d is the fractal dimensionality of its contour. The fractal geometry of the cell leads to a 4/5 allometric scaling law for human brain, uniquely endowing humans with a 5th dimension and successfully explains why the scaling exponent varies during rest and exercise. A striking analogy between Kleiber's 3/4 law and Newton's second law is heuristically illustrated. A physical explanation is given for the 4th dimension of life for three-dimensional organisms and the 5th dimension for human brain.
Organic electronics for high-resolution electrocorticography of the human brain.
Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsáki, György
2016-11-01
Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.
Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.
Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek
2015-06-01
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
Hardware-Assisted Large-Scale Neuroevolution for Multiagent Learning
2014-12-30
SECURITY CLASSIFICATION OF: This DURIP equipment award was used to purchase, install, and bring on-line two Berkeley Emulation Engines ( BEEs ) and two...mini- BEE machines to establish an FPGA-based high-performance multiagent training platform and its associated software. This acquisition of BEE4-W...Platform; Probabilistic Domain Transformation; Hardware-Assisted; FPGA; BEE ; Hive Brain; Multiagent. REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S
The Maryland Large-Scale Integrated Neurocognitive Architecture
2008-03-01
Visual input enters the network through the lateral geniculate nucleus (LGN) and is passed forward through visual brain regions (V1, V2, and V4...University of Maryland Sponsored by Defense Advanced Research Projects Agency DARPA Order No. V029 APPROVED FOR PUBLIC RELEASE...interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D; Zhou, Tao; Lieber, Charles M
2017-11-21
Implantable electrical probes have led to advances in neuroscience, brain-machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. Copyright © 2017 the Author(s). Published by PNAS.
Poulsen, Ingrid; Kreiner, Svend; Engberg, Aase W
2018-02-13
The Early Functional Abilities scale assesses the restoration of brain function after brain injury, based on 4 dimensions. The primary objective of this study was to evaluate the validity, objectivity, reliability and measurement precision of the Early Functional Abilities scale by Rasch model item analysis. A secondary objective was to examine the relationship between the Early Functional Abilities scale and the Functional Independence Measurement™, in order to establish the criterion validity of the Early Functional Abilities scale and to compare the sensitivity of measurements using the 2 instruments. The Rasch analysis was based on the assessment of 408 adult patients at admission to sub-acute rehabilitation in Copenhagen, Denmark after traumatic brain injury. The Early Functional Abilities scale provides valid and objective measurement of vegetative (autonomic), facio-oral, sensorimotor and communicative/cognitive functions. Removal of one item from the sensorimotor scale confirmed unidimensionality for each of the 4 subscales, but not for the entire scale. The Early Functional Abilities subscales are sensitive to differences between patients in ranges in which the Functional Independence Measurement™ has a floor effect. The Early Functional Abilities scale assesses the early recovery of important aspects of brain function after traumatic brain injury, but is not unidimensional. We recommend removal of the "standing" item and calculation of summary subscales for the separate dimensions.
Chiou, Yu-Jie; Huang, Tiao-Lai
2017-03-01
Brain-derived neurotrophic factors are known to be related to the psychopathology of major depressive disorder. However, studies focusing on drug-naïve first-episode patients are still rare. Over a 6-year period, we examined the serum brain-derived neurotrophic factors levels in patients with first-episode drug-naïve major depressive disorder and compared them with sex-matched healthy controls. We also investigated the relationships between serum brain-derived neurotrophic factors levels, suicidal behavior, and Hamilton Depression Rating Scale scores before and after a 4-week antidepressant treatment. The baseline serum brain-derived neurotrophic factors levels of 71 patients were significantly lower than those of the controls (P=.017), and the Hamilton Depression Rating Scale scores in 71 patients did not correlate with brain-derived neurotrophic factor levels. Brain-derived neurotrophic factor levels were significantly lower in 13 suicidal major depressive disorder patients than in 58 nonsuicidal major depressive disorder patients (P=.038). Among 41 followed-up patients, there was no alteration in serum brain-derived neurotrophic factors levels after treatment with antidepressants (P=.126). In receiver operating characteristic curve analysis of using pretreatment brain-derived neurotrophic factors to estimate the response to treatment, the area under the curve was 0.684. The most suitable cut-off point was 6.1 ng/mL (sensitivity=78.6%, specificity = 53.8%). Our data support the serum brain-derived neurotrophic factor levels in patients with drug-naïve first-episode major depressive disorder were lower than those in the healthy controls, and patients with pretreatment brain-derived neurotrophic factors >6.1 ng/mL were more likely to be responders. Although the relationship of our results to the mechanism of drug action and pathophysiology of depression remains unclear, the measure may have potential use as a predictor of response to treatment. In the future, it needs a large sample to prove these results. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Default mode network as a potential biomarker of chemotherapy-related brain injury
Kesler, Shelli R.
2014-01-01
Chronic medical conditions and/or their treatments may interact with aging to alter or even accelerate brain senescence. Adult onset cancer, for example, is a disease associated with advanced aging and emerging evidence suggests a profile of subtle but diffuse brain injury following cancer chemotherapy. Breast cancer is currently the primary model for studying these “chemobrain” effects. Given the widespread changes to brain structure and function as well as the common impairment of integrated cognitive skills observed following breast cancer chemotherapy, it is likely that large-scale brain networks are involved. Default mode network (DMN) is a strong candidate considering its preferential vulnerability to aging and sensitivity to toxicity and disease states. Additionally, chemotherapy is associated with several physiologic effects including increased inflammation and oxidative stress that are believed to elevate toxicity in the DMN. Biomarkers of DMN connectivity could aid in the development of treatments for chemotherapy-related cognitive decline. For example, certain nutritional interventions could potentially reduce the metabolic changes (e.g. amyloid beta toxicity) associated with DMN disruption. PMID:24913897
McKeon, Ashlee; Terhorst, Lauren; Skidmore, Elizabeth; Ding, Dan; Cooper, Rory; McCue, Michael
2017-01-01
This study aimed to develop a novel tool for measuring behavioural dysregulation in adults with traumatic brain injury (TBI) using objective data sources and real-world application and provide preliminary evidence for its psychometric properties. Fourteen adults with TBI receiving services at a local brain injury rehabilitation programme completed multiple assessments of behaviour and followed by a series of challenging problem-solving tasks while being video recorded. Trained clinicians completed post-hoc behavioural assessments using the behavioural dysregulation ratings scale, and behavioural event data were then extracted for comparison with self-report measures. Subject matter experts in neurorehabilitation were in 100% agreement that preliminarily, the new tool measured the construct of behavioural dysregulation. Construct validity was established through strong convergence with 'like' measures and weak correlation with 'unlike' measures. Substantial inter-rater reliability was established between two trained clinician raters. This study provides preliminary evidence supporting the use of a new precision measurement tool of behaviour in post-acute TBI that has the capability to be deployed naturalistically where deficits truly manifest. Future large-scaled confirmatory psychometric trials are warranted to further establish the utility of this new tool in rehabilitation research.
ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons
NASA Astrophysics Data System (ADS)
Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.
2008-12-01
Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.
Malec, J F; Moessner, A M; Kragness, M; Lezak, M D
2000-02-01
Evaluate the psychometric properties of the Mayo-Portland Adaptability Inventory (MPAI). Rating scale (Rasch) analysis of MPAI and principal component analysis of residuals; the predictive validity of the MPAI measures and raw scores was assessed in a sample from a day rehabilitation program. Outpatient brain injury rehabilitation. 305 persons with brain injury. A 22-item scale reflecting severity of sequelae of brain injury that contained a mix of indicators of impairment, activity, and participation was identified. Scores and measures for MPAI scales were strongly correlated and their predictive validities were comparable. Impairment, activity, and participation define a single dimension of brain injury sequelae. The MPAI shows promise as a measure of this construct.
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
A versatile clearing agent for multi-modal brain imaging
Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio
2015-01-01
Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610
del Río, David; Cuesta, Pablo; Bajo, Ricardo; García-Pacios, Javier; López-Higes, Ramón; del-Pozo, Francisco; Maestú, Fernando
2012-11-01
Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4-8 Hz), low alpha (8-10 Hz), high alpha (10-13 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Maturation of metabolic connectivity of the adolescent rat brain
Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo
2015-01-01
Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413
Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.
Zhang, Honghui; Watrous, Andrew J; Patel, Ansh; Jacobs, Joshua
2018-06-01
Human cognition requires the coordination of neural activity across widespread brain networks. Here, we describe a new mechanism for large-scale coordination in the human brain: traveling waves of theta and alpha oscillations. Examining direct brain recordings from neurosurgical patients performing a memory task, we found contiguous clusters of cortex in individual patients with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed spatial phase gradients, indicating that they formed traveling waves that propagated at ∼0.25-0.75 m/s. Traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well. Human traveling theta and alpha waves can be modeled by a network of coupled oscillators because the direction of wave propagation correlated with the spatial orientation of local frequency gradients. Our findings suggest that oscillations support brain connectivity by organizing neural processes across space and time. Copyright © 2018 Elsevier Inc. All rights reserved.
MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini
2014-01-01
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565
Stöckl, Anna; Heinze, Stanley; Charalabidis, Alice; el Jundi, Basil; Warrant, Eric; Kelber, Almut
2016-01-01
Nervous tissue is one of the most metabolically expensive animal tissues, thus evolutionary investments that result in enlarged brain regions should also result in improved behavioural performance. Indeed, large-scale comparative studies in vertebrates and invertebrates have successfully linked differences in brain anatomy to differences in ecology and behaviour, but their precision can be limited by the detail of the anatomical measurements, or by only measuring behaviour indirectly. Therefore, detailed case studies are valuable complements to these investigations, and have provided important evidence linking brain structure to function in a range of higher-order behavioural traits, such as foraging experience or aggressive behaviour. Here, we show that differences in the size of both lower and higher-order sensory brain areas reflect differences in the relative importance of these senses in the foraging choices of hawk moths, as suggested by previous anatomical work in Lepidopterans. To this end we combined anatomical and behavioural quantifications of the relative importance of vision and olfaction in two closely related hawk moth species. We conclude that differences in sensory brain volume in these hawk moths can indeed be interpreted as differences in the importance of these senses for the animal’s behaviour. PMID:27185464
Evidence for a Heritable Brain Basis to Deviance-Promoting Deficits in Self-Control.
Yancey, James R; Venables, Noah C; Hicks, Brian M; Patrick, Christopher J
2013-01-01
Classic criminological theories emphasize the role of impaired self-control in behavioral deviancy. Reduced amplitude of the P300 brain response is reliably observed in individuals with antisocial and substance-related problems, suggesting it may serve as a neurophysiological indicator of deficiencies in self-control that confer liability to deviancy. The current study evaluated the role of self-control capacity - operationalized by scores on a scale measure of trait disinhibition - in mediating the relationship between P300 brain response and behavioral deviancy in a sample of adult twins ( N =419) assessed for symptoms of antisocial/addictive disorders and P300 brain response. As predicted, greater disorder symptoms and higher trait disinhibition scores each predicted smaller P300 amplitude, and trait disinhibition mediated observed relations between antisocial/addictive disorders and P300 response. Further, twin modeling analyses revealed that trait disinhibition scores and disorder symptoms reflected a common genetic liability, and this genetic liability largely accounted for the observed phenotypic relationship between antisocial-addictive problems and P300 brain response. These results provide further evidence that heritable weaknesses in self-control capacity confer liability to antisocial/addictive outcomes and that P300 brain response indexes this dispositional liability.
A Hybrid CMOS-Memristor Neuromorphic Synapse.
Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W
2017-04-01
Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks
Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D.; Ravi, Sathya N.; Bendlin, Barbara B.; Johnson, Sterling C.; Singh, Vikas
2016-01-01
There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points — quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer’s disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant’s brain connectivity into the future. PMID:27812274
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology
Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D.; Zhou, Tao
2017-01-01
Implantable electrical probes have led to advances in neuroscience, brain−machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. PMID:29109247
Deza Araujo, Yacila I; Nebe, Stephan; Neukam, Philipp T; Pooseh, Shakoor; Sebold, Miriam; Garbusow, Maria; Heinz, Andreas; Smolka, Michael N
2018-06-01
Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.
Cunnane, Stephen C; Crawford, Michael A
2014-12-01
The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human seizures couple across spatial scales through travelling wave dynamics
NASA Astrophysics Data System (ADS)
Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.
2017-04-01
Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.
Williams, Leanne M
2016-01-01
Complex emotional, cognitive and self-reflective functions rely on the activation and connectivity of large-scale neural circuits. These circuits offer a relevant scale of focus for conceptualizing a taxonomy for depression and anxiety based on specific profiles (or biotypes) of neural circuit dysfunction. Here, the theoretical review first outlined the current consensus as to what constitutes the organization of large-scale circuits in the human brain identified using parcellation and meta-analysis. The focus is on neural circuits implicated in resting reflection (“default mode”), detection of “salience”, affective processing (“threat” and “reward”), “attention” and “cognitive control”. Next, the current evidence regarding which type of dysfunctions in these circuits characterize depression and anxiety disorders was reviewed, with an emphasis on published meta-analyses and reviews of circuit dysfunctions that have been identified in at least two well-powered case:control studies. Grounded in the review of these topics, a conceptual framework is proposed for considering neural circuit-defined “biotypes”. In this framework, biotypes are defined by profiles of extent of dysfunction on each large-scale circuit. The clinical implications of a biotype approach for guiding classification and treatment of depression and anxiety is considered. Future research directions will develop the validity and clinical utility of a neural circuit biotype model that spans diagnostic categories and helps to translate neuroscience into clinical practice in the real world. PMID:27653321
Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730
Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.
Schjetnan, Andrea Gomez Palacio; Luczak, Artur
2011-10-19
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).
Recording Large-scale Neuronal Ensembles with Silicon Probes in the Anesthetized Rat
Schjetnan, Andrea Gomez Palacio; Luczak, Artur
2011-01-01
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays1-3. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons4. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2). PMID:22042361
Neurolinguistic Approach to Natural Language Processing with Applications to Medical Text Analysis
Matykiewicz, Paweł; Pestian, John
2008-01-01
Understanding written or spoken language presumably involves spreading neural activation in the brain. This process may be approximated by spreading activation in semantic networks, providing enhanced representations that involve concepts that are not found directly in the text. Approximation of this process is of great practical and theoretical interest. Although activations of neural circuits involved in representation of words rapidly change in time snapshots of these activations spreading through associative networks may be captured in a vector model. Concepts of similar type activate larger clusters of neurons, priming areas in the left and right hemisphere. Analysis of recent brain imaging experiments shows the importance of the right hemisphere non-verbal clusterization. Medical ontologies enable development of a large-scale practical algorithm to re-create pathways of spreading neural activations. First concepts of specific semantic type are identified in the text, and then all related concepts of the same type are added to the text, providing expanded representations. To avoid rapid growth of the extended feature space after each step only the most useful features that increase document clusterization are retained. Short hospital discharge summaries are used to illustrate how this process works on a real, very noisy data. Expanded texts show significantly improved clustering and may be classified with much higher accuracy. Although better approximations to the spreading of neural activations may be devised a practical approach presented in this paper helps to discover pathways used by the brain to process specific concepts, and may be used in large-scale applications. PMID:18614334
Ubiquitous and temperature-dependent neural plasticity in hibernators.
von der Ohe, Christina G; Darian-Smith, Corinna; Garner, Craig C; Heller, H Craig
2006-10-11
Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.
Ray, Siddharth; Miller, Meghan; Karalunas, Sarah; Robertson, C.J.; Grayson, David; Cary, Paul; Hawkey, Elizabeth; Painter, Julia G.; Kriz, Daniel; Fombonne, Eric; Nigg, Joel T.; Fair, Damien A.
2015-01-01
Attention deficit hyperactive disorder (ADHD) and Autism spectrum disorders (ASD) are two of the most common and vexing neurodevelopmental disorders among children. Although the two disorders share many behavioral and neuropsychological characteristics, most MRI studies examine only one of the disorders at a time. Using graph theory combined with structural and functional connectivity, we examined the large-scale network organization among three groups of children: a group with ADHD (8-12 years, n = 20), a group with ASD (7-13 years, n = 16), and typically developing controls (TD) (8-12 years, n = 20). We apply the concept of the rich-club organization, whereby central, highly connected hub regions are also highly connected to themselves. We examine the brain into two different network domains: (1) inside a rich-club network phenomena, and (2) outside a rich-club network phenomena. ASD and ADHD populations had markedly different patterns of rich club and non rich-club connections in both functional and structural data. The ASD group exhibited higher connectivity in structural and functional networks but only inside the rich-club networks. These findings were replicated using the autism brain imaging data exchange (ABIDE) dataset with ASD (n = 85) and TD (n = 101). The ADHD group exhibited a lower generalized fractional anisotropy (GFA) and functional connectivity inside the rich-club networks, but a higher number of axonal fibers and correlation coefficient values outside the rich-club. Despite some shared biological features and frequent comorbity, these data suggest ADHD and ASD exhibit distinct large-scale connectivity patterns in middle childhood. PMID:25116862
Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli
2016-10-01
Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.
Peck, C P; Schroeder, R W; Heinrichs, R J; Vondran, E J; Brockman, C J; Webster, B K; Baade, L E
2013-01-01
This study examined differences in raw scores on the Symptom Validity Scale and Response Bias Scale (RBS) from the Minnesota Multiphasic Personality Inventory-2 in three criterion groups: (i) valid traumatic brain injured, (ii) invalid traumatic brain injured, and (iii) psychogenic non-epileptic seizure disorders. Results indicate that a >30 raw score cutoff for the Symptom Validity Scale accurately identified 50% of the invalid traumatic brain injured group, while misclassifying none of the valid traumatic brain injured group and 6% of the psychogenic non-epileptic seizure disorder group. Using a >15 RBS raw cutoff score accurately classified 50% of the invalid traumatic brain injured group and misclassified fewer than 10% of the valid traumatic brain injured and psychogenic non-epileptic seizure disorder groups. These cutoff scores used conjunctively did not misclassify any members of the psychogenic non-epileptic seizure disorder or valid traumatic brain injured groups, while accurately classifying 44% of the invalid traumatic brain injured individuals. Findings from this preliminary study suggest that the conjunctive use of the Symptom Validity Scale and the RBS from the Minnesota Multiphasic Personality Inventory-2 may be useful in differentiating probable malingering from individuals with brain injuries and conversion disorders.
Connectome-Wide Phenotypical and Genotypical Associations in Focal Dystonia
Fuertinger, Stefan
2017-01-01
Isolated focal dystonia is a debilitating movement disorder of unknown pathophysiology. Early studies in focal dystonias have pointed to segregated changes in brain activity and connectivity. Only recently has the notion that dystonia pathophysiology may lie in abnormalities of large-scale brain networks appeared in the literature. Here, we outline a novel concept of functional connectome-wide alterations that are linked to dystonia phenotype and genotype. Using a neural community detection strategy and graph theoretical analysis of functional MRI data in human patients with the laryngeal form of dystonia (LD) and healthy controls (both males and females), we identified an abnormally widespread hub formation in LD, which particularly affected the primary sensorimotor and parietal cortices and thalamus. Left thalamic regions formed a delineated functional community that highlighted differences in network topology between LD patients with and without family history of dystonia. Conversely, marked differences in the topological organization of parietal regions were found between phenotypically different forms of LD. The interface between sporadic genotype and adductor phenotype of LD yielded four functional communities that were primarily governed by intramodular hub regions. Conversely, the interface between familial genotype and abductor phenotype was associated with numerous long-range hub nodes and an abnormal integration of left thalamus and basal ganglia. Our findings provide the first comprehensive atlas of functional topology across different phenotypes and genotypes of focal dystonia. As such, this study constitutes an important step toward defining dystonia as a large-scale network disorder, understanding its causative pathophysiology, and identifying disorder-specific markers. SIGNIFICANCE STATEMENT The architecture of the functional connectome in focal dystonia was analyzed in a large population of patients with laryngeal dystonia. Breaking with the empirical concept of dystonia as a basal ganglia disorder, we discovered large-scale alterations of neural communities that are significantly influenced by the disorder's clinical phenotype and genotype. PMID:28674168
The amygdala as a hub in brain networks that support social life
Bickart, Kevin C.; Dickerson, Bradford C.; Barrett, Lisa Feldman
2016-01-01
A growing body of evidence suggests that the amygdala is central to handling the demands of complex social life in primates. In this paper, we synthesize extant anatomical and functional data from rodents, monkeys, and humans to describe the topography of three partially distinct large-scale brain networks anchored in the amygdala that each support unique functions for effectively managing social interactions and maintaining social relationships. These findings provide a powerful componential framework for parsing social behavior into partially distinct neural underpinnings that differ among healthy people and disintegrate or fail to develop in neuropsychiatric populations marked by social impairment, such as autism, antisocial personality disorder, and frontotemporal dementia. PMID:25152530
Characterizing attention with predictive network models
Rosenberg, M. D.; Finn, E. S.; Scheinost, D.; Constable, R. T.; Chun, M. M.
2017-01-01
Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals’ attentional abilities. Some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that (1) attention is a network property of brain computation, (2) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task, and (3) this architecture supports a general attentional ability common to several lab-based tasks and impaired in attention deficit hyperactivity disorder. Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. PMID:28238605
Cerliani, Leonardo; Mennes, Maarten; Thomas, Rajat M.; Di Martino, Adriana; Thioux, Marc; Keysers, Christian
2016-01-01
Importance Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks. Objectives To compare the intrinsic functional connectivity between brain networks in a large sample of individuals with ASD and typically developing control subjects and to estimate to what extent group differences would predict autistic traits and reflect different developmental trajectories. Design, Setting, and Participants We studied 166 male individuals (mean age, 17.6 years; age range, 7-50 years) diagnosed as having DSM-IV-TR autism or Asperger syndrome and 193 typical developing male individuals (mean age, 16.9 years; age range, 6.5-39.4 years) using resting-state functional magnetic resonance imaging (MRI). Participants were matched for age, IQ, head motion, and eye status (open or closed) in the MRI scanner. We analyzed data from the Autism Brain Imaging Data Exchange (ABIDE), an aggregated MRI data set from 17 centers, made public in August 2012. Main Outcomes and Measures We estimated correlations between time courses of brain networks extracted using a data-driven method (independent component analysis). Subsequently, we associated estimates of interaction strength between networks with age and autistic traits indexed by the Social Responsiveness Scale. Results Relative to typically developing control participants, individuals with ASD showed increased functional connectivity between primary sensory networks and subcortical networks (thalamus and basal ganglia) (all t ≥ 3.13, P < .001 corrected). The strength of such connections was associated with the severity of autistic traits in the ASD group (all r ≥ 0.21, P < .0067 corrected). In addition, subcortico-cortical interaction decreased with age in the entire sample (all r ≤ −0.09, P < .012 corrected), although this association was significant only in typically developing participants (all r ≤ −0.13, P < .009 corrected). Conclusions and Relevance Our results showing ASD-related impairment in the interaction between primary sensory cortices and subcortical regions suggest that the sensory processes they subserve abnormally influence brain information processing in individuals with ASD. This might contribute to the occurrence of hyposensitivity or hypersensitivity and of difficulties in top-down regulation of behavior. PMID:26061743
Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)
Herculano-Houzel, Suzana; Ribeiro, Pedro; Campos, Leandro; Valotta da Silva, Alexandre; Torres, Laila B.; Catania, Kenneth C.; Kaas, Jon H.
2011-01-01
Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. PMID:21985803
Spatial attention determines the nature of nonverbal number representation.
Hyde, Daniel C; Wood, Justin N
2011-09-01
Coordinated studies of adults, infants, and nonhuman animals provide evidence for two systems of nonverbal number representation: a "parallel individuation" system that represents individual items and a "numerical magnitude" system that represents the approximate cardinal value of a group. However, there is considerable debate about the nature and functions of these systems, due largely to the fact that some studies show a dissociation between small (1-3) and large (>3) number representation, whereas others do not. Using event-related potentials, we show that it is possible to determine which system will represent the numerical value of a small number set (1-3 items) by manipulating spatial attention. Specifically, when attention can select individual objects, an early brain response (N1) scales with the cardinal value of the display, the signature of parallel individuation. In contrast, when attention cannot select individual objects or is occupied by another task, a later brain response (P2p) scales with ratio, the signature of the approximate numerical magnitude system. These results provide neural evidence that small numbers can be represented as approximate numerical magnitudes. Further, they empirically demonstrate the importance of early attentional processes to number representation by showing that the way in which attention disperses across a scene determines which numerical system will deploy in a given context.
Barrett, Lisa Feldman; Barsalou, Lawrence W.
2015-01-01
The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of fear, sadness or happiness (scenario immersion), and then focused on and rated the pleasant or unpleasant feeling that emerged (valence focus) in most trials. As predicted, reliably greater activity in the ‘default mode’ network (including medial prefrontal cortex and posterior cingulate) was observed for atypical (vs typical) emotional experiences during scenario immersion, suggesting atypical instances require greater conceptual processing to situate the socio-emotional experience. During valence focus, reliably greater activity was observed for atypical (vs typical) emotional experiences in the ‘salience’ network (including anterior insula and anterior cingulate), suggesting atypical instances place greater demands on integrating shifting body signals with the sensory and social context. Consistent with emerging psychological construction approaches to emotion, these findings demonstrate that is it important to study the variability within common categories of emotional experience. PMID:24563528
Network structure shapes spontaneous functional connectivity dynamics.
Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R
2015-04-08
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.
Big data, open science and the brain: lessons learned from genomics.
Choudhury, Suparna; Fishman, Jennifer R; McGowan, Michelle L; Juengst, Eric T
2014-01-01
The BRAIN Initiative aims to break new ground in the scale and speed of data collection in neuroscience, requiring tools to handle data in the magnitude of yottabytes (10(24)). The scale, investment and organization of it are being compared to the Human Genome Project (HGP), which has exemplified "big science" for biology. In line with the trend towards Big Data in genomic research, the promise of the BRAIN Initiative, as well as the European Human Brain Project, rests on the possibility to amass vast quantities of data to model the complex interactions between the brain and behavior and inform the diagnosis and prevention of neurological disorders and psychiatric disease. Advocates of this "data driven" paradigm in neuroscience argue that harnessing the large quantities of data generated across laboratories worldwide has numerous methodological, ethical and economic advantages, but it requires the neuroscience community to adopt a culture of data sharing and open access to benefit from them. In this article, we examine the rationale for data sharing among advocates and briefly exemplify these in terms of new "open neuroscience" projects. Then, drawing on the frequently invoked model of data sharing in genomics, we go on to demonstrate the complexities of data sharing, shedding light on the sociological and ethical challenges within the realms of institutions, researchers and participants, namely dilemmas around public/private interests in data, (lack of) motivation to share in the academic community, and potential loss of participant anonymity. Our paper serves to highlight some foreseeable tensions around data sharing relevant to the emergent "open neuroscience" movement.
A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.
Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping
2017-03-01
Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.
Tse, Kwong Ming; Tan, Long Bin; Lee, Shu Jin; Lim, Siak Piang; Lee, Heow Pueh
2015-06-01
In spite of anatomic proximity of the facial skeleton and cranium, there is lack of information in the literature regarding the relationship between facial and brain injuries. This study aims to correlate brain injuries with facial injuries using finite element method (FEM). Nine common impact scenarios of facial injuries are simulated with their individual stress wave propagation paths in the facial skeleton and the intracranial brain. Fractures of cranio-facial bones and intracranial injuries are evaluated based on the tolerance limits of the biomechanical parameters. General trend of maximum intracranial biomechanical parameters found in nasal bone and zygomaticomaxillary impacts indicates that severity of brain injury is highly associated with the proximity of location of impact to the brain. It is hypothesized that the midface is capable of absorbing considerable energy and protecting the brain from impact. The nasal cartilages dissipate the impact energy in the form of large scale deformation and fracture, with the vomer-ethmoid diverging stress to the "crumpling zone" of air-filled sphenoid and ethmoidal sinuses; in its most natural manner, the face protects the brain. This numerical study hopes to provide surgeons some insight in what possible brain injuries to be expected in various scenarios of facial trauma and to help in better diagnosis of unsuspected brain injury, thereby resulting in decreasing the morbidity and mortality associated with facial trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cortical representations of communication sounds.
Heiser, Marc A; Cheung, Steven W
2008-10-01
This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.
Comparison of seven optical clearing methods for mouse brain
NASA Astrophysics Data System (ADS)
Wan, Peng; Zhu, Jingtan; Yu, Tingting; Zhu, Dan
2018-02-01
Recently, a variety of tissue optical clearing techniques have been developed to reduce light scattering for imaging deeper and three-dimensional reconstruction of tissue structures. Combined with optical imaging techniques and diverse labeling methods, these clearing methods have significantly promoted the development of neuroscience. However, most of the protocols were proposed aiming for specific tissue type. Though there are some comparison results, the clearing methods covered are limited and the evaluation indices are lack of uniformity, which made it difficult to select a best-fit protocol for clearing in practical applications. Hence, it is necessary to systematically assess and compare these clearing methods. In this work, we evaluated the performance of seven typical clearing methods, including 3DISCO, uDISCO, SeeDB, ScaleS, ClearT2, CUBIC and PACT, on mouse brain samples. First, we compared the clearing capability on both brain slices and whole-brains by observing brain transparency. Further, we evaluated the fluorescence preservation and the increase of imaging depth. The results showed that 3DISCO, uDISCO and PACT posed excellent clearing capability on mouse brains, ScaleS and SeeDB rendered moderate transparency, while ClearT2 was the worst. Among those methods, ScaleS was the best on fluorescence preservation, and PACT achieved the highest increase of imaging depth. This study is expected to provide important reference for users in choosing most suitable brain optical clearing method.
Human connectome module pattern detection using a new multi-graph MinMax cut model.
De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng
2014-01-01
Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.
Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors
Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.
2017-01-01
Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.
Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan
2017-01-01
Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.
Inference in the age of big data: Future perspectives on neuroscience.
Bzdok, Danilo; Yeo, B T Thomas
2017-07-15
Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy, synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and genetics). While growing data availability and information granularity have been amply discussed, we direct attention to a less explored question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and pathological brain measurements. We argue that large-scale data analysis will use more statistical models that are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical hypothesis testing with out-of-sample predictions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Anterior insular cortex regulation in autism spectrum disorders
Caria, Andrea; de Falco, Simona
2015-01-01
Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior. PMID:25798096
Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel
2014-08-01
Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.
Tibetan medicine "RNSP" in treatment of Alzheimer disease.
Shi, Jing-Ming; He, Xue; Lian, Hui-Juan; Yuan, Dong-Ya; Hu, Qun-Ying; Sun, Zheng-Qi; Li, Yan-Song; Zeng, Yu-Wen
2015-01-01
Alzheimer disease (Alzheimer Disease, AD) is one of the most common type in senile dementia. Its main pathological features were that a large number of senile plaques gathered in brain extracellular and tangles fibrosis appeared in nerve cells. Currently, the pathogenesis of AD is still uncertain, and scale investigation and combined brain CT, MRI data were analyzed mainly for clinical diagnosis. Mitigation and improvement of the nervous system activity to interfere with the subsequent behavior of the patients are the main methods for treatment. In clinical no drug can really prevent and cure AD. From the view point of Tibetan medicine studies, Tibetan medicine RNSP has effect on improving memory and repairing the neurons in the brain. In this study, we combined the characteristics of AD pathology, pathogenesis, diagnosis and treatment methods to explore the feasibility of Tibetan medicine RNSP for the treatment of AD to provide new ideas for the diagnosis and treatment of AD.
Neural mechanisms of movement planning: motor cortex and beyond.
Svoboda, Karel; Li, Nuo
2018-04-01
Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.
Highly Crumpled All-Carbon Transistors for Brain Activity Recording.
Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying
2017-01-11
Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.
Automated deep-phenotyping of the vertebrate brain
Allalou, Amin; Wu, Yuelong; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih
2017-01-01
Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex. DOI: http://dx.doi.org/10.7554/eLife.23379.001 PMID:28406399
Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury
2013-01-01
Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353
Budde, Kristin S.; Barron, Daniel S.; Fox, Peter T.
2015-01-01
Developmental stuttering is a speech disorder most likely due to a heritable form of developmental dysmyelination impairing the function of the speech-motor system. Speech-induced brain-activation patterns in persons who stutter (PWS) are anomalous in various ways; the consistency of these aberrant patterns is a matter of ongoing debate. Here, we present a hierarchical series of coordinate-based meta-analyses addressing this issue. Two tiers of meta-analyses were performed on a 17-paper dataset (202 PWS; 167 fluent controls). Four large-scale (top-tier) meta-analyses were performed, two for each subject group (PWS and controls). These analyses robustly confirmed the regional effects previously postulated as “neural signatures of stuttering” (Brown 2005) and extended this designation to additional regions. Two smaller-scale (lower-tier) meta-analyses refined the interpretation of the large-scale analyses: 1) a between-group contrast targeting differences between PWS and controls (stuttering trait); and 2) a within-group contrast (PWS only) of stuttering with induced fluency (stuttering state). PMID:25463820
An allometric scaling relationship in the brain of preterm infants
Paul, Rachel A; Smyser, Christopher D; Rogers, Cynthia E; English, Ian; Wallendorf, Michael; Alexopoulos, Dimitrios; Meyer, Erin J; Van Essen, David C; Neil, Jeffrey J; Inder, Terrie E
2014-01-01
Allometry has been used to demonstrate a power–law scaling relationship in the brain of premature born infants. Forty-nine preterm infants underwent neonatal MRI scans and neurodevelopmental testing at age 2. Measures of cortical surface area and total cerebral volume demonstrated a power–law scaling relationship (α = 1.27). No associations were identified between these measures and investigated clinical variables. Term equivalent cortical surface area and total cerebral volume measures and scaling exponents were not related to outcome. These findings confirm a previously reported allometric scaling relationship in the preterm brain, and suggest that scaling is not a sensitive indicator of aberrant cortical maturation. PMID:25540808
Jahanshad, Neda; Thompson, Paul M
2017-01-02
Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large-scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex-related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
T cells establish and maintain CNS viral infection in HIV-infected humanized mice.
Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor
2018-06-04
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.
Event management for large scale event-driven digital hardware spiking neural networks.
Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean
2013-09-01
The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Prognosis in pediatric traumatic brain injury. A dynamic cohort study].
Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma
2013-01-01
traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.
Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.
Latteri, Alberta; Arena, Paolo; Mazzone, Paolo
2011-04-15
Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks, with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to face with this important disease. Experimental results in fact show that the PD neurological diseases are characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization. On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated and synchronized. To study in details the effect of the stimulation signal on a pathological neural medium, efficient models of these neural structures were built, which are able to show, without any external input, the intrinsic properties of a pathological neural tissue, mimicking the BG synchronized dynamics.We start considering a model already introduced in the literature to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model, although having a high level of biological plausibility, requires a large computational effort to simulate large scale networks. For this reason we considered a reduced order model, the Izhikevich one, which is computationally much lighter. The comparison between neural lattices built using both neuron models provided comparable results, both without traditional stimulation and in presence of all the stimulation protocols. This was a first result toward the study and simulation of the large scale neural networks involved in pathological dynamics.Using the reduced order model an inspection on the activity of two neural lattices was also carried out at the aim to analyze how the stimulation in one area could affect the dynamics in another area, like the usual medical treatment protocols require.The study of population dynamics that was carried out allowed us to investigate, through simulations, the positive effects of the stimulation signals in terms of desynchronization of the neural dynamics. The results obtained constitute a significant added value to the analysis of synchronization and desynchronization effects due to neural stimulation. This work gives the opportunity to more efficiently study the effect of stimulation in large scale yet computationally efficient neural networks. Results were compared both with the other mathematical models, using Morris Lecar and Izhikevich neurons, and with simulated Local Field Potentials (LFP).
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan
2017-10-25
Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.
Paolinelli, Roberta; Corada, Monica; Ferrarini, Luca; Devraj, Kavi; Artus, Cédric; Czupalla, Cathrin J; Rudini, Noemi; Maddaluno, Luigi; Papa, Eleanna; Engelhardt, Britta; Couraud, Pierre Olivier; Liebner, Stefan; Dejana, Elisabetta
2013-01-01
Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.
Cross-frequency coupling in real and virtual brain networks
Jirsa, Viktor; Müller, Viktor
2013-01-01
Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study, we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG) data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of CFC under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC) correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed. PMID:23840188
Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang
2018-01-01
To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.
A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex
Chaudhuri, Rishidev; Knoblauch, Kenneth; Gariel, Marie-Alice; Kennedy, Henry; Wang, Xiao-Jing
2015-01-01
We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal heterogeneity. PMID:26439530
Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach
Bigdely-Shamlo, Nima; Makeig, Scott; Robbins, Kay A.
2016-01-01
Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain–computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a “containerized” approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data “Levels,” each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org). PMID:27014048
Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin
2017-02-01
We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.
Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks
Ciuciu, Philippe; Abry, Patrice; He, Biyu J.
2014-01-01
Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649
Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.
2009-01-01
A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147
Orthographic and Phonological Neighborhood Databases across Multiple Languages.
Marian, Viorica
2017-01-01
The increased globalization of science and technology and the growing number of bilinguals and multilinguals in the world have made research with multiple languages a mainstay for scholars who study human function and especially those who focus on language, cognition, and the brain. Such research can benefit from large-scale databases and online resources that describe and measure lexical, phonological, orthographic, and semantic information. The present paper discusses currently-available resources and underscores the need for tools that enable measurements both within and across multiple languages. A general review of language databases is followed by a targeted introduction to databases of orthographic and phonological neighborhoods. A specific focus on CLEARPOND illustrates how databases can be used to assess and compare neighborhood information across languages, to develop research materials, and to provide insight into broad questions about language. As an example of how using large-scale databases can answer questions about language, a closer look at neighborhood effects on lexical access reveals that not only orthographic, but also phonological neighborhoods can influence visual lexical access both within and across languages. We conclude that capitalizing upon large-scale linguistic databases can advance, refine, and accelerate scientific discoveries about the human linguistic capacity.
Bachmann, Talis
2015-01-01
Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive) processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here, a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of the sub-second temporal scale.
Estimating individual contribution from group-based structural correlation networks.
Saggar, Manish; Hosseini, S M Hadi; Bruno, Jennifer L; Quintin, Eve-Marie; Raman, Mira M; Kesler, Shelli R; Reiss, Allan L
2015-10-15
Coordinated variations in brain morphology (e.g., cortical thickness) across individuals have been widely used to infer large-scale population brain networks. These structural correlation networks (SCNs) have been shown to reflect synchronized maturational changes in connected brain regions. Further, evidence suggests that SCNs, to some extent, reflect both anatomical and functional connectivity and hence provide a complementary measure of brain connectivity in addition to diffusion weighted networks and resting-state functional networks. Although widely used to study between-group differences in network properties, SCNs are inferred only at the group-level using brain morphology data from a set of participants, thereby not providing any knowledge regarding how the observed differences in SCNs are associated with individual behavioral, cognitive and disorder states. In the present study, we introduce two novel distance-based approaches to extract information regarding individual differences from the group-level SCNs. We applied the proposed approaches to a moderately large dataset (n=100) consisting of individuals with fragile X syndrome (FXS; n=50) and age-matched typically developing individuals (TD; n=50). We tested the stability of proposed approaches using permutation analysis. Lastly, to test the efficacy of our method, individual contributions extracted from the group-level SCNs were examined for associations with intelligence scores and genetic data. The extracted individual contributions were stable and were significantly related to both genetic and intelligence estimates, in both typically developing individuals and participants with FXS. We anticipate that the approaches developed in this work could be used as a putative biomarker for altered connectivity in individuals with neurodevelopmental disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T
2017-04-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks
Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.
2017-01-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386
Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.
2016-01-01
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C
2016-01-26
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.
Synaptic electronics: materials, devices and applications.
Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip
2013-09-27
In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.
Detecting switching and intermittent causalities in time series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Papo, David
2017-04-01
During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian
2015-10-01
Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Manipulation complexity in primates coevolved with brain size and terrestriality
Heldstab, Sandra A.; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Isler, Karin
2016-01-01
Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921
Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D
2016-08-08
Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus
2015-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239
Regional homogeneity of the resting-state brain activity correlates with individual intelligence.
Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui
2011-01-25
Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
[From Brownian motion to mind imaging: diffusion MRI].
Le Bihan, Denis
2006-11-01
The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.
Chen, Yun; Huang, Wei; Constantini, Shlomi
2013-01-01
After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon
The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less
Evidence for a Heritable Brain Basis to Deviance-Promoting Deficits in Self-Control
Yancey, James R.; Venables, Noah C.; Hicks, Brian M.; Patrick, Christopher J.
2013-01-01
Purpose Classic criminological theories emphasize the role of impaired self-control in behavioral deviancy. Reduced amplitude of the P300 brain response is reliably observed in individuals with antisocial and substance-related problems, suggesting it may serve as a neurophysiological indicator of deficiencies in self-control that confer liability to deviancy. Methods The current study evaluated the role of self-control capacity — operationalized by scores on a scale measure of trait disinhibition — in mediating the relationship between P300 brain response and behavioral deviancy in a sample of adult twins (N=419) assessed for symptoms of antisocial/addictive disorders and P300 brain response. Results As predicted, greater disorder symptoms and higher trait disinhibition scores each predicted smaller P300 amplitude, and trait disinhibition mediated observed relations between antisocial/addictive disorders and P300 response. Further, twin modeling analyses revealed that trait disinhibition scores and disorder symptoms reflected a common genetic liability, and this genetic liability largely accounted for the observed phenotypic relationship between antisocial-addictive problems and P300 brain response. Conclusions These results provide further evidence that heritable weaknesses in self-control capacity confer liability to antisocial/addictive outcomes and that P300 brain response indexes this dispositional liability. PMID:24187392
Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent
2012-01-01
Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828
Will big data yield new mathematics? An evolving synergy with neuroscience
Feng, S.; Holmes, P.
2016-01-01
New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin–Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics. PMID:27516705
Will big data yield new mathematics? An evolving synergy with neuroscience.
Feng, S; Holmes, P
2016-06-01
New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin-Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics.
A Virtual Reality Visualization Tool for Neuron Tracing
Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Angelucci, Alessandra; Pascucci, Valerio
2017-01-01
Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists. PMID:28866520
Sotiropoulos, Stamatios N.; Brookes, Matthew J.; Woolrich, Mark W.
2018-01-01
Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP. PMID:29474352